US20190264309A1 - Process for producing a formed lightweight metal component - Google Patents

Process for producing a formed lightweight metal component Download PDF

Info

Publication number
US20190264309A1
US20190264309A1 US16/284,216 US201916284216A US2019264309A1 US 20190264309 A1 US20190264309 A1 US 20190264309A1 US 201916284216 A US201916284216 A US 201916284216A US 2019264309 A1 US2019264309 A1 US 2019264309A1
Authority
US
United States
Prior art keywords
blank
heating station
heating
aluminum alloy
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/284,216
Other languages
English (en)
Inventor
Jochen Grewe
Friedrich Bohner
Joern TOELLE
Ulrich Huschen
Feng Jiao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Assigned to BENTELER AUTOMOBILTECHNIK GMBH reassignment BENTELER AUTOMOBILTECHNIK GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JIAO, Feng, GREWE, JOCHEN, TOELLE, JOERN, BOHNER, FRIEDRICH, HUSCHEN, ULRICH
Publication of US20190264309A1 publication Critical patent/US20190264309A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the disclosure relates to a process for producing a formed lightweight metal component from a 6000 series or 7000 series aluminum alloy.
  • the prior art discloses producing formed components, like motor vehicle components, from lightweight metal.
  • the solidification mechanisms are solid solution hardening and precipitation hardening.
  • Solid solution solidification is brought about by the incorporation of interstitial lattice atoms in the aluminum lattice.
  • an aluminum alloy is brought to solution annealing temperature and then quenched. In this case, the state of the solid solutions is frozen at first.
  • the material also has good formability in this state.
  • the oversaturated solid solutions precipitate a second phase of the alloy elements with time, which increases the hardness and strength of the material. At the same time, however, there is a decrease in unformability.
  • Solution annealing temperatures in the case of 7000 series aluminum alloys are about 480° C., and in the case of 6000 series aluminum alloys about 540° C.
  • semifinished products in a composite or with prior individualization are typically cold-formed in a forming mold.
  • Hardening is then generally effected in a later heat treatment operation, for example during the later supply of heat in the application and hardening of the paint system.
  • heating of the semifinished products and/or forming molds are also additionally known.
  • the heating techniques used for this purpose typically continuous furnaces, generally limit the manufacturing rate since, for process- and plant-related reasons, a higher throughput has to be achieved via an extension of the furnace length, which leads to technical (e.g. flexibility, susceptibility to faults) and economic (e.g. level of investment, operating costs) trade-offs.
  • the effect of this is that the throughput rate is much lower at 2-10 times lower than in the case of cold forming.
  • WO 2010/032 002 A1 discloses a process for forming sheets from aluminum alloys.
  • an aluminum blank is heated to solution annealing temperature in a heating station and then placed into a cold forming mold within 10 seconds.
  • DE 10 2012 221 602 A1 and DE 2016 208 014 A1 also disclose production processes for components from aluminum alloys.
  • the process for producing a formed lightweight metal component like a motor vehicle component, from a precipitation-hardenable lightweight metal alloy, from a 6000 series or 7000 series aluminum alloy, comprises the following process steps:
  • a blank is thus provided.
  • this may be an extruded profile, for example a profile that has single or multiple chambers in cross section.
  • the blank may also be a sheet metal blank.
  • the blank may also be a preformed component, i.e. a preform that has been preformed from a sheet metal blank, for example.
  • the blank may also be a sheet metal strip.
  • At least partial preheating of the blank by contact heating is now conducted. This is accomplished in a first heating station that takes the form of a contact heating station. It is also possible to conduct complete solution annealing. The preheating is conducted at least partially to completely, to a temperature not more than the solution annealing temperature of the aluminum material used.
  • the contact heating station makes it possible to implement a kind of “boost” effect.
  • the contact heating can introduce a large amount of heat into the blank within a short time.
  • a subsequent second heating operation to a temperature equal to or higher than the solution annealing temperature can be conducted more quickly, more efficiently and in a more controlled manner.
  • the blank is already at least partially at a temperature greater than 200° C., or at a temperature between 300° C. and 500° C., or at about at least 300° C., or between 300° C. and 450° C.
  • the at least partial means that the contact sites on the blank that abut contact plates or tool surfaces of the contact heating station are brought to this temperature.
  • the solution annealing temperature in the blank is already at least partially attained in the first heating station. For 7000 series aluminum alloys, this is between 400° C. to 500° C. For 6000 series aluminum alloys, this is 500° C. to 600° C.
  • the subsequent input of heat in the second heating station may thus be over a shorter period of time.
