US20190218467A1 - Diesel additive, preparation method and usage method thereof - Google Patents

Diesel additive, preparation method and usage method thereof Download PDF

Info

Publication number
US20190218467A1
US20190218467A1 US15/771,513 US201615771513A US2019218467A1 US 20190218467 A1 US20190218467 A1 US 20190218467A1 US 201615771513 A US201615771513 A US 201615771513A US 2019218467 A1 US2019218467 A1 US 2019218467A1
Authority
US
United States
Prior art keywords
fuel
fuel additive
amine
additive
carbon deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/771,513
Inventor
Xin Huo
Zhiyu Shi
Hung Che Cheng
Xin Sun
Sibian Ma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUO, XIN, SUN, XIN, CHENG, HUNG CHE, SHI, ZHIYU, MA, Sibian
Publication of US20190218467A1 publication Critical patent/US20190218467A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1983Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines

Definitions

  • the present disclosure relates to a fuel additive, in particular, to a fuel additive which can be used to remove carbon deposits at a gas intake valve and a combustion chamber of a fuel engine.
  • the working temperature of the gas intake valve of the automobile fuel engine is about 170-180° C., and at this temperature, the olefins contained in the fuel (especially gasoline) may undergo oxidation because of its instability, which produces the carbon deposits in gum form. The carbon deposits attach to the inside of the gas intake valve, thus affecting the working efficiency of the gas intake valve.
  • the working temperature of the combustion chamber of the automobile fuel engine is about 250-600° C., and at this temperature, the aromatic hydrocarbon contained in the fuel (especially gasoline) may generate carbon deposits from combustion, which can deposit in the combustion chamber.
  • the aromatic hydrocarbon contained in the fuel especially gasoline
  • the present disclosure provides a fuel additive which can not only be used to remove the carbon deposits at the gas intake valve of the fuel engine, but also can be used to remove the carbon deposits at the combustion chamber of the fuel engine.
  • Certain aspects of the present disclosure provide a fuel additive, which comprises 70-90 wt. % of a nonylphenol polyether amine, 10-30 wt. % of a multi-amido polyisobutylene amine, and 0-20 wt. % of an auxiliary additive, based on the total weight of the fuel additive.
  • Certain aspects of the present disclosure provide a method for preparing the fuel additive, which comprises the step of mixing the ingredients of the fuel additive according to the present disclosure.
  • Certain aspects of the present disclosure provide a method for using the fuel additive, which comprises the step of adding the fuel additive according to the present disclosure into a fuel.
  • the fuel additive provided by the present disclosure is able to effectively remove the carbon deposits at the gas intake valve and the combustion chamber of the fuel engine.
  • the fuel additive provided by the present disclosure comprises: 70-90 wt. % of nonylphenol polyether amine, 10-30 wt. % of multi-amido polyisobutylene amine, and 0-20 wt. % of auxiliary additive, based on the total weight of the fuel additive.
  • the nonylphenol polyether amine helps to remove the carbon deposits of a fuel engine (for example, the carbon deposits at the gas intake valve of a gasoline engine).
  • the polar amine group in the nonylphenol polyether amine can be adsorbed to the metal surface of the fuel engine, while the structure of the nonylphenol is relatively similar to that of the carbon deposits, so the carbon deposits attached to the metal surface of the fuel engine (for example, the inside of the gas intake valve and the inside surface of the combustion chamber) can be stripped down and dispersed into small particles, which are then burned off in the combustion chamber.
  • nonylphenol polyether amine comprises the following general formula:
  • the nonylphenol polyether amine has a molecular weight of 1000-2000.
  • the nonylphenol polyether amine is present at a level of 70-90 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the nonylphenol polyether amine is present at a level of 80-90 wt. %, based on the total weight of the fuel additive.
  • the fuel additive is not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • the nonylphenol polyether amine may be selected from FL-1000 or PEA-PEO which are commercially available from Huntsman Corporation.
  • the multi-amido polyisobutylene amine can synergistically coordinate with the polyether amine in certain proportion to improve the ability of the fuel additive to remove the carbon deposits of the combustion chamber.
  • polyisobutylene amine has relatively high viscosity, high thermal stability, and is difficult to decompose at high temperature.
  • Adding polyisobutylene amine into fuel may cause polyisobutylene amine to be adsorbed onto the surface or the combustion chamber and then participate in the generation of the carbon deposits in the combustion chamber.
  • the present disclosure inventors have surprisingly found that the fuel additive obtained by making multi-amido polyisobutylene amine coordinate with the polyether amine in a certain proportion can effectively remove the carbon deposits in the combustion chamber.
  • the multi-amido polyisobutylene amine has the general formula of:
  • the multi-amido polyisobutylene amine has a molecular weight of 800-1200.
  • the multi-amido polyisobutylene amine comprises at least one of a diamine polyisobutylene amine and a penta-amine polyisobutylene amine.
  • the multi-amido polyisobutylene amine is present at a level of 10-30 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the multi-amido polyisobutylene amine is present at a level of 10-20 wt. %, based on the total weight of the fuel additive.
  • the fuel additive is not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • the multi-amido polyisobutylene amine may be selected from 1018A or 1018S which are commercially available from QingYuanXing Company.
  • the additive can comprise at least one of a diluent and a friction modifier.
  • the diluent helps to reduce the viscosity of the fuel additive.
  • the diluent may comprise at least one of a saturated straight-chain hydrocarbon solvent, a cycloalkanes solvent, and a mixed aromatic hydrocarbon agent.
  • the diluent is present at a level of 0-20 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the diluent is present at a level of 5-20 wt. %, based on the total weight of the fuel additive.
  • the diluent may be D60 which is commercially available from ExxonMobil Company.
  • the friction modifier helps to reduce the friction of the inner surface of the engine.
  • the friction modifier can comprise at least one of a glyceryl monooleate and a polyester.
  • the friction modifier is present at a level of 0-10 wt. %, based on the total weight of the fuel additive.
  • the friction modifier is present at a level of 5-10 wt. %, based on the total weight of the fuel additive.
  • the friction modifier may be 9525A which is commercially available from Lubrizol Company.
  • the ingredients of the fuel additive according the present disclosure can be mixed together to obtain the fuel additive.
  • the description about each ingredient of the fuel additive can be found in the “Fuel Additive” section of the present description.
  • the ingredients used to prepare the fuel additive can be added to a stainless steel vessel and mixed under normal temperature (about 25° C.) and normal pressure (about 1 atm) to obtain the fuel additive.
  • the fuel additive according to the present disclosure can be added into the fuel.
  • the fuel additive under normal temperature (about 25° C.) and normal pressure (about 1 atm), the fuel additive can be added into the fuel in a proportion of 1:1000-1:2000.
  • the description about the fuel additive can be found in the “Fuel Additive” section of the present description.
  • the fuel includes gasoline.
  • the gasoline incudes at least one of 92# gasoline, 95# gasoline and ethanol gasoline.
  • Embodiment 1 is a fuel additive, which comprises 70-90 wt. % of the nonylphenol polyether amine, 10-30 wt. % of the multi-amido polyisobutylene amine, and 0-20 wt. % of the additive, based on the total weight of the fuel additive.
  • Embodiment 2 is the fuel additive according to Embodiment 1, wherein the nonylphenol polyether amine comprises the following general formula:
  • Embodiment 3 is the fuel additive according to Embodiment 1 or 2, wherein the nonylphenol polyether amine has a molecular weight of 1000-2000.
  • Embodiment 4 is the fuel additive according to any one of the Embodiments 1 to 3, wherein the nonylphenol polyether amine is present at a level of 80-90 wt. %.
  • Embodiment 5 is the fuel additive according to any one of the Embodiments 1 to 4, wherein the multi-amido polyisobutylene amine comprises the following general formula:
  • Embodiment 6 is the fuel additive according to any one of the Embodiments 1 to 5, wherein the multi-amido polyisobutylene amine is the polyisobutylene amine of the following structural formula with a molecular weight of 800-1200.
  • Embodiment 7 is the fuel additive according to any one of the Embodiments 1 to 6, wherein the multi-amido polyisobutylene amine includes: at least one of a nomo-amine polyisobutylene amine and a penta polyamine polyisobutylene amine.
  • Embodiment 8 is the fuel additive according to any one of the Embodiments 1 to 7, wherein the multi-amido polyisobutylene amine is present at a level of 10-20 wt. %.
  • Embodiment 9 is the fuel additive according to any one of the Embodiments 1 to 8, wherein the additive comprises at least one of a diluent and a friction modifier.
  • Embodiment 10 is the fuel additive according to any one of the Embodiments 1 to 9, wherein the additive is present at a level of 5-50 wt. %.
  • Embodiment 11 is a method for preparing the fuel additive, comprising the step of mixing the ingredients of the fuel additive according to any one of Embodiments 1 to 10.
  • Embodiment 12 is a method for using the fuel additive, comprising the step of adding the fuel additive according to any one of Embodiments 1 to 10 into a fuel.
  • Embodiment 13 is the method according to Embodiment 12, wherein the fuel is gasoline.
  • the ingredients of the fuel additive were added to a stainless steel container and mixed to obtain the fuel additive.
  • the fuel additive was added into the fuel (for example, gasoline) in a proportion of 1:1000.
  • Penta polyamino Molecular weight is Qingyuanxing polyisobutene about 1200 Chemical amine Technology Co. Ltd. D60 Diluent Hydrocarbon solvent Exxon Mobil with the flash point Chemical Co. Ltd. of about 60° C. 9525A Friction Complex of various Lubrizol Special modifiers esters Chemicals Manufacturing (Shanghai) Co., Ltd.
  • fuel engine gas intake valve carbon deposit removal rate test is used to measure the capability of the fuel additives provided by the present disclosure to remove the carbon deposits at the gas intake valve of the fuel engine.
  • fuel engine combustion chamber carbon deposit removal rate test is used to measure the capability of the fuel additives provided by the present disclosure to remove the carbon deposits in the combustion chamber of the fuel engine.
  • test reagents and test equipment involved in “fuel engine gas intake valve carbon deposit removal rate test” and “fuel engine combustion chamber carbon deposit removal rate test” are listed in the following table 1b.
  • step 3.3 the temperature of the carbon deposit collector should reach 250° C. to simulate the working environment of the fuel engine combustion chamber.
  • the temperature of the carbon deposit collector should be 250° C.
  • step 3.14 the calculation formula of the carbon deposit formation amount of the gasoline combustion chamber is:
  • n n 1 ⁇ n 0 (formula 3)
  • step 4.14 the calculation formula of the carbon deposit removal rate of the fuel engine combustion chamber is:
  • Example 1 70 — — — 30 — — — Example 2 80 — — 20 — — — Example 3 90 — — — 10 — — — — Example 4 85 — — 15 — — — — Example 5 85 — — — — 15 — — Example 6 — 85 — — 15 — — — Example 7 80 — — — 13 — 5 2 Comparative 100 — — — — — — — — — Example C1 Comparative — — 100 — — — — — — Example C2 Comparative 90 10 Example C3
  • the fuel additives provided by the present disclosure comprise 70-90 wt. % of a nonylphenol polyether amine and 10-30 wt. % of a multi-amido polyisobutylene amine, these fuel additives are not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • the fuel additives comprise 80-90 wt. % of a nonylphenol polyether amine and 10-20 wt. % of a multi-amido polyisobutylene amine
  • the fuel additives provided by the present disclosure are particularly able to effectively remove the carbon deposits in the combustion chamber of the fuel engine ( ⁇ 2 is greater than 55%).
  • the fuel additive comprises the nonylphenol polyether amine only, but does not contain the multi-amido polyisobutylene amine, this fuel additive lacks the ability to remove the carbon deposits in the combustion chamber of the fuel engine.
  • this fuel additive when the fuel additive comprises the multi-amido polyisobutylene amine only, this fuel additive lacks the ability to remove the carbon deposits at the gas intake valve and the combustion chamber of the fuel engine.
  • the fuel additive comprises the nonylphenol polyether amine and the polyisobutylene amine, but does not contain the multi-amido polyisobutylene amine, this fuel additive lacks the ability to remove the carbon deposits in the combustion chamber of the fuel engine.
  • the fuel additives according to the present disclosure are not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

The present invention relates to a fuel additive. The fuel additive comprises 70-90 wt. % of a nonylphenol polyether amine, 10-30 wt. % of a multi-amido polyisobutylene amine, and 0-20 wt. % of an auxiliary additive based on the total weight of the fuel additive. The fuel additive provided by the present disclosure is able to effectively remove carbon deposits at a gas intake valve and a combustion chamber of a fuel engine.

Description

    FIELD OF THE INVENTION
  • The present disclosure relates to a fuel additive, in particular, to a fuel additive which can be used to remove carbon deposits at a gas intake valve and a combustion chamber of a fuel engine.
  • BACKGROUND OF THE INVENTION
  • The working temperature of the gas intake valve of the automobile fuel engine is about 170-180° C., and at this temperature, the olefins contained in the fuel (especially gasoline) may undergo oxidation because of its instability, which produces the carbon deposits in gum form. The carbon deposits attach to the inside of the gas intake valve, thus affecting the working efficiency of the gas intake valve.
  • The working temperature of the combustion chamber of the automobile fuel engine is about 250-600° C., and at this temperature, the aromatic hydrocarbon contained in the fuel (especially gasoline) may generate carbon deposits from combustion, which can deposit in the combustion chamber. When the total amount of the carbon deposits in the combustion chamber of the fuel engine increases, it may cause the compression ratio of the fuel engine to increase, and make it difficult for heat to dissipate, thus at the end of the compression in the combustion chamber, the gas temperature rises, the octane value requirement increases, and when serious, it may increase the mechanical interference between the piston top and cylinder head of the fuel engine combustion chamber and generate the phenomenon, of “carbon cylinder-knocking” which results in increased consumption of engine oil.
  • Currently, some fuel additives in the industry have been separately used to remove the carbon deposits attached to the gas intake valve and the combustion chamber of the fuel engine.
  • SUMMARY OF THE INVENTION
  • The present disclosure provides a fuel additive which can not only be used to remove the carbon deposits at the gas intake valve of the fuel engine, but also can be used to remove the carbon deposits at the combustion chamber of the fuel engine.
  • Certain aspects of the present disclosure provide a fuel additive, which comprises 70-90 wt. % of a nonylphenol polyether amine, 10-30 wt. % of a multi-amido polyisobutylene amine, and 0-20 wt. % of an auxiliary additive, based on the total weight of the fuel additive.
  • Certain aspects of the present disclosure provide a method for preparing the fuel additive, which comprises the step of mixing the ingredients of the fuel additive according to the present disclosure.
  • Certain aspects of the present disclosure provide a method for using the fuel additive, which comprises the step of adding the fuel additive according to the present disclosure into a fuel.
  • The fuel additive provided by the present disclosure is able to effectively remove the carbon deposits at the gas intake valve and the combustion chamber of the fuel engine.
  • DETAILED DESCRIPTION
  • It should be understood that without departing from the scope or spirit of the present disclosure, the persons skilled in the art can conceive other various embodiments according to the teachings of this specification and can modify them. Therefore, the following embodiment are not to be construed in a limiting sense.
  • Unless otherwise indicated, all numbers used in this specification and claims for expressing the sizes, quantities and physicochemical properties of features should be understood as in all cases to be modified by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters listed in the foregoing specification and attached claims are all approximations, and the persons skilled in the art can use the teachings disclosed herein it appropriately change these approximations for seeking the desired properties. The use of numerical range represented by endpoints includes all numbers within that range and any sub-range within that range, e.g., 1 to 5 includes 1, 1.1, 1.3, 1.5, 2, 2.75, 3, 3.80, 4 and 5, and so on.
  • Fuel Additive
  • According to certain embodiments, the fuel additive provided by the present disclosure comprises: 70-90 wt. % of nonylphenol polyether amine, 10-30 wt. % of multi-amido polyisobutylene amine, and 0-20 wt. % of auxiliary additive, based on the total weight of the fuel additive.
  • Nonylphenol Polyether Amine
  • In the fuel additive, the nonylphenol polyether amine helps to remove the carbon deposits of a fuel engine (for example, the carbon deposits at the gas intake valve of a gasoline engine). The polar amine group in the nonylphenol polyether amine can be adsorbed to the metal surface of the fuel engine, while the structure of the nonylphenol is relatively similar to that of the carbon deposits, so the carbon deposits attached to the metal surface of the fuel engine (for example, the inside of the gas intake valve and the inside surface of the combustion chamber) can be stripped down and dispersed into small particles, which are then burned off in the combustion chamber.
  • According to certain embodiments, the nonylphenol polyether amine comprises the following general formula:
  • Figure US20190218467A1-20190718-C00001
  • Wherein, m=1-2, n=24-26, y=1-2.
  • According to certain embodiments, the nonylphenol polyether amine has a molecular weight of 1000-2000.
  • According to certain embodiments, the nonylphenol polyether amine is present at a level of 70-90 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the nonylphenol polyether amine is present at a level of 80-90 wt. %, based on the total weight of the fuel additive. When the polyether amine is present at a level of 70-90 wt. %, the fuel additive is not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • According to certain embodiments, the nonylphenol polyether amine may be selected from FL-1000 or PEA-PEO which are commercially available from Huntsman Corporation.
  • Multi-Amido Polyisobutylene Amine
  • In the fuel additive, the multi-amido polyisobutylene amine can synergistically coordinate with the polyether amine in certain proportion to improve the ability of the fuel additive to remove the carbon deposits of the combustion chamber.
  • According to the conventional art, the industry generally believes that polyisobutylene amine (PIBA) has relatively high viscosity, high thermal stability, and is difficult to decompose at high temperature. Adding polyisobutylene amine into fuel may cause polyisobutylene amine to be adsorbed onto the surface or the combustion chamber and then participate in the generation of the carbon deposits in the combustion chamber. However, the present disclosure inventors have surprisingly found that the fuel additive obtained by making multi-amido polyisobutylene amine coordinate with the polyether amine in a certain proportion can effectively remove the carbon deposits in the combustion chamber.
  • The multi-amido polyisobutylene amine has the general formula of:
  • Figure US20190218467A1-20190718-C00002
  • Wherein, R1, R2 and R3 are each independently selected from one of the group consisting of: H, CH3, C2H5, C3H7 and C4H9 , n=4-18, m=2-5.
  • According to certain embodiments, the multi-amido polyisobutylene amine has a molecular weight of 800-1200.
  • According to certain embodiments, the multi-amido polyisobutylene amine comprises at least one of a diamine polyisobutylene amine and a penta-amine polyisobutylene amine.
  • According to certain embodiments, the multi-amido polyisobutylene amine is present at a level of 10-30 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the multi-amido polyisobutylene amine is present at a level of 10-20 wt. %, based on the total weight of the fuel additive. When the multi-amido polyisobutylene amine is present at a level of 10-30 wt. %, the fuel additive is not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • According to certain embodiments, the multi-amido polyisobutylene amine may be selected from 1018A or 1018S which are commercially available from QingYuanXing Company.
  • Auxiliary Additive
  • The additive can comprise at least one of a diluent and a friction modifier.
  • In the fuel additive, the diluent helps to reduce the viscosity of the fuel additive. According to certain embodiments, the diluent may comprise at least one of a saturated straight-chain hydrocarbon solvent, a cycloalkanes solvent, and a mixed aromatic hydrocarbon agent.
  • According to certain embodiments, the diluent is present at a level of 0-20 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the diluent is present at a level of 5-20 wt. %, based on the total weight of the fuel additive.
  • According to certain embodiments, the diluent may be D60 which is commercially available from ExxonMobil Company.
  • In the fuel additive, the friction modifier helps to reduce the friction of the inner surface of the engine. According to certain embodiments, the friction modifier can comprise at least one of a glyceryl monooleate and a polyester. According to certain embodiments, the friction modifier is present at a level of 0-10 wt. %, based on the total weight of the fuel additive. According to certain embodiments, the friction modifier is present at a level of 5-10 wt. %, based on the total weight of the fuel additive.
  • According to certain embodiments, the friction modifier may be 9525A which is commercially available from Lubrizol Company.
  • The Method For Preparing the Fuel Additive
  • According to certain embodiments, the ingredients of the fuel additive according the present disclosure can be mixed together to obtain the fuel additive. The description about each ingredient of the fuel additive can be found in the “Fuel Additive” section of the present description.
  • According to certain embodiments, the ingredients used to prepare the fuel additive can be added to a stainless steel vessel and mixed under normal temperature (about 25° C.) and normal pressure (about 1 atm) to obtain the fuel additive.
  • The Method For Using the Fuel Additive
  • According to certain embodiments, the fuel additive according to the present disclosure can be added into the fuel. According to certain embodiments, under normal temperature (about 25° C.) and normal pressure (about 1 atm), the fuel additive can be added into the fuel in a proportion of 1:1000-1:2000. The description about the fuel additive can be found in the “Fuel Additive” section of the present description.
  • According to certain embodiments (preferably), the fuel includes gasoline. According to certain embodiments, the gasoline incudes at least one of 92# gasoline, 95# gasoline and ethanol gasoline.
  • The following embodiments are intended to describe the present disclosure illustratively rather then restrictively.
  • Embodiment 1 is a fuel additive, which comprises 70-90 wt. % of the nonylphenol polyether amine, 10-30 wt. % of the multi-amido polyisobutylene amine, and 0-20 wt. % of the additive, based on the total weight of the fuel additive.
  • Embodiment 2 is the fuel additive according to Embodiment 1, wherein the nonylphenol polyether amine comprises the following general formula:
  • Figure US20190218467A1-20190718-C00003
  • wherein, m=1-2, n=24-26, y=1-2.
  • Embodiment 3 is the fuel additive according to Embodiment 1 or 2, wherein the nonylphenol polyether amine has a molecular weight of 1000-2000.
  • Embodiment 4 is the fuel additive according to any one of the Embodiments 1 to 3, wherein the nonylphenol polyether amine is present at a level of 80-90 wt. %.
  • Embodiment 5 is the fuel additive according to any one of the Embodiments 1 to 4, wherein the multi-amido polyisobutylene amine comprises the following general formula:
  • Figure US20190218467A1-20190718-C00004
  • wherein, R1, R2 and R3 are each independently selected from one of the group consisting of: H, CH3, C2H5, C3H7 and C4H9, n=4-18, m=2-5.
  • Embodiment 6 is the fuel additive according to any one of the Embodiments 1 to 5, wherein the multi-amido polyisobutylene amine is the polyisobutylene amine of the following structural formula with a molecular weight of 800-1200.
  • Embodiment 7 is the fuel additive according to any one of the Embodiments 1 to 6, wherein the multi-amido polyisobutylene amine includes: at least one of a nomo-amine polyisobutylene amine and a penta polyamine polyisobutylene amine.
  • Embodiment 8 is the fuel additive according to any one of the Embodiments 1 to 7, wherein the multi-amido polyisobutylene amine is present at a level of 10-20 wt. %.
  • Embodiment 9 is the fuel additive according to any one of the Embodiments 1 to 8, wherein the additive comprises at least one of a diluent and a friction modifier.
  • Embodiment 10 is the fuel additive according to any one of the Embodiments 1 to 9, wherein the additive is present at a level of 5-50 wt. %.
  • Embodiment 11 is a method for preparing the fuel additive, comprising the step of mixing the ingredients of the fuel additive according to any one of Embodiments 1 to 10.
  • Embodiment 12 is a method for using the fuel additive, comprising the step of adding the fuel additive according to any one of Embodiments 1 to 10 into a fuel.
  • Embodiment 13 is the method according to Embodiment 12, wherein the fuel is gasoline.
  • EXAMPLES
  • The following Examples and comparative Examples are used to help understand the present invention, but the scope of the present invention should not be understood as being limited to the following specific Examples and Comparative Examples. Unless otherwise indicated, all parts and percentages are based on weight.
  • Preparation of the Fuel Additive
  • Under normal temperature (about 25° C.) and normal pressure (about 1 atm), the ingredients of the fuel additive were added to a stainless steel container and mixed to obtain the fuel additive.
  • Adding the fuel additive into the fuel
  • Under normal temperature (about 25° C.) and normal pressure (about 1 atm), the fuel additive was added into the fuel (for example, gasoline) in a proportion of 1:1000.
  • The trade names, functions, chemical names and manufacturers of the ingredients used to produce the fuel additives of the Examples and Comparative Examples of the present disclosure are listed in the following table 1a.
  • TABLE 1a
    Physical and
    Trade chemical
    Name Ingredient characteristic Manufacturer
    FL-1000 Nonylphenol Molecular weight is Huntsman Chemical
    polyether amine about 1000 Trading Co., Ltd.
    PEA-PEO Nonylphenol Molecular weight is Huntsman Chemical
    polyether amine about 2000 Trading Co., Ltd.
    PIBA Polyisobutene Molecular weight is BASF China Co.,
    amine about 1200 Ltd.
    1018C Diamino Molecular weight is Qingyuanxing
    polyisobutene about 800 Chemical
    amine Technology Co. Ltd.
    1018S Penta polyamino Molecular weight is Qingyuanxing
    polyisobutene about 800 Chemical
    amine Technology Co. Ltd.
    1018T Penta polyamino Molecular weight is Qingyuanxing
    polyisobutene about 1200 Chemical
    amine Technology Co. Ltd.
    D60 Diluent Hydrocarbon solvent Exxon Mobil
    with the flash point Chemical Co. Ltd.
    of about 60° C.
    9525A Friction Complex of various Lubrizol Special
    modifiers esters Chemicals
    Manufacturing
    (Shanghai) Co., Ltd.
  • Test Method
  • In the present disclosure, “fuel engine gas intake valve carbon deposit removal rate test” is used to measure the capability of the fuel additives provided by the present disclosure to remove the carbon deposits at the gas intake valve of the fuel engine.
  • In the present disclosure, “fuel engine combustion chamber carbon deposit removal rate test” is used to measure the capability of the fuel additives provided by the present disclosure to remove the carbon deposits in the combustion chamber of the fuel engine.
  • The test reagents and test equipment involved in “fuel engine gas intake valve carbon deposit removal rate test” and “fuel engine combustion chamber carbon deposit removal rate test” are listed in the following table 1b.
  • TABLE 1b
    Test reagent or test equipment Manufacturer
    N-heptane (AR) Sinopharm Chemical Reagent
    Co., Ltd.
    Petroleum ether (AR) Jiangsu Yonghua Fine Chemicals
    Co., Ltd.
    Anhydrous ethanol (AR) Sinopharm Chemical Reagent
    Co., Ltd.
    Cyclopentadiene Lanzhou Victory Petrochemical
    Company
    93# gasoline China Petroleum and National
    Gas Co., Ltd
    L-2 type gasoline engine deposit Lanzhou Victory Petrochemical
    simulation test machine Company
    Balance (accurate color 0.1 mg) Mettler Toledo Instruments
    (Shanghai) Co., Ltd.
    Dryer (with color changing silica
    gel desiccant)
    Oven (with temperature controlled Thermo Fisher Science and
    at 100 ±2 ° C.) Technology (China) Co., Ltd.
    Micro-injector (accurate to 1 ml) Lanzhou Victory Petrochemical
    Company
    Volametric flask (300 ml) Lanzhou Victory Petrochemical
    Company
    Thermometer (accurate to 0.1° C.) Lanzhou Victory Petrochemical
    Company
  • Fuel Engine Gas Valve Carbon Deposit Removal Rate Test
    • 1. Preparation of the Carbon Deposit Collector
      • 1.1 The carbon deposit collector (an aluminium plate with 10 cm length and 8 cm width) was soaked in anhydrous ethanol for 60 minutes, until its surface was bright and had no stains. Then the carbon deposit collector was cleaned with running water and then soaked in anhydrous ethanol for 5 minutes, and then taken out with a tweezer and placed into an oven at 100° C. to dry for not less than 15 minutes.
      • 1.2 The carbon deposit collector was taken out of the oven and placed into a desiccator to cool down to room temperature (about 25° C.).
      • 1.3 After the carbon deposit collector was cool, its temperature was measured with a thermometer and recorded. The mass of the carbon deposit collector was recorded and the carbon deposit collector was placed into a desiccator for use (as noted, it should be ensured that in this step, the temperature change of the carbon deposit collector between two consecutive weighings was not more than 0.2° C., and the weighing inaccuracy deviation was less than 0.2 mg).
    • 2. Preparation of the Fuel Sample and the Fuel Additive
      • 2.1 300 ml of 93# gasoline was sampled and poured info flask 1;
      • 2.2 Under normal temperature (about 25° C.) and normal pressure (about 1 atm), 300 ml of fuel additive was poured into flask 2.
    • 3. Generation of Gasoline Deposits
      • 3.1 The time of the test time-meter was set to 70 minutes, and the 300 ml of 93# gasoline sample in the flask 1 was added into the sample bottle of L-2 type gasoline engine deposit simulation test machine, and then 0.6 ml of cyclopentadiene was added.
      • 3.2 The carbon deposit collector was loaded into the bracket slot of this simulation test machine, so that the carbon deposit collector could point to the nozzle of the simulation test machine. The temperature measuring thermocouple was plugged.
      • 3.3 The power of the simulation lest machine was turned on, and its heating switch was started, so that the temperature of the carbon deposit collector could reach 170° C. to simulate the working environment of the fuel engine gas intake valve.
      • 3.4 The air shut-off valve of this simulation test machine was opened, the gas pressure was adjusted to 80±0.5 kPa, and the flow was controlled in a steady state (700±50 L/hr).
      • 3.5 The fuel shut-off valve of the simulation test machine was opened, the oil pressure was adjusted to 7.5±0.5 kPa, the fuel flowmeter regulating valve was opened, and the flow was controlled in a steady state (4±1 ml/min).
      • 3.6 Fuel injection starts, and the switch of the time-meter was turned on to start timing.
      • 3.7 The temperature of the carbon deposit collector was maintained at 170-180° C., until the injection of 93# gasoline oil sample was completely finished, then the fuel injection device and the switch of the time-meter were closed.
      • 3.8 The temperature of the carbon deposit collector was maintained at 170-180° C. for 10 minutes, and the heating switch was closed, so that the temperature was reduced below 50° C. naturally.
      • 3.9 The temperature measuring thermocouple of the carbon deposit collector was taken out.
      • 3.10 The carbon deposit collector was taken out, and it was soaked in a beaker filled with n-heptane for 1 minute, and then it was taken out.
      • 3.11 The carbon deposit collector was immersed in a beaker filled with petroleum ether, and taken out after soaking for 1 min, and then placed into a 100° C. oven for not less than 15 minutes.
      • 3.12 The carbon deposit collector was taken out from the oven and cooled to room temperature (about 25° C.) in a desiccator.
      • 3.13 The temperature of the carbon deposit collector was measured. If the inaccuracy deviation between the temperature measured at this moment and the temperature measured before the test was less than 0.2° C., then the carbon deposit collector could be weighed.
      • 3.14 The calculation formula for the carbon deposit formation amount at the fuel engine gas intake valve is:

  • m=m 1 −m 0   (formula 1)
  • In the formula:
      • m represents the mass of the carbon deposit formed during the test, and the unit is mg;
      • m1 represents the final mass of the carbon deposit collector in the test, and the unit is mg;
      • m0 represents the initial mass of the carbon deposit collector in the test, and the unit is mg;
    • 4. Removal of the Carbon Deposits at the Fuel Engine Gas Intake Valve
      • 4.1 The time of the test time-meter was set, and the 300 ml of fuel additive in the flask 2 was added into the sample bottle of L-2 type gasoline engine deposit simulation test machine.
      • 4.2 The carbon deposit collector fully dried in the step 3.12 was loaded into this bracket slot of the simulation test machine, so that the carbon deposit collector could point to the nozzle of the simulation test machine. The temperature measuring thermocouple was plugged.
      • 4.3 The power of the simulation test machine was turned on, and its heating switch was started, so that the temperature of the carbon deposit collector could reach 170-180° C. to simulate the working environment of the fuel engine gas intake value.
      • 4.4 The air shut-off valve of this simulation test machine was opened, the gas pressure was adjusted to 80±0.5 kPa, and the flow was controlled in a steady state (700±50 L/hr).
      • 4.5 The fuel shut-off valve of this simulation test machine was opened, the oil pressure was adjusted to 7.5±0.5 kPa, the fuel flow-meter regulating valve was opened, and the flow was controlled in a steady state (4±1 ml/min).
      • 4.6 Fuel injection starts, and the switch of the time-meter was turned on to start timing.
      • 4.7 The temperature of the carbon deposit collector was maintained at the 170-180° C. until the injection of 93# gasoline oil sample was completely finished, then the fuel injection device and the switch of the time-meter were closed.
      • 4.8 The temperature of the carbon deposit collector was maintained at 170-180° C. for 10 minutes, and the heating switch was closed, so that the temperature was reduced below 50° C. naturally.
      • 4.9 The temperature measuring thermocouple of the carbon deposit collector was taken out.
      • 4.10 The carbon deposit collector was taken out, and it was soaked in a beaker filled with n-heptane, and then taken out.
      • 4.11 The carbon deposit collector was immersed in a beaker filled with petroleum ether, and taken out after soaking for 1 min, and then placed into a 100° C. oven for not less than 15 minutes.
      • 4.12 The carbon deposit collector was taken out from the oven and cooled to room temperature (about 25° C.) in a desiccator.
      • 4.13 The temperature of the carbon deposit collector was measured. If the inaccuracy deviation between the temperature measured at this moment and the temperature measured before the test was less than 0.2° C., then the carbon deposit collector could be weighed.
      • 4.14 The calculation formula for carbon deposit removal rate of the fuel engine gas intake valve is:

  • δ1=[(m−m 2)/m]×100%   (formula 2)
  • In the formula:
      • δ1 represents the carbon deposit removal rate of the fuel engine gas intake valve, and the unit is %;
      • m represents the mass of the carbon deposits formed by the 93# gasoline during the test, and the unit is mg;
      • m2 represents the final mass of the carbon deposit collector in the test, and the unit is mg.
  • Fuel engine combustion chamber carbon deposit removal rate test
  • “Automobile combustion chamber carbon deposit removal rate test” was carried out with the same method and steps as “Fuel engine gas intake valve carbon deposit removal rate test”, except that:
  • In step 3.3, the temperature of the carbon deposit collector should reach 250° C. to simulate the working environment of the fuel engine combustion chamber.
  • In step 3.7, 3.8, 3.3 and 3.8, the temperature of the carbon deposit collector should be 250° C.
  • In step 3.14, the calculation formula of the carbon deposit formation amount of the gasoline combustion chamber is:

  • n=n 1 −n 0   (formula 3)
  • In the formula:
      • n represents the mass of the carbon deposits formed during the test, and the unit is mg;
      • n1 represents the final mass of the carbon deposit collector in the test, and the unit is mg;
      • n0 represents the initial mass of the carbon deposit collector in the test, and the unit is mg.
  • In step 4.14, the calculation formula of the carbon deposit removal rate of the fuel engine combustion chamber is:

  • δ2=[(n−n 2)/n]×100%   (formula 4)
  • In the formula:
      • δ2 represents the carbon deposit removal rate of the fuel engine combustion chamber, and the unit is %;
      • n represents the mass of the carbon deposits formed by the 93# gasoline during the test, and the unit is mg;
      • n2 represents the final mass of the carbon deposit collector in the test, and the unit is mg.
    Examples 1 to 7
  • According to the method described above and on the base of the formulation listed in Table 2 (the values listed in Table 2 are all based on weight percentage), under the conditions of normal temperature (25° C.) and normal pressure (about 1 atm), the ingredients of the fuel additives were added to a stainless steel container and mixed to obtain the fuel additives 1 to 7.
  • According to the method described above, the fuel engine gas intake valve carbon deposit removal rates and the fuel engine combustion chamber carbon deposit removal rates of the fuel additives 1 to 7 were tested and the results were listed in Table 3.
  • Comparative Examples C1 to C3
  • According to the method described above and on the basis of the formulation listed in Table 2 (the values listed in Table 2 are all based on weight percentage), under the conditions of normal temperature (25° C.) and normal pressure (about 1 atm), the ingredients of the fuel additives were added to a stainless steel container and mixed to obtain the fuel additives C1 in C3.
  • According to the method described above, the fuel engine gas intake valve carbon deposit removal rate and the fuel engine combustion chamber carbon deposit removal rate of the fuel additives C1 to C3 were tested and the results are listed in Table 3.
  • TABLE 2
    FL-1000 PEA-PEO PIBA 1018C 1018S 1018T D60 9525A
    (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %) (wt. %)
    Example 1  70 30
    Example 2  80 20
    Example 3  90 10
    Example 4  85 15
    Example 5  85 15
    Example 6 85 15
    Example 7  80 13 5 2
    Comparative 100
    Example C1
    Comparative 100
    Example C2
    Comparative  90  10
    Example C3
  • TABLE 3
    Fuel engine gas intake Fuel engine combustion
    valve carbon deposit chamber carbon deposit
    removal rateδ1 (%) removal rateδ2 (%)
    Example 1 99.0 51.2
    Example 2 98.9 60.3
    Example 3 99.1 55.6
    Example 4 99.3 57.2
    Example 5 98.7 56.2
    Example 6 99.1 56.2
    Example 7 99.1 55.6
    Comparative 99.2 31.4
    Example C1
    Comparative 67.3 −3.2
    Example C2 (The negative value represents,
    relative to its mass before the
    test, the final mass of the carbon
    deposit collector is increased
    during the test)
    Comparative 98.2 27.7
    Example C3
  • According to the Examples 1-7, because the fuel additives provided by the present disclosure comprise 70-90 wt. % of a nonylphenol polyether amine and 10-30 wt. % of a multi-amido polyisobutylene amine, these fuel additives are not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • According to the Examples 2-7, when the fuel additives comprise 80-90 wt. % of a nonylphenol polyether amine and 10-20 wt. % of a multi-amido polyisobutylene amine, the fuel additives provided by the present disclosure are particularly able to effectively remove the carbon deposits in the combustion chamber of the fuel engine (δ2 is greater than 55%).
  • According to the Comparative Example C1, when the fuel additive comprises the nonylphenol polyether amine only, but does not contain the multi-amido polyisobutylene amine, this fuel additive lacks the ability to remove the carbon deposits in the combustion chamber of the fuel engine.
  • According to the Comparative Example C2, when the fuel additive comprises the multi-amido polyisobutylene amine only, this fuel additive lacks the ability to remove the carbon deposits at the gas intake valve and the combustion chamber of the fuel engine.
  • According to the Comparative Example C3, when the fuel additive comprises the nonylphenol polyether amine and the polyisobutylene amine, but does not contain the multi-amido polyisobutylene amine, this fuel additive lacks the ability to remove the carbon deposits in the combustion chamber of the fuel engine.
  • In summary, the fuel additives according to the present disclosure, are not only able to effectively remove the carbon deposits at gas intake valve of the fuel engine, but also able to effectively remove the carbon deposits in the combustion chamber of the fuel engine.
  • Although for purposes of illustration, the Embodiments described above contain many specific details, but the ordinary skilled person in the art will appreciate that many variations, modifications, substitutions and changes of such details all fall into the scope of the present disclosure which is protected by the claims. Therefore, the disclosure described in the Embodiments does not make any restriction in the present disclosure which is protected by the claims. The appropriate scope of the present disclosure should be defined by the claims and the appropriate legal equivalents. All cited references are incorporated herein by reference at its entirety.

Claims (13)

1. A fuel additive, comprising:
70-90 wt. % of a nonylphenol polyether amine;
10-30 wt. % of a multi-amido polyisobutylene amine; and
0-20 wt. % of an auxiliary additive, based on the total weight of the fuel additive.
2. The fuel additive according to claim 1, wherein the nonylphenol polyether amine includes the following general formula:
Figure US20190218467A1-20190718-C00005
wherein, m=1-2, n=24-26, y=1-2.
3. The fuel additive according to claim 2, wherein the nonylphenol polyether amine has a molecular weight of 1000-2000.
4. The fuel additive according to claim 1, wherein the nonylphenol polyether amine is present at a level of 80-90 wt. %.
5. The fuel additive according to claim 1, wherein the multi-amido polyisobutylene amine comprises the following general formula:
Figure US20190218467A1-20190718-C00006
wherein, R1, R2 and R3 are each independently selected from one of the group consisting of: H, CH3, C2H5, C3H7 and C4H9, n=4-18, m=2-5.
6. The fuel additive according to claim 5, wherein the multi-amido polyisobutylene amine has a molecular weight of 800-1200.
7. The fuel additive according to claim 1, wherein the multi-amido polyisobutylene amine comprises at least one of a diamine polyisobutylene amine and a penta-amine polyisobutylene amine.
8. The fuel additive according to claim 1, wherein the multi-amido polyisobutylene amine is present at a level of 10-20 wt. %.
9. The fuel additive according to claim 1, wherein the auxiliary additive comprises at least one of a diluent and a friction modifier.
10. The fuel additive according to claim 1, wherein the auxiliary additive is present at a level of 5-20 wt. %.
11. A method for preparing the fuel additive, comprising the step of mixing the ingredients of the fuel additive according to claim 1.
12. A method of using the fuel additive, comprising the step of adding the fuel additive according to claim 1 into a fuel.
13. The method according to claim 11, wherein the fuel is gasoline.
US15/771,513 2015-10-29 2016-10-27 Diesel additive, preparation method and usage method thereof Abandoned US20190218467A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510725315.7 2015-10-29
CN201510725315.7A CN106635204B (en) 2015-10-29 2015-10-29 Fuel oil additive, and preparation method thereof and application method
PCT/US2016/059080 WO2017075197A1 (en) 2015-10-29 2016-10-27 Fuel additive, and preparation method and usage method thereof

Publications (1)

Publication Number Publication Date
US20190218467A1 true US20190218467A1 (en) 2019-07-18

Family

ID=57241188

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/771,513 Abandoned US20190218467A1 (en) 2015-10-29 2016-10-27 Diesel additive, preparation method and usage method thereof

Country Status (3)

Country Link
US (1) US20190218467A1 (en)
CN (1) CN106635204B (en)
WO (1) WO2017075197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022060554A1 (en) * 2020-09-16 2022-03-24 Huntsman Petrochemical Llc Polyetheramine salts and their use as corrosion inhibitors and friction reducers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338078A (en) * 2017-05-31 2017-11-10 中国石化销售有限公司 A kind of energy-efficient gasoline products
CN109181746B (en) * 2018-09-21 2021-02-12 武汉工程大学 Novel fuel oil desulfurization extracting agent and corresponding extraction desulfurization method
CN111635786A (en) * 2020-05-23 2020-09-08 无锡市伙伴日化科技有限公司 Fuel additive, preparation method thereof and fuel using same
CN112410131B (en) * 2020-11-09 2022-04-12 3M中国有限公司 Cleaning composition for engine intake valve deposits, method for producing the same, and method for cleaning engine intake valve deposits
CN113025448B (en) * 2021-02-25 2022-10-11 3M中国有限公司 Cleaning composition for engine fuel system deposits, preparation method thereof and method for cleaning engine fuel system deposits

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034018A (en) * 1987-11-30 1991-07-23 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines (PT-731)
CN104496115A (en) * 2014-12-13 2015-04-08 周桂英 Draft beer plant wastewater treatment method and treatment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9104137D0 (en) * 1991-02-27 1991-04-17 Exxon Chemical Patents Inc Fuel additives
US5567211A (en) * 1995-08-03 1996-10-22 Texaco Inc. Motor fuel detergent additives
KR20100131991A (en) * 2008-02-01 2010-12-16 바스프 에스이 Specific polyisobuteneamines and their use as detergents in fuels
CN104498115B (en) * 2014-12-30 2017-01-18 3M中国有限公司 Fuel additive as well as preparation method and application method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034018A (en) * 1987-11-30 1991-07-23 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines (PT-731)
CN104496115A (en) * 2014-12-13 2015-04-08 周桂英 Draft beer plant wastewater treatment method and treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022060554A1 (en) * 2020-09-16 2022-03-24 Huntsman Petrochemical Llc Polyetheramine salts and their use as corrosion inhibitors and friction reducers

Also Published As

Publication number Publication date
CN106635204A (en) 2017-05-10
CN106635204B (en) 2018-07-24
WO2017075197A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
US20190218467A1 (en) Diesel additive, preparation method and usage method thereof
CN104498115B (en) Fuel additive as well as preparation method and application method thereof
CN103160345B (en) Carbinol group clean fuel concoction accessory ingredient and purpose thereof
CN104099615A (en) Imidazoline type neutralization corrosion inhibitor and preparation method thereof
CN101418241B (en) Methanol gasoline fuel
CN112251297B (en) Engine carbon deposit cleaning composition, method for preparing engine carbon deposit cleaning composition and method for cleaning engine carbon deposit
US20180320095A1 (en) Diesel additive, preparation method and usage method thereof
CN111139142B (en) Cleaning composition, fuel additive, automobile air intake system cleaning agent and using method thereof
CN104213126B (en) A kind of rust preventive for metal surface and preparation method thereof
CN107974313A (en) A kind of preparation method of octane number accelerating agent
CN104559764B (en) A kind of organosilicon composite corrosion inhibitor and preparation method thereof
CN106929859A (en) A kind of water-based antirust of residual less and preparation method thereof
CN114341319A (en) Fuel additives, methods of using fuel additives, and fuel mixtures
CN113295634A (en) Method for measuring silicon content of spray-formed aluminum alloy
CN106987299B (en) Gasoline, natural gas double fuel engine lubricating oil and preparation method thereof
CN109735861A (en) A kind of carbon on engine cleaning agent and preparation method thereof
JP2021031624A (en) Fuel oil composition for internal combustion engine
CN113025448B (en) Cleaning composition for engine fuel system deposits, preparation method thereof and method for cleaning engine fuel system deposits
US3008814A (en) Antiknock motor fuels
CN104562035B (en) Silicon-containing corrosion inhibitor composition and preparation method thereof
CN106590783B (en) A kind of octane rating promoter composition and preparation method thereof meeting five gasoline of state
CN105734580B (en) A kind of silicon systems macromolecular composite corrosion inhibitor and preparation method thereof
CN104562039A (en) Novel corrosion inhibitor composition and preparation method thereof
CN104531240B (en) Low temperature flow improver for diesel fuel
CN112410131B (en) Cleaning composition for engine intake valve deposits, method for producing the same, and method for cleaning engine intake valve deposits

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUO, XIN;SHI, ZHIYU;CHENG, HUNG CHE;AND OTHERS;SIGNING DATES FROM 20181019 TO 20190304;REEL/FRAME:048759/0015

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION