US20190288347A1 - Power storage device, transport equipment, and control method - Google Patents
Power storage device, transport equipment, and control method Download PDFInfo
- Publication number
- US20190288347A1 US20190288347A1 US16/345,086 US201716345086A US2019288347A1 US 20190288347 A1 US20190288347 A1 US 20190288347A1 US 201716345086 A US201716345086 A US 201716345086A US 2019288347 A1 US2019288347 A1 US 2019288347A1
- Authority
- US
- United States
- Prior art keywords
- storage battery
- instruction
- electric power
- value
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present invention relates to a power storage device, a transport equipment, and a control method in a smart grid capable of bidirectionally transferring electric power between a storage battery and an electric power system.
- V2G vehicle to grid
- V2G is one of business models for realizing a smart grid, and is a system which performs interchange of electric power between an electric power system including a commercial electric power network and an electric vehicle.
- a storage battery mounted on the electric vehicle is used as one of electric power storage facilities in the commercial electric power network. Therefore, the electric power is bidirectionally transferred between the electric vehicle participating in V2G and the electric power system.
- the electric vehicle participating in V2G performs a continuous discharge for the purpose of maintaining supply-demand equilibrium in the electric power system, and the charge and discharge for the purpose of stabilizing frequency in the electric power system.
- Electric power obtained by the continuous discharge of the electric vehicle for the purpose of maintaining the supply-demand equilibrium is used as “spinning reserve” of the electric power system.
- electric power transferred by the charge and discharge of the electric vehicle for the purpose of stabilizing the frequency is used for “frequency regulation” of the electric power system. In each case, the electric vehicle contributes to stabilization of the electric power system.
- the “spinning reserve” in V2G described above is obtained by the electric vehicle continuing to discharge a current amount which is not small.
- the “frequency regulation” in V2G is realized by the electric vehicle instantaneously and frequently switching between the charge and discharge. Such a difference in a charge and discharge mode may accelerate the deterioration of the storage battery in the electric vehicle on which one type of storage battery is mounted.
- an owner of the electric vehicle tends to hesitate to participate in V2G.
- An object of the present invention is to provide a power storage device, a transport equipment, and a control method which can efficiently obtain an incentive while suppressing deterioration of a storage battery and can contribute to an electric power quality of an electric power system.
- a power storage device including:
- a storage battery capable of transferring electric power to and from an external electric power network (for example, an electric power network 12 in the embodiment to be described later);
- a receiver for example, a digital communication unit 123 in the embodiment to be described later configured to receive an instruction related to transfer of the electric power to and from the electric power network;
- a controller for example, an ECU 131 in the embodiment to be described later configured to control charge and discharge of the storage battery according to the instruction
- the instruction includes a first instruction for requesting switching between short-term charge and discharge from the storage battery to the electric power network, and a second instruction for requesting continuous discharge from the storage battery to the electric power network, and
- the controller is configured to allow the storage battery to start charge and discharge that correspond to the first instruction when a variable representing a state of charge of the storage battery by a level of a value is a value between a first value (for example, a frequency control SOC in the embodiment to be described later) smaller than an upper limit value (for example, a full charge SOC in the embodiment to be described later) that the state of charge reaches when the storage battery is fully charged and a second value (for example, a V2G lower limit SOC in the embodiment to be described later) smaller than the first value, and allow the storage battery to start discharge that corresponds to the second instruction when the variable is a value between the upper limit value and the second value.
- a first value for example, a frequency control SOC in the embodiment to be described later
- an upper limit value for example, a full charge SOC in the embodiment to be described later
- a second value for example, a V2G lower limit SOC in the embodiment to be described later
- the storage battery is mounted on a transport equipment (for example, an electric vehicle 15 in the embodiment to be described later).
- a transport equipment for example, an electric vehicle 15 in the embodiment to be described later.
- a third aspect according to the first or second aspect is a third aspect according to the first or second aspect.
- the controller gives priority to the second instruction when the variable is a value between the first value and the second value.
- controller is configured to store, for each state of charge of the storage battery, a deterioration influence degree of the storage battery when the storage battery performs the charge and discharge that correspond to the first instruction, and set the first value related to the variable to a value such that the deterioration influence degree is equal to or less than a threshold value when the storage battery performs the charge and discharge that correspond to the first instruction.
- a fifth aspect according to any one of the first to fourth aspects,
- controller sets the first value based on a temperature of the storage battery.
- controller sets the first value to a smaller value as the temperature of the storage battery is lower.
- a seventh aspect according to any one of the second to sixth aspects,
- controller sets the second value based on an electric power amount required for a next traveling of the transport equipment.
- the controller allows the storage battery to charge until the variable reaches the first value if the receiver does not receive the instruction.
- a power storage device including:
- a storage battery capable of transferring electric power to and from an external electric power network (for example, an electric power network 12 in the embodiment to be described later);
- a receiver for example, a digital communication unit 123 in the embodiment to be described later configured to receive an instruction related to transfer of the electric power to and from the electric power network;
- a controller for example, an ECU 131 in the embodiment to be described later configured to control charge and discharge of the storage battery according to the instruction
- the instruction includes a first instruction for requesting switching between short-term charge and discharge from the storage battery to the electric power network, and a second instruction for requesting continuous discharge from the storage battery to the electric power network,
- controller is configured to allow the storage battery to charge and discharge that correspond to the first instruction when a variable representing a state of charge of the storage battery by a level of a value is within a first range, and to allow the storage battery to discharge that corresponds to the second instruction when the variable is within a second range, and
- first range is narrower than the second range, and an upper limit of the first range is lower than an upper limit of the second range.
- a transport equipment including the power storage device according to any one of the first to ninth aspects.
- a control method for a power storage device including a storage battery (for example, a storage battery 125 in an embodiment to be described later) capable of transferring electric power to and from an external electric power network (for example, an electric power network 12 in the embodiment to be described later), a receiver (for example, a digital communication unit 123 in the embodiment to be described later) configured to receive an instruction related to transfer of the electric power to and from the electric power network, and a controller (for example, an ECU 131 in the embodiment to be described later) configured to control charge and discharge of the storage battery according to the instruction,
- a storage battery for example, a storage battery 125 in an embodiment to be described later
- an external electric power network for example, an electric power network 12 in the embodiment to be described later
- a receiver for example, a digital communication unit 123 in the embodiment to be described later
- a controller for example, an ECU 131 in the embodiment to be described later
- the instruction including a first instruction for requesting switching between short-term charge and discharge from the storage battery to the electric power network, and a second instruction for requesting continuous discharge from the storage battery to the electric power network,
- control method including:
- a variable representing a state of charge of the storage battery by a level of a value is a value between a first value (for example, a frequency control SOC in the embodiment to be described later) smaller than an upper limit value (for example, a full charge SOC in the embodiment to be described later) when the storage battery is fully charged and a second value (for example, a V2G lower limit SOC in the embodiment to be described later) smaller than the first value: and
- the short-term charge and discharge of the storage battery corresponding to the first instruction is repeated with the variable within a range between the first value and the second value
- the continuous discharge of the storage battery corresponding to the second instruction is performed with the variable within a range between the upper limit value and the second value.
- the storage battery mounted on the transport equipment it is possible to efficiently obtain the incentive while suppressing the deterioration of the storage battery and to contribute to the electric power quality of the electric power system including the electric power network.
- the priority is given to the continuous discharge of the storage battery corresponding to the second instruction, it is possible to acquire a more efficient incentive.
- the first value which is the upper limit of the range in which the charge and discharge that correspond to the first instruction and having a large influence on the deterioration of the storage battery is performed is set to a value such that the deterioration influence degree is equal to or less than the threshold value. Therefore, even if the charge and discharge that correspond to the first instruction is performed, the deterioration of the storage battery can be suppressed.
- the first value which is the upper limit of the range in which the charge and discharge that correspond to the first instruction is performed, is set based on the temperature of the storage battery. Therefore, the range of the variable in which the charge and discharge that correspond to the first instruction is performed can be set to a suitable range according to a temperature environment of the storage battery.
- the first value which is the upper limit of the range in which the charge and discharge that correspond to the first instruction is performed, is set to a smaller value as the temperature of the storage battery is lower. Therefore, the range of the variable in which the charge and discharge that correspond to the first instruction is performed can be set to the suitable range according to the temperature environment of the storage battery.
- the second value which is a lower limit value in the range of the variable in which the charge and discharge that correspond to the first instruction is performed and a lower limit value in the range of the variable in which the continuous discharge that corresponds to the second instruction is performed, is set based on the electric power amount required for the next traveling of the transport equipment. Therefore, if the variable of the storage battery lowers to the second value, the controller does not allow the charge and discharge that correspond to the first instruction or the continuous discharge that corresponds to the second instruction. Therefore, it is possible to contribute to the electric power quality of the electric power system while securing the electric power amount required for the next traveling of the transport equipment.