  • any excess temperature in the second heating station can likewise be lowered, which also reduces the energy costs.
  • the blanks on conclusion of the second heating station are reliably at least the solution annealing temperature.
  • already existing plants can be retrofitted in a simple manner by connecting a corresponding first heating station in the form of a contact heating station upstream in an existing heating station, for example in an existing continuous furnace. This can be retrofitted onto already existing plants.
  • the throughput rate of the plants can thus be increased. It is thus also possible to further develop plants that have to date been designed solely for the processing of 7000 series aluminum alloys, for example, for the processing of 6000 series aluminum alloys having a higher solution annealing temperature as well, without losses in the throughput rate.
  • the second heating station i.e. on attainment of at least the solution annealing temperature, is followed downstream by a forming operation to produce the formed component.
  • This forming operation can be conducted immediately after the second heating operation.
  • the formed lightweight metal component produced by the process of at least one embodiment can also be called component or formed component.
  • the forming is conducted as a cold forming operation.
  • the blank heated to solution annealing temperature is quenched immediately downstream of the second heating station.
  • This quenching is effected within a period of less than 20 seconds, or less than 10 seconds, but at least one second after the second heating operation.
  • a quenching unit can be connected downstream of the second heating station.
  • the quenching can be effected, for example, by means of a medium, for example air and/or water. This can be accomplished by jetting and/or spraying and/or dipping. Contact cooling can also be conducted. This is an option in the case of sheet metal blanks. Quenching may be conducted by dipping into a cooling medium.
  • the quenching can also be conducted in the forming mold.
  • the blank that has been heated downstream of the second heating station will be inserted into a cold forming mold.
  • Cold means to room temperature, but at least such that the forming mold has a temperature below 100° C., below 80° C., below 50° C. and below 30° C.
  • the forming mold at least be at 100° C.
  • the forming mold may also be actively cooled, such that final quenching of the formed component is accomplished in the forming mold. The component produced is thus removed from the forming mold at a temperature below 100° C., below 80° C. and below 50° C.
  • the quenching operation is then immediately followed by a forming operation.
  • the quenching is likewise effected within a cycle time.
  • the first heating station, the quenching unit and the forming unit all work at the same cycle rate. This cycle rate is less than 10 seconds, less than 8 seconds, or between 5 and 7 seconds, the cycle time may also be 6 seconds.
  • first heating station itself to be in multistage form, in such a way that in a first stage a first heating operation takes place within the cycle time mentioned, while a further heating operation is conducted in the next cycle in an immediately subsequent second stage of the heating station. Further stages may optionally follow, according to cycle time requirements, before the blank is homogenized at the solution annealing temperature in the second heating station.
  • the component is thus also inserted into the forming mold from the quenching unit within less than 20 seconds, or less than 10 seconds, but at least within a second, and formed here within the appropriate cycle time.
  • the forming operation is then followed by an age hardening process. This is conducted as a cold age hardening process and lasts for several days.
  • the first heating station is operated with contact plates.
  • these contact plates are placed onto a blank from above and below and transmit their temperature to the sheet metal blank/to the blank to be heated by means of conduction of heat.
  • the contact plates are at an excess temperature.
  • the contact plates are at a temperature greater than 300° C., greater than 450° C.
  • the contact plates have a temperature less than 650° C.
  • the contact plates themselves are heated, for example by resistive heating. Therefore, the contact plates themselves take the form of resistance heating.
  • the contact plates themselves themselves may also in turn be heated by an inductor. It is likewise possible, for example, to introduce heating cartridges or the like into the contact plates in order to heat the contact plates.
  • the partial preheating operation it is thus possible to introduce at least a local temperature in the blank of 200° C. to 500° C., or 300° C. to 450° C.
  • the abutting surfaces of the blank are brought to this temperature with the contact plates.
  • conduction of heat occurs within the blank itself, and hence better and quicker homogenization and heating to solution annealing temperature.
  • the blank is at least heated at its contact surfaces to at least 200° C., to more than 300° C.
  • the second heating station which may take the form of a furnace or a continuous furnace.
  • a transfer system between the first and second heating stations or a step-lift drive.
  • At least two sheet metal blanks are stacked directly one on top of another and are introduced into the first heating station. The at least two superposed sheet metal blanks are thus heated simultaneously.
  • a lubricant Before insertion into a forming mold, a lubricant can be applied to the heated blank. In a separate quenching station, the lubricant is applied after the quenching and prior to the forming.
  • the contact plates in the first heating station itself are in turn spring-mounted. This achieves better abutment contact to the blank to be heated, which in turn improves the heat transfer.
  • the contact plates themselves are in two-dimensional form. This serves to heat blanks in the form of sheet metal blanks or else of blanks as extruded profiles, where the extruded profiles have two-dimensional outsides or contact surfaces to the contact plates. It is also possible to choose contact plates adapted to the shape. This embodiment is possible in the case of preformed components or else profiles that do not have a straight outline.
  • the contact plates on the first heating station are exchangeable, via a quick-change system.
  • the contact plates are arranged on a plate, by mechanical coupling in the form of screws.
  • the contact plates of the heating station may also be slotted or segmented, such that different thermal expansions are compensated for.
  • the contact plates may then, if required, be changed in a simple manner in order to adapt the forming line to a different blank and/or a different outline of a blank or a different size of a blank.
  • a further heating station may be inserted between the first heating station and the second heating station.
  • This further heating station takes the form of a contact heating station.
  • a two-stage preheating operation may thus take place. This would be described further up as a multistage preheating operation.
  • FIG. 1 a forming line according to prior art
  • FIG. 2 a schematic diagram of a process sequence
  • FIG. 3 a forming line in accordance with at least one embodiment of the disclosure.
  • FIG. 1 shows a known forming line 1 for production of a formed component 2 produced from lightweight metal.
  • a continuous furnace 3 is connected upstream of a forming station 4 .
  • the forming station 4 takes the form of a thermoforming apparatus or forming press.
  • the continuous furnace 3 then has a length 5 into which inserted blanks 6 , in the form of profiles here, are inserted and then pass through the continuous furnace 3 .
  • a transfer system 7 for example a linear conveyor, in order to transfer the blanks 6 that have been heated to a temperature in the continuous furnace 3 into or through a quenching unit and further into the forming mold. These are formed here and then removed from the forming mold.
  • FIG. 2 shows a process sequence of at least one embodiment.
  • a blank 6 is provided.
  • a hollow profile has likewise been used. This profile may be produced, for example, by extrusion and cutting-to-length to give individual profile pieces.
  • the profile is then inserted into a first heating station 8 in the form of a contact heating station.
  • the heating station 8 itself has contact plates, here in the form of an upper contact plate 9 and a lower contact plate 10 .
  • a heat source 16 may be provided in the contact plates.
  • the contact plates are then closed in a direction 11 , such that the contact surfaces 12 of the contact plates come to rest on contact surfaces 13 of the blank 6 . There is partial introduction of heat here by conduction of heat.
  • the heat of the contact plates 9 , 10 is released to the blank 6 by means of conduction of heat. Thereafter, the blank 6 thus preheated is passed onward into a second heating station 14 , or a continuous furnace.
  • This second heating station 14 has a distinctly shorter length 15 compared to the continuous furnace 3 according to FIG. 1 .
  • the blank 6 thus heated is then transferred through or into a quenching unit 17 and cooled, for example, to less than 250° C. From the quenching unit 17 , the blank 6 is then transferred into a forming tool 4 and formed therein.
  • the forming line 1 of at least one embodiment is shown once again in FIG. 3 .
  • the blanks 6 are inserted into the first heating station 8 and heated therein by means of contact heating within a very short time.
  • the blanks 6 that have thus been preheated are then transferred directly to the second heating station 14 and brought, in a homogeneous manner to solution annealing temperature therein. This may be followed by a quenching operation, which is not shown in detail.
  • This in turn is then followed directly by a forming operation in the forming mold 4 .
  • the blank 6 may also be transferred from the second heating station 14 directly in the warm state into the forming mold 4 .
  • the forming mold 4 would in turn be followed by a quenching operation which is not shown in detail. It is likewise not shown that a further heating station may be connected intermediately between the first heating station 8 and second heating station 14 , such that the preheating is conducted in multiple stages.
US16/284,216 2018-02-26 2019-02-25 Process for producing a formed lightweight metal component Abandoned US20190264309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018104326.0 2018-02-26
DE102018104326.0A DE102018104326B3 (de) 2018-02-26 2018-02-26 Verfahren zur Herstellung eines Leichtmetallumformbauteils

Publications (1)

Publication Number Publication Date
US20190264309A1 true US20190264309A1 (en) 2019-08-29

Family

ID=64567935

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/284,216 Abandoned US20190264309A1 (en) 2018-02-26 2019-02-25 Process for producing a formed lightweight metal component

Country Status (2)

Country Link
US (1) US20190264309A1 (de)
DE (1) DE102018104326B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735073A (zh) * 2019-11-04 2020-01-31 苏州大学 一种高质量6系铝合金挤压铸坯及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0817169D0 (en) 2008-09-19 2008-10-29 Univ Birmingham Improved process for forming aluminium alloy sheet components
US8496764B2 (en) 2011-12-01 2013-07-30 Ford Global Technologies, Llc System and method for manufacturing an F-temper 7xxx series aluminum alloy
DE102012110649C5 (de) 2012-11-07 2018-03-01 Benteler Automobiltechnik Gmbh Warmformlinie sowie Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Kraftfahrzeugbauteils
GB2527486A (en) 2014-03-14 2015-12-30 Imp Innovations Ltd A method of forming complex parts from sheet metal alloy
DE102014215365A1 (de) 2014-08-05 2016-02-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung von warmumgeformten Bauteilen
DE102016208014A1 (de) 2016-05-10 2017-11-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Bauteils
DE102017109613B3 (de) 2017-05-04 2018-03-01 Benteler Automobiltechnik Gmbh Warmformlinie mit Temperierstation sowie Verfahren zum Betreiben

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735073A (zh) * 2019-11-04 2020-01-31 苏州大学 一种高质量6系铝合金挤压铸坯及其制备方法

Also Published As

Publication number Publication date
DE102018104326B3 (de) 2018-12-27

Similar Documents

Publication Publication Date Title
EP2730665B1 (de) Warmformlinie sowie Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Kraftfahrzeugbauteils
WO2019205768A1 (zh) 一种轻量化铝合金车身构件的热冲压成形方法
DE102005032113B3 (de) Verfahren und Vorrichtung zum Warmumformen und partiellen Härten eines Bauteils
EP2497840B1 (de) Ofensystem und Verfahren zum partiellen Erwärmen von Stahlblechteilen.
EP2791372B1 (de) Verfahren und vorrichtung zum partiellen härten von blechbauteilen
US20160059295A1 (en) Method and press for producing sheet metal parts that are hardened at least in regions
US8323427B1 (en) Engineered shapes from metallic alloys
JP6802187B2 (ja) アルミニウム合金物品の衝撃熱処理
JP2014087836A (ja) アルミニウム合金材のダイクエンチ方法およびダイクエンチ装置
CN106583489B (zh) 高强铝合金板材回归成形一体化工艺
CN104862624A (zh) 高强度铝的差厚轧制
CN108602104B (zh) 用于制造构件的方法
US11746403B2 (en) Method for producing a motor vehicle component from a 6000 series aluminum alloy
EP2283946B1 (de) Verfahren zum Herstellen von Parabelfedern oder Lenkerfedern für insbesondere Fahrzeugchassis, Fahrzeugaufbauten und dgl.
CN106457337A (zh) 用于制造热成形构件的方法
CN103042070A (zh) 一种高强钢管材热成形时控制强度分布的方法
JP5237573B2 (ja) アルミニウム合金板材、シートおよび成形部材の各製造方法
US20190264309A1 (en) Process for producing a formed lightweight metal component
DE102018200843A1 (de) Verfahren und Aufheizvorrichtung zum Aufheizen eines Werkstücks zum Herstellen eines Bauteils, insbesondere für ein Kraftfahrzeug
US20040035546A1 (en) Process for manufacturing aluminum alloys and aluminium castings
CN111485185A (zh) 一种铝合金板体复合-固溶淬火一体化热成形方法
DE102010027179B3 (de) Verfahren und Fertigungsanlage zur Herstellung von Kraftfahrzeugbauteilen
JP2011063868A (ja) アルミ成形部品およびこれを含む金属構造体の製造方法
CN105436275A (zh) 一种低碳硼合金钢汽车加强板的热冲压成形工艺
DE102005033042B3 (de) Verfahren zur Wärmebehandlung metallischer Werkstücke und Vorrichtung zur Durchführung

Legal Events

Date Code Title Description
AS Assignment

Owner name: BENTELER AUTOMOBILTECHNIK GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREWE, JOCHEN;BOHNER, FRIEDRICH;TOELLE, JOERN;AND OTHERS;SIGNING DATES FROM 20190205 TO 20190304;REEL/FRAME:049058/0193

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION COUNTED, NOT YET MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION