US20190259948A1 - Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus - Google Patents

Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus Download PDF

Info

Publication number
US20190259948A1
US20190259948A1 US16/400,789 US201916400789A US2019259948A1 US 20190259948 A1 US20190259948 A1 US 20190259948A1 US 201916400789 A US201916400789 A US 201916400789A US 2019259948 A1 US2019259948 A1 US 2019259948A1
Authority
US
United States
Prior art keywords
group
formula
carbon atoms
represented
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/400,789
Inventor
Masakazu Funahashi
Takahiro Fujiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to US16/400,789 priority Critical patent/US20190259948A1/en
Publication of US20190259948A1 publication Critical patent/US20190259948A1/en
Priority to US17/828,080 priority patent/US20220293856A1/en
Priority to US17/847,224 priority patent/US11616200B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • H01L51/006
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0061
    • H01L51/0071
    • H01L51/0073
    • H01L51/0074
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to compounds, materials for organic electroluminescence devices comprising the compounds, organic electroluminescence devices comprising the compounds, and electronic equipment comprising the organic electroluminescence device.
  • An organic electroluminescence (EL) device is generally composed of an anode, a cathode, and one or more organic thin film layers which are sandwiched between the anode and the cathode.
  • a voltage is applied between the electrodes, electrons are injected from the cathode and holes are injected from the anode into a light emitting region.
  • the injected electrons recombine with the injected holes in the light emitting region to form excited states.
  • the excited states return to the ground state, the energy is released as light. Therefore, the development of a compound which transports electrons or holes into a light emitting region efficiently and facilitates the recombination of electrons and holes is important to obtain a high efficiency organic EL device.
  • the drive of an organic EL device at lower voltage is effective for reducing the power consumption and also effective for improving the emission efficiency and the device lifetime.
  • a charge transporting material having a high electron mobility and/or a high hole mobility is required.
  • Patent Literatures 1 to 4 disclose amine compounds having a fluorene structure, a dibenzofuran structure and an aryl group.
  • the proposed amine compounds are insufficient in the hole mobility. Therefore, a compound having a higher hole mobility has been sill required.
  • Patent Literature 1 WO 2010/044130
  • Patent Literature 2 WO 2012/034627
  • Patent Literature 3 WO 2013/087142
  • Patent Literature 4 WO 2014/015938
  • the present invention has been made to solve the above problem and an object of the invention is to provide an organic EL device which is capable of driving at a low voltage and has long lifetime and high emission efficiency and a material for organic EL devices which realize such an organic EL device.
  • the inventors have found that the compound represented by formula (1) has a high hole mobility and further found that an organic EL device which is capable of driving at a low voltage and has long lifetime and high emission efficiency is obtained by using such a compound.
  • the present invention provides a compound represented by formula (1) (also referred to as “compound (1)”):
  • R 1 and R 2 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms and the other represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group; or
  • R 1 and R 2 each independently represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • R 1 and R 2 when one or both of R 1 and R 2 represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, the aryl group and a benzene ring to which R 1 or R 2 is bonded may be crosslinked;
  • Ar 1 represents a group represented by formula (2) or (3)
  • Ar 2 represents a group selected from a group represented by formula (2), a group represented by formula (3), and a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • X represents an oxygen atom or a sulfur atom
  • L 1 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms
  • R 3 represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group; and
  • n represents an integer of 0 to 4, when m is an integer of 2 to 4, two to four groups R 3 may be the same or different and may be bonded to each other to form a ring, and when m is 0, (R 3 ) 0 represents a hydrogen atom;
  • R 5 and R 6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 10 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group;
  • L 2 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms
  • R 4 represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group;
  • n represents an integer of 0 to 4, when n is an integer of 2 to 4, two to four groups R 4 may be the same or different and may be bonded to each other to form a ring, and when n is 0, (R 4 ) 0 represents a hydrogen atom.
  • the present invention provides a material for organic EL devices which comprises the compound (1).
  • the present invention provides an organic EL device which comprises an anode, a cathode, and at least one organic thin film layer between the anode and the cathode, wherein the at least one organic thin film layer comprises a light emitting layer and at least one layer of the at least one organic thin film layer comprises the compound (1).
  • the present invention provides an electronic equipment which comprises the organic EL device mentioned above.
  • An organic EL device which is capable of driving at a low voltage and has long lifetime and high emission efficiency is obtained by using the compound (1).
  • XX to YY carbon atoms referred to by “a substituted or unsubstituted group ZZ having XX to YY carbon atoms” used herein is the number of carbon atoms of the unsubstituted group ZZ and does not include any carbon atom in the substituent of the substituted group ZZ.
  • YY is larger than “XX” and each represents an integer of 1 or more.
  • XX to YY atoms referred to by “a substituted or unsubstituted group ZZ having XX to YY atoms” used herein is the number of atoms of the unsubstituted group ZZ and does not include any atom in the substituent of the substituted group ZZ. “YY” is larger than “XX” and each represents an integer of 1 or more.
  • unsubstituted group ZZ referred to by “substituted or unsubstituted group ZZ” used herein means that no hydrogen atom in the group ZZ is substituted by a substituent.
  • hydroxide atom used herein includes isotopes different in the neutron numbers, i.e., light hydrogen (protium), heavy hydrogen (deuterium), and tritium.
  • the number of “ring carbon atoms” referred to herein means the number of the carbon atoms included in the atoms which are members forming the ring itself of a compound in which a series of atoms is bonded to form a ring (for example, a monocyclic compound, a fused ring compound, a cross-linked compound, a carbocyclic compound, and a heterocyclic compound). If the ring has a substituent, the carbon atom in the substituent is not included in the ring carbon atom. The same applies to the number of “ring carbon atom” described below, unless otherwise noted.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridinyl group has 5 ring carbon atoms
  • a furanyl group has 4 ring carbon atoms. If a benzene ring or a naphthalene ring has, for example, an alkyl substituent, the carbon atom in the alkyl substituent is not counted as the ring carbon atom of the benzene or naphthalene ring.
  • the number of “ring atom” referred to herein means the number of the atoms which are members forming the ring itself (for example, a monocyclic ring, a fused ring, and a ring assembly) of a compound in which a series of atoms is bonded to form the ring (for example, a monocyclic compound, a fused ring compound, a cross-linked compound, a carbocyclic compound, and a heterocyclic compound).
  • the atom not forming the ring for example, hydrogen atom(s) for saturating the valence of the atom which forms the ring
  • the atom in a substituent if the ring is substituted, are not counted as the ring atom.
  • a pyridine ring has 6 ring atoms
  • a quinazoline ring has 10 ring atoms
  • a furan ring has 5 ring atoms.
  • the hydrogen atom on the ring carbon atom of a pyridine ring or a quinazoline ring and the atom in a substituent are not counted as the ring atom.
  • the atom in the fluorene substituent is not counted as the ring atom of the fluorene ring.
  • the optimal substituent referred to by “substituted or unsubstituted” used herein is, unless otherwise noted, at least one preferably selected from the group consisting of an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms; a cycloalkyl group having 3 to 50, preferably 3 to 10, more preferably 3 to 8, still more preferably 5 or 6 ring carbon atoms; an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; an aralkyl group having 7 to 51, preferably 7 to 30, more preferably 7 to 20 carbon atoms which includes an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; an amino group; a mono- or di-substituted amino group wherein the substituent is selected from an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms and an aryl group having 6 to
  • the above optional substituent may further has the substituent mentioned above.
  • the optional substituents may be bonded to each other to form a ring.
  • the “substituted or unsubstituted carbazolyl group” used herein includes the following carbazolyl groups:
  • the compound (1) is represented by formula (1):
  • one of R 1 and R 2 represents a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, and the other represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50, preferably 3 to 24, more preferably 3 to 12 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsub
  • both of R 1 and R 2 each independently represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 1 and R 2 is preferably selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, and a halogen atom, more preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and still more preferably a hydrogen atom.
  • R 1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • R 2 is selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, and a halogen atom, preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and more preferably a hydrogen atom.
  • R 1 and R 2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Formula (4a) is preferably represented by
  • Formula (4b) is preferably represented by
  • alkyl group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group (inclusive of isomeric groups), a hexyl group (inclusive of isomeric groups), a heptyl group (inclusive of isomeric groups), an octyl group (inclusive of isomeric groups), a nonyl group (inclusive of isomeric groups), a decyl group (inclusive of isomeric groups), an undecyl group (inclusive of isomeric groups), and a dodecyl group (inclusive of isomeric groups).
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include a phenyl group, a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, a phenylnaphthyl group, an acenaphthylenyl, an anthryl group, a benzanthryl group, an aceanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a fluorenyl group, a 9,9-dimethylfluorenyl group, a 7-phenyl-9,9-dimethylfluorenyl group, a pentacenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrys
  • the heterocyclic group having 3 to 50 ring atoms comprises at least one, preferably 1 to 3 heteroatoms which may be the same or different, such as a nitrogen atom, a sulfur atom and an oxygen atom.
  • the heterocyclic group include a pyrrolyl group, a furyl group, a thienyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, an imidazolyl group, an oxazolyl group, a thiazolyl group, a pyrazolyl group, an isoxazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a triazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, an isobenzofuranyl group
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and a iodine atom, with a fluorine atom being preferred.
  • fluoroalkyl group having 1 to 20 carbon atoms examples include those derived from the above alkyl group having 1 to 20 carbon atoms by replacing at least one hydrogen atom, preferably 1 to 7 hydrogen atoms or all hydrogen atoms with a fluorine atom or fluorine atoms.
  • Preferred examples thereof are a heptafluoropropyl group, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group, with a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group being more preferred, and a trifluoromethyl group being still more preferred.
  • the alkoxy group having 1 to 20 carbon atoms is represented by —OR 10 , wherein R 10 is the above alkyl group having 1 to 20 carbon atoms.
  • R 10 is the above alkyl group having 1 to 20 carbon atoms.
  • Preferred examples thereof include a t-butoxy group, a propoxy group, an ethoxy group, and a methoxy group, with an ethoxy group and a methoxy group being more preferred, and a methoxy group being still more preferred.
  • the fluoroalkoxy group having 1 to 20 carbon atoms is represented by —OR 11 , wherein R 11 is the above fluoroalkyl group having 1 to 20 carbon atoms.
  • R 11 is the above fluoroalkyl group having 1 to 20 carbon atoms.
  • Preferred examples thereof include a heptafluoropropoxy group, a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group, with a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group being more preferred, and a trifluoromethoxy group being still more preferred.
  • the aryloxy group having 6 to 50 ring carbon atoms is represented by —OR 12 , wherein R 12 is the above aryl group having 6 to 50 ring carbon atoms, preferably a terphenyl group, a biphenyl group and a phenyl group, more preferably a biphenyl group and a phenyl group, and still more preferably a phenyl group.
  • R 1 and R 2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • the aryl group and the benzene ring to which R 1 or R 2 is bonded may be crosslinked.
  • the crosslinking group include —O—, —S—, —NR a —, and —CR b R c —.
  • R a , R b and R c each represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group.
  • R b and R c may be the same or different and may be bonded to each other to form a ring.
  • R a is preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R b and R c are each preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms and more preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 50 ring carbon atoms, the heteroaryl group having 3 to 50 ring atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R 1 and R 2 .
  • Examples of the crosslinked structure formed by the aryl group and the benzene ring to which R 1 or R 2 is bonded include a dibenzofuran structure, a dibenzothiophene structure, a carbazole structure, a N-arylcarbazole structure, a N-alkylcarbazole structure, a fluorene structure, a 9,9-dialkylfluorene structure, and a 9,9-diarylfluorene structure.
  • the aryl group and the alkyl group in the carbazole structure and the fluorene structure are selected from the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 50 ring carbon atoms each mentioned above.
  • Ar 1 represents a group represented by formula (2) or (3), preferably a group represented by formula (2).
  • Ar 2 represents a group selected from a group represented by formula (2), a group represented by formula (3), and a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, and more preferably 6 to 12 ring carbon atoms, and preferably represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X represents an oxygen atom or an sulfur atom, preferably an oxygen atom.
  • L 1 represents a substituted or unsubstituted arylene group having 6 to 50, preferably 6 to 24, and more preferably 6 to 12 ring carbon atoms.
  • the arylene group having 6 to 50 ring carbon atoms is a divalent group which is derived from the aryl group having 6 to 50 ring carbon atoms mentioned above with respect to R 1 and R 2 by removing one hydrogen atom, and preferably a terpnenyldiyl group (inclusive of isomeric groups), a biphenyldiyl group (inclusive of isomeric groups), and a phenylene group (inclusive of isomeric groups), more preferably a biphenyldiyl group (inclusive of isomeric groups) and a phenylene group (inclusive of isomeric groups), and still more preferably an o-phenylene group, a m-phenylene group and a p-phenylene group.
  • the subscript y is 0 or 1 and preferably 1. When y is 0, (L 1 ) 0 is a single bond.
  • R 3 is selected from a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50, preferably 3 to 24, more preferably 3 to 12 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 50 ring carbon atoms, the heteroaryl group having 3 to 50 ring atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R 1 and R 2 .
  • m is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • m is an integer of 2 to 4
  • two to four groups R 3 may be the same or different, and two groups R 3 may be bonded to each other to form a ring.
  • (R 3 ) 0 is a hydrogen atom.
  • L 1 is bonded to 1-, 2-, 3-, or 4-position, preferably 2- or 4-position of the dibenzofuran structure or the dibenzothiophene structure:
  • formula (2) is represented by formula (2a) or (2b):
  • L 1 , y, X, R 3 , and m are as defined above.
  • formula (2) is represented by formula (2a′) or (2b′):
  • L 1 , X, R 3 , and m are as defined above.
  • Formula (2a′) is preferably represented by formula (2a′′) and formula (2b′) is preferably represented by (2b′′):
  • formula (2) is represented by formula (2a′′-1) or (2b′′-1):
  • formula (2) is represented by any of the following groups:
  • R 5 and R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryl group having 10 to 50, preferably 10 to 24, more preferably 10 to 12 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50, preferably 3 to 24, more preferably 3 to 12 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the heteroaryl group having 3 to 50 ring atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R 1 and R 2 .
  • Examples of the substituted or unsubstituted aryl group having 10 to 50 ring carbon atoms include a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, a phenylnaphthyl group, an acenaphthylenyl, an anthryl group, a benzanthryl group, an aceanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a fluorenyl group, a 9,9-dimethylfluorenyl group, a 7-phenyl-9,9-dimethylfluorenyl group, a pentacenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a
  • L 2 represents a substituted or unsubstituted arylene group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms.
  • the arylene group having 6 to 50 ring carbon atoms is a divalent group which is derived from the aryl group having 6 to 50 ring carbon atoms mentioned above with respect to R 1 and R 2 by removing one hydrogen atom, and preferably a terpnenyldiyl group (inclusive of isomeric groups), a biphenyldiyl group (inclusive of isomeric groups), and a phenylene group (inclusive of isomeric groups), more preferably a biphenyldiyl group (inclusive of isomeric groups) and a phenylene group (inclusive of isomeric groups), and still more preferably an o-phenylene group, a m-phenylene group and a p-phenylene group.
  • the subscript z is 0 or 1 and preferably 0. When z is 0, (L 2 ) 0 is a single bond.
  • R 4 is selected from a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, and a cyano group; preferably selected from the substituted or unsub
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 50 ring carbon atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R 1 and R 2 .
  • n is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 and 1, and still more preferably 0.
  • m is an integer of 2 to 4
  • two to four groups R 4 may be the same or different, and two groups R 4 may be bonded to each other to form a ring.
  • n is 0, (R 4 ) 0 is a hydrogen atom.
  • one of R 1 and R 2 is the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms; the other is a hydrogen atom; and n is 0.
  • one of R 1 and R 2 is the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms; the other is the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, the substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, the halogen atom, the substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, the substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, the substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms,
  • L 2 is bonded to 1-, 2-, 3-, or 4-postion, preferably 2-position of the fluorene structure
  • formula (3) is represented by formula (3a);
  • formula (3) is represented by formula (3a′);
  • R 4 , R 5 , R 6 , and n are as defined above.
  • Formula (3a′) is preferably represented by formula (3a′′):
  • R 5 and R 6 are as defined above.
  • formula (3) is preferably represented by the following group:
  • Examples of the aryl group in the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms for Ar 2 include a phenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, an acenaphthylenyl, an anthryl group, a benzanthryl group, an aceanthryl group, a phenanthryl group, a triphenylenyl group, a bonzophenanthryl group, a phenalenyl group, a fluorenyl group, a pentacenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a s-indacenyl group, an as-indacenyl group, a
  • Examples of the substituted aryl group include those having the optional substituent mentioned above and further include a naphthylphenyl group, a phenylnaphthyl group, a 9,9-dimethylfluorenyl group, a 9,9-diphenylfluorenyl group, a 9,9-bis(p-methylphenyl)fluorenyl group, a 7-phenyl-9,9-diphenylfluorenyl group, a p-(9,9-diphenylfluorenyl)phenyl group, a 7-phenyl-9,9-dimethylfluorenyl group, a 9,9′-spirobifluorenyl group, a spiro[9H-fluorenyl-9,1′-cyclopentane] group, and a spiro[9H-fluorenyl-9,1′-cyclohexane] group.
  • the substituted or unsubstituted aryl group is preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, a p-(9,9-diphenylfluorene-2-yl)phenyl group, and a 9,9′-spirobifluorene-2-yl group; more preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9
  • the substituted or unsubstituted aryl group is preferably a terphenylyl group, a phenyl-substituted terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, a p-(9,9-diphenylfluorene-2-yl)phenyl group, and a 9,9′-spirobifluorene-2-yl group; more preferably a terphenylyl group, a phenyl-substituted terphenylyl group, a naphthyl group, a naph
  • Ar 1 is represented by formula (3) and R 5 and R 6 each represent an unsubstituted alkyl group having 1 to 20 carbon atoms
  • the substituted or unsubstituted aryl group for Ar 2 is preferably selected from the aryl group mentioned above.
  • the compound (1) is preferably represented by formula (1a) or (1b):
  • R 1 and R 2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and Ar 1 and Ar 2 are as defined in formula (1).
  • the compound (1) is also preferably represented by any of formulae (1a-1) to (1a-3) and (1b-1) to (1b-3):
  • R 1 and R 2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • R 5 and R 6 are as defined in formula (1) and each preferably represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms;
  • Ar 2 is as defined in formula (1) and preferably represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • L 1 , X, R 3 , R 4 , m, and n are as defined in formula (1).
  • the compound (1) is more preferably represented by any of formulae (1a-1′) to (1a-3′) and (1b-1′) to (1b-3′):
  • R 1 and R 2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • R 5 and R 6 are as defined in formula (1) and each preferably represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms;
  • Ar 2 is as defined in formula (1) and preferably represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • L 1 and X are as defined in formula (1).
  • the compound (1) has a high hole mobility.
  • the compound (1) is useful as a material for organic EL device, a hole transporting material, and a material for an organic thin film layer disposed between an anode and a light emitting layer, such as a hole injecting layer and a hole transporting layer.
  • the production method of the compound (1) is not particularly limited and one of ordinary skill in the art can easily produce it by utilizing or modifying a known synthesis reaction with reference to the examples described below.
  • Representative device structures (1) to (13) are shown below, although not limited thereto.
  • the device structure (8) is preferably used.
  • anode/light emitting layer/cathode (2) anode/hole injecting layer/light emitting layer/cathode; (3) anode/light emitting layer/electron injecting layer/cathode; (4) anode/hole injecting layer/light emitting layer/electron injecting layer/cathode; (5) anode/organic semiconductor layer/light emitting layer/cathode; (6) anode/organic semiconductor layer/electron blocking layer/light emitting layer/cathode; (7) anode/organic semiconductor layer/light emitting layer/adhesion improving layer/cathode; (8) anode/hole injecting layer/hole transporting layer/light emitting layer/(electron transporting layer/) electron injecting layer/cathode; (9) anode/insulating layer/light emitting layer/insulating layer/cathode; (10) anode/inorganic semiconductor layer/insulating layer/light emitting layer/insulating layer/cathode;
  • the compound (1) may be used in any of the organic thin film layers of an organic EL device. In view of driving at a lower voltage, the compound (1) is preferably used in a hole injecting layer or a hole transporting layer, more preferably used in a hole transporting layer.
  • the content of the compound (1) in the organic thin film layer is preferably 30 to 100 mol %, more preferably 50 to 100 mol %, still more preferably 80 to 100 mol %, further preferably 95 to 100 mol %, and substantially 100 mol % in a particularly preferred embodiment, each based on the total molar amount of the components in the organic thin film layer.
  • the substrate is a support for the emitting device and made of, for example, glass, quartz, and plastics.
  • the substrate may be a flexible substrate, for example, a plastic substrate made of polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride.
  • An inorganic deposition film is also usable.
  • the anode is formed on the substrate preferably from a metal, an alloy, an electrically conductive compound, and a mixture thereof, each having a large work function, for example, 4.5 eV or more.
  • the material for the anode include indium oxide-tin oxide (ITO: indium tin oxide), indium oxide-tin oxide doped with silicon or silicon oxide, indium oxide-zinc oxide, indium oxide doped with tungsten oxide and zinc oxide, and graphene.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • a nitride of the above metal for example, titanium nitride
  • a film of indium oxide-zinc oxide is formed by sputtering an indium oxide target doped with 1 to 10 wt % of zinc oxide
  • a film of indium oxide doped with tungsten oxide and zinc oxide is formed by sputtering an indium oxide target doped with 0.5 to 5 wt % of tungsten oxide and 0.1 to 1 wt % of zinc oxide.
  • a vacuum vapor deposition method, a coating method, an inkjet method, and a spin coating method are usable.
  • a hole injecting layer to be formed in contact with the anode is formed from a material which is capable of easily injecting holes independently of the work function of the anode. Therefore a material generally used as an electrode material, for example, a metal, an alloy, an electroconductive compound, a mixture thereof, and a group 1 element and a group 2 element of the periodic table are usable.
  • a material having a small work function for example, the group 1 element and the group 2 element of the periodic table, i.e., an alkali metal, such as lithium (Li) and cesium (Cs), an alkaline earth metal, such as magnesium (Mg), calcium (Ca), and strontium (Sr), and an alloy thereof, such as MgAg and AlLi, are also usable.
  • an alkali metal such as lithium (Li) and cesium (Cs)
  • an alkaline earth metal such as magnesium (Mg), calcium (Ca), and strontium (Sr)
  • an alloy thereof such as MgAg and AlLi
  • a rare earth metal such as europium (Eu) and ytterbium (Yb)
  • the alkali metal, the alkaline earth metal, and the alloy thereof can be made into the anode by a vacuum vapor deposition or a sputtering method. When a silver paste, etc. is used, a coating method and an ink
  • the hole injecting layer comprises a highly hole-transporting material.
  • the compound (1) may be used in the hole injecting layer alone or in combination with the following compound.
  • Examples of the highly hole-transporting material include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide, and manganese oxide.
  • the following low molecular aromatic amine compound is also usable: 4,4′,4′′-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4′′-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA), 4,4′-bis[N-(4-diphenylaminophenyl)-N-phenylamino]biphenyl (DPAB), 4,4′-bis(N- ⁇ 4-[N′-(3-methylphenyl)-N′-phenylamino]phenyl ⁇ -N-phenylamino)biphenyl (DNTPD), 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene (DPA3B), 3-[N-(9-phenylcarbazole-3-yl)-N-phenylamino]-9-phenylcarbazol
  • a macromolecular compound such as an oligomer, a dendrimer, a polymer, is also usable.
  • examples thereof include poly(N-vinylcarbazole) (PVK), poly(4-vinyltriphenylamine) (PVTPA), poly[N-(4- ⁇ N′-[4-(4-diphenylamino)phenyl]phenyl N′-phenylamino ⁇ phenyl)methacrylamide] (PTPDMA), and poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine] (Poly-TPD).
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly(4-vinyltriphenylamine)
  • PTPDMA poly[N-(4- ⁇ N′-[4-(4-diphenylamino)phenyl]phenyl N′-phenylamino ⁇ phenyl)methacrylamide
  • An acid-added macromolecular compound such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyalinine/poly(styrenesulfonic acid) (PAni/PSS), is also usable.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)
  • PAni/PSS polyalinine/poly(styrenesulfonic acid)
  • the hole transporting layer comprises a highly hole-transporting material.
  • the compound (1) may be used in the hole transporting layer alone or in combination with the following compound.
  • the hole transporting layer may contain an aromatic amine compound, a carbazole derivative, an anthracene derivative, etc., for examples, an aromatic amine compound, such as 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N′-bis(3-methylphenyl)-N,N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (TPD), 4-phenyl-4′-(9-phenylfluorene-9-yl)triphenylamine (BAFLP), 4,4′-bis[N-(9,9-dimethylfluorene-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4′,4′′-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4′′-tris[N-(3-methylphenyl)
  • the hole transporting layer may contain a carbazole derivative, such as CBP, CzPA, and PCzPA, an anthracene derivative, such as t-BuDNA, DNA, and DPAnth, and a macromolecular compound, such as poly(N-vinylcarbazole) (PVK) and poly(4-vinyltriphenylamine) (PVTPA).
  • a carbazole derivative such as CBP, CzPA, and PCzPA
  • an anthracene derivative such as t-BuDNA, DNA, and DPAnth
  • a macromolecular compound such as poly(N-vinylcarbazole) (PVK) and poly(4-vinyltriphenylamine) (PVTPA).
  • the layer comprising a highly hole-transporting material may be a single layer or a laminate of two or more layers each comprising the material mentioned above.
  • the hole transporting layer may be made into a two-layered structure of a first hole transporting layer (anode side) and a second hole transporting layer (cathode side).
  • the compound (1) may be used in either of the first hole transporting layer and the second hole transporting layer.
  • the light emitting layer comprises a highly light-emitting material (guest material) and may be formed from a various kind of materials.
  • a fluorescent emitting compound and a phosphorescent emitting compound are usable as the guest material.
  • the fluorescent emitting compound is a compound capable of emitting light from a singlet excited state
  • the phosphorescent emitting compound is a compound capable of emitting light from a triplet excited state.
  • a pyrene derivative such as N,N′-bis[4-(9H-carbazole-9-yl)phenyl]-N,
  • a tetracene derivative and a diamine derivative such as N,N,N′,N′-tetrakis(4-methylphenyl)tetracene-5,11-diamine (p-mPhTD) and 7,14-diphenyl-N,N,N′,N′-tetrakis(4-methylphenyl)acenaphtho[1,2-a]fluoranthene-3
  • blue phosphorescent emitting material for use in the light emitting layer include a metal complex, such as an iridium complex, an osmium complex, and a platinum complex.
  • a metal complex such as an iridium complex, an osmium complex, and a platinum complex.
  • examples thereof include bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) tetrakis(1-pyrazolyl)borato (FIr 6 ), bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) picolinato (FIrpic), bis[2-(3′,5′-bistrifluoromethylphenyl)pyridinato-N,C2′]iridium(III) picolinato (Ir(CF 3 ppy) 2 (pic)), and bis[2-(4′,6′-di
  • an iridium complex such as tris(2-phenylpyridinato-N,C2′)iridium(III) (Ir(ppy) 3 ), bis(2-phenylpyridinato
  • red phosphorescent emitting material for use in the light emitting layer examples include a metal complex, such as an iridium complex, a platinum complex, a terbium complex, and a europium complex.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, and a europium complex.
  • organometallic complex such as bis[2-(2′-benzo[4,5- ⁇ ]thienyl)pyridinato-N,C3′]iridium(III) acetylacetonato (Ir(btp) 2 (acac)), bis(1-phenylisoquinolinato-N,C2′)iridium(III) acetylacetonato (Ir(piq) 2 (acac)), (acetylacetonato)bis[2,3-bis(4 fluorophenyl) quinoxalinato] iridium(III) (Ir(Fdpq
  • a rare earth metal complex such as tris(acetylacetonato) (monophenanthroline)terbium(III) (Tb(acac) 3 (Phen)), tris(1,3-diphenyl-1,3-propanedionato)(monophenanthroline)europium(III) (Eu(DBM) 3 (Phen)), and tris[1-(2-thenoyl)-3,3,3-trifluoroacetonato](monophenanthroline)europium(III) (Eu(TTA) 3 (Phen)), emits light from the rare earth metal ion (electron transition between different multiple states), and therefore, usable as a phosphorescent emitting compound.
  • the light emitting layer may be formed by dispersing the guest material mentioned above in another material (host material).
  • the host material may be selected from various kinds of materials and is preferably a material having a lowest unoccupied molecular orbital level (LUMO level) higher than that of the guest material and a highest occupied molecular orbital level (HOMO level) lower than that of the guest material.
  • LUMO level lowest unoccupied molecular orbital level
  • HOMO level highest occupied molecular orbital level
  • the host material may include, for example,
  • a metal complex such as an aluminum complex, a beryllium complex, and a zinc complex
  • a heterocyclic compound such as an oxadiazole derivative, a benzimidazole derivative, and a phenanthroline derivative
  • a fused aromatic compound such as a carbazole derivative, an anthracene derivative, a phenanthrene derivative, a pyrene derivative, and a chrysene derivative
  • an aromatic amine compound such as a triarylamine derivative and a fused aromatic polycyclic amine derivative.
  • Examples thereof include:
  • a metal complex such as tris(8-quinolinolato)aluminum(III) (Alq), tris(4-methyl-8-quinolinolato)aluminum(III) (Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)beryllium(II) (BeBq 2 ), bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum(III) (BAlq), bis(8-quinolinolato)zinc(II) (Znq), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (ZnPBO), and bis[2-(2-benzothiazolyl)phenolato] zinc(II) (ZnBTZ);
  • a heterocyclic compound such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ), 2,2′,2′′-(1,3,5-benzenetriyl)tris(1-phenyl-1H-benzimidazole) (TPBI), bathophenanthroline (BPhen), and bathocuproin (BCP);
  • PBD 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole
  • OXD-7 1,3-bis[5-(p-tert-
  • a fused aromatic compound such as 9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (CzPA), 3,6-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (DPCzPA), 9,10-bis(3, 5-diphenylphenyl) anthracene (DPPA), 9,10-di(2-naphthyl) anthracene (DNA), 2-tert-butyl-9,10-di(2-naphthyl)anthracene (t-BuDNA), 9,9′-bianthryl (BANT), 9,9′-(stilbene-3,3′-diyl)diphenanthrene (DPNS), 9,9′-(stilbene-4,4′-diyl)diphenanthrene (DPNS2), 3,3′,3′′-(benzene-1,3,5-triyl)tripyrene (TPB
  • an aromatic amine compound such as N,N-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole-3-amine (CzA1PA), 4-(10-phenyl-9-anthryl)triphenylamine (DPhPA), N,9-diphenyl-N-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole-3-amine (PCAPA), N,9-diphenyl-N- ⁇ 4-[4-(10-phenyl-9-anthryl)phenyl]phenyl ⁇ -9H-carbazole-3-amine (PCAPBA), N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazole-3-amine (2PCAPA), NPB (or ⁇ -NPD), TPD, DFLDPBi, and BSPB.
  • CzA1PA 4-(10-phenyl-9-anth
  • the host material may be used alone or in combination of tow or more.
  • the electron transporting layer comprises a highly electron-transporting material, for example,
  • a metal complex such as an aluminum complex, a beryllium complex, and a zinc complex
  • a heteroaromatic compound such as an imidazole derivative, a benzimidazole derivative, an azine derivative, a carbazole derivative, and a phenanthroline derivative
  • a macromolecular compound such as an imidazole derivative, a benzimidazole derivative, an azine derivative, a carbazole derivative, and a phenanthroline derivative.
  • the low molecular organic compound examples include a metal complex, such as Alq, tris(4-methyl-8-quinolinolato)aluminum (Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)beryllium (BeBq 2 ), BAlq, Znq, ZnPBO, and ZnBTZ; and a heteroaromatic compound, such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(ptert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4-phenyl-5-(4-biphenylyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)
  • the above compounds have an electron mobility of mainly 10 ⁇ 6 cm 2 /Vs or more.
  • Other materials are also usable in the electron transporting layer if their electron transporting ability is higher than their hole transporting ability.
  • the electron transporting layer may be a single layer or a laminate of two or more layers each comprising the material mentioned above.
  • a macromolecular compound is also usable in the electron transporting layer.
  • examples there of include poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (PF-Py), and poly[(9,9-dioctylfluorene-2,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] (PF-BPy).
  • the electron injecting layer comprises a highly electron-injecting material, for example, an alkali metal, an alkaline earth metal, and a compound of these metals, such as lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride(CaF2), and lithium oxide (LiOx).
  • a highly electron-injecting material for example, an alkali metal, an alkaline earth metal, and a compound of these metals, such as lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride(CaF2), and lithium oxide (LiOx).
  • an electron transporting material which is doped with an alkali metal, an alkaline earth metal or a compound thereof, for example, Alq doped with magnesium (Mg), is also usable. By using such a material, electrons are efficiently injected from the cath
  • a composite material obtained by mixing an organic compound and an electron donor is also usable in the electron injecting layer.
  • Such a composite material is excellent in the electron injecting ability and the electron transporting ability, because the organic compound receives electrons from the electron donor.
  • the organic compound is preferably a material excellent in transporting the received electrons. Examples thereof are the materials for the electron transporting layer mentioned above, such as the metal complex and the aromatic heterocyclic compound. Any material capable of giving its electron to another organic compound is usable as the electron donor.
  • Preferred examples thereof are an alkali metal, an alkaline earth metal, and a rare earth metal, such as lithium, cesium, magnesium, calcium, erbium, and ytterbium; an alkali metal oxide and an alkaline earth metal oxide, such as, lithium oxide, calcium oxide, and barium oxide; a Lewis base, such as magnesium oxide; and an organic compound, such as tetrathiafulvalene (TTF).
  • a rare earth metal such as lithium, cesium, magnesium, calcium, erbium, and ytterbium
  • an alkali metal oxide and an alkaline earth metal oxide such as, lithium oxide, calcium oxide, and barium oxide
  • a Lewis base such as magnesium oxide
  • an organic compound such as tetrathiafulvalene (TTF).
  • the cathode is formed preferably from a metal, an alloy, an electrically conductive compound, or a mixture thereof, each having a small work function, for example, a work function of 3.8 eV or less.
  • the material for the cathode include a metal of the group 1 or 2 of the periodic table, for example, an alkali metal, such as lithium (Li) and cesium (Cs), an alkaline earth metal, such as magnesium (Mg), an alloy containing these metals (for example, MgAg and AlLi), a rare earth metal, such as europium (Eu) and ytterbium (Yb), and an alloy containing a rare earth metal.
  • the alkali metal, the alkaline earth metal, and the alloy thereof can be made into the cathode by a vacuum vapor deposition or a sputtering method.
  • a vacuum vapor deposition or a sputtering method When a silver paste, etc. is used, a coating method and an inkjet method are usable.
  • the material for the cathode can be selected independently from the work function and various electroconductive materials, such as Al, Ag, ITO, graphene, and indium oxide-tin oxide doped with silicon or silicon oxide, are usable. These electroconductive materials are made into films by a sputtering method, an inkjet method, and a spin coating method.
  • an insulating thin film layer is preferably interposed between the pair of electrodes.
  • Examples of the material for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. These materials may be used in combination or may be made into laminated layers.
  • a protective layer may be formed on the surface of an organic EL device in view of improving the stability against temperature, moisture, surrounding atmosphere, etc.
  • the organic EL device may be wholly protected by a silicone oil, a resin, etc.
  • Each layer of the organic EL device is formed by a dry film-forming method, such as vacuum vapor deposition, sputtering, plasma, and ion plating, and a wet film-forming method, such as spin coating, dip coating, and flow coating.
  • a dry film-forming method such as vacuum vapor deposition, sputtering, plasma, and ion plating
  • a wet film-forming method such as spin coating, dip coating, and flow coating.
  • the material for each layer is dissolved or dispersed in a suitable solvent, such as ethanol, chloroform, tetrahydrofuran, and dioxane, and then the obtained solution or dispersion is made into a film.
  • a suitable solvent such as ethanol, chloroform, tetrahydrofuran, and dioxane
  • the solution and the dispersion may include a resin or an additive.
  • the resin examples include an insulating resin and a copolymer thereof, such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose; a photoconductive resin, such as poly-N-vinylcarbazole and polysilane; and an electroconductive resin, such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • each layer is not particularly limited and selected so as to obtain a good device performance. If extremely thick, a large applied voltage is needed to obtain a desired emission output, thereby reducing the efficiency. If extremely thin, pinholes occur on the film to make it difficult to obtain a sufficient luminance even when applying an electric field.
  • the thickness is generally 5 nm to 10 ⁇ m and preferably 10 nm to 0.2 ⁇ m.
  • the organic EL device comprising the compound (1) is applicable to electronic equipment, for example, a display part, such as an organic EL panel module; a display device of television set, mobile phone, personal computer, etc.; and a light emitting source of lighting equipment and vehicle lighting equipment.
  • Example 1-1 Production of Organic EL Device
  • a glass substrate of 25 mm ⁇ 75 mm ⁇ 1.1 mm having an ITO transparent electrode (product of Geomatec Company) was cleaned by ultrasonic cleaning in isopropyl alcohol for 5 min and then UV (ultraviolet) ozone cleaning for 30 min.
  • the cleaned glass substrate having a transparent electrode line was mounted to a substrate holder of a vacuum vapor deposition apparatus.
  • the following acceptor material (A) was vapor-deposited so as to cover the transparent electrode to form an acceptor layer with a thickness of 5 nm.
  • the following aromatic amine compound (HT1) as a first hole transporting material was vapor-deposited to form a first hole transporting layer with a thickness of 160 nm.
  • the compound (H1) as a second hole transporting material was vapor-deposited to form a second hole transporting layer with a thickness of 10 nm.
  • the following host material and the following dopant as fluorescent emitting materials were vapor co-deposited to form a fluorescent emitting layer with a thickness of 25 nm.
  • the concentration of the dopant in the fluorescent emitting layer was 4% by mass.
  • the following compound ET1, compound ET2, and Li were vapor co-deposited into a thickness of 20 nm, 10 nm, and 25 nm, respectively to form an electron transporting/injecting layer.
  • the concentration of Li was 4% by weight.
  • metallic Al was deposited into a thickness of 80 nm to form a cathode, thereby producing an organic EL device.
  • Each organic EL device of Examples 1-2 to 1-6 was produced in the same manner as in Example 1-1 except for forming the second hole transporting layer by using each compound shown in Table 1 as the second hole transporting material.
  • Each organic EL device of Comparative Examples 1 and 2 was produced in the same manner as in Example 1-1 except for forming the second hole transporting layer by using the following comparative compound 1 (Comparative Example 1) or the following comparative compound 2 (Comparative Example 2) as the second hole transporting material.
  • Each organic EL device thus produced was allowed to emit light by driving at a constant current to measure the luminance (L) and the current density. From the measured results, the emission efficiency (cd/A) and the driving voltage (V) at a current density of 10 mA/cm 2 were determined. In addition, the 80% lifetime was measured. The 80% lifetime is the time taken until the luminance is reduced to 80% of the initial luminance when driving at a constant current. The results are shown in Table 1.
  • a glass substrate of 25 mm ⁇ 75 mm ⁇ 1.1 mm having an ITO transparent electrode (product of Geomatec Company) was cleaned by ultrasonic cleaning in isopropyl alcohol for 5 min and then UV (ultraviolet) ozone cleaning for 30 min.
  • the cleaned glass substrate having a transparent electrode line was mounted to a substrate holder of a vacuum vapor deposition apparatus.
  • the following acceptor material (A) was vapor-deposited so as to cover the transparent electrode to form an acceptor layer with a thickness of 5 nm.
  • the compound (H2) as a first hole transporting material was vapor-deposited to form a first hole transporting layer with a thickness of 160 nm.
  • the following aromatic amine derivative (Yl) as a second hole transporting material was vapor-deposited to form a second hole transporting layer with a thickness of 10 nm.
  • the following host material and the following dopant as fluorescent emitting materials were vapor co-deposited to form a fluorescent emitting layer with a thickness of 25 nm.
  • the concentration of the dopant in the fluorescent emitting layer was 4% by mass.
  • the following compound ET1, compound ET2, and Li were vapor co-deposited into a thickness of 20 nm, 10 nm, and 25 nm, respectively to form an electron transporting/injecting layer.
  • the concentration of Li was 4% by weight.
  • metallic Al was deposited into a thickness of 80 nm to form a cathode, thereby producing an organic EL device.
  • Each organic EL device of Examples 2-2 and 2-3 was produced in the same manner as in Example 2-1 except for forming the first hole transporting layer by using each compound shown in Table 2 as the first hole transporting material.
  • the organic EL device of Comparative Example 3 was produced in the same manner as in Example 2-1 except for forming the first hole transporting layer by using the following comparative compound 3 as the first hole transporting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)