- the eighth aspect in a case where the storage battery is charged when there is spare time before the next traveling of the transport equipment, since the storage battery is charged until the variable reaches the first value which is the upper limit of the range in which the start of the charge and discharge that correspond to the first instruction and the start of the continuous discharge that corresponds to the second instruction are allowed, an opportunity to contribute to the electric power quality of the electric power system is increased, and the incentive can be efficiently obtained.
- the short-term charge and discharge of the storage battery corresponding to the first instruction is repeated when the variable is within the first range, and the continuous discharge of the storage battery corresponding to the second instruction is performed when the variable is within the second range which is narrower than the first range and whose the upper limit is lower than the first range.
- the charge and discharge that correspond to the first instruction and the discharge that corresponds to the second instruction which have different modes are respectively performed within the suitable range of the variable, it is possible to efficiently obtain the incentive while suppressing the deterioration of the storage battery and to contribute to the electric power quality of the electric power system including the electric power network.
- FIG. 1 is a view showing an overall configuration of a V2G system:
- FIG. 2 is a block diagram showing an EVSE and an electric vehicle which configure a part of the V2G system shown in FIG. 1 ;
- FIG. 3 is a flow chart showing an operation of an ECU when the electric vehicle connected to the EVSE participates in V2G;
- FIG. 4 is a flow chart showing an operation of the ECU when the electric vehicle connected to the EVSE participates in V2G;
- FIG. 5 is a view showing an example of a change in a SOC of a storage battery when the electric vehicle participating in V2G operates according to an instruction from an aggregator.
- a vehicle to grid (V2G) system is a system which performs interchange of electric power between an electric power system including a commercial electric power network and an electric vehicle, and when the electric vehicle is not used as moving means, a storage batten mounted on the electric vehicle is used as an electric power storage facility. Therefore, the electric power is bidirectionally transferred between the electric vehicle participating in V2G and the electric power system.
- the electric vehicle participating in V2G performs a continuous discharge for the purpose of maintaining supply-demand equilibrium in the electric power system, and a charge and discharge for the purpose of stabilizing frequency in the electric power system according to a situation of the electric power system.
- Electric power obtained by the continuous discharge of the electric vehicle for the purpose of maintaining the supply-demand equilibrium is used as “spinning reserve” of the electric power system.
- the continuous discharge for the spinning reserve is performed particularly for the purpose of supplying the electric power to the electric power system required to maintain the supply-demand equilibrium as electric power demand in the electric power system increases.
- electric power transferred by the charge and discharge of the electric vehicle for the purpose of stabilizing the frequency is used for “frequency regulation” of the electric power system. In each case, the electric vehicle contributes to stabilization of the electric power system.
- FIG. 1 is a view showing an overall configuration of the V2G system.
- the V2G system includes an electric power system which is configured by an electric power supplier such as a power station 11 which generates power by energy such as thermal power, wind power, nuclear power or solar light, a power transmission network (hereinafter, referred to as an “electric power network”) 12 of the electric power generated by the electric power supplier, or the like, an electric power consumer 13 which requires power and receives supply of the electric power, an electric vehicle service equipment (EVSE) 14 which is an external power supply device connected to the electric power network 12 via a power distribution facility (not shown), an electric vehicle 15 such as an electrical vehicle (EV) or a plug-in hybrid electric vehicle (PHEV) mounted with a chargeable/dischargeable storage battery, a communication network 16 , and an aggregator 17 which manages the charge and discharge of the storage battery included in the electric vehicle 15 via the EVSE 14 connected to the communication network 16 .
- an electric power supplier such as a power station 11 which generates power by energy
- provision of the spinning reserve from the electric vehicle 15 to the electric power system or the frequency regulation of the electric power system can be performed, so that a requirement of an electric power company operating the power station 11 , a power transmission company operating the electric power network 12 or the like can be meet.
- FIG. 2 is a block diagram showing the EVSE 14 and the electric vehicle 15 which configure a part of the V2G system shown in FIG. 1 .
- the EVSE 14 includes a connector 22 provided at a tip end of a cable 21 and a digital communication unit 23 .
- the electric vehicle 15 includes an inlet 121 , a digital communication unit 123 , a chargeable/dischargeable storage battery 125 , a bidirectional charger 127 , a temperature sensor 129 , and an electronic controller (ECU) 131 .
- ECU electronic controller
- the connector 22 transfers the electric power between the EVSE 14 and the electric vehicle 15 in a state of being connected to the inlet 121 of the electric vehicle 15 .
- the digital communication unit 23 is connected to the communication network 16 via a home gateway 18 , and superimposes a signal obtained from the aggregator 17 on electricity transferred between the EVSE 14 and the electric vehicle 15 using a power line communication (PLC) technology. Therefore, the signal from the aggregator 17 is sent to the electric vehicle 15 when the connector 22 is connected to the inlet 121 of the electric vehicle 15 .
- PLC power line communication
- the connector 22 of the EVSE 14 is attachable to and detachable from the inlet 121 .
- the digital communication unit 123 receives a signal superimposed on the electricity from the EVSE 14 by the PLC technology.
- a connection form between the electric vehicle 15 and the EVSE 14 is not limited to a physical connection by the inlet 121 and the connector 22 , and may be an electromagnetic connection such as non-contact charge and discharge in a state where the inlet 121 and the connector 22 are close to each other.
- the storage battery 125 includes a plurality of power storage cells such as a lithium ion battery and a nickel hydrogen battery. In a state where the electric vehicle 15 is not connected to the EVSE 14 , the storage battery 125 supplies the electric power to an electric motor or the like (not shown) which is a drive source of the electric vehicle 15 . In addition, in a state where the electric vehicle 15 is connected to the EVSE 14 , the storage battery 125 transfers the electric power to and from the electric power network 12 according to the instruction sent from the aggregator 17 via the communication network 16 and the EVSE 14 .
- the bidirectional charger 127 converts an AC voltage obtained from the electric power network 12 via the EVSE 14 into a DC voltage. Electric power converted to the DC voltage by the bidirectional charger 127 is charged into the storage battery 125 . In addition, the bidirectional charger 127 converts the DC voltage discharged from the storage battery 125 into the AC voltage. Electric power converted to the AC voltage by the bidirectional charger 127 is sent to the electric power network 12 via the inlet 121 and the EVSE 14 .
- the temperature sensor 129 detects a temperature of the storage battery 125 . A signal indicating the temperature detected by the temperature sensor 129 is sent to the ECU 131 .
- the ECU 131 Based on a voltage and an input/output current of the storage battery 125 detected by a voltage sensor and a current sensor (not shown), the ECU 131 derives a state of charge (SOC) which is a variable representing the state of charge of the storage battery 125 by a level (0% to 100%) of a value by a current integration method or an open circuit voltage (OCV) estimation method.
- SOC state of charge
- OCV open circuit voltage
- the instruction sent by the aggregator 17 to the electric vehicle 15 participating in the V2G is an instruction related to the transfer of the electric power between the electric vehicle 15 and the electric power network 12 , and varies depending on an electric power quality or supply-demand balance of the electric power of the electric power network 12 .
- the instruction is a first instruction for requesting the electric vehicle 15 to switch between charge and discharge in a short-term for frequency regulation of the electric power network 12 described above, or a second instruction for requesting the electric vehicle 15 to continue discharge for providing spinning reserve to the electric power network 12 described above.
- FIGS. 3 and 4 are flow charts showing operations of the ECU 131 when the electric vehicle 15 connected to the EVSE 14 participates in V2G.
- FIG. 5 is a view showing an example of a change in the SOC of the storage battery 125 when the electric vehicle 15 participating in V2G operates according to the instruction from the aggregator 17 .
- a “frequency control SOC” having a value smaller than the SOC (a full charge SOC) when the storage battery 125 is fully charged and a “V2G lower limit SOC” having a value smaller than the frequency control SOC are preset.
- the frequency control SOC is a value set by a manufacturer of the electric vehicle 15 .
- the V2G lower limit SOC is a value at which the storage battery 125 is capable of outputting an electric power amount consumed by traveling a preset distance by a driver during a next traveling of the electric vehicle 15 . In other words, the V2G lower limit SOC is a value set by the driver of the electric vehicle 15 .
- a next scheduled traveling date and time of the electric vehicle 15 connected to the EVSE 14 is preset in the ECU 131 .
- the next scheduled traveling date and time may be, for example, periodic date and time information such as 7:00 am on weekdays, or may be one-time date and time information such as 3:00 pm three days later.
- the ECU 131 in which the frequency control SOC, the V2G lower limit SOC, and the next scheduled traveling date and time are set determines whether a time difference from the current time to the next scheduled traveling date and time is less than predetermined time (step S 101 ), if the above-described time difference (the next scheduled traveling date and time ⁇ the current time) is less than the predetermined time, the procedure proceeds to step S 103 , and if the above-described time difference is larger than or equal to the predetermined time, the procedure proceeds to step S 105 .
- step S 103 the ECU 131 controls the bidirectional charger 127 to charge the storage battery 125 with the electric power obtained from the electric power network 12 until the SOC of the storage battery 125 reaches the full charge SOC, as seen from increase in the SOC after time t 103 shown in FIG. 5 .
- step S 105 the ECU 131 determines whether the digital communication unit 123 has received a signal including the instruction from the aggregator 17 , if the instruction is not received, the procedure proceeds to step S 107 , and if the instruction is received, the procedure proceeds to step S 111 .
- step S 107 the ECU 131 determines whether the SOC of the storage battery 125 is less than the frequency control SOC, if the SOC ⁇ the frequency control SOC, the procedure proceeds to step S 109 , and if the SOC>the frequency control SOC, a series of processing is ended.
- step S 109 the ECU 131 controls the bidirectional charger 127 to charge the storage battery 125 with the electric power obtained from the electric power network 12 until the SOC of the storage battery 125 reaches the frequency control SOC, as seen from increase in the SOC after time t 109 a , t 109 b shown in FIG. 5 .
- step S 111 the ECU 131 determines whether the instruction indicated by the signal received by the digital communication unit 123 is the first instruction or the second instruction, if the instruction is the first instruction, the procedure proceeds to step S 113 , and if the instruction is the second instruction, the procedure proceeds to step S 121 .
- step S 113 the ECU 131 determines whether the SOC of the storage battery 125 is equal to or lower than the frequency control SOC, if the SOC ⁇ the frequency control SOC, the procedure proceeds to step S 115 , and if SOC>the frequency control SOC, a series of processing is ended.
- step S 115 the ECU 131 determines whether the SOC of the storage battery 125 is more than or equal to the V2G lower limit SOC, if the V2G lower limit SOC ⁇ the SOC, the procedure proceeds to step S 117 , and if the lower limit SOC>the SOC, the procedure proceeds to step S 119 .
- step S 117 since the SOC of the storage battery 125 when receiving the first instruction is within a range from the V2G lower limit SOC to the frequency control SOC, the ECU 131 controls the bidirectional charger 127 such that the storage battery 125 perform the charge and discharge for the frequency regulation with respect to the electric power network 12 according to the first instruction, as seen from fluctuation of the SOC after time t 117 a , t 117 b , and t 117 c shown in FIG. 5 .
- step S 119 the ECU 131 controls the bidirectional charger 127 to charge the storage battery 125 with the electric power obtained from the electric power network 12 until the SOC of the storage battery 125 reaches the frequency control SOC.
- step S 121 the ECU 131 determines whether the SOC of the storage battery 125 is more than or equal to the V2G lower limit SOC, if the V2G lower limit SOC ⁇ the SOC, the procedure proceeds to step S 123 , and if the V2G lower limit SOC>the SOC, the procedure proceeds to step S 119 .
- step S 123 since the SOC of the storage battery 125 when receiving the second instruction is within a range from the V2G lower limit SOC to the full charge SOC, the ECU 131 controls the bidirectional charger 127 such that the storage battery 125 performs the continuous discharge with respect to the electric power network 12 to provide the spinning reserve according to the second instruction, as seen from decrease in the SOC after time t 123 shown in FIG. 5 .
- the ECU 131 starts control for the storage battery 125 to perform the charge and discharge for the frequency regulation with respect to the electric power network 12 according to the first instruction.
- a hysteresis is respectively provided at an upper limit and a lower limit, so that the ECU 131 does not determine that the SOC is out of the first range due to vertical fluctuation of the SOC caused by the charge and discharge of the storage battery 125 for the frequency regulation.
- the ECU 131 starts control for the storage battery 125 to perform the continuous discharge with respect to the electric power network 12 to provide the spinning reserve according to the second instruction.
- the frequency control SOC is set to a value lower than the full charge SOC, and a lower limit value of each range is the V2G lower limit SOC, the first range is narrower than the second range.
- the value of the frequency control SOC with respect to the full charge SOC is low to an degree that the full charge SOC is not exceeded (condition one) even if the charge and discharge for the frequency regulation corresponding to the first instruction is performed when the SOC of the storage battery 125 is the frequency control SOC, and a deterioration influence degree of the storage battery 125 is equal to or less than a threshold value (condition two) even when the charge and discharge is performed. Further, the deterioration influence degree of the storage battery 125 which performs the switching between short-term charge and discharge is larger as the SOC of the storage battery 125 is higher.
- a maximum value of the SOC at which a performance required when the storage battery 125 is charged can be realized, for example, a maximum value of the SOC at which the storage battery 125 can be continuously charged with a predetermined electric power amount, is lower as the temperature of the storage battery 125 is lower. Therefore, as the temperature of the storage battery 125 detected by the temperature sensor 129 is lower, the frequency control SOC is set lower. In this manner, the ECU 131 sets the frequency control SOC according to the temperature of the storage battery 125 , satisfying the above-described two conditions.
- the charge and discharge of the storage battery 125 for the frequency regulation corresponding to the first instruction is performed with the SOC of the storage battery 125 within the first range from the frequency control SOC to the V2G lower limit SOC
- the continuous discharge of the storage battery 125 for providing the spinning reserve to the electric power network 12 corresponding to the second instruction is performed with the SOC of the storage battery 125 within the second range from the full charge SOC to the V2G lower limit SOC.
- the first range is narrower than the second range, and the upper limit (frequency control SOC) of the first range is lower than the upper limit (full charge SOC) of the second range.
- the charge and discharge that correspond to the first instruction and the continuous discharge that corresponds to the second instruction which have different modes are respectively performed within a suitable SOC range, it is possible to efficiently obtain an incentive while suppressing deterioration of the storage battery 125 and to contribute to the electric power quality of the electric power system including the electric power network 12 . Further, the incentive is benefit for an owner of the electric vehicle 15 when the electric vehicle 15 buys and sells the electric power by the above-described charge and discharge, and a main benefit thereof is money.
- the frequency control SOC which is the upper limit of the first range in which the charge and discharge that correspond to the first instruction and having a large influence on the deterioration of the storage battery 125 is performed, is set to a value such that the deterioration influence degree is equal to or less than the threshold value. Therefore, even if the charge and discharge that correspond to the first instruction is performed, deterioration of the storage battery 125 can be suppressed.
- the performance required when the storage battery 125 is charged varies depending on the temperature of the storage battery 125 .
- the lower the temperature of the storage battery 125 the lower is the maximum value in the range of the SOC at which the performance required when the storage battery 125 is charged can guaranteed.
- the frequency control SOC which is the upper limit of the first range in which the charge and discharge that correspond to the first instruction is performed, is set to a smaller value as the temperature of the storage battery 125 is lower. Therefore, the range of the SOC in which the charge and discharge that correspond to the first instruction is performed can be set to a suitable range according to a temperature environment of the storage battery 125 .
- the V2G lower limit SOC which is a lower limit value in the range of the SOC in which the charge and discharge that correspond to the first instruction is performed and a lower limit value in the range of the SOC in which the continuous discharge that corresponds to the second instruction is performed is set based on the electric power amount required for the next traveling of the electric vehicle 15 . Therefore, if the SOC of the storage battery 125 lowers to the V2G lower limit SOC, the ECU 131 does not allow the charge and discharge that correspond to the first instruction or the continuous discharge that corresponds to the second instruction. Therefore, it is possible to contribute to the power quality of the electric power system while securing the electric power amount required for the next traveling of the electric vehicle 15 .
- the present invention is not limited to the above-described embodiment and may be appropriately modified, improved, or the like.
- the first instruction and the second instruction to be transmitted to the electric vehicle 15 are performed by the aggregator 17 , but the operation may be performed by the power station 11 shown in FIG. 1 , an electric power distribution company, or a server device managed by the government or a government agency.
- the server device is connected to the communication network 16 and can also communicate with the aggregator 17 .
- the storage battery 125 which participates in V2G and bidirectionally transfers the electric power to and from the electric power system is provided in the electric vehicle 15 , but a stationary power storage facility (refer to FIG. 1 ) in which a large number of storage batteries similar to the storage battery 125 are installed may participate in V2G.
- the stationary power storage facility is connected to the electric power network 12 and can communicate with the aggregator 17 via the communication network 16 .
- the stationary power storage facility has substantially the same configuration as the electric vehicle 15 shown in FIG. 2 , and the frequency control SOC and the V2G lower limit SOC shown in FIG. 5 are also set.
- the frequency control SOC set in the stationary power storage facility is a value set by a manufacturer of the stationary power storage facility
- the V2G lower limit SOC set in the stationary power storage facility is also a value set by the manufacturer of the stationary power storage facility.
- the V2G system has been described as an example. Since the V2G system is one of business models for realizing a smart grid, the electric power is bidirectionally transferred between the storage battery 125 mounted on the electric vehicle 15 and the electric power system, but the storage battery which bidirectionally transfers the electric power to and from the electric power systems is not limited to one mounted on the electric vehicle, like the stationary power storage facility described above. However, a system which transfers the electric power between the storage battery which is not mounted on the electric vehicle and the electric power system is included in a smart grid system rather than the V2G system in a narrow sense. Therefore, the above-described embodiment has been described using the V2G system as an example, but the present invention is also applicable to the smart grid system.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
- The present invention relates to a power storage device, a transport equipment, and a control method in a smart grid capable of bidirectionally transferring electric power between a storage battery and an electric power system.
- PTL 1 describes a charge and discharge control of an electric vehicle in a vehicle to grid (V2G). V2G is one of business models for realizing a smart grid, and is a system which performs interchange of electric power between an electric power system including a commercial electric power network and an electric vehicle. In V2G, when the electric vehicle is not used as moving means, a storage battery mounted on the electric vehicle is used as one of electric power storage facilities in the commercial electric power network. Therefore, the electric power is bidirectionally transferred between the electric vehicle participating in V2G and the electric power system. The electric vehicle participating in V2G performs a continuous discharge for the purpose of maintaining supply-demand equilibrium in the electric power system, and the charge and discharge for the purpose of stabilizing frequency in the electric power system. Electric power obtained by the continuous discharge of the electric vehicle for the purpose of maintaining the supply-demand equilibrium is used as “spinning reserve” of the electric power system. In addition, electric power transferred by the charge and discharge of the electric vehicle for the purpose of stabilizing the frequency is used for “frequency regulation” of the electric power system. In each case, the electric vehicle contributes to stabilization of the electric power system.
- [PTL 1]: US Patent Application Publication NO. 2015/0137752 specification
- In the charge and discharge control described in Patent Document 1, until a state of charge (SOC) of the storage battery mounted on the electric vehicle is lowered to a SOC set by a driver of the electric vehicle, the discharge for the purpose of the above-described spinning reserve is permitted, and thereafter, the discharge for the purpose of the frequency regulation is permitted. In this manner, in a state where the SOC of the storage battery is high, priority is given to the discharge for the purpose of the spinning reserve, and the discharge for the purpose of the frequency regulation is performed with the SOC of the storage battery lowered. Therefore, there is an effect that deterioration and overdischarge of the storage battery can be suppressed.
- However, supply-demand balance of the electric power in the electric power system including the commercial electric power network changes every moment. In other words, surplus electric power may also be generated in the electric power system, in addition to a situation in which the electric power system requires the spinning reserve and a situation in which the electric power system requires the frequency regulation. In V2G, if charge and discharge of the storage battery is not performed in response to various situations in the electric power system, an incentive such as money as compensation for participating in V2G cannot be efficiently obtained.
- The “spinning reserve” in V2G described above is obtained by the electric vehicle continuing to discharge a current amount which is not small. On the other hand, the “frequency regulation” in V2G is realized by the electric vehicle instantaneously and frequently switching between the charge and discharge. Such a difference in a charge and discharge mode may accelerate the deterioration of the storage battery in the electric vehicle on which one type of storage battery is mounted. When the storage battery deteriorates by participating in V2G, an owner of the electric vehicle tends to hesitate to participate in V2G. When not participating in V2G, the incentive such as money as the compensation are not obtained, and as a result, an electric power quality of an external electric power system is greatly affected, which may lead to disbenefit of the whole society from a general company to a general household using the electric power system.
- An object of the present invention is to provide a power storage device, a transport equipment, and a control method which can efficiently obtain an incentive while suppressing deterioration of a storage battery and can contribute to an electric power quality of an electric power system.
- In order to achieve the above object, according to a first aspect, there is provided a power storage device including:
- a storage battery (for example, a
storage battery 125 in an embodiment to be described later) capable of transferring electric power to and from an external electric power network (for example, anelectric power network 12 in the embodiment to be described later); - a receiver (for example, a
digital communication unit 123 in the embodiment to be described later) configured to receive an instruction related to transfer of the electric power to and from the electric power network; and - a controller (for example, an
ECU 131 in the embodiment to be described later) configured to control charge and discharge of the storage battery according to the instruction, - wherein the instruction includes a first instruction for requesting switching between short-term charge and discharge from the storage battery to the electric power network, and a second instruction for requesting continuous discharge from the storage battery to the electric power network, and
- wherein the controller is configured to allow the storage battery to start charge and discharge that correspond to the first instruction when a variable representing a state of charge of the storage battery by a level of a value is a value between a first value (for example, a frequency control SOC in the embodiment to be described later) smaller than an upper limit value (for example, a full charge SOC in the embodiment to be described later) that the state of charge reaches when the storage battery is fully charged and a second value (for example, a V2G lower limit SOC in the embodiment to be described later) smaller than the first value, and allow the storage battery to start discharge that corresponds to the second instruction when the variable is a value between the upper limit value and the second value.
- A second aspect according to the first aspect,
- wherein the storage battery is mounted on a transport equipment (for example, an
electric vehicle 15 in the embodiment to be described later). - A third aspect according to the first or second aspect,
- wherein when the receiver receives the first instruction and the second instruction, the controller gives priority to the second instruction when the variable is a value between the first value and the second value.
- A fourth aspect according to any one of the first to third aspects,
- wherein the controller is configured to store, for each state of charge of the storage battery, a deterioration influence degree of the storage battery when the storage battery performs the charge and discharge that correspond to the first instruction, and set the first value related to the variable to a value such that the deterioration influence degree is equal to or less than a threshold value when the storage battery performs the charge and discharge that correspond to the first instruction.
- A fifth aspect according to any one of the first to fourth aspects,
- wherein the controller sets the first value based on a temperature of the storage battery.
- A sixth aspect according to the fifth aspect,
- wherein the controller sets the first value to a smaller value as the temperature of the storage battery is lower.
- A seventh aspect according to any one of the second to sixth aspects,
- wherein the controller sets the second value based on an electric power amount required for a next traveling of the transport equipment.
- An eighth aspect according to any one of the second to seventh aspects,
- wherein in a case where a time difference from the current time to a next scheduled traveling date and time of the transport equipment is larger than or equal to predetermined time, the controller allows the storage battery to charge until the variable reaches the first value if the receiver does not receive the instruction.
- According to a ninth aspect, there is provided a power storage device including:
- a storage battery (for example, a
storage battery 125 in an embodiment to be described later) capable of transferring electric power to and from an external electric power network (for example, anelectric power network 12 in the embodiment to be described later); - a receiver (for example, a
digital communication unit 123 in the embodiment to be described later) configured to receive an instruction related to transfer of the electric power to and from the electric power network; and - a controller (for example, an
ECU 131 in the embodiment to be described later) configured to control charge and discharge of the storage battery according to the instruction, - wherein the instruction includes a first instruction for requesting switching between short-term charge and discharge from the storage battery to the electric power network, and a second instruction for requesting continuous discharge from the storage battery to the electric power network,
- wherein the controller is configured to allow the storage battery to charge and discharge that correspond to the first instruction when a variable representing a state of charge of the storage battery by a level of a value is within a first range, and to allow the storage battery to discharge that corresponds to the second instruction when the variable is within a second range, and
- wherein the first range is narrower than the second range, and an upper limit of the first range is lower than an upper limit of the second range.
- According to a tenth aspect, there is provided a transport equipment including the power storage device according to any one of the first to ninth aspects.
- According to an eleventh aspect, there is provided a control method for a power storage device including a storage battery (for example, a
storage battery 125 in an embodiment to be described later) capable of transferring electric power to and from an external electric power network (for example, anelectric power network 12 in the embodiment to be described later), a receiver (for example, adigital communication unit 123 in the embodiment to be described later) configured to receive an instruction related to transfer of the electric power to and from the electric power network, and a controller (for example, anECU 131 in the embodiment to be described later) configured to control charge and discharge of the storage battery according to the instruction, - the instruction including a first instruction for requesting switching between short-term charge and discharge from the storage battery to the electric power network, and a second instruction for requesting continuous discharge from the storage battery to the electric power network,
- the control method including:
- allowing the storage battery to start charge and discharge that correspond to the first instruction, when a variable representing a state of charge of the storage battery by a level of a value is a value between a first value (for example, a frequency control SOC in the embodiment to be described later) smaller than an upper limit value (for example, a full charge SOC in the embodiment to be described later) when the storage battery is fully charged and a second value (for example, a V2G lower limit SOC in the embodiment to be described later) smaller than the first value: and
- allowing the storage battery to start discharge that corresponds to the second instruction, when the variable is a value between the upper limit value and the second value.
- According to the first aspect, the tenth aspect, and the eleventh aspect, the short-term charge and discharge of the storage battery corresponding to the first instruction is repeated with the variable within a range between the first value and the second value, and the continuous discharge of the storage battery corresponding to the second instruction is performed with the variable within a range between the upper limit value and the second value. In this manner, since the charge and discharge that correspond to the first instruction and the continuous discharge that corresponds to the second instruction which have different modes are respectively performed within a suitable range of the variable, it is possible to efficiently obtain an incentive while suppressing deterioration of the storage battery and to contribute to an electric power quality of an electric power system including the electric power network.
- According to the second aspect, also for the storage battery mounted on the transport equipment, it is possible to efficiently obtain the incentive while suppressing the deterioration of the storage battery and to contribute to the electric power quality of the electric power system including the electric power network.
- According to the third aspect, since the priority is given to the continuous discharge of the storage battery corresponding to the second instruction, it is possible to acquire a more efficient incentive.
- According to the fourth aspect, the first value, which is the upper limit of the range in which the charge and discharge that correspond to the first instruction and having a large influence on the deterioration of the storage battery is performed is set to a value such that the deterioration influence degree is equal to or less than the threshold value. Therefore, even if the charge and discharge that correspond to the first instruction is performed, the deterioration of the storage battery can be suppressed.
- A performance required when the storage battery is charged varies depending on the temperature of the storage battery. According to the fifth aspect, the first value, which is the upper limit of the range in which the charge and discharge that correspond to the first instruction is performed, is set based on the temperature of the storage battery. Therefore, the range of the variable in which the charge and discharge that correspond to the first instruction is performed can be set to a suitable range according to a temperature environment of the storage battery.
- The lower the temperature of the storage battery, the lower is a maximum value in the range of the variable at which the performance required when the storage battery is charged can guaranteed. According to the sixth aspect, the first value, which is the upper limit of the range in which the charge and discharge that correspond to the first instruction is performed, is set to a smaller value as the temperature of the storage battery is lower. Therefore, the range of the variable in which the charge and discharge that correspond to the first instruction is performed can be set to the suitable range according to the temperature environment of the storage battery.
- According to the seventh aspect, the second value, which is a lower limit value in the range of the variable in which the charge and discharge that correspond to the first instruction is performed and a lower limit value in the range of the variable in which the continuous discharge that corresponds to the second instruction is performed, is set based on the electric power amount required for the next traveling of the transport equipment. Therefore, if the variable of the storage battery lowers to the second value, the controller does not allow the charge and discharge that correspond to the first instruction or the continuous discharge that corresponds to the second instruction. Therefore, it is possible to contribute to the electric power quality of the electric power system while securing the electric power amount required for the next traveling of the transport equipment.
- According to the eighth aspect, in a case where the storage battery is charged when there is spare time before the next traveling of the transport equipment, since the storage battery is charged until the variable reaches the first value which is the upper limit of the range in which the start of the charge and discharge that correspond to the first instruction and the start of the continuous discharge that corresponds to the second instruction are allowed, an opportunity to contribute to the electric power quality of the electric power system is increased, and the incentive can be efficiently obtained.
- According to the ninth aspect and the tenth aspect, the short-term charge and discharge of the storage battery corresponding to the first instruction is repeated when the variable is within the first range, and the continuous discharge of the storage battery corresponding to the second instruction is performed when the variable is within the second range which is narrower than the first range and whose the upper limit is lower than the first range. In this manner, since the charge and discharge that correspond to the first instruction and the discharge that corresponds to the second instruction which have different modes are respectively performed within the suitable range of the variable, it is possible to efficiently obtain the incentive while suppressing the deterioration of the storage battery and to contribute to the electric power quality of the electric power system including the electric power network.
-
FIG. 1 is a view showing an overall configuration of a V2G system: -
FIG. 2 is a block diagram showing an EVSE and an electric vehicle which configure a part of the V2G system shown inFIG. 1 ; -
FIG. 3 is a flow chart showing an operation of an ECU when the electric vehicle connected to the EVSE participates in V2G; -
FIG. 4 is a flow chart showing an operation of the ECU when the electric vehicle connected to the EVSE participates in V2G; and -
FIG. 5 is a view showing an example of a change in a SOC of a storage battery when the electric vehicle participating in V2G operates according to an instruction from an aggregator. - Hereinafter, embodiments of the present invention will be described with reference to the drawings.
- A vehicle to grid (V2G) system is a system which performs interchange of electric power between an electric power system including a commercial electric power network and an electric vehicle, and when the electric vehicle is not used as moving means, a storage batten mounted on the electric vehicle is used as an electric power storage facility. Therefore, the electric power is bidirectionally transferred between the electric vehicle participating in V2G and the electric power system.
- The electric vehicle participating in V2G performs a continuous discharge for the purpose of maintaining supply-demand equilibrium in the electric power system, and a charge and discharge for the purpose of stabilizing frequency in the electric power system according to a situation of the electric power system. Electric power obtained by the continuous discharge of the electric vehicle for the purpose of maintaining the supply-demand equilibrium is used as “spinning reserve” of the electric power system. The continuous discharge for the spinning reserve is performed particularly for the purpose of supplying the electric power to the electric power system required to maintain the supply-demand equilibrium as electric power demand in the electric power system increases. In addition, electric power transferred by the charge and discharge of the electric vehicle for the purpose of stabilizing the frequency is used for “frequency regulation” of the electric power system. In each case, the electric vehicle contributes to stabilization of the electric power system.
-
FIG. 1 is a view showing an overall configuration of the V2G system. As shown inFIG. 1 , the V2G system includes an electric power system which is configured by an electric power supplier such as apower station 11 which generates power by energy such as thermal power, wind power, nuclear power or solar light, a power transmission network (hereinafter, referred to as an “electric power network”) 12 of the electric power generated by the electric power supplier, or the like, anelectric power consumer 13 which requires power and receives supply of the electric power, an electric vehicle service equipment (EVSE) 14 which is an external power supply device connected to theelectric power network 12 via a power distribution facility (not shown), anelectric vehicle 15 such as an electrical vehicle (EV) or a plug-in hybrid electric vehicle (PHEV) mounted with a chargeable/dischargeable storage battery, acommunication network 16, and anaggregator 17 which manages the charge and discharge of the storage battery included in theelectric vehicle 15 via theEVSE 14 connected to thecommunication network 16. By managing the charge and discharge of the storage battery of theelectric vehicle 15 connected to theEVSE 14 by theaggregator 17, provision of the spinning reserve from theelectric vehicle 15 to the electric power system or the frequency regulation of the electric power system can be performed, so that a requirement of an electric power company operating thepower station 11, a power transmission company operating theelectric power network 12 or the like can be meet. -
FIG. 2 is a block diagram showing theEVSE 14 and theelectric vehicle 15 which configure a part of the V2G system shown inFIG. 1 . As shown inFIG. 2 , theEVSE 14 includes aconnector 22 provided at a tip end of acable 21 and adigital communication unit 23. In addition, theelectric vehicle 15 includes aninlet 121, adigital communication unit 123, a chargeable/dischargeable storage battery 125, abidirectional charger 127, atemperature sensor 129, and an electronic controller (ECU) 131. - Hereinafter, each constituent element of the
EVSE 14 will be described. - The
connector 22 transfers the electric power between the EVSE 14 and theelectric vehicle 15 in a state of being connected to theinlet 121 of theelectric vehicle 15. Thedigital communication unit 23 is connected to thecommunication network 16 via ahome gateway 18, and superimposes a signal obtained from theaggregator 17 on electricity transferred between the EVSE 14 and theelectric vehicle 15 using a power line communication (PLC) technology. Therefore, the signal from theaggregator 17 is sent to theelectric vehicle 15 when theconnector 22 is connected to theinlet 121 of theelectric vehicle 15. - Next, each constituent element of the power storage device included in the
electric vehicle 15 will be described. - The
connector 22 of theEVSE 14 is attachable to and detachable from theinlet 121. In a state where theconnector 22 of theEVSE 14 is attached to theinlet 121, thedigital communication unit 123 receives a signal superimposed on the electricity from the EVSE 14 by the PLC technology. Further, a connection form between theelectric vehicle 15 and theEVSE 14 is not limited to a physical connection by theinlet 121 and theconnector 22, and may be an electromagnetic connection such as non-contact charge and discharge in a state where theinlet 121 and theconnector 22 are close to each other. - The
storage battery 125 includes a plurality of power storage cells such as a lithium ion battery and a nickel hydrogen battery. In a state where theelectric vehicle 15 is not connected to theEVSE 14, thestorage battery 125 supplies the electric power to an electric motor or the like (not shown) which is a drive source of theelectric vehicle 15. In addition, in a state where theelectric vehicle 15 is connected to theEVSE 14, thestorage battery 125 transfers the electric power to and from theelectric power network 12 according to the instruction sent from theaggregator 17 via thecommunication network 16 and theEVSE 14. - The
bidirectional charger 127 converts an AC voltage obtained from theelectric power network 12 via theEVSE 14 into a DC voltage. Electric power converted to the DC voltage by thebidirectional charger 127 is charged into thestorage battery 125. In addition, thebidirectional charger 127 converts the DC voltage discharged from thestorage battery 125 into the AC voltage. Electric power converted to the AC voltage by thebidirectional charger 127 is sent to theelectric power network 12 via theinlet 121 and theEVSE 14. - The
temperature sensor 129 detects a temperature of thestorage battery 125. A signal indicating the temperature detected by thetemperature sensor 129 is sent to theECU 131. - Based on a voltage and an input/output current of the
storage battery 125 detected by a voltage sensor and a current sensor (not shown), theECU 131 derives a state of charge (SOC) which is a variable representing the state of charge of thestorage battery 125 by a level (0% to 100%) of a value by a current integration method or an open circuit voltage (OCV) estimation method. In addition, theECU 131 controls an operation of thebidirectional charger 127 according to the instruction indicated by the signal from theaggregator 17 received by thedigital communication unit 123. - The instruction sent by the
aggregator 17 to theelectric vehicle 15 participating in the V2G is an instruction related to the transfer of the electric power between theelectric vehicle 15 and theelectric power network 12, and varies depending on an electric power quality or supply-demand balance of the electric power of theelectric power network 12. In other words, the instruction is a first instruction for requesting theelectric vehicle 15 to switch between charge and discharge in a short-term for frequency regulation of theelectric power network 12 described above, or a second instruction for requesting theelectric vehicle 15 to continue discharge for providing spinning reserve to theelectric power network 12 described above. - Hereinafter, a control performed by the
ECU 131 of theelectric vehicle 15 which participates in the V2G and is connected to theEVSE 14 will be described in detail with reference toFIGS. 3 to 5 .FIGS. 3 and 4 are flow charts showing operations of theECU 131 when theelectric vehicle 15 connected to theEVSE 14 participates in V2G.FIG. 5 is a view showing an example of a change in the SOC of thestorage battery 125 when theelectric vehicle 15 participating in V2G operates according to the instruction from theaggregator 17. - In the
ECU 131, as a threshold value of the SOC of thestorage battery 125 used when theelectric vehicle 15 participates in V2G, a “frequency control SOC” having a value smaller than the SOC (a full charge SOC) when thestorage battery 125 is fully charged and a “V2G lower limit SOC” having a value smaller than the frequency control SOC are preset. The frequency control SOC is a value set by a manufacturer of theelectric vehicle 15. The V2G lower limit SOC is a value at which thestorage battery 125 is capable of outputting an electric power amount consumed by traveling a preset distance by a driver during a next traveling of theelectric vehicle 15. In other words, the V2G lower limit SOC is a value set by the driver of theelectric vehicle 15. - A next scheduled traveling date and time of the
electric vehicle 15 connected to theEVSE 14 is preset in theECU 131. The next scheduled traveling date and time may be, for example, periodic date and time information such as 7:00 am on weekdays, or may be one-time date and time information such as 3:00 pm three days later. - As shown in
FIG. 3 , in the state where theelectric vehicle 15 is connected to theEVSE 14, theECU 131 in which the frequency control SOC, the V2G lower limit SOC, and the next scheduled traveling date and time are set determines whether a time difference from the current time to the next scheduled traveling date and time is less than predetermined time (step S101), if the above-described time difference (the next scheduled traveling date and time−the current time) is less than the predetermined time, the procedure proceeds to step S103, and if the above-described time difference is larger than or equal to the predetermined time, the procedure proceeds to step S105. In step S103, theECU 131 controls thebidirectional charger 127 to charge thestorage battery 125 with the electric power obtained from theelectric power network 12 until the SOC of thestorage battery 125 reaches the full charge SOC, as seen from increase in the SOC after time t103 shown inFIG. 5 . - In step S105, the
ECU 131 determines whether thedigital communication unit 123 has received a signal including the instruction from theaggregator 17, if the instruction is not received, the procedure proceeds to step S107, and if the instruction is received, the procedure proceeds to step S111. In step S107, theECU 131 determines whether the SOC of thestorage battery 125 is less than the frequency control SOC, if the SOC≤the frequency control SOC, the procedure proceeds to step S109, and if the SOC>the frequency control SOC, a series of processing is ended. In step S109, theECU 131 controls thebidirectional charger 127 to charge thestorage battery 125 with the electric power obtained from theelectric power network 12 until the SOC of thestorage battery 125 reaches the frequency control SOC, as seen from increase in the SOC after time t109 a, t109 b shown inFIG. 5 . - In step S111, the
ECU 131 determines whether the instruction indicated by the signal received by thedigital communication unit 123 is the first instruction or the second instruction, if the instruction is the first instruction, the procedure proceeds to step S113, and if the instruction is the second instruction, the procedure proceeds to step S121. In step S113, theECU 131 determines whether the SOC of thestorage battery 125 is equal to or lower than the frequency control SOC, if the SOC≤the frequency control SOC, the procedure proceeds to step S115, and if SOC>the frequency control SOC, a series of processing is ended. In step S115, theECU 131 determines whether the SOC of thestorage battery 125 is more than or equal to the V2G lower limit SOC, if the V2G lower limit SOC≤the SOC, the procedure proceeds to step S117, and if the lower limit SOC>the SOC, the procedure proceeds to step S119. - In step S117, since the SOC of the
storage battery 125 when receiving the first instruction is within a range from the V2G lower limit SOC to the frequency control SOC, theECU 131 controls thebidirectional charger 127 such that thestorage battery 125 perform the charge and discharge for the frequency regulation with respect to theelectric power network 12 according to the first instruction, as seen from fluctuation of the SOC after time t117 a, t117 b, and t117 c shown inFIG. 5 . In step S119, theECU 131 controls thebidirectional charger 127 to charge thestorage battery 125 with the electric power obtained from theelectric power network 12 until the SOC of thestorage battery 125 reaches the frequency control SOC. - In step S121, the
ECU 131 determines whether the SOC of thestorage battery 125 is more than or equal to the V2G lower limit SOC, if the V2G lower limit SOC≤the SOC, the procedure proceeds to step S123, and if the V2G lower limit SOC>the SOC, the procedure proceeds to step S119. In step S123, since the SOC of thestorage battery 125 when receiving the second instruction is within a range from the V2G lower limit SOC to the full charge SOC, theECU 131 controls thebidirectional charger 127 such that thestorage battery 125 performs the continuous discharge with respect to theelectric power network 12 to provide the spinning reserve according to the second instruction, as seen from decrease in the SOC after time t123 shown inFIG. 5 . - In this manner, in the present embodiment, if the SOC of the
storage battery 125 when receiving the first instruction from theaggregator 17 is within the range (hereinafter, referred to as a “first range”) from the frequency control SOC to the V2G lower limit SOC, theECU 131 starts control for thestorage battery 125 to perform the charge and discharge for the frequency regulation with respect to theelectric power network 12 according to the first instruction. Further, in the first range, as shown by hatched areas inFIG. 5 , a hysteresis is respectively provided at an upper limit and a lower limit, so that theECU 131 does not determine that the SOC is out of the first range due to vertical fluctuation of the SOC caused by the charge and discharge of thestorage battery 125 for the frequency regulation. - If the SOC of the
storage battery 125 when receiving the second instruction from theaggregator 17 is within the range (hereinafter, referred to as a “second range”) from the full charge SOC to the V2G lower limit SOC, theECU 131 starts control for thestorage battery 125 to perform the continuous discharge with respect to theelectric power network 12 to provide the spinning reserve according to the second instruction. As shown inFIG. 5 , since the frequency control SOC is set to a value lower than the full charge SOC, and a lower limit value of each range is the V2G lower limit SOC, the first range is narrower than the second range. - The value of the frequency control SOC with respect to the full charge SOC is low to an degree that the full charge SOC is not exceeded (condition one) even if the charge and discharge for the frequency regulation corresponding to the first instruction is performed when the SOC of the
storage battery 125 is the frequency control SOC, and a deterioration influence degree of thestorage battery 125 is equal to or less than a threshold value (condition two) even when the charge and discharge is performed. Further, the deterioration influence degree of thestorage battery 125 which performs the switching between short-term charge and discharge is larger as the SOC of thestorage battery 125 is higher. In addition, a maximum value of the SOC at which a performance required when thestorage battery 125 is charged can be realized, for example, a maximum value of the SOC at which thestorage battery 125 can be continuously charged with a predetermined electric power amount, is lower as the temperature of thestorage battery 125 is lower. Therefore, as the temperature of thestorage battery 125 detected by thetemperature sensor 129 is lower, the frequency control SOC is set lower. In this manner, theECU 131 sets the frequency control SOC according to the temperature of thestorage battery 125, satisfying the above-described two conditions. - As described above, according to the present embodiment, the charge and discharge of the
storage battery 125 for the frequency regulation corresponding to the first instruction is performed with the SOC of thestorage battery 125 within the first range from the frequency control SOC to the V2G lower limit SOC, the continuous discharge of thestorage battery 125 for providing the spinning reserve to theelectric power network 12 corresponding to the second instruction is performed with the SOC of thestorage battery 125 within the second range from the full charge SOC to the V2G lower limit SOC. The first range is narrower than the second range, and the upper limit (frequency control SOC) of the first range is lower than the upper limit (full charge SOC) of the second range. In this manner, since the charge and discharge that correspond to the first instruction and the continuous discharge that corresponds to the second instruction which have different modes are respectively performed within a suitable SOC range, it is possible to efficiently obtain an incentive while suppressing deterioration of thestorage battery 125 and to contribute to the electric power quality of the electric power system including theelectric power network 12. Further, the incentive is benefit for an owner of theelectric vehicle 15 when theelectric vehicle 15 buys and sells the electric power by the above-described charge and discharge, and a main benefit thereof is money. - The frequency control SOC, which is the upper limit of the first range in which the charge and discharge that correspond to the first instruction and having a large influence on the deterioration of the
storage battery 125 is performed, is set to a value such that the deterioration influence degree is equal to or less than the threshold value. Therefore, even if the charge and discharge that correspond to the first instruction is performed, deterioration of thestorage battery 125 can be suppressed. - The performance required when the
storage battery 125 is charged varies depending on the temperature of thestorage battery 125. In other words, the lower the temperature of thestorage battery 125, the lower is the maximum value in the range of the SOC at which the performance required when thestorage battery 125 is charged can guaranteed. In the present embodiment, the frequency control SOC, which is the upper limit of the first range in which the charge and discharge that correspond to the first instruction is performed, is set to a smaller value as the temperature of thestorage battery 125 is lower. Therefore, the range of the SOC in which the charge and discharge that correspond to the first instruction is performed can be set to a suitable range according to a temperature environment of thestorage battery 125. - The V2G lower limit SOC which is a lower limit value in the range of the SOC in which the charge and discharge that correspond to the first instruction is performed and a lower limit value in the range of the SOC in which the continuous discharge that corresponds to the second instruction is performed is set based on the electric power amount required for the next traveling of the
electric vehicle 15. Therefore, if the SOC of thestorage battery 125 lowers to the V2G lower limit SOC, theECU 131 does not allow the charge and discharge that correspond to the first instruction or the continuous discharge that corresponds to the second instruction. Therefore, it is possible to contribute to the power quality of the electric power system while securing the electric power amount required for the next traveling of theelectric vehicle 15. - In a case where the
storage battery 125 is charged when there is spare time before the next traveling of theelectric vehicle 15, since thestorage battery 125 is charged until the SOC of thestorage battery 125 reaches the frequency control SOC which is the upper limit of the range in which the charge and discharge that correspond to the first instruction and the continuous discharge that corresponds to the second instruction are allowed, an opportunity to contribute to the electric power quality of the electric power system is increased, and the incentive can be efficiently obtained. - Incidentally, the present invention is not limited to the above-described embodiment and may be appropriately modified, improved, or the like. For example, in the above-described embodiment, the first instruction and the second instruction to be transmitted to the
electric vehicle 15 are performed by theaggregator 17, but the operation may be performed by thepower station 11 shown inFIG. 1 , an electric power distribution company, or a server device managed by the government or a government agency. The server device is connected to thecommunication network 16 and can also communicate with theaggregator 17. - In the above-described embodiment, the
storage battery 125 which participates in V2G and bidirectionally transfers the electric power to and from the electric power system is provided in theelectric vehicle 15, but a stationary power storage facility (refer toFIG. 1 ) in which a large number of storage batteries similar to thestorage battery 125 are installed may participate in V2G. In this case, the stationary power storage facility is connected to theelectric power network 12 and can communicate with theaggregator 17 via thecommunication network 16. The stationary power storage facility has substantially the same configuration as theelectric vehicle 15 shown inFIG. 2 , and the frequency control SOC and the V2G lower limit SOC shown inFIG. 5 are also set. The frequency control SOC set in the stationary power storage facility is a value set by a manufacturer of the stationary power storage facility, and the V2G lower limit SOC set in the stationary power storage facility is also a value set by the manufacturer of the stationary power storage facility. - In the above-described embodiment, the V2G system has been described as an example. Since the V2G system is one of business models for realizing a smart grid, the electric power is bidirectionally transferred between the
storage battery 125 mounted on theelectric vehicle 15 and the electric power system, but the storage battery which bidirectionally transfers the electric power to and from the electric power systems is not limited to one mounted on the electric vehicle, like the stationary power storage facility described above. However, a system which transfers the electric power between the storage battery which is not mounted on the electric vehicle and the electric power system is included in a smart grid system rather than the V2G system in a narrow sense. Therefore, the above-described embodiment has been described using the V2G system as an example, but the present invention is also applicable to the smart grid system. - This application is based on a Japanese Patent Application No. 2016-214661 filed Nov. 1, 2016, the contents of which are incorporated herein by reference.
-
-
- 11 power station
- 12 electric power network
- 13 electric power consumer
- 14 EVSE
- 15 electric vehicle
- 16 communication network
- 17 aggregator
- 18 home gateway
- 21 cable
- 22 connector
- 23 digital communication unit
- 121 inlet
- 123 digital communication unit
- 125 storage battery
- 127 bidirectional charger
- 129 temperature sensor
- 131 ECU
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2016-214661 | 2016-11-01 | ||
JP2016-214661 | 2016-11-01 | ||
JP2016214661 | 2016-11-01 | ||
PCT/JP2017/039380 WO2018084152A1 (en) | 2016-11-01 | 2017-10-31 | Power storage device, transportation apparatus, and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190288347A1 true US20190288347A1 (en) | 2019-09-19 |
US11108090B2 US11108090B2 (en) | 2021-08-31 |
Family
ID=62076198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/345,086 Active 2038-06-12 US11108090B2 (en) | 2016-11-01 | 2017-10-31 | Power storage device, transport equipment, and control method |
Country Status (5)
Country | Link |
---|---|
US (1) | US11108090B2 (en) |
JP (1) | JP6752288B2 (en) |
CN (1) | CN109890651B (en) |
DE (1) | DE112017005534T5 (en) |
WO (1) | WO2018084152A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190143825A1 (en) * | 2017-11-14 | 2019-05-16 | Toyota Jidosha Kabushiki Kaisha | Vehicle and power equipment |
JP2019110050A (en) * | 2017-12-19 | 2019-07-04 | 株式会社Gsユアサ | Information acquiring method of power storage element, charge control method, state estimation method, life estimation method, manufacturing method of power storage system, and management apparatus of power storage element |
US20200184576A1 (en) * | 2018-12-06 | 2020-06-11 | GM Global Technology Operations LLC | Energy resource pre-allocation and delivery based on demand |
US20200307402A1 (en) * | 2019-03-28 | 2020-10-01 | Nuvve Corporation | Multi-technology grid regulation service |
US20210188248A1 (en) * | 2018-08-30 | 2021-06-24 | Renault S.A.S. | Method for temporarily extending the autonomy of an electric vehicle |
US11192466B2 (en) * | 2018-10-01 | 2021-12-07 | Honda Motor Co., Ltd. | Electric charge management system and method for a vehicle |
US11305667B2 (en) | 2017-11-24 | 2022-04-19 | Toyota Jidosha Kabushiki Kaisha | Vehicle and power control system |
EP3967547A3 (en) * | 2020-09-15 | 2022-06-01 | Honda Motor Co., Ltd. | Electric power management apparatus and electric power management system in a vehicle-to-grid (v2g) demand request context |
US11376989B2 (en) | 2019-05-27 | 2022-07-05 | Honda Motor Co., Ltd. | Information processing apparatus and method for bidirectional transmission of electric power between electric vehicle and power system |
US11390187B2 (en) | 2019-05-28 | 2022-07-19 | Honda Motor Co., Ltd. | Management device, management method, and program |
US11479141B2 (en) * | 2019-10-25 | 2022-10-25 | Honda Motor Co., Ltd. | Controlling charging and discharging between an electric power system and a secondary battery |
US20220379769A1 (en) * | 2021-05-26 | 2022-12-01 | Netzero V2G Technologies Llc | Bidirectional AC V2G for Multifamily/Workplace Electric Vehicle Charging |
US11747781B1 (en) | 2022-03-21 | 2023-09-05 | Nuvve Corporation | Intelligent local energy management system at local mixed power generating sites for providing grid services |
US11994561B2 (en) * | 2020-02-12 | 2024-05-28 | Karma Automotive Llc | Battery current limits estimation based on RC model |
US12071036B2 (en) | 2019-09-06 | 2024-08-27 | Netzero V2G Technologies Llc | Minimum cost demand charge management by electric vehicles |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020092512A (en) * | 2018-12-05 | 2020-06-11 | トヨタ自動車株式会社 | Electric vehicle |
US11135936B2 (en) | 2019-03-06 | 2021-10-05 | Fermata, LLC | Methods for using temperature data to protect electric vehicle battery health during use of bidirectional charger |
JP7212557B2 (en) * | 2019-03-15 | 2023-01-25 | 本田技研工業株式会社 | power management device |
JP2021057127A (en) * | 2019-09-27 | 2021-04-08 | 本田技研工業株式会社 | Fuel cell system, control method for fuel cell system, and program |
JP7155088B2 (en) * | 2019-09-27 | 2022-10-18 | 本田技研工業株式会社 | VEHICLE SYSTEM, VEHICLE SYSTEM CONTROL METHOD, AND PROGRAM |
US11685283B2 (en) | 2020-03-17 | 2023-06-27 | Toyota Motor North America, Inc. | Transport-based energy allocation |
US11571983B2 (en) | 2020-03-17 | 2023-02-07 | Toyota Motor North America, Inc. | Distance-based energy transfer from a transport |
US11890952B2 (en) | 2020-03-17 | 2024-02-06 | Toyot Motor North America, Inc. | Mobile transport for extracting and depositing energy |
US11552507B2 (en) | 2020-03-17 | 2023-01-10 | Toyota Motor North America, Inc. | Wirelessly notifying a transport to provide a portion of energy |
US11618329B2 (en) | 2020-03-17 | 2023-04-04 | Toyota Motor North America, Inc. | Executing an energy transfer directive for an idle transport |
US11695274B1 (en) | 2022-03-21 | 2023-07-04 | Nuvve Corporation | Aggregation platform for intelligent local energy management system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3738227B2 (en) * | 2002-03-20 | 2006-01-25 | 関西電力株式会社 | Ancillary service providing method and system using secondary battery |
JP2011130575A (en) | 2009-12-17 | 2011-06-30 | Mazda Motor Corp | Method and system for charging battery |
CN102280903B (en) * | 2010-06-10 | 2014-07-30 | 上海市电力公司 | V2G intelligent charging and discharging system |
US20120056588A1 (en) * | 2010-09-06 | 2012-03-08 | Eric James Cai | Use of Battery Energy for Power Grid Optimization and Electric Vehicle Charging |
JP2013169069A (en) | 2012-02-15 | 2013-08-29 | Sanyo Electric Co Ltd | Charge discharge system |
CN103414231B (en) * | 2013-08-28 | 2015-04-15 | 华北电力大学 | Active controlling method operated by electromobile electrical changing station V2G under power distribution network failure |
CN103532206B (en) * | 2013-10-31 | 2016-01-20 | 国家电网公司 | A kind of charging pile |
US9457680B2 (en) * | 2013-11-15 | 2016-10-04 | Honda Motor Co., Ltd. | Vehicle-to-grid control |
WO2016030967A1 (en) * | 2014-08-26 | 2016-03-03 | 株式会社日立製作所 | Energy storage operation planning system and operation condition determination method |
JPWO2016063739A1 (en) | 2014-10-23 | 2017-08-03 | 日本電気株式会社 | Control device, power storage device, control method, and recording medium |
JP6576098B2 (en) | 2015-05-22 | 2019-09-18 | ソニー・オリンパスメディカルソリューションズ株式会社 | Medical camera device |
WO2019180699A1 (en) * | 2018-03-19 | 2019-09-26 | EVchip Energy Ltd. | Power pack and power pack circuitry |
US11476505B2 (en) * | 2019-06-24 | 2022-10-18 | Manikandan Palanisamy | Lithium replenishing rechargeable batteries |
JP6837518B2 (en) * | 2019-06-24 | 2021-03-03 | 本田技研工業株式会社 | Control systems, control methods, and programs |
US11271201B2 (en) * | 2019-07-15 | 2022-03-08 | Corning Incorporated | Energy device with lithium |
JP7207212B2 (en) * | 2019-07-16 | 2023-01-18 | トヨタ自動車株式会社 | electric vehicle |
-
2017
- 2017-10-31 DE DE112017005534.2T patent/DE112017005534T5/en active Pending
- 2017-10-31 US US16/345,086 patent/US11108090B2/en active Active
- 2017-10-31 CN CN201780067506.6A patent/CN109890651B/en active Active
- 2017-10-31 WO PCT/JP2017/039380 patent/WO2018084152A1/en active Application Filing
- 2017-10-31 JP JP2018549019A patent/JP6752288B2/en active Active
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11254227B2 (en) * | 2017-11-14 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | Vehicle and power equipment |
US20190143825A1 (en) * | 2017-11-14 | 2019-05-16 | Toyota Jidosha Kabushiki Kaisha | Vehicle and power equipment |
US11305667B2 (en) | 2017-11-24 | 2022-04-19 | Toyota Jidosha Kabushiki Kaisha | Vehicle and power control system |
JP2019110050A (en) * | 2017-12-19 | 2019-07-04 | 株式会社Gsユアサ | Information acquiring method of power storage element, charge control method, state estimation method, life estimation method, manufacturing method of power storage system, and management apparatus of power storage element |
US11594910B2 (en) * | 2017-12-19 | 2023-02-28 | Gs Yuasa International Ltd. | Method for acquiring information of energy storage device, method for controlling charging, state estimation method, life estimation method, energy storage system manufacturing method, and energy storage device management apparatus |
JP7069689B2 (en) | 2017-12-19 | 2022-05-18 | 株式会社Gsユアサ | Charge control method of power storage element, state estimation method, life estimation method, manufacturing method of power storage system, and management device of power storage element |
US20210188248A1 (en) * | 2018-08-30 | 2021-06-24 | Renault S.A.S. | Method for temporarily extending the autonomy of an electric vehicle |
US11192466B2 (en) * | 2018-10-01 | 2021-12-07 | Honda Motor Co., Ltd. | Electric charge management system and method for a vehicle |
US10937113B2 (en) * | 2018-12-06 | 2021-03-02 | GM Global Technology Operations LLC | Energy resource pre-allocation and delivery based on demand |
US20200184576A1 (en) * | 2018-12-06 | 2020-06-11 | GM Global Technology Operations LLC | Energy resource pre-allocation and delivery based on demand |
US20200307402A1 (en) * | 2019-03-28 | 2020-10-01 | Nuvve Corporation | Multi-technology grid regulation service |
US12046905B2 (en) * | 2019-03-28 | 2024-07-23 | Nuvve Corporation | Multi-technology grid regulation service |
US11376989B2 (en) | 2019-05-27 | 2022-07-05 | Honda Motor Co., Ltd. | Information processing apparatus and method for bidirectional transmission of electric power between electric vehicle and power system |
US11390187B2 (en) | 2019-05-28 | 2022-07-19 | Honda Motor Co., Ltd. | Management device, management method, and program |
US12071036B2 (en) | 2019-09-06 | 2024-08-27 | Netzero V2G Technologies Llc | Minimum cost demand charge management by electric vehicles |
US11479141B2 (en) * | 2019-10-25 | 2022-10-25 | Honda Motor Co., Ltd. | Controlling charging and discharging between an electric power system and a secondary battery |
US11994561B2 (en) * | 2020-02-12 | 2024-05-28 | Karma Automotive Llc | Battery current limits estimation based on RC model |
EP3967547A3 (en) * | 2020-09-15 | 2022-06-01 | Honda Motor Co., Ltd. | Electric power management apparatus and electric power management system in a vehicle-to-grid (v2g) demand request context |
US20220379769A1 (en) * | 2021-05-26 | 2022-12-01 | Netzero V2G Technologies Llc | Bidirectional AC V2G for Multifamily/Workplace Electric Vehicle Charging |
US11747781B1 (en) | 2022-03-21 | 2023-09-05 | Nuvve Corporation | Intelligent local energy management system at local mixed power generating sites for providing grid services |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018084152A1 (en) | 2019-09-19 |
WO2018084152A1 (en) | 2018-05-11 |
US11108090B2 (en) | 2021-08-31 |
CN109890651B (en) | 2022-06-28 |
CN109890651A (en) | 2019-06-14 |
JP6752288B2 (en) | 2020-09-09 |
DE112017005534T5 (en) | 2019-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11108090B2 (en) | Power storage device, transport equipment, and control method | |
US11069927B2 (en) | Server device and control method | |
US10630081B2 (en) | Charge and discharge control device | |
JP6653197B2 (en) | Power storage device, device and control method | |
US10913367B2 (en) | Charge and discharge management device | |
US10414283B2 (en) | V2G system and charge/discharge control method based on an estimated power supply-demand state, a minimum trading unit of an amount of power, and a total amount of power secured for selling to a power system | |
EP3748796B1 (en) | Energy internet system | |
US8933670B2 (en) | Power supply system, electric vehicle and charging adapter | |
US9735591B2 (en) | Control apparatus, control system, and storage battery control method | |
WO2013031394A1 (en) | Cell control system, cell control device, cell control method, and recording medium | |
KR20180051779A (en) | Electrical vehicle charging system and method for controlling thereof | |
US11489338B2 (en) | Power conversion device that receives dead zone information | |
US20190214693A1 (en) | On-board battery temperature regulating apparatus, the on-board battery temperature regulating method, and non-transitory tangible recording medium storing therein on-board battery temperature regulating program | |
US20150015069A1 (en) | System and method for controlling frequency | |
JPWO2017009976A1 (en) | Server device | |
US20220289060A1 (en) | Control system and energy management method | |
KR101493691B1 (en) | Electric charging system and control method thereof, and control method of apparatus for charging | |
JP6125843B2 (en) | Power control apparatus, power control system, and power control method | |
JP2020074679A (en) | Power management method and charge management method | |
Hamidi et al. | A distributed control system for enhancing smart-grid resiliency using electric vehicles | |
JP2016015829A (en) | Charging system | |
Aziz et al. | Advanced battery-assisted quick charger for electric vehicles | |
JP2018033314A (en) | Electric car and charger | |
JP2013236517A (en) | Power monitoring device | |
US20240116394A1 (en) | Management apparatus and management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONDA MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOKOYAMA, SHINICHI;HOMMA, KEIICHIRO;REEL/FRAME:049007/0356 Effective date: 20190402 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |