WO2019205768A1 - 一种轻量化铝合金车身构件的热冲压成形方法 - Google Patents

一种轻量化铝合金车身构件的热冲压成形方法 Download PDF

Info

Publication number
WO2019205768A1
WO2019205768A1 PCT/CN2019/074150 CN2019074150W WO2019205768A1 WO 2019205768 A1 WO2019205768 A1 WO 2019205768A1 CN 2019074150 W CN2019074150 W CN 2019074150W WO 2019205768 A1 WO2019205768 A1 WO 2019205768A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
blank
hot
heating
mold
Prior art date
Application number
PCT/CN2019/074150
Other languages
English (en)
French (fr)
Inventor
华林
胡志力
张文沛
李欢欢
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Priority to AU2019261124A priority Critical patent/AU2019261124A1/en
Publication of WO2019205768A1 publication Critical patent/WO2019205768A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment

Definitions

  • the invention belongs to the technical field of sheet metal forming processing, and in particular relates to a hot stamping forming method for a lightweight aluminum alloy body member.
  • thermoforming method After the sheet is thermoformed at the forming temperature, it is usually subjected to solution aging treatment to increase the strength (as shown in Fig. 2). In the rapid quenching process, the shape of the part caused by uneven heating is prone to occur, and the forming accuracy is difficult to ensure.
  • Solution Heat Treatment Forming and Cold-Die Quenching, HFQ
  • HFQ Solution Heat Treatment
  • the aluminum alloy sheet is quickly transferred to the water-cooled mold, and then quickly formed into a mold, and after the forming is completed, the mold is kept closed, the parts are quenched in the mold, and finally artificial aging treatment is performed to increase the strength (as shown in FIG. 3). ). In-mold quenching is beneficial to ensure strength and dimensional accuracy, but the process is still more and the production cycle is not significantly shortened.
  • Patent document WO2015112799 discloses a method of producing an aluminum alloy body part. It mainly includes the following steps:
  • an aluminum alloy billet having any size and shape, the billet being selected from the group consisting of 2000 series, 6000 series, 7000 series, 8000 series or 9000 series aluminum alloy; the aluminum alloy blank has been subjected to solution and aging heat treatment, Thus having a T4 state or a state close to T4;
  • the formed part has a state close to T6 but not more than T6, and can be used for the automobile body without further heat treatment or machining.
  • the sheet material used in the patent document is an aluminum alloy sheet close to the T4 state, and the heating temperature is controlled at 150-350 ° C (preferably 190-225 ° C), so that the formed part has a state close to T6; the forming process After the end, the parts are cooled by water quenching or air cooling.
  • the blank used in the invention is a T6-reinforced aluminum alloy plate, and the heating temperature is lower than the solid solution temperature by 50-300 ° C, so that the precipitate phase of the blank is dissolved back to improve the plasticity, and the work hardening effect in the hot forming process is enhanced. At the same time, it also promotes the natural precipitation of the strengthening phase.
  • the strength of the parts can reach the T4 state, and the mechanical properties of the T8 state can be further strengthened by the short-time baking treatment.
  • the mold is held and the mold is pressed and quenched, which is beneficial to ensure the dimensional accuracy of the parts.
  • Patent document WO2015123663 (A1) discloses a method for warm forming a work hardened alloy sheet, which method mainly comprises the following steps:
  • the strength after stamping is also higher than that of the parts obtained by cold forming using the annealed blank.
  • the method provided by the patent document is a work hardened sheet material, and the billet is heated to a uniform temperature, and the recrystallization of the material is restricted by selecting a suitable alloy billet and forming temperature to avoid the strength. Drop and use forced air or liquid spray to cool.
  • the processing object of the invention is T6 reinforced aluminum alloy plate, the blank does not need to be work hardened, and there is no need to limit recrystallization, and the work hardening effect of the T6 state blank during the hot forming process is enhanced, and the subsequent strengthening phase is also promoted.
  • the strength of the parts after stamping and forming can reach T4 state, and the mechanical properties of the T8 state can be further strengthened by the short-time baking treatment; the pressure-hardening in the cold mold is beneficial to ensure the dimensional accuracy of the parts; in addition, the blank of the invention
  • the heating temperature of different parts may not be uniform.
  • the present invention provides a hot stamping method for forming an automobile component having a complicated three-dimensional shape using a high-strength aluminum alloy sheet, which is cost-effective and high in production efficiency.
  • the method includes providing an aluminum alloy sheet stock which is a heat treatable T6 state aluminum alloy sheet.
  • the method further comprises heating the aluminum alloy plate to a temperature range lower than a solid solution temperature of the T6 aluminum alloy by 50 to 300 ° C and maintaining the heat retention time of 10 to 300 s.
  • the heated sheet is quickly transferred to a water-cooled mold for mold clamping and pressure-hardening. After stamping and forming, the parts can be applied to the body of the car without the need for subsequent artificial aging heat treatment.
  • short-time heating causes the precipitated phase of the T6-state billet to be dissolved back, thereby increasing the plasticity of the alloy so that it can form the desired complex three-dimensional shape.
  • the work hardening effect in the thermoforming process produces a strengthening effect, and also promotes the generation and proliferation of a large number of dislocations, effectively providing the vacancies in the strengthening phase, and the strengthening phase can be naturally and efficiently precipitated in a large amount, and the body part of the T4 state is obtained.
  • the parts will be further strengthened to obtain the mechanical properties of the T8 state. Therefore, the formed parts can be used for the automobile body without manual aging heat treatment. Further, machining processing such as subsequent trimming and punching can be considered. Since no further heat treatment operation is required after press forming, the production efficiency can be greatly improved, and a large amount of labor and economic costs are saved.
  • Figure 1 depicts a technical route of the present invention for forming a body member using a T6 state aluminum alloy sheet
  • 20-heating equipment 22-blank, 24-transfer device, 26-stamping equipment, 28-upper mold, 30-low mold, 32-mold cooling system, 34-formed parts.
  • Figure 2 depicts the technical route of a conventional aluminum alloy sheet thermoforming process
  • FIG. 3 depicts the technical route for an aluminum alloy thermoforming-quenching integration (HFQ) process.
  • HFQ thermoforming-quenching integration
  • the invention provides a hot stamping method for producing a lightweight high-strength aluminum alloy automobile component having a complex three-dimensional shape, and the blank used for the forming member is an aluminum alloy plate in a T6 strengthened state.
  • the aluminum alloy blank can be cut to any size and shape for use in subsequent processes.
  • the billet used in the present invention is a T6 reinforced aluminum alloy
  • a heat treatable reinforced aluminum alloy material is used for the present invention.
  • the next step of the present invention is to place the selected aluminum alloy billet 22 in a heating apparatus 20 for heating and holding.
  • the heating method may be resistance heating, induction heating or the like.
  • the heating temperature selected is 50-300 ° C lower than the solid solution temperature of the material, the heating rate is controlled at 1-10 ° C / s, and the holding time is controlled at 10 - 300 s.
  • Short-time heating causes the precipitated phase of the alloy to dissolve back, thereby greatly increasing its plasticity, enabling it to form the desired complex three-dimensional shape.
  • different regions of the heating device can be set to different temperatures such that different portions of the blank form a temperature gradient.
  • the heated blank is quickly transferred to the forming apparatus 26 by the automatic transfer device 24.
  • the device has a pair of complementary stamping dies and is mounted on a press.
  • the blank 22 is placed between the upper die 28 and the lower die 30 and placed in the correct position by means of a positioning device.
  • the time taken for this transfer process should be as short as possible and generally controlled within 7 s to minimize the drop in billet temperature.
  • the blank 22 is formed into a desired complex three-dimensional shape. After the mold is closed, the mold is kept closed, and the workpiece is kept at the same time, and the in-mold quenching is performed, and the cooling rate is not lower than 30 ° C / s.
  • a cooling system 32 is provided in the mold to ensure the rate of quenching on the one hand.
  • the cooling system can effectively prevent the mold temperature from rising due to frequent heat exchange with the blank.
  • the quenching process is carried out under pressure holding conditions, which is beneficial to ensure the dimensional accuracy of the parts. Further, machining processing such as subsequent trimming and punching can be considered.
  • the work hardening effect in the thermoforming process produces a strengthening effect, and also promotes the generation and proliferation of a large number of dislocations, effectively providing the vacancies in the strengthening phase, and the strengthening phase can be naturally and naturally precipitated in a large amount, so that the forming member does not need to be followed.
  • the artificial aging heat treatment can obtain the mechanical properties of the T4 state and can be directly applied to the automobile body.
  • the short-time baking treatment is required after the final assembly of the vehicle body, and the strengthening member of the process forming member is further precipitated in the short-time baking process, and the peak strength is quickly reached, and the mechanical properties of the T8 state are obtained.
  • the heating temperature of different parts of the aluminum alloy billet may be different, so that a member having gradient mechanical properties can be formed.
  • the so-called gradient mechanical properties refer to the gradient of mechanical properties along the dimension, thus achieving the multi-performance requirements of a single part.
  • the present invention provides a hot stamping method for an aluminum alloy body member to form a body member having a complex three-dimensional shape.
  • a T6-state aluminum alloy plate is used as a shaped blank and has a high strength.
  • the method comprises heating the T6 state blank to a temperature of 50 to 300 ° C below the solid solution temperature and performing short-time heat preservation.
  • the short-time heat treatment causes the material precipitation phase to dissolve back, thereby greatly improving the plasticity of the alloy.
  • the experimental data show that when the alloy billet is heated to this temperature and kept at 10-300 s, the elongation can reach more than 20%, so that the required complex three-dimensional shape can be formed without cracking; on the other hand, during the hot forming process
  • the work hardening effect produces a strengthening effect, and also promotes the generation and proliferation of a large number of dislocations, effectively providing the vacancies of the strengthening phase, and the strengthening phase can be naturally and massively precipitated in a large amount and efficiently, and the body part of the T4 state is obtained;
  • the manufacturing process after the final assembly of the body, requires short-time baking treatment. In the short-time baking process, the formed components of the process will be further precipitated, and the peak strength will be reached quickly to achieve the mechanical properties of the T8 state.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the billet is generally heated to a desired forming temperature for hot forming, and after solid forming, it is subjected to solid solution + artificial aging treatment, that is, heated to 460 to 499 ° C for 30 to 40 minutes, and heated after quenching.
  • the temperature is maintained at 115-125 ° C for 24 hours to obtain the parts whose strength meets the requirements of use; and according to the hot forming-quenching integration process, the blanks need to be solution treated, that is, heated to 460-499 ° C for 30-40 minutes, then The temperature is lowered to the desired forming temperature for hot forming, and the workpiece is subjected to aging treatment after in-mold quenching, that is, heating to 115 to 125 ° C for 24 hours.
  • the heating temperature of the present invention is 50 to 300 ° C below the solid solution temperature, that is, 200 to 450 ° C. After the hot forming, the solid solution aging is not required to improve the strength of the part, and the total time required for the entire forming process can be controlled within 10 minutes. Save a lot of production time.
  • a hot stamping forming method for a lightweight aluminum alloy body member mainly comprises the following steps:
  • the T75 state 7075 aluminum alloy billet is placed in an electric resistance furnace for 3 minutes, and the heating temperature is lower than the solid solution temperature, and can be set to 300 ° C, 350 ° C, 400 ° C;
  • the blank used in the step (1) is an age-strengthened T6-state blank, which can be used for a vehicle body after hot forming without subsequent artificial aging heat treatment strengthening.
  • the mold is held in a mold to carry out the mold holding pressure, which is beneficial to ensure the accuracy of the parts.
  • the cooling system is arranged in the mold to prevent the mold temperature from rising during the continuous production process and to ensure the in-mold quenching efficiency.
  • step (3) it is conceivable that the machined parts are subjected to subsequent machining operations such as trimming and punching.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • An embodiment of the present invention will be specifically described by taking a 7075 aluminum alloy sheet as an example.
  • the aluminum alloy sheet blank was subjected to tensile test, and the tensile strength was measured to be 565 MPa.
  • the billet is generally heated to a desired forming temperature (generally 450 to 500 ° C) for hot forming, and after solid forming, solid solution + artificial aging treatment, that is, heating Heated to 460 ⁇ 499 ° C for 30 ⁇ 40 minutes, after quenching, heated to 115 ⁇ 125 ° C for 24 hours to obtain the final part; and according to the hot forming - quenching integrated process, as shown in Figure 3, the blank must be solidified Dissolving treatment, that is, heating to 460 ⁇ 499 ° C for 30 to 40 minutes, and then quickly transferred to a water-cooled mold for hot forming, after the mold is subjected to aging treatment in the cold mold, that is, heated to 115 ⁇ 125 ° C for 24 hours.
  • a desired forming temperature generally 450 to 500 ° C
  • solid solution + artificial aging treatment that is, heating Heated to 460 ⁇ 499 ° C for 30 ⁇ 40 minutes, after quenching, heated to 115 ⁇ 125 °
  • the heating temperature of the present invention is 50 to 300 ° C below the solid solution temperature, that is, 200 to 450 ° C. After the hot forming, the solid solution aging is not required to improve the strength of the part, and the total time required for the entire forming process can be controlled within 10 minutes. Save a lot of production time. A comparison of the three different processes is shown in the table below.
  • a lightweight aluminum alloy body member hot stamping forming method mainly comprises the following steps:
  • the T75 state 7075 aluminum alloy billet is heated in an electric resistance furnace, the heating rate is 1 ° C / s, and the temperature is kept for 1 minute, and the heating temperature is set to 350 ° C;
  • the body needs to be treated with short-time paint after final assembly. After the paint is processed, the parts can finally obtain the mechanical properties of T8.
  • the billet used in the step (1) is a time-strengthened T6-state billet which can be used for a vehicle body after hot forming without subsequent artificial aging heat treatment strengthening.
  • the mold is held in a mold to carry out the mold holding pressure, which is beneficial to ensure the accuracy of the parts.
  • the cooling system is arranged in the mold to prevent the mold temperature from rising during the continuous production process and to ensure the in-mold quenching efficiency.
  • step (3) it is conceivable that the machined parts are subjected to subsequent machining operations such as trimming and punching.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • An embodiment of the present invention will be specifically described by taking a 7075 aluminum alloy sheet as an example.
  • the aluminum alloy sheet blank was subjected to tensile test, and the tensile strength was measured to be 565 MPa.
  • the sheet was cut into an automobile B-pillar shaped blank using a laser cutting method.
  • a lightweight aluminum alloy body member hot stamping forming method mainly comprises the following steps:
  • the 7075 aluminum alloy billet in the T6 state is heated in an electric resistance furnace at a heating rate of 1 ° C / s and held for 1 minute.
  • the upper portion of the billet is heated to 350 ° C by gradient heating to heat the lower portion of the billet to 400 ° C;
  • the billet used in the step (1) is a time-strengthened T6-state billet which can be used for a vehicle body after hot forming without subsequent artificial aging heat treatment strengthening.
  • the heating furnace used in the step (1) performs gradient heating on the aluminum alloy billet, so that the upper portion of the billet has a lower temperature, the lower portion has a higher temperature, and the high temperature has a relatively significant influence on the precipitated phase in the lower region, and the finally formed B-pillar part has The gradient mechanical properties, in turn, achieve the multi-performance requirements of a single part to meet the collision safety performance under different requirements.
  • the mold is held in a mold to carry out the mold holding pressure, which is beneficial to ensure the accuracy of the parts.
  • the cooling system is arranged in the mold to prevent the mold temperature from rising during the continuous production process and to ensure the in-mold quenching efficiency.
  • step (3) it is conceivable that the machined parts are subjected to subsequent machining operations such as trimming and punching.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

一种轻量化铝合金车身构件的热冲压成形方法,将原始T6态铝合金板材坯料置于加热设备中进行快速加热,加热速率为1-10℃/s,加热温度比合金的固溶温度低50-300℃,然后保温,保温时间为10~300s;然后快速转移到水冷模具进行热冲压成形并进行模内保压淬火,冷却速率不低于30℃/s,获得成形零件;采用的坯料为T6态铝合金,无需进行传统冲压工艺中所必须采用的后续固溶时效热处理强化,即可获得T4态车身零件,在后续烤漆过程中零件会进一步强化获得T8态力学性能。该方法缩短了热成形的生产周期,大大提高了生产效率,同时能够保证产品的使用性能。

Description

一种轻量化铝合金车身构件的热冲压成形方法 技术领域
本发明属于金属板材成形加工的技术领域,尤其涉及一种轻量化铝合金车身构件的热冲压成形方法。
背景技术
当今全球面临着资源和环境的巨大压力,节能减排已成为全球汽车制造商的共同目标。在这种环境下,轻量化成为汽车产业不可避免的趋势。作为一种重要的轻量化材料,铝合金以其独特的优势成为仅次于钢材的第二大汽车材料。然而,在冷成形条件下铝合金的成形性能较差,容易产生起皱、拉裂、回弹等缺陷。而在高温下铝合金的成形性能会得到有效提升,因此热冲压工艺是解决这一问题的有效方法并得到了广泛应用。
传统的热成形方法,在成形温度下对板料进行热成形后,通常要进行固溶时效处理来提高强度(如图2所示)。该方法在快速淬火过程中容易发生受热不均引起的零件形状变化,成形精度难以保证。在此基础上,热成形-淬火一体化工艺(Solution Heat Treatment,Forming and Cold-Die Quenching,HFQ)被提出,该工艺是针对铝合金的热成形与热处理相结合的复合工艺,即将完全固溶后的铝合金板材快速转移到水冷模具上,然后快速合模成形,并且在成形完成后保持合模,使零件在模内进行淬火,最后进行人工时效处理以提高其强度(如图3所示)。模内淬火有利于保证强度和尺寸精度,但该方法工序仍然较多,生产周期没有得到明显缩短。
专利文献WO2015112799(A1)公开了一种生产铝合金车身部件的方法。主要包括如下步骤:
a)提供一种可具有任何大小和形状的铝合金坯料,该坯料可选自2000系,6000系,7000系,8000系或9000系铝合金;该铝合金坯料已进行固溶和时效热处理,从而具有T4状态或接近于T4的状态;
b)将板料加热至高温,使其可在至少150℃下成形,可加热到150-350℃的温度范围,190-225℃更佳,在加热温度下保温2-6分钟;
c)将板料快速转移到模具上冲压成形为复杂的三维形状,冲压过程结束后冷却工件,在冷却过程中铝合金部件的性能不改变;
d)完成冲压工序后成形零件具有接近于T6但不超过T6的状态,无需再进行其他热 处理或机械加工即可用于汽车车身。
该专利文献所采用的板材坯料为接近T4态的铝合金板,且加热温度控制在150-350℃(190-225℃更佳),从而使成形后的部件具有接近于T6的状态;成形过程结束后使用水淬或空冷的方法冷却零件。本发明所采用的坯料为T6强化态的铝合金板,加热温度比固溶温度低50~300℃,使坯料的析出相回溶以提高其塑性,热成形过程中的加工硬化效应产生强化作用的同时,也促进了强化相的自然析出,冲压成形后零件强度可以达到T4态,通过短时烤漆处理可进一步强化获得T8态力学性能。冲压成形后保持合模进行模内保压淬火,有利于保证零件的尺寸精度。
专利文献WO2015123663(A1)公开了一种加工硬化合金板材的温成形方法,该方法主要包括如下步骤:
a)提供一种轻质合金的板材坯料,该坯料经过加工硬化处理从而达到所需的屈服强度;
b)将坯料加热至高于环境温度的成形温度,使坯料足以成形出所有的三维特征并且不出现破裂;
c)将坯料在成形温度下保温一段时间(可为5-15分钟),使坯料的不同部位具有统一的温度,该成形温度应低于本工序中发生再结晶的温度,以避免再结晶导致的强度下降;
d)将加热后的坯料转移至冷模具中,模具闭合成形出所需零件,然后将冲压件冷却至环境温度;
e)由于所选用的坯料经加工硬化后获得了所需的强度,冲压后其强度亦高于使用退火态坯料进行冷成形所得零件的强度。
该专利文献提供的方法,其对象为加工硬化的板材坯料,且坯料加热至统一的温度,采用加工硬化的方式以及通过选择合适的合金坯料和成形温度来限制材料的再结晶,从而避免强度的下降,使用强制空冷或液体喷雾冷却。本发明的加工对象为T6强化态铝合金板,坯料无需经过加工硬化,也无需限制再结晶,T6态坯料在热成形过程中的加工硬化效应产生强化作用的同时,也促进了后续强化相的自然析出,冲压成形后零件强度可以达到T4态,通过短时烤漆处理可进一步强化获得T8态的力学性能;采用冷模内保压淬火,有利于保证零件的尺寸精度;另外,本发明中坯料不同部位的加热温度可不统一。
简要说明
本发明提供一种使用高强度铝合金板来成形具有复杂三维形状的汽车构件的热冲压方法,该方法节约成本,生产效率高。该方法包括提供一种铝合金板材坯料,该铝合金材料为可热处理强化的T6态铝合金板。该方法还包括将该铝合金板加热至比T6态铝合金固溶温度低50~300℃的温度范围并保温,保温时间控制在10~300s。下一步将加热后的板料快速转移至水冷模具上进行合模成形并保压淬火。冲压成形完成后零件即可应用于汽车车身,无需后续的人工时效热处理强化。
在本发明工艺中,短时加热使T6态坯料的析出相回溶,从而提高合金的塑性,使其能够成形出所需的复杂三维形状。热成形过程中的加工硬化效应产生强化作用的同时,也促进了大量位错的产生和增殖,有效提供了强化相析出的空位,强化相能够大量高效地自然析出,获得T4态的车身零件,在后续烤漆处理过程中零件会进一步强化获得T8态力学性能。因此成形零件无需进行人工时效热处理,即可用于汽车车身。进一步地,能够考虑到后续的切边、冲孔等机加工处理。由于冲压成形后无需进一步的热处理操作,因此可以大大提高生产效率,节约大量人力和经济成本。
附图说明
图1描述了本发明使用T6态铝合金板材成形车身构件的技术路线;
其中:20-加热设备,22-坯料,24-转移装置,26-冲压设备,28-上模,30-下模,32-模具内冷却系统,34-成形后的零件。
图2描述了传统铝合金板材热成形工艺技术路线;
图3描述了铝合金热成形-淬火一体化(HFQ)工艺技术路线。
详细说明
本发明提供了一种生产具有复杂三维形状的轻量化高强铝合金汽车构件的热冲压方法,成形构件所用的坯料为T6强化状态的铝合金板。根据所需成形构件的不同形状和尺寸,铝合金坯料可被切割为任意大小和形状,以供后续工序使用。
由于本发明所用坯料为T6强化态铝合金,因此选用可热处理强化的铝合金材料用于本发明。如图1所示,本发明的下一个步骤是将选用的铝合金坯料22放置于加热设备20中进行加热并保温。加热方式可为电阻加热、感应加热等。所选取的加热温度比材料的固溶温度低50-300℃,加热速率控制在1-10℃/s,保温时间控制在10~300s。短 时加热使合金的析出相回溶,从而大大提高其塑性,使其能够成形出所需的复杂三维形状。进一步地,加热设备的不同区域可以设定不同的温度,从而使坯料的不同部位形成温度梯度。
在加热工序完成后,已加热的坯料由自动转移装置24快速转移到成形设备26中。该设备具有一对形状互补的冲压模具,并安装在压力机上。坯料22被放置于上模28和下模30之间,借助于定位装置将其放置在正确的位置。该转移过程所用时间应当尽可能短,一般控制在7s以内,从而最大限度地减少坯料温度的下降。坯料22被转移至冲压设备26后,立即合模成形,坯料22被成形为所需的复杂三维形状。模具合模后保持闭合对工件进行保压,同时进行模内淬火,冷却速率不低于30℃/s。模具内设有冷却系统32,一方面可以保证淬火的速率,另一方面,当批量生产零件时,冷却系统能够有效防止与坯料频繁的热交换导致的模具温度的上升。在保压状态下进行淬火过程,有利于保证零件的尺寸精度。进一步地,能够考虑到后续的切边、冲孔等机加工处理。
热成形过程中的加工硬化效应产生强化作用的同时,也促进了大量位错的产生和增殖,有效提供了强化相析出的空位,强化相能够大量高效地自然析出,从而成形构件无需进行后续的人工时效热处理,即可获得T4态力学性能,可直接应用于汽车车身。进一步地,结合汽车车身制造工艺流程,车身总装后需进行短时烤漆处理,本工艺成形构件在短时烤漆过程中强化相会进一步析出,快速达到峰值强度,获得T8态力学性能。另外,铝合金坯料不同部位的加热温度可以不同,从而能够成形出具有梯度力学性能的部件。所谓梯度力学性能是指力学性能沿尺寸方向呈梯度变化,从而实现单一零件的多性能要求。
本发明提供了一种铝合金车身构件热冲压方法,成形具有复杂三维形状的车身部件。在本方法中,T6态铝合金板被用作成形坯料,具有较高的强度。本方法包括将T6态坯料加热至固溶温度以下50~300℃并进行短时保温。一方面,短时加热处理使材料析出相回溶,从而大大提高了合金的塑性。实验数据表明,合金坯料加热至该温度下并保温10-300s时,延伸率可达到20%以上,从而可以成形出所需的复杂三维形状,且不出现破裂;另一方面,热成形过程中的加工硬化效应产生强化作用的同时,也促进了大量位错的产生和增殖,有效提供了强化相析出的空位,强化相能够大量高效地自然析出,获得T4态的车身零件;考虑到汽车车身制造工艺流程,车身总装后需进行短时烤漆处 理,本工艺成形构件在短时烤漆过程中强化相会进一步析出,快速达到峰值强度,达到T8态力学性能。因此冲压成形后无需进行后续的人工时效热处理强化,即可用于汽车车身。在成形过程结束后进行模内保压淬火,有利于保证零件的尺寸精度。与传统铝合金热成形技术和热成形-淬火一体化工艺(HFQ)相比,本工艺方法的成形工序更少,生产周期由12小时以上缩短为10分钟以内,且最终能够获得T8态力学性能的车身零件。成形后零件不需要额外的热处理强化,节约了大量的人力资源和机械设备。尽管时效强化态坯料在原料价格上无优势,但人力成本和生产设备成本的降低以及生产效率的提高所带来的效益是很明显的。
具体实施方式:
为了更好地理解本发明,下面结合具体实施例对本发明作进一步的描述。
实施例一:
现以一种7075铝合金板材为例,对本发明的实施方式作具体说明。根据国标GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》对该铝合金板材坯料进行拉伸试验,测得其抗拉强度为565MPa。
按照传统的热冲压方法,一般先将坯料加热至所需的成形温度进行热成形,热成形完成后进行固溶+人工时效处理,即加热至460~499℃保温30~40分钟,淬火后加热至115~125℃保温24小时,得到强度符合使用要求的零件;而根据热成形-淬火一体化工艺,需先将坯料进行固溶处理,即加热至460~499℃保温30~40分钟,然后将温度降至所需的成形温度进行热成形,模内淬火后对工件进行时效处理,即加热至115~125℃保温24小时。而本发明的加热温度为固溶温度以下50~300℃,即200~450℃,热成形后无需进行固溶时效来提高零件的强度,整个成形过程所需总时间可控制在10分钟以内,节约了大量的生产时间。
一种轻量化铝合金车身构件的热冲压成形方法,主要包括如下步骤:
(1)将T6态的7075铝合金坯料置于电阻炉中加热保温3分钟,加热温度低于固溶温度,可分别设为300℃,350℃,400℃;
(2)将坯料取出并快速转移至冲压模具进行热成形,转移时间控制在7s内,冲压完成后进行模具内保压淬火;
(3)无需进行后续热处理强化,即可获得最终制件。
步骤(1)所用坯料为时效强化的T6态坯料,热成形后无需后续的人工时效热处理强化,即可用于汽车车身。
步骤(2)中冲压工序完成后模具保持合模进行模内保压,有利于保证零件的精度,模具内设有冷却系统,防止连续生产过程中模具温度的升高,保证模内淬火效率。
步骤(3)中可以考虑到,对成形后的零件进行必要的切边、冲孔等后续的机加工处理。
最终对成形后零件的力学性能进行检测。结果表明,当加热温度为350℃时其强度可达到原始坯料的80%以上,满足零件的使用要求。
实施例二:
以一种7075铝合金板材为例,对本发明的实施方式作具体说明。根据国标GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》对该铝合金板材坯料进行拉伸试验,测得其抗拉强度为565MPa。
按照传统的热冲压方法,如图2所示,一般先将坯料加热至所需的成形温度(一般为450~500℃)进行热成形,热成形完成后进行固溶+人工时效处理,即加热至460~499℃保温30~40分钟,淬火后加热至115~125℃保温24小时,得到最终的零件;而根据热成形-淬火一体化工艺,如图3所示,需先将坯料进行固溶处理,即加热至460~499℃保温30~40分钟,然后快速转移到水冷模具进行热成形,冷模内保压淬火后对工件进行时效处理,即加热至115~125℃保温24小时。而本发明的加热温度为固溶温度以下50~300℃,即200~450℃,热成形后无需进行固溶时效来提高零件的强度,整个成形过程所需总时间可控制在10分钟以内,节约了大量的生产时间。三种不同工艺的对比如下表所示。
Figure PCTCN2019074150-appb-000001
一种轻量化铝合金车身构件热冲压成形方法,主要包括如下步骤:
(1)将T6态的7075铝合金坯料置于电阻炉中加热,加热速率为1℃/s,并保温1分钟,加热温度设为350℃;
(2)将坯料取出并快速转移至水冷模具进行热成形,转移时间控制在7s内,冲压完成后进行模具内保压淬火,冷却速率50℃/s;
(3)无需进行后续热处理强化,即可获得T4态的车身零件;
(4)考虑到汽车车身制造工艺流程,车身总装后需进行短时烤漆处理,经烤漆处理后零件最终可获得T8态力学性能。
步骤(1)中所用坯料为时效强化的T6态坯料,热成形后无需后续的人工时效热处理强化,即可用于汽车车身。
步骤(2)中冲压工序完成后模具保持合模进行模内保压,有利于保证零件的精度,模具内设有冷却系统,防止连续生产过程中模具温度的升高,保证模内淬火效率。
步骤(3)中可以考虑到,对成形后的零件进行必要的切边、冲孔等后续的机加工处理。
最终对成形后零件的力学性能进行检测。结果表明,其强度可达到原始坯料的80%以上,满足零件的使用要求。
实施例三:
以一种7075铝合金板材为例,对本发明的实施方式作具体说明。根据国标GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》对该铝合金板材坯料进行拉伸试验,测得其抗拉强度为565MPa。使用激光切割方法将该板材切割为汽车B柱成形坯料。
一种轻量化铝合金车身构件热冲压成形方法,主要包括如下步骤:
(1)将T6态的7075铝合金坯料置于电阻炉中加热,加热速率为1℃/s,并保温1分钟,使用梯度加热方式将坯料上部区域加热至350℃,将坯料下部区域加热至400℃;
(2)将坯料取出并快速转移至水冷模具进行热成形,转移时间控制在7s内,冲压完成后进行模具内保压淬火,冷却速率50℃/s;
(3)无需进行后续热处理强化,即可获得最终零件;
步骤(1)中所用坯料为时效强化的T6态坯料,热成形后无需后续的人工时效热处理强化,即可用于汽车车身。
步骤(1)中所用加热炉对铝合金坯料进行梯度加热,使坯料的上部区域温度较低,下部区域温度较高,高温对下部区域析出相的影响相对显著,最终成形出的B柱零件具有梯度力学性能,进而实现单一零件的多性能要求,满足不同需求下的碰撞安全性能。
步骤(2)中冲压工序完成后模具保持合模进行模内保压,有利于保证零件的精度,模具内设有冷却系统,防止连续生产过程中模具温度的升高,保证模内淬火效率。
步骤(3)中可以考虑到,对成形后的零件进行必要的切边、冲孔等后续的机加工处理。
最终对成形后零件的力学性能进行检测。结果表明,B柱零件下部区域的强度可达到原始坯料的80%以上,满足零件的使用要求。

Claims (2)

  1. 一种轻量化铝合金车身构件的热冲压成形方法,其特征在于,包括如下步骤:
    S1)将T6态铝合金坯料置于加热设备中进行快速加热,加热速率为1-10℃/s,加热温度比合金的固溶温度低50-300℃,然后保温,保温时间为10~300s;使其析出相回溶,显著降低坯料强度,提高塑性;
    S2)将坯料取出,快速转移(转移时间<7s)至水冷模具进行热成形,冲压完成后进行模内保压淬火,冷却速率不低于30℃/s;
    S3)热成形过程中的加工硬化效应产生强化作用的同时,也促进了大量位错的产生和增殖,有效提供了强化相析出的空位,强化相能够大量高效地自然析出,从而成形构件无需进行后续的人工时效热处理,即可获得T4态的车身零件;
    S4)结合汽车车身制造工艺流程,车身总装后需进行短时烤漆处理,本工艺成形构件在短时烤漆过程中强化相会进一步析出,快速达到峰值强度,获得T8态的力学性能。
  2. 根据上述权利要求1所述的一种轻量化铝合金车身构件的热冲压成形方法,其特征在于,所述步骤S1)中T6态铝合金坯料各部位的加热温度相同或不同。
PCT/CN2019/074150 2018-04-27 2019-01-31 一种轻量化铝合金车身构件的热冲压成形方法 WO2019205768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019261124A AU2019261124A1 (en) 2018-04-27 2019-01-31 Hot-stamping forming method for lightweight aluminum alloy vehicle body component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810394967.0 2018-04-27
CN201810394967.0A CN108380722A (zh) 2018-04-27 2018-04-27 一种轻量化铝合金车身构件的热冲压成形方法

Publications (1)

Publication Number Publication Date
WO2019205768A1 true WO2019205768A1 (zh) 2019-10-31

Family

ID=63065791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074150 WO2019205768A1 (zh) 2018-04-27 2019-01-31 一种轻量化铝合金车身构件的热冲压成形方法

Country Status (3)

Country Link
CN (1) CN108380722A (zh)
AU (1) AU2019261124A1 (zh)
WO (1) WO2019205768A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560541A (zh) * 2019-09-23 2019-12-13 天津宝骏科技股份有限公司 一种冲压件冲压装置及冲压方法
CN110918744A (zh) * 2019-12-19 2020-03-27 南京航空航天大学 一种铝合金高筋整体壁板同步快冷的热成形工艺及装置
CN112775310A (zh) * 2020-12-23 2021-05-11 上海交通大学 铝合金薄壁构件及其高效热冲压成形方法和应用
CN113714735A (zh) * 2021-07-30 2021-11-30 江西昌河航空工业有限公司 一种适用于控制大型铝合金板材热处理变形的辅助方法
CN113926892A (zh) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 抗拉强度≥980MPa级热轧超高强度双相钢零件冲压成形工艺及应用
CN114107846A (zh) * 2021-11-29 2022-03-01 天津航天长征火箭制造有限公司 一种航天用铝合金曲面件柔性模具淬火控形方法
CN114160645A (zh) * 2022-01-20 2022-03-11 江苏现代造船技术有限公司 一种舵球封板整体加工方法
CN114309220A (zh) * 2021-12-06 2022-04-12 中国航发哈尔滨东安发动机有限公司 一种解决gh4169大拉深冷冲压成型零件的热处理工艺方法
CN116765205A (zh) * 2023-06-06 2023-09-19 华安钢宝利高新汽车板加工(娄底)有限公司 一种超高强钢汽车零件热成型工艺、装置
CN117463857A (zh) * 2023-11-03 2024-01-30 大连理工大学 基于多传感器的铝合金钣金件热成形生产线与控制方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380722A (zh) * 2018-04-27 2018-08-10 武汉理工大学 一种轻量化铝合金车身构件的热冲压成形方法
CN110252899B (zh) * 2019-07-25 2021-07-02 哈尔滨工业大学 一种钛合金薄壁构件快速加热冷模热板成形方法
CN110449501A (zh) * 2019-08-26 2019-11-15 芜湖容大机械制造有限公司 高性能合金车身钣金件冲压装置
CN110625015B (zh) * 2019-09-05 2020-10-09 中国地质大学(北京) 一种提高铝合金热冲压件成形质量的分区冷却方法
CN110788190A (zh) * 2019-10-25 2020-02-14 华中科技大学 采用铝合金板材及碳纤维复合材料热冲压成型零件的方法
CN112742938A (zh) * 2019-10-31 2021-05-04 中铝瑞闽股份有限公司 一种汽车用5系铝合金热冲压成形的方法
CN113042631A (zh) * 2019-12-26 2021-06-29 上海赛科利汽车模具技术应用有限公司 一种铝热成型装置及其作业方法
CN111482515B (zh) * 2020-03-27 2021-12-21 江苏大学 一种高强铝合金圆筒形深冲件模具及配套挤-拉-淬工艺
CN111482518B (zh) * 2020-04-07 2022-05-13 上海锐拓五金制品有限公司 一种铆螺柱生产用连接装置
CN112264498B (zh) * 2020-09-30 2022-04-15 武汉理工大学 一种铝合金预强化热冲压成形方法
CN113414267A (zh) * 2021-06-17 2021-09-21 上海交通大学 可加工硬化金属板材的预轧制成形方法
CN113787129B (zh) * 2021-08-20 2022-07-12 西安飞机工业(集团)有限责任公司 一种提升硬铝合金钣金零件综合力学性能的制备方法
CN113684431A (zh) * 2021-08-26 2021-11-23 北京航空航天大学 一种铝合金快速成形控性集成方法
CN115625221A (zh) * 2022-10-31 2023-01-20 史和生 一种金属复合板热压加工设备
CN115945571A (zh) * 2023-01-18 2023-04-11 上海新顿长菁科技有限公司 6xxx系铝合金的热成形工艺及其制得的零件和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940124A (zh) * 2014-01-24 2016-09-14 麦格纳国际公司 高强度铝的冲压
CN106282860A (zh) * 2016-08-25 2017-01-04 武汉理工大学 梯度力学性能铝合金车身零件成形装置及方法
WO2017062225A1 (en) * 2015-10-08 2017-04-13 Novelis Inc. Optimization of aluminum hot working
CN106583489A (zh) * 2016-11-29 2017-04-26 机械科学研究总院先进制造技术研究中心 高强铝合金板材回归成形一体化工艺
CN108380722A (zh) * 2018-04-27 2018-08-10 武汉理工大学 一种轻量化铝合金车身构件的热冲压成形方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100531956C (zh) * 2007-09-18 2009-08-26 徐国兴 汽车铝合金轮毂的锻造模具
CN102836939B (zh) * 2011-06-24 2015-03-25 深圳富泰宏精密工业有限公司 铝或铝合金的锻造方法
CN102560295B (zh) * 2011-12-31 2014-04-16 浙江吉利汽车研究院有限公司 一种改善铝合金冲压成形的热加工方法
CN102513489A (zh) * 2011-12-31 2012-06-27 西南铝业(集团)有限责任公司 铝合金t型断面模锻件的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940124A (zh) * 2014-01-24 2016-09-14 麦格纳国际公司 高强度铝的冲压
WO2017062225A1 (en) * 2015-10-08 2017-04-13 Novelis Inc. Optimization of aluminum hot working
CN106282860A (zh) * 2016-08-25 2017-01-04 武汉理工大学 梯度力学性能铝合金车身零件成形装置及方法
CN106583489A (zh) * 2016-11-29 2017-04-26 机械科学研究总院先进制造技术研究中心 高强铝合金板材回归成形一体化工艺
CN108380722A (zh) * 2018-04-27 2018-08-10 武汉理工大学 一种轻量化铝合金车身构件的热冲压成形方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560541A (zh) * 2019-09-23 2019-12-13 天津宝骏科技股份有限公司 一种冲压件冲压装置及冲压方法
CN110918744A (zh) * 2019-12-19 2020-03-27 南京航空航天大学 一种铝合金高筋整体壁板同步快冷的热成形工艺及装置
CN113926892A (zh) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 抗拉强度≥980MPa级热轧超高强度双相钢零件冲压成形工艺及应用
CN112775310A (zh) * 2020-12-23 2021-05-11 上海交通大学 铝合金薄壁构件及其高效热冲压成形方法和应用
CN113714735A (zh) * 2021-07-30 2021-11-30 江西昌河航空工业有限公司 一种适用于控制大型铝合金板材热处理变形的辅助方法
CN113714735B (zh) * 2021-07-30 2023-04-28 江西昌河航空工业有限公司 一种适用于控制大型铝合金板材热处理变形的辅助方法
CN114107846A (zh) * 2021-11-29 2022-03-01 天津航天长征火箭制造有限公司 一种航天用铝合金曲面件柔性模具淬火控形方法
CN114309220B (zh) * 2021-12-06 2023-10-24 中国航发哈尔滨东安发动机有限公司 一种解决gh4169大拉深冷冲压成型零件的热处理工艺方法
CN114309220A (zh) * 2021-12-06 2022-04-12 中国航发哈尔滨东安发动机有限公司 一种解决gh4169大拉深冷冲压成型零件的热处理工艺方法
CN114160645A (zh) * 2022-01-20 2022-03-11 江苏现代造船技术有限公司 一种舵球封板整体加工方法
CN116765205A (zh) * 2023-06-06 2023-09-19 华安钢宝利高新汽车板加工(娄底)有限公司 一种超高强钢汽车零件热成型工艺、装置
CN116765205B (zh) * 2023-06-06 2024-01-19 华安钢宝利高新汽车板加工(娄底)有限公司 一种超高强钢汽车零件热成型装置及其热成型方法
CN117463857A (zh) * 2023-11-03 2024-01-30 大连理工大学 基于多传感器的铝合金钣金件热成形生产线与控制方法

Also Published As

Publication number Publication date
AU2019261124A1 (en) 2020-12-17
CN108380722A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
WO2019205768A1 (zh) 一种轻量化铝合金车身构件的热冲压成形方法
CN106868436B (zh) 一种快径锻联合生产高温合金gh4169细晶棒材制造方法
CN112264498B (zh) 一种铝合金预强化热冲压成形方法
CN104532154B (zh) 高硬度高抛光预硬化塑胶模具钢及其制备工艺
CN102712985B (zh) 从板材形成复杂形状的部件的方法
CN103695817A (zh) 一种可热处理铝合金同步淬火热成形工艺
CN108687160B (zh) 一种铝合金板材处理工艺
CN103045974B (zh) 提高变形铝合金强度并保持其塑性的热加工方法
CN109487184B (zh) 一种人工时效态高强铝合金回归成形同步工艺
CN105908110A (zh) 一种降低高强铝合金复杂模锻件残余应力的方法
CN106583489A (zh) 高强铝合金板材回归成形一体化工艺
US20150240339A1 (en) Tailored rolling of high strength aluminum
WO2009130175A1 (en) Method of manufacturing a structural aluminium alloy part
CN111438317A (zh) 一种具有高强高韧近β型钛合金锻件锻造成形的制备方法
CN108405773A (zh) 一种轻量化铝合金底盘件加工方法
CN106734465B (zh) 基于多层普通金属复合板热冲压成形制作汽车b柱的方法
WO2015188547A1 (zh) Al-Mg合金轮毂的制造方法
CN105964849A (zh) 一种大尺寸高强铝合金零件的等温模锻工艺
CN105861968B (zh) 一种提高Al‑Cu系高强铝合金环件力学性能的方法
CN105132637A (zh) 油压机5CrMnMo上模双液淬火回火局部强化热处理工艺
CN110434264B (zh) 一种晶须增强铝基复合材料的约束多向模锻方法
CN108642410B (zh) 一种提高铝合金板材综合力学性能的工艺方法
Ng et al. Reviews on the forming process of heat treatable aluminium alloys
CN102974729A (zh) 一种汽车发动机左板的加工方法
CN117535606A (zh) 一种有效改善铝合金尺寸稳定性及残余应力的工艺及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019261124

Country of ref document: AU

Date of ref document: 20190131

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19793198

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19793198

Country of ref document: EP

Kind code of ref document: A1