Abstract

A compound represented by formula (1):
Figure US20190259948A1-20190822-C00001
wherein R1, R2, Ar1, and Ar2 are as defined in the description,
realizes an electroluminescence device which is capable of driving at a low voltage and has long lifetime and high efficiency.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of prior U.S. application Ser. No. 14/910,120, filed Feb. 4, 2016, the disclosure of which is incorporated herein by reference in its entirety. U.S. application Ser. No. 14/910,120 is the national stage of PCT/JP2015/055983, filed Feb. 27, 2015, the disclosure of which is incorporated herein by reference in its entirety. U.S. application Ser. No. 14/910,120 claims priority to Japanese Application No. 2014-039015, filed Feb. 28, 2014, the disclosure of which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • The present invention relates to compounds, materials for organic electroluminescence devices comprising the compounds, organic electroluminescence devices comprising the compounds, and electronic equipment comprising the organic electroluminescence device.
  • BACKGROUND ART
  • An organic electroluminescence (EL) device is generally composed of an anode, a cathode, and one or more organic thin film layers which are sandwiched between the anode and the cathode. When a voltage is applied between the electrodes, electrons are injected from the cathode and holes are injected from the anode into a light emitting region. The injected electrons recombine with the injected holes in the light emitting region to form excited states. When the excited states return to the ground state, the energy is released as light. Therefore, the development of a compound which transports electrons or holes into a light emitting region efficiently and facilitates the recombination of electrons and holes is important to obtain a high efficiency organic EL device.
  • The drive of an organic EL device at lower voltage is effective for reducing the power consumption and also effective for improving the emission efficiency and the device lifetime. To reduce the driving voltage, a charge transporting material having a high electron mobility and/or a high hole mobility is required.
  • Patent Literatures 1 to 4 disclose amine compounds having a fluorene structure, a dibenzofuran structure and an aryl group. However, the proposed amine compounds are insufficient in the hole mobility. Therefore, a compound having a higher hole mobility has been sill required.
  • CITATION LIST Patent Literature Patent Literature 1: WO 2010/044130 Patent Literature 2: WO 2012/034627 Patent Literature 3: WO 2013/087142 Patent Literature 4: WO 2014/015938 SUMMARY OF INVENTION Technical Problem
  • The present invention has been made to solve the above problem and an object of the invention is to provide an organic EL device which is capable of driving at a low voltage and has long lifetime and high emission efficiency and a material for organic EL devices which realize such an organic EL device.
  • Solution to Problem
  • As a result of extensive research in view of achieving the above object, the inventors have found that the compound represented by formula (1) has a high hole mobility and further found that an organic EL device which is capable of driving at a low voltage and has long lifetime and high emission efficiency is obtained by using such a compound.
  • In an aspect, the present invention provides a compound represented by formula (1) (also referred to as “compound (1)”):
  • Figure US20190259948A1-20190822-C00002
  • wherein one of R1 and R2 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms and the other represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group; or
  • both R1 and R2 each independently represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • when one or both of R1 and R2 represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, the aryl group and a benzene ring to which R1 or R2 is bonded may be crosslinked;
  • Ar1 represents a group represented by formula (2) or (3);
  • Ar2 represents a group selected from a group represented by formula (2), a group represented by formula (3), and a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • Figure US20190259948A1-20190822-C00003
  • in formula (2);
  • X represents an oxygen atom or a sulfur atom;
  • L1 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms;
  • y represents 0 or 1, and when y is 0, (L1)0 represents a single bond;
  • R3 represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group; and
  • m represents an integer of 0 to 4, when m is an integer of 2 to 4, two to four groups R3 may be the same or different and may be bonded to each other to form a ring, and when m is 0, (R3)0 represents a hydrogen atom;
  • in formula (3);
  • R5 and R6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 10 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group;
  • L2 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms;
  • z represents 0 or 1, and when z is 0, (L2)0 represents a single bond;
  • R4 represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group;
  • n represents an integer of 0 to 4, when n is an integer of 2 to 4, two to four groups R4 may be the same or different and may be bonded to each other to form a ring, and when n is 0, (R4)0 represents a hydrogen atom.
  • In another aspect, the present invention provides a material for organic EL devices which comprises the compound (1).
  • In still another aspect, the present invention provides an organic EL device which comprises an anode, a cathode, and at least one organic thin film layer between the anode and the cathode, wherein the at least one organic thin film layer comprises a light emitting layer and at least one layer of the at least one organic thin film layer comprises the compound (1).
  • In still another aspect, the present invention provides an electronic equipment which comprises the organic EL device mentioned above.
  • Advantageous Effects of Invention
  • An organic EL device which is capable of driving at a low voltage and has long lifetime and high emission efficiency is obtained by using the compound (1).
  • DESCRIPTION OF EMBODIMENTS
  • The term of “XX to YY carbon atoms” referred to by “a substituted or unsubstituted group ZZ having XX to YY carbon atoms” used herein is the number of carbon atoms of the unsubstituted group ZZ and does not include any carbon atom in the substituent of the substituted group ZZ. “YY” is larger than “XX” and each represents an integer of 1 or more.
  • The term of “XX to YY atoms” referred to by “a substituted or unsubstituted group ZZ having XX to YY atoms” used herein is the number of atoms of the unsubstituted group ZZ and does not include any atom in the substituent of the substituted group ZZ. “YY” is larger than “XX” and each represents an integer of 1 or more.
  • The term of “unsubstituted group ZZ” referred to by “substituted or unsubstituted group ZZ” used herein means that no hydrogen atom in the group ZZ is substituted by a substituent.
  • The definition of “hydrogen atom” used herein includes isotopes different in the neutron numbers, i.e., light hydrogen (protium), heavy hydrogen (deuterium), and tritium.
  • The number of “ring carbon atoms” referred to herein means the number of the carbon atoms included in the atoms which are members forming the ring itself of a compound in which a series of atoms is bonded to form a ring (for example, a monocyclic compound, a fused ring compound, a cross-linked compound, a carbocyclic compound, and a heterocyclic compound). If the ring has a substituent, the carbon atom in the substituent is not included in the ring carbon atom. The same applies to the number of “ring carbon atom” described below, unless otherwise noted. For example, a benzene ring has 6 ring carbon atoms, a naphthalene ring has 10 ring carbon atoms, a pyridinyl group has 5 ring carbon atoms, and a furanyl group has 4 ring carbon atoms. If a benzene ring or a naphthalene ring has, for example, an alkyl substituent, the carbon atom in the alkyl substituent is not counted as the ring carbon atom of the benzene or naphthalene ring. In case of a fluorene ring to which a fluorene substituent is bonded (inclusive of a spirofluorene ring), the carbon atom in the fluorene substituent is not counted as the ring carbon atom of the fluorene ring.
  • The number of “ring atom” referred to herein means the number of the atoms which are members forming the ring itself (for example, a monocyclic ring, a fused ring, and a ring assembly) of a compound in which a series of atoms is bonded to form the ring (for example, a monocyclic compound, a fused ring compound, a cross-linked compound, a carbocyclic compound, and a heterocyclic compound). The atom not forming the ring (for example, hydrogen atom(s) for saturating the valence of the atom which forms the ring) and the atom in a substituent, if the ring is substituted, are not counted as the ring atom. The same applies to the number of “ring atoms” described below, unless otherwise noted. For example, a pyridine ring has 6 ring atoms, a quinazoline ring has 10 ring atoms, and a furan ring has 5 ring atoms. The hydrogen atom on the ring carbon atom of a pyridine ring or a quinazoline ring and the atom in a substituent are not counted as the ring atom. In case of a fluorene ring to which a fluorene substituent is bonded (inclusive of a spirofluorene ring), the atom in the fluorene substituent is not counted as the ring atom of the fluorene ring.
  • The optimal substituent referred to by “substituted or unsubstituted” used herein is, unless otherwise noted, at least one preferably selected from the group consisting of an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms; a cycloalkyl group having 3 to 50, preferably 3 to 10, more preferably 3 to 8, still more preferably 5 or 6 ring carbon atoms; an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; an aralkyl group having 7 to 51, preferably 7 to 30, more preferably 7 to 20 carbon atoms which includes an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; an amino group; a mono- or di-substituted amino group wherein the substituent is selected from an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms and an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; an alkoxy group having an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms; an aryloxy group having an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; a mono-, di- or tri-substituted silyl group, wherein the substituent is selected from an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms and an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; a heteroaryl group having 5 to 50, preferably 5 to 24, more preferably 5 to 13 ring atoms which includes 1 to 5, preferably 1 to 3, more preferably 1 or 2 heteroatoms, wherein the heteroatoms are the same or different and selected from a nitrogen atom, an oxygen atom and a sulfur atom; a haloalkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms wherein one or more, preferably 1 to 15, more preferably 1 to 7 hydrogen atoms or all the hydrogen atoms are substituted with the same or different halogen atoms selected from a fluorine atom, a chlorine atom, a bromine atom, and a iodine atom; a halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a cyano group; a nitro group; a substituted sulfonyl group, wherein the substituent is selected from an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms and an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; a di-substituted phosphoryl group, wherein the substituent is selected from an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms and an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; an alkylsulfonyloxy group; an arylsulfonyloxy group; an alkylcarbonyloxy group; an arylcarbonyloxy group; a boron-containing group; a zinc-containing group; a tin-containing group; a silicon-containing group; a magnesium-containing group; a lithium-containing group; a hydroxyl group; an alkyl-substituted or aryl-substituted carbonyl group; a carboxyl group; a vinyl group; a (meth)acryloyl group; an epoxy group; and an oxetanyl group.
  • Of the above substituents, more preferred are an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms; a cycloalkyl group having 3 to 50, preferably 3 to 10, more preferably 3 to 8, still more preferably 5 or 6 ring carbon atoms; an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; a mono- or di-substituted amino group wherein the substituent is selected from an alkyl group having 1 to 50, preferably 1 to 18, more preferably 1 to 8 carbon atoms and an aryl group having 6 to 50, preferably 6 to 25, more preferably 6 to 18 ring carbon atoms; a heteroaryl group having 5 to 50, preferably 5 to 24, more preferably 5 to 13 ring atoms; a halogen atom; and a cyano group.
  • The above optional substituent may further has the substituent mentioned above. The optional substituents may be bonded to each other to form a ring.
  • The “substituted or unsubstituted carbazolyl group” used herein includes the following carbazolyl groups:
  • Figure US20190259948A1-20190822-C00004
  • a substituted carbazolyl group having the optional substituent mentioned above, and the following substituted carbazolyl groups:
  • Figure US20190259948A1-20190822-C00005
  • The compound (1) is represented by formula (1):
  • Figure US20190259948A1-20190822-C00006
  • In formula (1), one of R1 and R2 represents a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, and the other represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50, preferably 3 to 24, more preferably 3 to 12 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, or a cyano group; or
  • both of R1 and R2 each independently represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • The other of R1 and R2 is preferably selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, and a halogen atom, more preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and still more preferably a hydrogen atom.
  • In an embodiment of the invention, R1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and R2 is selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, and a halogen atom, preferably a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and more preferably a hydrogen atom.
  • In an embodiment of the invention, the group in formula (1) which is represented by formula (4):
  • Figure US20190259948A1-20190822-C00007
  • is preferably represented by formula (4a) or (4b) and more preferably by formula (4a):
  • Figure US20190259948A1-20190822-C00008
  • wherein R1 and R2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Formula (4a) is preferably represented by
  • Figure US20190259948A1-20190822-C00009
  • Formula (4b) is preferably represented by
  • Figure US20190259948A1-20190822-C00010
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group (inclusive of isomeric groups), a hexyl group (inclusive of isomeric groups), a heptyl group (inclusive of isomeric groups), an octyl group (inclusive of isomeric groups), a nonyl group (inclusive of isomeric groups), a decyl group (inclusive of isomeric groups), an undecyl group (inclusive of isomeric groups), and a dodecyl group (inclusive of isomeric groups). Preferred are a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and a pentyl group (inclusive of isomeric groups), with a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a s-butyl group, and a t-butyl group being more preferred, and a methyl group and a t-butyl group being still more preferred.
  • Examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include a phenyl group, a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, a phenylnaphthyl group, an acenaphthylenyl, an anthryl group, a benzanthryl group, an aceanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a fluorenyl group, a 9,9-dimethylfluorenyl group, a 7-phenyl-9,9-dimethylfluorenyl group, a pentacenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a s-indacenyl group, an as-indacenyl group, a fluoranthenyl group, and a perylenyl group. Preferred are a phenyl group, a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, and a 9,9-dimethylfluorenyl group, with a phenyl group, a biphenylyl group, a naphthyl group, and a 9,9-dimethylfluorenyl group being more preferred, and a phenyl group being still more preferred.
  • The heterocyclic group having 3 to 50 ring atoms comprises at least one, preferably 1 to 3 heteroatoms which may be the same or different, such as a nitrogen atom, a sulfur atom and an oxygen atom. Examples of the heterocyclic group include a pyrrolyl group, a furyl group, a thienyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, an imidazolyl group, an oxazolyl group, a thiazolyl group, a pyrazolyl group, an isoxazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a triazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, an isobenzofuranyl group, a benzothiophenyl group, an indolizinyl group, a quinolizinyl group, a quinolyl group, an isoquinolyl group, a cinnolyl group, a phthalazinyl group, a quinazolinyl group, a quinoxalinyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, an indazolyl group, a benzisoxazolyl group, a benzisothiazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a phenothiazinyl group, a phenoxazinyl group, and a xanthenyl group. Preferred are a furyl group, a thienyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, with a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, and a dibenzothiophenyl group being more preferred.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and a iodine atom, with a fluorine atom being preferred.
  • Examples of the fluoroalkyl group having 1 to 20 carbon atoms include those derived from the above alkyl group having 1 to 20 carbon atoms by replacing at least one hydrogen atom, preferably 1 to 7 hydrogen atoms or all hydrogen atoms with a fluorine atom or fluorine atoms. Preferred examples thereof are a heptafluoropropyl group, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group, with a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group being more preferred, and a trifluoromethyl group being still more preferred.
  • The alkoxy group having 1 to 20 carbon atoms is represented by —OR10, wherein R10 is the above alkyl group having 1 to 20 carbon atoms. Preferred examples thereof include a t-butoxy group, a propoxy group, an ethoxy group, and a methoxy group, with an ethoxy group and a methoxy group being more preferred, and a methoxy group being still more preferred.
  • The fluoroalkoxy group having 1 to 20 carbon atoms is represented by —OR11, wherein R11 is the above fluoroalkyl group having 1 to 20 carbon atoms. Preferred examples thereof include a heptafluoropropoxy group, a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group, with a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group being more preferred, and a trifluoromethoxy group being still more preferred.
  • The aryloxy group having 6 to 50 ring carbon atoms is represented by —OR12, wherein R12 is the above aryl group having 6 to 50 ring carbon atoms, preferably a terphenyl group, a biphenyl group and a phenyl group, more preferably a biphenyl group and a phenyl group, and still more preferably a phenyl group.
  • When one or both of R1 and R2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, the aryl group and the benzene ring to which R1 or R2 is bonded may be crosslinked. Examples of the crosslinking group include —O—, —S—, —NRa—, and —CRbRc—.
  • Ra, Rb and Rc each represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group. Rb and Rc may be the same or different and may be bonded to each other to form a ring.
  • Ra is preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. Rb and Rc are each preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms and more preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 50 ring carbon atoms, the heteroaryl group having 3 to 50 ring atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R1 and R2.
  • Examples of the crosslinked structure formed by the aryl group and the benzene ring to which R1 or R2 is bonded include a dibenzofuran structure, a dibenzothiophene structure, a carbazole structure, a N-arylcarbazole structure, a N-alkylcarbazole structure, a fluorene structure, a 9,9-dialkylfluorene structure, and a 9,9-diarylfluorene structure. The aryl group and the alkyl group in the carbazole structure and the fluorene structure are selected from the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 50 ring carbon atoms each mentioned above.
  • In formula (1), Ar1 represents a group represented by formula (2) or (3), preferably a group represented by formula (2). Ar2 represents a group selected from a group represented by formula (2), a group represented by formula (3), and a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, and more preferably 6 to 12 ring carbon atoms, and preferably represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Figure US20190259948A1-20190822-C00011
  • In formula (2), X represents an oxygen atom or an sulfur atom, preferably an oxygen atom.
  • L1 represents a substituted or unsubstituted arylene group having 6 to 50, preferably 6 to 24, and more preferably 6 to 12 ring carbon atoms.
  • The arylene group having 6 to 50 ring carbon atoms is a divalent group which is derived from the aryl group having 6 to 50 ring carbon atoms mentioned above with respect to R1 and R2 by removing one hydrogen atom, and preferably a terpnenyldiyl group (inclusive of isomeric groups), a biphenyldiyl group (inclusive of isomeric groups), and a phenylene group (inclusive of isomeric groups), more preferably a biphenyldiyl group (inclusive of isomeric groups) and a phenylene group (inclusive of isomeric groups), and still more preferably an o-phenylene group, a m-phenylene group and a p-phenylene group.
  • The subscript y is 0 or 1 and preferably 1. When y is 0, (L1)0 is a single bond.
  • R3 is selected from a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50, preferably 3 to 24, more preferably 3 to 12 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, and a cyano group; preferably selected from the substituted or unsubstituted alkyl group, the substituted or unsubstituted aryl group, and the substituted or unsubstituted heteroaryl group; more preferably selected from the substituted or unsubstituted alkyl group and the substituted or unsubstituted aryl group, and still more preferably selected from the substituted or unsubstituted aryl group.
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 50 ring carbon atoms, the heteroaryl group having 3 to 50 ring atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R1 and R2.
  • The subscript m is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0. When m is an integer of 2 to 4, two to four groups R3 may be the same or different, and two groups R3 may be bonded to each other to form a ring. When m is 0, (R3)0 is a hydrogen atom.
  • In formula (2), L1 is bonded to 1-, 2-, 3-, or 4-position, preferably 2- or 4-position of the dibenzofuran structure or the dibenzothiophene structure:
  • Figure US20190259948A1-20190822-C00012
  • In an embodiment of the invention, formula (2) is represented by formula (2a) or (2b):
  • Figure US20190259948A1-20190822-C00013
  • wherein L1, y, X, R3, and m are as defined above.
  • In another embodiment of the invention, formula (2) is represented by formula (2a′) or (2b′):
  • Figure US20190259948A1-20190822-C00014
  • wherein L1, X, R3, and m are as defined above.
  • Formula (2a′) is preferably represented by formula (2a″) and formula (2b′) is preferably represented by (2b″):
  • Figure US20190259948A1-20190822-C00015
  • wherein L1 and X are as defined above.
  • In still another embodiment of the invention, formula (2) is represented by formula (2a″-1) or (2b″-1):
  • Figure US20190259948A1-20190822-C00016
  • wherein X is as defined above.
  • In still another embodiment of the invention, formula (2) is represented by any of the following groups:
  • Figure US20190259948A1-20190822-C00017
  • wherein X is as defined above.
  • In formula (3), R5 and R6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryl group having 10 to 50, preferably 10 to 24, more preferably 10 to 12 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 50, preferably 3 to 24, more preferably 3 to 12 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, or cyano group; preferably selected from the substituted or unsubstituted alkyl group and the substituted or unsubstituted aryl group; and more preferably selected from the substituted or unsubstituted alkyl group.
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the heteroaryl group having 3 to 50 ring atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R1 and R2.
  • Examples of the substituted or unsubstituted aryl group having 10 to 50 ring carbon atoms include a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, a phenylnaphthyl group, an acenaphthylenyl, an anthryl group, a benzanthryl group, an aceanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a fluorenyl group, a 9,9-dimethylfluorenyl group, a 7-phenyl-9,9-dimethylfluorenyl group, a pentacenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a s-indacenyl group, an as-indacenyl group, a fluoranthenyl group, and a perylenyl group. Preferred are a naphthylphenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, and a 9,9-dimethylfluorenyl group, with a biphenylyl group, a naphthyl group, and a 9,9-dimethylfluorenyl group being more preferred, and a biphenylyl group and a naphthyl group being still more preferred.
  • In formula (3), L2 represents a substituted or unsubstituted arylene group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms.
  • The arylene group having 6 to 50 ring carbon atoms is a divalent group which is derived from the aryl group having 6 to 50 ring carbon atoms mentioned above with respect to R1 and R2 by removing one hydrogen atom, and preferably a terpnenyldiyl group (inclusive of isomeric groups), a biphenyldiyl group (inclusive of isomeric groups), and a phenylene group (inclusive of isomeric groups), more preferably a biphenyldiyl group (inclusive of isomeric groups) and a phenylene group (inclusive of isomeric groups), and still more preferably an o-phenylene group, a m-phenylene group and a p-phenylene group.
  • The subscript z is 0 or 1 and preferably 0. When z is 0, (L2)0 is a single bond.
  • R4 is selected from a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring carbon atoms, and a cyano group; preferably selected from the substituted or unsubstituted alkyl group and the substituted or unsubstituted aryl group; and more preferably selected from the substituted or unsubstituted aryl group.
  • Examples, preferred examples, more preferred examples, and still more preferred examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 50 ring carbon atoms, the halogen atom, the fluoroalkyl group having 1 to 20 carbon atoms, the alkoxy group having 1 to 20 carbon atoms, the fluoroalkoxy group having 1 to 20 carbon atoms, and the aryloxy group having 6 to 50 ring carbon atoms are the same as those of the corresponding groups described above with respect to R1 and R2.
  • The subscript n is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 and 1, and still more preferably 0. When m is an integer of 2 to 4, two to four groups R4 may be the same or different, and two groups R4 may be bonded to each other to form a ring. When n is 0, (R4)0 is a hydrogen atom.
  • In a preferred embodiment of the invention, one of R1 and R2 is the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms; the other is a hydrogen atom; and n is 0. In another preferred embodiment of the invention, one of R1 and R2 is the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms; the other is the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, the substituted or unsubstituted heteroaryl group having 3 to 50 ring atoms, the halogen atom, the substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, the substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, the substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group; and n is an integer of 0 to 4.
  • In formula (3), L2 is bonded to 1-, 2-, 3-, or 4-postion, preferably 2-position of the fluorene structure;
  • Figure US20190259948A1-20190822-C00018
  • In an embodiment of the invention, formula (3) is represented by formula (3a);
  • Figure US20190259948A1-20190822-C00019
  • wherein L2, z, R4, R5, R6, and are as defined above.
  • In another embodiment of the invention, formula (3) is represented by formula (3a′);
  • Figure US20190259948A1-20190822-C00020
  • wherein R4, R5, R6, and n are as defined above.
  • Formula (3a′) is preferably represented by formula (3a″):
  • Figure US20190259948A1-20190822-C00021
  • wherein R5 and R6 are as defined above.
  • In another embodiment of the invention, formula (3) is preferably represented by the following group:
  • Figure US20190259948A1-20190822-C00022
  • Examples of the aryl group in the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms for Ar2 include a phenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, an acenaphthylenyl, an anthryl group, a benzanthryl group, an aceanthryl group, a phenanthryl group, a triphenylenyl group, a bonzophenanthryl group, a phenalenyl group, a fluorenyl group, a pentacenyl group, a picenyl group, a pentaphenyl group, a pyrenyl group, a chrysenyl group, a benzochrysenyl group, a s-indacenyl group, an as-indacenyl group, a fluoranthenyl group, and a perylenyl group.
  • Examples of the substituted aryl group include those having the optional substituent mentioned above and further include a naphthylphenyl group, a phenylnaphthyl group, a 9,9-dimethylfluorenyl group, a 9,9-diphenylfluorenyl group, a 9,9-bis(p-methylphenyl)fluorenyl group, a 7-phenyl-9,9-diphenylfluorenyl group, a p-(9,9-diphenylfluorenyl)phenyl group, a 7-phenyl-9,9-dimethylfluorenyl group, a 9,9′-spirobifluorenyl group, a spiro[9H-fluorenyl-9,1′-cyclopentane] group, and a spiro[9H-fluorenyl-9,1′-cyclohexane] group.
  • The substituted or unsubstituted aryl group is preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, a p-(9,9-diphenylfluorene-2-yl)phenyl group, and a 9,9′-spirobifluorene-2-yl group; more preferably a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, and a p-(9,9-diphenylfluorene-2-yl)phenyl group; and still more preferably a phenyl group, a biphenylyl group, a naphthyl group, a 9,9-dimethylfluorene-2-yl group, and a 9,9-diphenylfluorene-2-yl group.
  • In an embodiment of the invention, the substituted or unsubstituted aryl group is preferably a terphenylyl group, a phenyl-substituted terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, a p-(9,9-diphenylfluorene-2-yl)phenyl group, and a 9,9′-spirobifluorene-2-yl group; more preferably a terphenylyl group, a phenyl-substituted terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, and a p-(9,9-diphenylfluorene-2-yl)phenyl group: and still more preferably a terphenylyl group, a phenyl-substituted terphenylyl group, a naphthyl group, a 9,9-dimethylfluorene-2-yl group, and a 9,9-diphenylfluorene-2-yl group. Particularly, when Ar1 is represented by formula (3) and R5 and R6 each represent an unsubstituted alkyl group having 1 to 20 carbon atoms, the substituted or unsubstituted aryl group for Ar2 is preferably selected from the aryl group mentioned above.
  • The compound (1) is preferably represented by formula (1a) or (1b):
  • Figure US20190259948A1-20190822-C00023
  • wherein R1 and R2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and Ar1 and Ar2 are as defined in formula (1).
  • The compound (1) is also preferably represented by any of formulae (1a-1) to (1a-3) and (1b-1) to (1b-3):
  • Figure US20190259948A1-20190822-C00024
  • wherein R1 and R2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • R5 and R6 are as defined in formula (1) and each preferably represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms;
  • Ar2 is as defined in formula (1) and preferably represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms; and
  • L1, X, R3, R4, m, and n are as defined in formula (1).
  • The compound (1) is more preferably represented by any of formulae (1a-1′) to (1a-3′) and (1b-1′) to (1b-3′):
  • Figure US20190259948A1-20190822-C00025
  • R1 and R2 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms;
  • R5 and R6 are as defined in formula (1) and each preferably represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms;
  • Ar2 is as defined in formula (1) and preferably represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms; and
  • L1 and X are as defined in formula (1).
  • Examples of the compound (1) are shown below, although not limited thereto.
  • Figure US20190259948A1-20190822-C00026
    Figure US20190259948A1-20190822-C00027
    Figure US20190259948A1-20190822-C00028
    Figure US20190259948A1-20190822-C00029
    Figure US20190259948A1-20190822-C00030
    Figure US20190259948A1-20190822-C00031
    Figure US20190259948A1-20190822-C00032
    Figure US20190259948A1-20190822-C00033
    Figure US20190259948A1-20190822-C00034
    Figure US20190259948A1-20190822-C00035
    Figure US20190259948A1-20190822-C00036
    Figure US20190259948A1-20190822-C00037
    Figure US20190259948A1-20190822-C00038
    Figure US20190259948A1-20190822-C00039
    Figure US20190259948A1-20190822-C00040
    Figure US20190259948A1-20190822-C00041
    Figure US20190259948A1-20190822-C00042
    Figure US20190259948A1-20190822-C00043
    Figure US20190259948A1-20190822-C00044
    Figure US20190259948A1-20190822-C00045
    Figure US20190259948A1-20190822-C00046
    Figure US20190259948A1-20190822-C00047
    Figure US20190259948A1-20190822-C00048
    Figure US20190259948A1-20190822-C00049
    Figure US20190259948A1-20190822-C00050
    Figure US20190259948A1-20190822-C00051
    Figure US20190259948A1-20190822-C00052
    Figure US20190259948A1-20190822-C00053
    Figure US20190259948A1-20190822-C00054
    Figure US20190259948A1-20190822-C00055
    Figure US20190259948A1-20190822-C00056
    Figure US20190259948A1-20190822-C00057
    Figure US20190259948A1-20190822-C00058
    Figure US20190259948A1-20190822-C00059
    Figure US20190259948A1-20190822-C00060
    Figure US20190259948A1-20190822-C00061
    Figure US20190259948A1-20190822-C00062
    Figure US20190259948A1-20190822-C00063
    Figure US20190259948A1-20190822-C00064
    Figure US20190259948A1-20190822-C00065
    Figure US20190259948A1-20190822-C00066
    Figure US20190259948A1-20190822-C00067
    Figure US20190259948A1-20190822-C00068
    Figure US20190259948A1-20190822-C00069
    Figure US20190259948A1-20190822-C00070
    Figure US20190259948A1-20190822-C00071
    Figure US20190259948A1-20190822-C00072
    Figure US20190259948A1-20190822-C00073
    Figure US20190259948A1-20190822-C00074
    Figure US20190259948A1-20190822-C00075
    Figure US20190259948A1-20190822-C00076
    Figure US20190259948A1-20190822-C00077
    Figure US20190259948A1-20190822-C00078
  • The compound (1) has a high hole mobility.
  • The compound (1) is useful as a material for organic EL device, a hole transporting material, and a material for an organic thin film layer disposed between an anode and a light emitting layer, such as a hole injecting layer and a hole transporting layer. The production method of the compound (1) is not particularly limited and one of ordinary skill in the art can easily produce it by utilizing or modifying a known synthesis reaction with reference to the examples described below.
  • The organic EL device in an aspect of the invention will be described below.
  • Representative device structures (1) to (13) are shown below, although not limited thereto. The device structure (8) is preferably used.
  • (1) anode/light emitting layer/cathode;
    (2) anode/hole injecting layer/light emitting layer/cathode;
    (3) anode/light emitting layer/electron injecting layer/cathode;
    (4) anode/hole injecting layer/light emitting layer/electron injecting layer/cathode;
    (5) anode/organic semiconductor layer/light emitting layer/cathode;
    (6) anode/organic semiconductor layer/electron blocking layer/light emitting layer/cathode;
    (7) anode/organic semiconductor layer/light emitting layer/adhesion improving layer/cathode;
    (8) anode/hole injecting layer/hole transporting layer/light emitting layer/(electron transporting layer/) electron injecting layer/cathode;
    (9) anode/insulating layer/light emitting layer/insulating layer/cathode;
    (10) anode/inorganic semiconductor layer/insulating layer/light emitting layer/insulating layer/cathode;
    (11) anode/organic semiconductor layer/insulating layer/light emitting layer/insulating layer/cathode;
    (12) anode/insulating layer/hole injecting layer/hole transporting layer/light emitting layer/insulating layer/cathode; and
    (13) anode/insulating layer/hole injecting layer/hole transporting layer/light emitting layer/(electron transporting layer/) electron injecting layer/cathode.
  • The compound (1) may be used in any of the organic thin film layers of an organic EL device. In view of driving at a lower voltage, the compound (1) is preferably used in a hole injecting layer or a hole transporting layer, more preferably used in a hole transporting layer.
  • The content of the compound (1) in the organic thin film layer, preferably in a hole injecting layer or a hole transporting layer, is preferably 30 to 100 mol %, more preferably 50 to 100 mol %, still more preferably 80 to 100 mol %, further preferably 95 to 100 mol %, and substantially 100 mol % in a particularly preferred embodiment, each based on the total molar amount of the components in the organic thin film layer.
  • Each layer will be described below by using an organic EL device wherein the compound (1) is used in a hole transporting layer as an example.
  • Substrate
  • The substrate is a support for the emitting device and made of, for example, glass, quartz, and plastics. The substrate may be a flexible substrate, for example, a plastic substrate made of polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. An inorganic deposition film is also usable.
  • Anode
  • The anode is formed on the substrate preferably from a metal, an alloy, an electrically conductive compound, and a mixture thereof, each having a large work function, for example, 4.5 eV or more. Examples of the material for the anode include indium oxide-tin oxide (ITO: indium tin oxide), indium oxide-tin oxide doped with silicon or silicon oxide, indium oxide-zinc oxide, indium oxide doped with tungsten oxide and zinc oxide, and graphene. In addition, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo), iron (Fe), cobalt (Co), copper (Cu), palladium (Pd), titanium (Ti), and a nitride of the above metal (for example, titanium nitride) are also usable.
  • These materials are made into a film generally by a sputtering method. For example, a film of indium oxide-zinc oxide is formed by sputtering an indium oxide target doped with 1 to 10 wt % of zinc oxide, and a film of indium oxide doped with tungsten oxide and zinc oxide is formed by sputtering an indium oxide target doped with 0.5 to 5 wt % of tungsten oxide and 0.1 to 1 wt % of zinc oxide. In addition, a vacuum vapor deposition method, a coating method, an inkjet method, and a spin coating method are usable.
  • A hole injecting layer to be formed in contact with the anode is formed from a material which is capable of easily injecting holes independently of the work function of the anode. Therefore a material generally used as an electrode material, for example, a metal, an alloy, an electroconductive compound, a mixture thereof, and a group 1 element and a group 2 element of the periodic table are usable.
  • A material having a small work function, for example, the group 1 element and the group 2 element of the periodic table, i.e., an alkali metal, such as lithium (Li) and cesium (Cs), an alkaline earth metal, such as magnesium (Mg), calcium (Ca), and strontium (Sr), and an alloy thereof, such as MgAg and AlLi, are also usable. In addition, a rare earth metal, such as europium (Eu) and ytterbium (Yb), and an alloy thereof are also usable. The alkali metal, the alkaline earth metal, and the alloy thereof can be made into the anode by a vacuum vapor deposition or a sputtering method. When a silver paste, etc. is used, a coating method and an inkjet method are usable.
  • Hole Injecting Layer
  • The hole injecting layer comprises a highly hole-transporting material. The compound (1) may be used in the hole injecting layer alone or in combination with the following compound.
  • Examples of the highly hole-transporting material include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide, and manganese oxide.
  • The following low molecular aromatic amine compound is also usable: 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA), 4,4′-bis[N-(4-diphenylaminophenyl)-N-phenylamino]biphenyl (DPAB), 4,4′-bis(N-{4-[N′-(3-methylphenyl)-N′-phenylamino]phenyl}-N-phenylamino)biphenyl (DNTPD), 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene (DPA3B), 3-[N-(9-phenylcarbazole-3-yl)-N-phenylamino]-9-phenylcarbazole (PCzPCA1), 3,6-bis[N-(9-phenylcarbazole-3-yl)-N-phenylamino]-9-phenylcarbazole (PCzPCA2), and 3-[N-(1-naphthyl)-N-(9-phenylcarbazole-3-yl)amino]-9-phenylcarbazole (PCzPCN1).
  • A macromolecular compound, such as an oligomer, a dendrimer, a polymer, is also usable. Examples thereof include poly(N-vinylcarbazole) (PVK), poly(4-vinyltriphenylamine) (PVTPA), poly[N-(4-{N′-[4-(4-diphenylamino)phenyl]phenyl N′-phenylamino}phenyl)methacrylamide] (PTPDMA), and poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine] (Poly-TPD). An acid-added macromolecular compound, such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyalinine/poly(styrenesulfonic acid) (PAni/PSS), is also usable.
  • Hole Transporting Layer
  • The hole transporting layer comprises a highly hole-transporting material. The compound (1) may be used in the hole transporting layer alone or in combination with the following compound.
  • The hole transporting layer may contain an aromatic amine compound, a carbazole derivative, an anthracene derivative, etc., for examples, an aromatic amine compound, such as 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N′-bis(3-methylphenyl)-N,N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine (TPD), 4-phenyl-4′-(9-phenylfluorene-9-yl)triphenylamine (BAFLP), 4,4′-bis[N-(9,9-dimethylfluorene-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4′,4″-tris(N,N-diphenylamino)triphenylamine (TDATA), 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA), and 4,4′-bis[N-(spiro-9,9′-bifluorene-2-yl)-N-phenylamino]biphenyl (BSPB). The above compounds have a hole mobility of mainly 10−6 cm2/Vs or more.
  • In addition, the hole transporting layer may contain a carbazole derivative, such as CBP, CzPA, and PCzPA, an anthracene derivative, such as t-BuDNA, DNA, and DPAnth, and a macromolecular compound, such as poly(N-vinylcarbazole) (PVK) and poly(4-vinyltriphenylamine) (PVTPA).
  • Other materials are also usable if their hole transporting ability is higher than their electron transporting ability. The layer comprising a highly hole-transporting material may be a single layer or a laminate of two or more layers each comprising the material mentioned above. For example, the hole transporting layer may be made into a two-layered structure of a first hole transporting layer (anode side) and a second hole transporting layer (cathode side). The compound (1) may be used in either of the first hole transporting layer and the second hole transporting layer.
  • Guest Material of Light Emitting Layer
  • The light emitting layer comprises a highly light-emitting material (guest material) and may be formed from a various kind of materials. For example, a fluorescent emitting compound and a phosphorescent emitting compound are usable as the guest material. The fluorescent emitting compound is a compound capable of emitting light from a singlet excited state, and the phosphorescent emitting compound is a compound capable of emitting light from a triplet excited state.
  • Examples of blue fluorescent emitting material for use in the light emitting layer include a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, and a triarylamine derivative, such as N,N′-bis[4-(9H-carbazole-9-yl)phenyl]-N,N′-diphenylstilbene-4,4′-diamine (YGA2S), 4-(9H-carbazole-9-yl)-4′-(10-phenyl-9-anthryl)triphenylamine (YGAPA), and 4-(10-phenyl-9-anthryl)-4′-(9-phenyl-9H-carbazole-3-yl)triphenylamine (PCBAPA).
  • Examples of green fluorescent emitting material for use in the light emitting layer include an aromatic amine derivative, such as N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazole-3-amine (2PCAPA), N-[9,10-bis(1,1′-biphenyl-2-yl)-2-anthryl]-N,9-diphenyl-9H-carbazole-3-amine (2PCABPhA), N-(9,10-diphenyl-2-anthryl)-N,N′,N′-triphenyl-1,4-phenylenediamine (2DPAPA), N-[9,10-bis(1,1′-biphenyl-2-yl)-2-anthryl]-N,N′,N′-triphenyl-1,4-phenylenediamine (2DPABPhA), N-[9,10-bis(1,1′-biphenyl-2-yl)]-N-[4-(9H-carbazole-9-yl)phenyl]-N-phenylanthracene-2-amine (2YGABPhA), and N,N,9-triphenylanthracene-9-amine (DPhAPhA).
  • Examples of red fluorescent emitting material for use in the light emitting layer include a tetracene derivative and a diamine derivative, such as N,N,N′,N′-tetrakis(4-methylphenyl)tetracene-5,11-diamine (p-mPhTD) and 7,14-diphenyl-N,N,N′,N′-tetrakis(4-methylphenyl)acenaphtho[1,2-a]fluoranthene-3,10-diamine (p-mPhAFD).
  • Examples of blue phosphorescent emitting material for use in the light emitting layer include a metal complex, such as an iridium complex, an osmium complex, and a platinum complex. Examples thereof include bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) tetrakis(1-pyrazolyl)borato (FIr6), bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) picolinato (FIrpic), bis[2-(3′,5′-bistrifluoromethylphenyl)pyridinato-N,C2′]iridium(III) picolinato (Ir(CF3ppy)2(pic)), and bis[2-(4′,6′-difluorophenynpyridinato-N,C2′]iridium(III) acetylacetonato (FIracac).
  • Examples of green phosphorescent emitting material for use in the light emitting layer include an iridium complex, such as tris(2-phenylpyridinato-N,C2′)iridium(III) (Ir(ppy)3), bis(2-phenylpyridinato-N,C2′)iridium(III) acetylacetonato (Ir(ppy)2(acac)), bis(1,2-diphenyl-1H-benzimidazolato)iridium(III) acetylacetonato (Ir(pbi)2(acac)), and bis(benzo[h]quinolinato)iridium(III) acetylacetonato (Ir(bzq)2(acac)).
  • Examples of red phosphorescent emitting material for use in the light emitting layer include a metal complex, such as an iridium complex, a platinum complex, a terbium complex, and a europium complex. Examples thereof include an organometallic complex, such as bis[2-(2′-benzo[4,5-α]thienyl)pyridinato-N,C3′]iridium(III) acetylacetonato (Ir(btp)2(acac)), bis(1-phenylisoquinolinato-N,C2′)iridium(III) acetylacetonato (Ir(piq)2(acac)), (acetylacetonato)bis[2,3-bis(4 fluorophenyl) quinoxalinato] iridium(III) (Ir(Fdpq)2(acac)), and 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum(II) (PtOEP).
  • A rare earth metal complex, such as tris(acetylacetonato) (monophenanthroline)terbium(III) (Tb(acac)3(Phen)), tris(1,3-diphenyl-1,3-propanedionato)(monophenanthroline)europium(III) (Eu(DBM)3(Phen)), and tris[1-(2-thenoyl)-3,3,3-trifluoroacetonato](monophenanthroline)europium(III) (Eu(TTA)3(Phen)), emits light from the rare earth metal ion (electron transition between different multiple states), and therefore, usable as a phosphorescent emitting compound.
  • Host Material for Light Emitting Layer
  • The light emitting layer may be formed by dispersing the guest material mentioned above in another material (host material). The host material may be selected from various kinds of materials and is preferably a material having a lowest unoccupied molecular orbital level (LUMO level) higher than that of the guest material and a highest occupied molecular orbital level (HOMO level) lower than that of the guest material.
  • The host material may include, for example,
  • (1) a metal complex, such as an aluminum complex, a beryllium complex, and a zinc complex;
    (2) a heterocyclic compound, such as an oxadiazole derivative, a benzimidazole derivative, and a phenanthroline derivative;
    (3) a fused aromatic compound, such as a carbazole derivative, an anthracene derivative, a phenanthrene derivative, a pyrene derivative, and a chrysene derivative; and
    (4) an aromatic amine compound, such as a triarylamine derivative and a fused aromatic polycyclic amine derivative.
  • Examples thereof include:
  • a metal complex, such as tris(8-quinolinolato)aluminum(III) (Alq), tris(4-methyl-8-quinolinolato)aluminum(III) (Almq3), bis(10-hydroxybenzo[h]quinolinato)beryllium(II) (BeBq2), bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum(III) (BAlq), bis(8-quinolinolato)zinc(II) (Znq), bis[2-(2-benzoxazolyl)phenolato]zinc(II) (ZnPBO), and bis[2-(2-benzothiazolyl)phenolato] zinc(II) (ZnBTZ);
  • a heterocyclic compound, such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ), 2,2′,2″-(1,3,5-benzenetriyl)tris(1-phenyl-1H-benzimidazole) (TPBI), bathophenanthroline (BPhen), and bathocuproin (BCP);
  • a fused aromatic compound, such as 9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (CzPA), 3,6-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole (DPCzPA), 9,10-bis(3, 5-diphenylphenyl) anthracene (DPPA), 9,10-di(2-naphthyl) anthracene (DNA), 2-tert-butyl-9,10-di(2-naphthyl)anthracene (t-BuDNA), 9,9′-bianthryl (BANT), 9,9′-(stilbene-3,3′-diyl)diphenanthrene (DPNS), 9,9′-(stilbene-4,4′-diyl)diphenanthrene (DPNS2), 3,3′,3″-(benzene-1,3,5-triyl)tripyrene (TPB3), 9,10-diphenylanthracene (DPAnth), and 6,12-dimethoxy-5,11-diphenylchrysene; and
  • an aromatic amine compound, such as N,N-diphenyl-9-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole-3-amine (CzA1PA), 4-(10-phenyl-9-anthryl)triphenylamine (DPhPA), N,9-diphenyl-N-[4-(10-phenyl-9-anthryl)phenyl]-9H-carbazole-3-amine (PCAPA), N,9-diphenyl-N-{4-[4-(10-phenyl-9-anthryl)phenyl]phenyl}-9H-carbazole-3-amine (PCAPBA), N-(9,10-diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazole-3-amine (2PCAPA), NPB (or α-NPD), TPD, DFLDPBi, and BSPB.
  • The host material may be used alone or in combination of tow or more.
  • Electron Transporting Layer
  • The electron transporting layer comprises a highly electron-transporting material, for example,
  • (1) a metal complex, such as an aluminum complex, a beryllium complex, and a zinc complex;
    (2) a heteroaromatic compound, such as an imidazole derivative, a benzimidazole derivative, an azine derivative, a carbazole derivative, and a phenanthroline derivative; and
    (3) a macromolecular compound.
  • Examples of the low molecular organic compound include a metal complex, such as Alq, tris(4-methyl-8-quinolinolato)aluminum (Almq3), bis(10-hydroxybenzo[h]quinolinato)beryllium (BeBq2), BAlq, Znq, ZnPBO, and ZnBTZ; and a heteroaromatic compound, such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(ptert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4-phenyl-5-(4-biphenylyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-(4-biphenylyl)-1,2,4-triazole (p-EtTAZ), bathophenanthroline (BPhen), bathocuproine (BCP), and 4,4′-bis(5-methylbenzoxazole-2-yl)stilbene (BzOs).
  • The above compounds have an electron mobility of mainly 10−6 cm2/Vs or more. Other materials are also usable in the electron transporting layer if their electron transporting ability is higher than their hole transporting ability. The electron transporting layer may be a single layer or a laminate of two or more layers each comprising the material mentioned above.
  • A macromolecular compound is also usable in the electron transporting layer. Examples there of include poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (PF-Py), and poly[(9,9-dioctylfluorene-2,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] (PF-BPy).
  • Electron Injecting Layer
  • The electron injecting layer comprises a highly electron-injecting material, for example, an alkali metal, an alkaline earth metal, and a compound of these metals, such as lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride(CaF2), and lithium oxide (LiOx). In addition, an electron transporting material which is doped with an alkali metal, an alkaline earth metal or a compound thereof, for example, Alq doped with magnesium (Mg), is also usable. By using such a material, electrons are efficiently injected from the cathode.
  • A composite material obtained by mixing an organic compound and an electron donor is also usable in the electron injecting layer. Such a composite material is excellent in the electron injecting ability and the electron transporting ability, because the organic compound receives electrons from the electron donor. The organic compound is preferably a material excellent in transporting the received electrons. Examples thereof are the materials for the electron transporting layer mentioned above, such as the metal complex and the aromatic heterocyclic compound. Any material capable of giving its electron to another organic compound is usable as the electron donor. Preferred examples thereof are an alkali metal, an alkaline earth metal, and a rare earth metal, such as lithium, cesium, magnesium, calcium, erbium, and ytterbium; an alkali metal oxide and an alkaline earth metal oxide, such as, lithium oxide, calcium oxide, and barium oxide; a Lewis base, such as magnesium oxide; and an organic compound, such as tetrathiafulvalene (TTF).
  • Cathode
  • The cathode is formed preferably from a metal, an alloy, an electrically conductive compound, or a mixture thereof, each having a small work function, for example, a work function of 3.8 eV or less. Examples of the material for the cathode include a metal of the group 1 or 2 of the periodic table, for example, an alkali metal, such as lithium (Li) and cesium (Cs), an alkaline earth metal, such as magnesium (Mg), an alloy containing these metals (for example, MgAg and AlLi), a rare earth metal, such as europium (Eu) and ytterbium (Yb), and an alloy containing a rare earth metal.
  • The alkali metal, the alkaline earth metal, and the alloy thereof can be made into the cathode by a vacuum vapor deposition or a sputtering method. When a silver paste, etc. is used, a coating method and an inkjet method are usable.
  • When the electron injecting layer is formed, the material for the cathode can be selected independently from the work function and various electroconductive materials, such as Al, Ag, ITO, graphene, and indium oxide-tin oxide doped with silicon or silicon oxide, are usable. These electroconductive materials are made into films by a sputtering method, an inkjet method, and a spin coating method.
  • Insulating Layer
  • Since electric field is applied to the ultra-thin films of organic EL devices, the pixel defects due to leak and short circuit tends to occur. To prevent the defects, an insulating thin film layer is preferably interposed between the pair of electrodes.
  • Examples of the material for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. These materials may be used in combination or may be made into laminated layers.
  • A protective layer may be formed on the surface of an organic EL device in view of improving the stability against temperature, moisture, surrounding atmosphere, etc. The organic EL device may be wholly protected by a silicone oil, a resin, etc.
  • Each layer of the organic EL device is formed by a dry film-forming method, such as vacuum vapor deposition, sputtering, plasma, and ion plating, and a wet film-forming method, such as spin coating, dip coating, and flow coating.
  • In the wet film-forming method, the material for each layer is dissolved or dispersed in a suitable solvent, such as ethanol, chloroform, tetrahydrofuran, and dioxane, and then the obtained solution or dispersion is made into a film. To improve the film-forming properties and prevent pin holes on the film, the solution and the dispersion may include a resin or an additive. Examples of the resin include an insulating resin and a copolymer thereof, such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose; a photoconductive resin, such as poly-N-vinylcarbazole and polysilane; and an electroconductive resin, such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • The thickness of each layer is not particularly limited and selected so as to obtain a good device performance. If extremely thick, a large applied voltage is needed to obtain a desired emission output, thereby reducing the efficiency. If extremely thin, pinholes occur on the film to make it difficult to obtain a sufficient luminance even when applying an electric field. The thickness is generally 5 nm to 10 μm and preferably 10 nm to 0.2 μm.
  • The organic EL device comprising the compound (1) is applicable to electronic equipment, for example, a display part, such as an organic EL panel module; a display device of television set, mobile phone, personal computer, etc.; and a light emitting source of lighting equipment and vehicle lighting equipment.
  • EXAMPLES
  • The present invention will be descried below in more detail with reference to the examples. However, it should be noted that the scope of the present invention is not limited thereto.
  • Intermediate Synthesis 1-1: Synthesis of Intermediate 1-1
  • Under an argon atmosphere, into a mixture of 28.3 g (100.0 mmol) of 4-iodobromobenzene, 22.3 g (105.0 mmol) of dibenzofuran-4-boronic acid, and 2.31 g (2.00 mmol) of Pd[PPh3]4, 150 ml of toluene, 150 ml of dimethoxyethane, and 150 ml (300.0 mmol) of a 2 M aqueous solution of Na2CO3 were added. The obtained mixture was refluxed for 10 h under heating and stirring.
  • After the reaction, the reaction mixture was cooled to room temperature and extracted with dichloromethane in a separating funnel. The organic layer was dried over MgSO4, filtered, and then concentrated. The residual concentrate was purified by silica gel column chromatography to obtain 26.2 g of a white solid, which was identified by FD-MS analysis (field desorption mass spectrometry) as the following intermediate 1-1 (yield: 81%).
  • Figure US20190259948A1-20190822-C00079
  • Intermediate Synthesis 1-2: Synthesis of Intermediate 1-2
  • Under a nitrogen atmosphere, 150 g (0.89 mol) of dibenzofuran was dissolved in 1000 ml of acetic acid under heating. After further adding 188 g (1.18 mol) of bromine dropwise, the resultant solution was stirred at room temperature for 20 h. The precipitated crystal was collected by filtration and successively washed with acetic acid and water. The obtained crude product was recrystallized from methanol several times to obtain 66.8 g of a white crystal, which was identified by FD-MS analysis as the following intermediate 1-2 (yield: 30%).
  • Figure US20190259948A1-20190822-C00080
  • Intermediate Synthesis 1-3: Synthesis of Intermediate 1-3
  • Under an argon atmosphere, a solution of 24.7 g (100.0 mmol) of the intermediate 1-2 in 400 ml of dehydrated tetrahydrofuran was cooled to −40° C., and then 63 ml (100.0 mmol) of a 1.6 M hexane solution of n-butyllithium was gradually added. After stirring for one hour under heating to 0° C., the reaction solution was again cooled to −78° C. and a solution of 26.0 g (250.0 mmol) of trimethyl borate in 50 ml of dehydrated tetrahydrofuran was added dropwise. After the addition, the reaction solution was stirred at room temperature for 5 h. After adding 200 ml of a 1 N hydrochloric acid, the solution was stirred for one hour and then the aqueous layer was removed. The organic layer was dried over MgSO4 and the solvent was evaporated off under reduced pressure. The obtained solid was washed with toluene to obtain 15.2 g of a white crystal, which was identified by FD-MS analysis as the following intermediate 1-3 (yield: 72%).
  • Figure US20190259948A1-20190822-C00081
  • Intermediate Synthesis 1-4: Synthesis of Intermediate 1-4
  • Under an argon atmosphere, into a mixture of 28.3 g (100.0 mmol) of 4-iodobromobenzene, 22.3 g (105.0 mmol) of the intermediate 1-3, and 2.31 g (2.00 mmol) of Pd[PPh3]4, 150 ml of toluene, 150 ml of dimethoxyethane, and 150 ml (300.0 mmol) of a 2 M aqueous solution of Na2CO3 were added. The obtained mixture was refluxed for 10 h under heating and stirring.
  • After the reaction, the reaction mixture was extracted with dichloromethane in a separating funnel. The organic layer was dried over MgSO4, filtered, and then concentrated. The residual concentrate was purified by silica gel column chromatography to obtain 24.2 g of a white solid, which was identified by FD-MS analysis as the following intermediate 1-4 (yield: 75%).
  • Figure US20190259948A1-20190822-C00082
  • Intermediate Synthesis 1-5: Synthesis of Intermediate 1-5
  • Under an argon atmosphere, into a mixture of 28.3 g (100.0 mmol) of 4-iodobromobenzene, 23.9 g (105.0 mmol) of dibenzothiophene-4-boronic acid, and 2.31 g (2.00 mmol) of Pd[PPh3]4, 150 ml of toluene, 150 ml of dimethoxyethane, and 150 ml (300.0 mmol) of a 2 M aqueous solution of Na2CO3 were added. The obtained mixture was refluxed for 10 h under heating and stirring.
  • After the reaction, the reaction mixture was cooled to room temperature and extracted with dichloromethane in a separating funnel. The organic layer was dried over MgSO4, filtered, and then concentrated. The residual concentrate was purified by silica gel column chromatography to obtain 27.1 g of a white solid, which was identified by FD-MS analysis as the following intermediate 1-5 (yield: 80%).
  • Figure US20190259948A1-20190822-C00083
  • Intermediate Synthesis 2-1: Synthesis of Intermediate 2-1
  • Under an argon atmosphere, into a mixture of 19.9 g (50.0 mmol) of 2-bromo-9,9′-diphenylfluorene, 12.3 g (50.0 mmol) of [1,1′:4′,1″]terphenyl-2-ylamine, and 9.6 g (100.0 mmol) of sodium t-butoxide, 250 ml of dehydrated toluene was added, and the resultant mixture was stirred. After adding 225 mg (1.0 mmol) of palladium acetate and 202 mg (1.0 mmol) of tri-t-butylphosphine, the mixture was allowed to react at 80° C. for 8 h.
  • After cooling, the reaction mixture was filtered through celite/silica gel, and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from toluene, and the crystal collected by filtration was dried to obtain 19.7 g of a white solid, which was identified by FD-MS analysis as the following intermediate 2-1 (yield: 70%).
  • Figure US20190259948A1-20190822-C00084
  • Intermediate Synthesis 2-2: Synthesis of Intermediate 2-2
  • In the same manner as in Intermediate Synthesis 2-1 except for using [1,1′:3′,1″]terphenyl-2-ylamine in place of [1,1′:4′,1″]terphenyl-2-ylamine, 21.1 g of a white solid was obtained, which was identified by FD-MS analysis as the following intermediate 2-2 (yield: 75%).
  • Figure US20190259948A1-20190822-C00085
  • Intermediate Synthesis 2-3: Synthesis of Intermediate 2-3
  • In the same manner as in Intermediate Synthesis 2-1 except for using [1,1′:4′,1″]terphenyl-3′-ylamine in place of [1,1′:4′,1″]terphenyl-2-ylamine, 19.7 g of a white solid was obtained, which was identified by FD-MS analysis as the following intermediate 2-3 (yield: 70%).
  • Figure US20190259948A1-20190822-C00086
  • Synthesis Example 1: Production of Compound (H1)
  • Under an argon atmosphere, into a mixture of 2.5 g (10.0 mmol) of the intermediate 1-2, 5.6 g (10.0 mmol) of the intermediate 2-1, 0.14 g (0.15 mmol) of Pd2(dba)3, 0.087 g (0.3 mmol) of P(tBu)3HBF4, and 1.9 g (20.0 mmol) of sodium t-butoxide, 50 ml of dehydrated xylene was added. The resultant mixture was refluxed for 8 h under heating.
  • After the reaction, the reaction mixture was cooled to 50° C., filtered through celite/silica gel, and the filtrate was concentrated. The residual concentrate was purified by silica gel column chromatography to obtain a white solid. The crude product was recrystallized from toluene to obtain 3.6 g of a white crystal, which was identified by FD-MS analysis as the following compound (H1) (yield: 50%).
  • Figure US20190259948A1-20190822-C00087
  • Synthesis Example 2: Production of Compound (H2)
  • In the same manner as in Synthesis Example 1 except for using 3.2 g of the intermediate 1-4 in place of the intermediate 1-2, 5.1 g of a white crystal was obtained, which was identified by FD-MS analysis as the following compound (H2) (yield: 63%).
  • Figure US20190259948A1-20190822-C00088
  • Synthesis Example 3: Production of Compound (H3)
  • In the same manner as in Synthesis Example 1 except for using 3.4 g of the intermediate 1-5 in place of the intermediate 1-2, 4.1 g of a white crystal was obtained, which was identified by FD-MS analysis as the following compound (H3) (yield: 50%).
  • Figure US20190259948A1-20190822-C00089
  • Synthesis Example 4: Production of Compound (H4)
  • In the same manner as in Synthesis Example 1 except for using 3.2 g of the intermediate 1-1 in place of the intermediate 1-2 and using 5.6 g of the intermediate 2-2 in place of the intermediate 2-1, 4.4 g of a white crystal was obtained, which was identified by FD-MS analysis as the following compound (H4) (yield: 55%).
  • Figure US20190259948A1-20190822-C00090
  • Synthesis Example 5: Production of Compound (H5)
  • In the same manner as in Synthesis Example 1 except for using 3.2 g of the intermediate 1-1 in place of the intermediate 1-2 and using 5.6 g of the intermediate 2-3 in place of the intermediate 2-1, 4.4 g of a white crystal was obtained, which was identified by FD-MS analysis as the following compound (H5) (yield: 55%).
  • Figure US20190259948A1-20190822-C00091
  • Synthesis Example 6: Production of Compound (H6)
  • In the same manner as in Synthesis Example 1 except for using 3.2 g of the intermediate 1-1 in place of the intermediate 1-2 and using 1.2 g of [1,1′:4′,1″]terphenyl-2-ylamine in place of the intermediate 2-1, 1.8 g of a white crystal was obtained, which was identified by FD-MS analysis as the following compound (H6) (yield: 50%).
  • Figure US20190259948A1-20190822-C00092
  • Example 1-1: Production of Organic EL Device
  • A glass substrate of 25 mm×75 mm×1.1 mm having an ITO transparent electrode (product of Geomatec Company) was cleaned by ultrasonic cleaning in isopropyl alcohol for 5 min and then UV (ultraviolet) ozone cleaning for 30 min.
  • The cleaned glass substrate having a transparent electrode line was mounted to a substrate holder of a vacuum vapor deposition apparatus. First, the following acceptor material (A) was vapor-deposited so as to cover the transparent electrode to form an acceptor layer with a thickness of 5 nm.
  • On the acceptor layer, the following aromatic amine compound (HT1) as a first hole transporting material was vapor-deposited to form a first hole transporting layer with a thickness of 160 nm. Successively after forming the first hole transporting layer, the compound (H1) as a second hole transporting material was vapor-deposited to form a second hole transporting layer with a thickness of 10 nm.
  • On the second hole transporting layer, the following host material and the following dopant as fluorescent emitting materials were vapor co-deposited to form a fluorescent emitting layer with a thickness of 25 nm. The concentration of the dopant in the fluorescent emitting layer was 4% by mass.
  • Thereafter, on the fluorescent emitting layer, the following compound ET1, compound ET2, and Li were vapor co-deposited into a thickness of 20 nm, 10 nm, and 25 nm, respectively to form an electron transporting/injecting layer. The concentration of Li was 4% by weight. Further, metallic Al was deposited into a thickness of 80 nm to form a cathode, thereby producing an organic EL device.
  • Figure US20190259948A1-20190822-C00093
    Figure US20190259948A1-20190822-C00094
  • Examples 1-2 to 1-6
  • Each organic EL device of Examples 1-2 to 1-6 was produced in the same manner as in Example 1-1 except for forming the second hole transporting layer by using each compound shown in Table 1 as the second hole transporting material.
  • Comparative Examples 1 and 2
  • Each organic EL device of Comparative Examples 1 and 2 was produced in the same manner as in Example 1-1 except for forming the second hole transporting layer by using the following comparative compound 1 (Comparative Example 1) or the following comparative compound 2 (Comparative Example 2) as the second hole transporting material.
  • Figure US20190259948A1-20190822-C00095
  • Evaluation of Emission Performance of Organic EL Device
  • Each organic EL device thus produced was allowed to emit light by driving at a constant current to measure the luminance (L) and the current density. From the measured results, the emission efficiency (cd/A) and the driving voltage (V) at a current density of 10 mA/cm2 were determined. In addition, the 80% lifetime was measured. The 80% lifetime is the time taken until the luminance is reduced to 80% of the initial luminance when driving at a constant current. The results are shown in Table 1.
  • TABLE 1
    Second hole 80% lifetime
    transporting layer cd/A V (h)
    Example 1-1 H1 6.4 4.3 200
    Example 1-2 H2 7.2 4.1 210
    Example 1-3 H3 6.9 4.2 240
    Example 1-4 H4 6.8 4.2 230
    Example 1-5 H5 6.8 4.3 200
    Example 1-6 H6 6.9 4.0 220
    Comparative Comparative 5.5 4.2 120
    example 1 compound 1
    Comparative Comparative 1.5 5.0 80
    example 2 compound 2
  • As seen from Table 1, it can be found that an organic EL device having high efficiency even when driving at a low voltage and long lifetime is obtained by using each of the compounds (H1) to (H6) within formula (1).
  • Example 2-1: Production of Organic EL Device
  • A glass substrate of 25 mm×75 mm×1.1 mm having an ITO transparent electrode (product of Geomatec Company) was cleaned by ultrasonic cleaning in isopropyl alcohol for 5 min and then UV (ultraviolet) ozone cleaning for 30 min.
  • The cleaned glass substrate having a transparent electrode line was mounted to a substrate holder of a vacuum vapor deposition apparatus. First, the following acceptor material (A) was vapor-deposited so as to cover the transparent electrode to form an acceptor layer with a thickness of 5 nm.
  • On the acceptor layer, the compound (H2) as a first hole transporting material was vapor-deposited to form a first hole transporting layer with a thickness of 160 nm. Successively after forming the first hole transporting layer, the following aromatic amine derivative (Yl) as a second hole transporting material was vapor-deposited to form a second hole transporting layer with a thickness of 10 nm.
  • On the second hole transporting layer, the following host material and the following dopant as fluorescent emitting materials were vapor co-deposited to form a fluorescent emitting layer with a thickness of 25 nm. The concentration of the dopant in the fluorescent emitting layer was 4% by mass.
  • Thereafter, on the fluorescent emitting layer, the following compound ET1, compound ET2, and Li were vapor co-deposited into a thickness of 20 nm, 10 nm, and 25 nm, respectively to form an electron transporting/injecting layer. The concentration of Li was 4% by weight. Further, metallic Al was deposited into a thickness of 80 nm to form a cathode, thereby producing an organic EL device.
  • Figure US20190259948A1-20190822-C00096
    Figure US20190259948A1-20190822-C00097
  • Examples 2-2 and 2-3
  • Each organic EL device of Examples 2-2 and 2-3 was produced in the same manner as in Example 2-1 except for forming the first hole transporting layer by using each compound shown in Table 2 as the first hole transporting material.
  • Comparative Example 3
  • The organic EL device of Comparative Example 3 was produced in the same manner as in Example 2-1 except for forming the first hole transporting layer by using the following comparative compound 3 as the first hole transporting material.
  • Figure US20190259948A1-20190822-C00098
  • Evaluation of Emission Performance of Organic EL Device
  • Each organic EL device thus produced was measured for the emission efficiency (cd/A) and the driving voltage (V) at a current density of 10 mA/cm2, and the 80% lifetime in the same manner as described above. The results are shown in Table 2.
  • TABLE 2
    First hole 80% lifetime
    transporting layer cd/A V (h)
    Example 2-1 H2 8.5 4.0 180
    Example 2-2 H3 8.3 4.0 200
    Example 2-3 H6 8.5 4.0 240
    Comparative Comparative 7.2 4.0 110
    example 3 compound 3
  • As seen from Table 2, it can be found that an organic EL device having high efficiency even when driving at a low voltage and long lifetime is obtained by using each of the compounds (H2), (H3), and (H6) within formula (1).

Claims (23)

What is claimed is:
1. A compound represented by formula (1):
Figure US20190259948A1-20190822-C00099
wherein the group represented by formula (4):
Figure US20190259948A1-20190822-C00100
is represented by formula (4a) or (4b):
Figure US20190259948A1-20190822-C00101
each of R1 and R2 is an unsubstituted phenyl group;
Ar1 represents a group represented by formula (2);
Ar2 represents a group selected from a group represented by formula (3a) and a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms selected from the group consisting of a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a naphthylphenyl group, a 9,9-dimethylfluorene-2-yl group, a 9,9-diphenylfluorene-2-yl group, a 9,9-bis(p-methylphenyl)fluorene-2-yl group, a 7-phenyl-9,9-diphenylfluorene-2-yl group, and a p-(9,9-diphenylfluorene-2-yl)phenyl group:
Figure US20190259948A1-20190822-C00102
in formula (2):
X represents an oxygen atom or a sulfur atom;
L1 represents an unsubstituted phenylene group;
y represents 0 or 1, and when y is 0, (L1)0 represents a single bond;
R3 represents an unsubstituted phenyl group or an unsubstituted naphthyl group; and
m represents an integer of 0 to 4, when m is an integer of 2 to 4, two to four groups R3 may be the same or different and are not bonded to each other, thereby failing to form a ring, and when m is 0, (R3)0 represents a hydrogen atom;
in formula (3a):
R5 and R6 each independently represent a hydrogen atom, an unsubstituted methyl group, or an unsubstituted aryl group having 10 to 50 ring carbon atoms;
L2 represents an unsubstituted phenylene group;
z represents 0 or 1, and when z is 0, (L2)0 represents a single bond;
R4 represents an unsubstituted phenyl group or an unsubstituted naphthyl group;
n represents an integer of 0 to 4, when n is an integer of 2 to 4, two to four groups R4 may be the same or different and are not bonded to each other, thereby failing to form a ring, and when n is 0, (R4)0 represents a hydrogen atom.
2. The compound according to claim 1, wherein Ar1 is represented by formula (2a) or (2b):
Figure US20190259948A1-20190822-C00103
wherein L1, y, X, R3, and m are as defined in claim 1.
3. The compound according to claim 1, wherein Ar1 is represented by formula (2a′) or (2b′):
Figure US20190259948A1-20190822-C00104
wherein L1, X, R3, and m are as defined in claim 1.
4. The compound according to claim 1, wherein Ar1 is represented by formula (2a″) or (2b″):
Figure US20190259948A1-20190822-C00105
wherein L1 and X are as defined in claim 1.
5. The compound according to claim 1, wherein Ar1 is represented by formula (2a″-1) or (2b″-1):
Figure US20190259948A1-20190822-C00106
wherein X is as defined in claim 1.
6. The compound according to claim 1, wherein Ar1 is represented by any of the following groups:
Figure US20190259948A1-20190822-C00107
wherein X is as defined in claim 1.
7. The compound according to claim 1, wherein Ar2 is represented by formula (3a′):
Figure US20190259948A1-20190822-C00108
wherein R4, R5, R6, and n are as defined in claim 1.
8. The compound according to claim 1, wherein Ar2 is represented by formula (3a″):
Figure US20190259948A1-20190822-C00109
wherein R5 and R6 are as defined in claim 1.
9. The compound according to claim 1, wherein formula (1) is represented by formula (1a) or (1b):
Figure US20190259948A1-20190822-C00110
wherein R1, R2, Ar1 and Ar2 are as defined in formula (1).
10. The compound according to claim 1, wherein formula (1) is represented by any of formulae (1a-1), (1a-2), (1b-1), and (1b-2):
Figure US20190259948A1-20190822-C00111
wherein R1, R2, L1, X, R3, Ar2, and m are as defined in formula (1).
11. The compound according to claim 1, wherein formula (1) is represented by any of formulae (1a-1′), (1a-2′), (1b-1′), and (1b-2′):
Figure US20190259948A1-20190822-C00112
wherein R1, R2, L1, X, and Ar2 are as defined in formula (1).
12. The compound according to claim 1, wherein:
Ar1 is a group represented by formula (2a) or (2b):
Figure US20190259948A1-20190822-C00113
wherein L1, y, X, R3, and m are as defined above; and
Ar2 is a group represented by formula (3a) or the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms:
Figure US20190259948A1-20190822-C00114
wherein L2, z, R4, R5, R6, and n are as defined in claim 1.
13. The compound according to claim 1, wherein:
Ar1 is a group represented by formula (2a′) or (2b′):
Figure US20190259948A1-20190822-C00115
wherein L1, X, R3, and m are as defined above; and
Ar2 is a group represented by formula (3a′) or the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms:
Figure US20190259948A1-20190822-C00116
wherein R4, R5, R6, and n are as defined in claim 1.
14. The compound according to claim 1, wherein:
Ar1 is a group represented by formula (2a″) or (2b″):
Figure US20190259948A1-20190822-C00117
wherein L1 and X are as defined above; and
Ar2 is a group represented by formula (3a″) or the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms:
Figure US20190259948A1-20190822-C00118
wherein R5 and R6 are as defined in claim 1.
15. The compound according to claim 1, wherein:
Ar1 is a group represented by formula (2a″-1) or (2b″-1):
Figure US20190259948A1-20190822-C00119
wherein X is as defined above; and
Ar2 is a group represented by formula (3a″) or the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms:
Figure US20190259948A1-20190822-C00120
wherein R5 and R6 are as defined above.
16. The compound according to claim 1, wherein:
Ar1 is a group represented by any of the following groups:
Figure US20190259948A1-20190822-C00121
wherein X is as defined above; and
Ar2 is a group represented by formula (3a″) or the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms:
Figure US20190259948A1-20190822-C00122
wherein R5 and R6 are as defined in claim 1.
17. The compound according to claim 1, wherein formula (4a) is represented by any of
Figure US20190259948A1-20190822-C00123
18. The compound according to claim 1, wherein formula (4b) is represented by any of
Figure US20190259948A1-20190822-C00124
19. The compound according to claim 1, wherein the compound is any one of the following compounds:
Figure US20190259948A1-20190822-C00125
Figure US20190259948A1-20190822-C00126
20. A material for organic electroluminescence devices which comprises the compound according to claim 1.
21. An organic electroluminescence device which comprises an anode, a cathode, and at least one organic thin film layer between the anode and the cathode, wherein the at least one organic thin film layer comprises a light emitting layer and at least one layer of the at least one organic thin film layer comprises the compound according to claim 1.
22. The organic electroluminescence device according to claim 21, wherein the organic electroluminescence device comprises an organic thin film layer between the anode and the light emitting layer and the organic thin film layer comprises the compound.
23. An electronic equipment which comprises the organic electroluminescence device according to claim 21.
US16/400,789 2014-02-28 2019-05-01 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus Abandoned US20190259948A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/400,789 US20190259948A1 (en) 2014-02-28 2019-05-01 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US17/828,080 US20220293856A1 (en) 2014-02-28 2022-05-31 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US17/847,224 US11616200B2 (en) 2014-02-28 2022-06-23 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014039015 2014-02-28
JP2014-039015 2014-02-28
PCT/JP2015/055983 WO2015129896A1 (en) 2014-02-28 2015-02-27 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US201614910120A 2016-02-04 2016-02-04
US16/400,789 US20190259948A1 (en) 2014-02-28 2019-05-01 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US14/910,120 Continuation US20160329492A1 (en) 2014-02-28 2015-02-27 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
PCT/JP2015/055983 Continuation WO2015129896A1 (en) 2014-02-28 2015-02-27 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/828,080 Continuation US20220293856A1 (en) 2014-02-28 2022-05-31 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Publications (1)

Publication Number Publication Date
US20190259948A1 true US20190259948A1 (en) 2019-08-22

Family

ID=54009208

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/910,120 Abandoned US20160329492A1 (en) 2014-02-28 2015-02-27 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US16/400,789 Abandoned US20190259948A1 (en) 2014-02-28 2019-05-01 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US17/828,080 Pending US20220293856A1 (en) 2014-02-28 2022-05-31 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US17/847,224 Active US11616200B2 (en) 2014-02-28 2022-06-23 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/910,120 Abandoned US20160329492A1 (en) 2014-02-28 2015-02-27 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/828,080 Pending US20220293856A1 (en) 2014-02-28 2022-05-31 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US17/847,224 Active US11616200B2 (en) 2014-02-28 2022-06-23 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Country Status (6)

Country Link
US (4) US20160329492A1 (en)
EP (1) EP3101016B1 (en)
JP (2) JP6157718B2 (en)
KR (3) KR20230080505A (en)
CN (2) CN110204521B (en)
WO (1) WO2015129896A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053403A1 (en) * 2013-10-11 2015-04-16 出光興産株式会社 Aromatic amine compound, organic electroluminescent element and electronic device
CN110204521B (en) 2014-02-28 2023-07-11 出光兴产株式会社 Compound, material for organic electroluminescent element, and electronic device
JP6506534B2 (en) * 2014-11-07 2019-04-24 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
EP3360859B1 (en) * 2015-10-06 2022-12-14 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence elements, organic electroluminescence element, and electronic device
KR102615636B1 (en) * 2016-01-13 2023-12-20 삼성디스플레이 주식회사 Organic light-emitting device
KR102650409B1 (en) * 2016-10-20 2024-03-25 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
TWI815831B (en) 2017-11-23 2023-09-21 德商麥克專利有限公司 Materials for electronic devices
JP2021167278A (en) * 2018-05-10 2021-10-21 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838766B2 (en) 1997-11-06 2006-10-25 三井化学株式会社 Organic electroluminescence device
KR101453109B1 (en) 2006-04-26 2014-10-27 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative, and organic electroluminescence element using the same
CN102046613B (en) * 2008-05-29 2015-01-21 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using the same
JP5417763B2 (en) 2008-08-08 2014-02-19 コニカミノルタ株式会社 Compound for organic electroluminescence device
KR101325329B1 (en) 2008-10-17 2013-11-08 미쓰이 가가쿠 가부시키가이샤 Aromatic amine derivative and organic electroluminescent device using the same
WO2010061824A1 (en) 2008-11-25 2010-06-03 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element
WO2010122799A1 (en) 2009-04-24 2010-10-28 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element comprising same
EP2423007B1 (en) 2009-04-24 2016-09-07 Toyota Jidosha Kabushiki Kaisha Device for monitoring tire air pressure
CN104795495B (en) * 2009-04-24 2017-09-29 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same
KR20110015213A (en) * 2009-08-07 2011-02-15 에스에프씨 주식회사 Blue light emitting compound and organic electroluminescent device using the same
DE202010018533U1 (en) 2009-08-19 2017-06-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent elements using them
KR101097316B1 (en) 2009-10-12 2011-12-23 삼성모바일디스플레이주식회사 organic light emitting device
KR101097339B1 (en) 2010-03-08 2011-12-23 삼성모바일디스플레이주식회사 Organic light emitting diode and method for preparing the same
DE102010045405A1 (en) * 2010-09-15 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent devices
KR101856512B1 (en) * 2010-12-23 2018-05-23 에스에프씨 주식회사 Pyrene derivative compound and organic electroluminescent devices comprising the same
CN103477462B (en) * 2011-04-05 2016-05-25 默克专利有限公司 Organic electroluminescence device
US9017074B2 (en) 2011-04-08 2015-04-28 Innovative Products, Inc. Dental prosthetic device with remoldable base
KR101908384B1 (en) 2011-06-17 2018-10-17 삼성디스플레이 주식회사 Organic light-emitting diode and flat display device comprising the same
KR101705823B1 (en) 2011-06-30 2017-02-13 삼성디스플레이 주식회사 Organic light emitting display apparatus
WO2013039073A1 (en) 2011-09-15 2013-03-21 出光興産株式会社 Aromatic amine derivative and organic electroluminescence element using same
JP2015013804A (en) * 2011-09-16 2015-01-22 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element using the same
WO2013039221A1 (en) * 2011-09-16 2013-03-21 出光興産株式会社 Aromatic amine derivative and organic electroluminescence element using same
WO2013042775A1 (en) * 2011-09-22 2013-03-28 出光興産株式会社 Aromatic amine derivative and organic electroluminescence element using same
JP2015051925A (en) * 2011-11-25 2015-03-19 出光興産株式会社 Aromatic amine derivative and organic electroluminescent element using the same
WO2013087142A1 (en) 2011-12-12 2013-06-20 Merck Patent Gmbh Compounds for electronic devices
KR102268696B1 (en) 2012-03-15 2021-06-23 메르크 파텐트 게엠베하 Electronic devices
KR102013400B1 (en) * 2012-03-29 2019-08-22 에스에프씨 주식회사 Indenophenanthrene derivatives and organic light emitting diodes comprising the derivatives
US9385324B2 (en) * 2012-05-07 2016-07-05 Samsung Electronics Co., Ltd. Electronic system with augmented reality mechanism and method of operation thereof
KR102583348B1 (en) 2012-07-23 2023-09-26 메르크 파텐트 게엠베하 Compounds and organic electroluminescent devices
CN108054293B (en) * 2012-07-23 2020-05-22 默克专利有限公司 2-diarylaminofluorene derivative and organic electronic complex containing the same
US9882142B2 (en) * 2012-07-23 2018-01-30 Merck Patent Gmbh Compounds and organic electronic devices
JP2014049539A (en) 2012-08-30 2014-03-17 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP6367117B2 (en) * 2012-08-30 2018-08-01 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
KR101974757B1 (en) * 2012-08-31 2019-05-02 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative, and organic electroluminescent element using same
JP6469579B2 (en) * 2012-10-31 2019-02-13 メルク パテント ゲーエムベーハー Electronic element
KR101716069B1 (en) * 2012-11-12 2017-03-13 메르크 파텐트 게엠베하 Materials for electronic devices
KR102065656B1 (en) * 2013-02-19 2020-01-13 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102034819B1 (en) 2013-03-26 2019-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN104918915A (en) 2013-05-02 2015-09-16 出光兴产株式会社 Compound, material for organic electroluminescent element, and electronic device
US9660200B2 (en) 2013-07-01 2017-05-23 Samsung Display Co., Ltd. Organic light-emitting device
EP3017016B1 (en) * 2013-07-02 2020-04-15 Merck Patent GmbH Materials for electronic devices
JP5753635B1 (en) * 2013-07-12 2015-07-22 保土谷化学工業株式会社 Organic electroluminescence device
KR102047653B1 (en) * 2013-08-15 2019-11-22 메르크 파텐트 게엠베하 Materials for electronic devices
WO2015053403A1 (en) * 2013-10-11 2015-04-16 出光興産株式会社 Aromatic amine compound, organic electroluminescent element and electronic device
KR20150102734A (en) 2014-02-28 2015-09-07 머티어리얼사이언스 주식회사 Organic compounds for an organic electroluminescent device and an organic electroluminescent device comprising the same
CN110204521B (en) * 2014-02-28 2023-07-11 出光兴产株式会社 Compound, material for organic electroluminescent element, and electronic device

Also Published As

Publication number Publication date
US11616200B2 (en) 2023-03-28
CN105683174A (en) 2016-06-15
US20160329492A1 (en) 2016-11-10
KR102404303B1 (en) 2022-05-31
KR20230080505A (en) 2023-06-07
KR20160119749A (en) 2016-10-14
CN110204521A (en) 2019-09-06
JP2017114903A (en) 2017-06-29
EP3101016A4 (en) 2017-11-01
US20220293856A1 (en) 2022-09-15
US20220344590A1 (en) 2022-10-27
JP6157718B2 (en) 2017-07-05
JPWO2015129896A1 (en) 2017-03-30
JP6419874B2 (en) 2018-11-07
CN110204521B (en) 2023-07-11
KR102543271B1 (en) 2023-06-14
WO2015129896A1 (en) 2015-09-03
EP3101016A1 (en) 2016-12-07
KR20220068273A (en) 2022-05-25
EP3101016B1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US10516112B2 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
US10424740B2 (en) Compound, material for organic electroluminescence devices, organic electroluminescence device, and electronic device
US11616200B2 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus
US10243148B2 (en) Aromatic amine compound, and organic electroluminescent elements including the compound
US11283025B2 (en) Compound, material for organic electroluminescence elements, organic electroluminescence element, and electronic device
US11053229B2 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US10756275B2 (en) Compound, material for organic electroluminescence devices, organic electroluminescence device, and electronic equipment
US11730054B2 (en) Compound having dibenzofuran and naphthalene structures, and organic electroluminescent element using same
US20210094937A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US20210253546A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US20220045272A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US10840456B2 (en) Compound, material for organic electroluminescence devices, organic electroluminescence device, and electronic device
US10170707B2 (en) Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US10547007B2 (en) Compound, organic electroluminescent material, organic electroluminescent element, and electronic apparatus
US20180029983A1 (en) Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
US20230389347A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
KR20240091198A (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic apparatus

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION