US20190203316A1 - High-strength steel sheet and production method therefor - Google Patents

High-strength steel sheet and production method therefor Download PDF

Info

Publication number
US20190203316A1
US20190203316A1 US16/327,024 US201716327024A US2019203316A1 US 20190203316 A1 US20190203316 A1 US 20190203316A1 US 201716327024 A US201716327024 A US 201716327024A US 2019203316 A1 US2019203316 A1 US 2019203316A1
Authority
US
United States
Prior art keywords
less
temperature
rolled sheet
cold
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/327,024
Other languages
English (en)
Inventor
Hidekazu Minami
Shinjiro Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Assigned to JFE STEEL CORPORATION reassignment JFE STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANEKO, SHINJIRO, MINAMI, HIDEKAZU
Publication of US20190203316A1 publication Critical patent/US20190203316A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present disclosure relates to a high-strength steel sheet with excellent formability which is suitable mainly for automobile structural members and a production method therefor, and in particular to provision of a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more, not only excellent ductility but also excellent stretch flangeability, and excellent in-plane anisotropy of TS.
  • TS tensile strength
  • high-strength steel sheets having a TS of 780 MPa or more and reduced in thickness have been increasingly applied to automobile structural members. Further, in recent years, examination has been made of applications of ultra-high-strength steel sheets with 980 MPa and 1180 MPa grade TS.
  • JP 2014-189868 A discloses a high-strength steel sheet that has a chemical composition containing, in mass %, C: 0.15% to 0.40%, Si: 1.0% to 2.0%, Mn: 1.5% to 2.5%, P: 0.020% or less, S: 0.0040% or less, Al: 0.01% to 0.1%, N: 0.01% or less, and Ca: 0.0020% or less, with the balance being Fe and inevitable impurities, and has a microstructure in which, in area fraction to the whole microstructure, ferrite phase and bainite phase in total are 40% to 70%, martensite phase is 20% to 50%, and retained austenite phase is 10% to 30%.
  • Such a high-strength steel sheet has a tensile strength of 900 MPa or more, and excellent elongation, stretch flangeability, and bendability.
  • JP 5454745 B2 discloses a high-strength steel sheet that has a steel component composed of a composition containing, in mass %, C: 0.10% or more and 0.59% or less, Si: 3.0% or less, Mn: 0.5% or more and 3.0% or less, P: 0.1% or less, S: 0.07% or less, Al: 3.0% or less, and N: 0.010% or less where [Si %]+[Al %] ([X %] is mass % of element X) satisfies 0.7% or more, with the balance being Fe and inevitable impurities, and has a steel sheet microstructure in which, in area fraction to the whole steel sheet microstructure, the area fraction of martensite is 5% to 70%, the amount of retained austenite is 5% to 40%, the area fraction of bainitic ferrite in upper bainite is 5% or more, the total of the area fraction of martensite, the area fraction of retained austenite, and the area fraction of bainitic
  • JP 5728115 B2 discloses a high-strength steel sheet that contains, in mass %, C: 0.10% to 0.5%, Si: 1.0% to 3.0%, Mn: 1.5% to 3%, Al: 0.005% to 1.0%, P: more than 0% and 0.1% or less, and S: more than 0% and 0.05% or less with the balance being iron and inevitable impurities, and has a metal microstructure that includes polygonal ferrite, bainite, tempered martensite, and retained austenite and in which the area fraction a of the polygonal ferrite to the whole metal microstructure is 10% to 50%, the bainite has a multi-phase of high-temperature-induced bainite in which the average center position distance between adjacent retained austenite grains, between adjacent carbide particles, and between adjacent retained austenite grains and carbide particles is 1 ⁇ m or more and low-temperature-induced bainite in which the average center position distance between adjacent retained austenite grains, between adjacent carbide particles, and between
  • PTL 1 to PTL 3 disclose high-strength steel sheets excellent in elongation, stretch flangeability, and bendability as workability, in-plane anisotropy of TS is not considered in any of PTL 1 to PTL 3.
  • excellent ductility i.e. “excellent El (total elongation)” denotes that the value of TS ⁇ El is 19000 MPa ⁇ % or more.
  • excellent stretch flangeability denotes that the value of X, which is an index of stretch flangeability, is 20% or more regardless of the strength of the steel sheet.
  • excellent in-plane anisotropy of TS denotes that the value of
  • is calculated according to the following equation (1):
  • TS L , TS D , and TS C are TS values measured by performing a tensile test at a crosshead speed of 10 mm/min in accordance with JIS Z 2241 (2011) respectively using JIS No. 5 test pieces collected in three directions: the rolling direction (L direction) of the steel sheet, the direction (D direction) of 45° with respect to the rolling direction of the steel sheet, and the direction (C direction) orthogonal to the rolling direction of the steel sheet.
  • An appropriate amount of fine retained austenite can be contained in the microstructure after final annealing, by heating a slab having an appropriately adjusted chemical composition, then subjecting the slab to hot rolling and optionally hot band annealing to soften the hot-rolled sheet, thereafter subjecting the hot-rolled sheet to cold rolling, heating the obtained cold-rolled sheet and subjecting the cold-rolled sheet to first annealing in an austenite single phase region and then controlled cooling, to suppress ferrite transformation and pearlite transformation and cause the microstructure before second annealing to be mainly composed of martensite single phase, bainite single phase, or martensite and bainite mixed phase.
  • a high-strength steel sheet having a TS of 780 MPa or more, not only excellent ductility but also excellent stretch flangeability, and excellent in-plane anisotropy of TS can thus be produced.
  • a high-strength steel sheet comprising:
  • reheating the cold-rolled sheet to a reheating temperature range that is (the T 2 temperature ⁇ 50° C.) or more (i.e. 50° C. below the T 2 temperature or more) and (the T 2 temperature+50° C.) or less (i.e. 50° C. above the T 2 temperature or less) and is (the cooling end temperature+5° C.) or more (i.e. 5° C. above the cooling end temperature or more); and holding the cold-rolled sheet in the reheating temperature range for a time of 10 s or more, wherein
  • [% X] denotes a content of an element X in the steel sheet in mass %, and is 0 for any element not contained in the steel sheet.
  • Bainite in particular upper bainite, is described below. Transformation from austenite to bainite occurs over a wide temperature range of approximately 150° C. to 550° C., and various types of bainite form in this temperature range. Although these various types of bainite are often simply defined as “bainite” with regard to conventional techniques, upper bainite and lower bainite are separately defined herein because of the need to precisely specify bainite microstructure in order to achieve desired workability.
  • the inverse intensity ratio of ⁇ -fiber to ⁇ -fiber can be calculated as follows: Using wet polishing and buffing with a colloidal silica solution, the surface of a cross section (L-cross section) of the steel sheet taken in the sheet thickness direction parallel to the rolling direction is smoothed. The resultant sample surface is then etched with 0.1 vol. % nital so as to reduce irregularities on the surface as much as possible and completely remove the work affected layer. Following this, crystal orientation at a position of sheet thickness ⁇ 1 ⁇ 4 of the steel sheet (a position at a depth of one-fourth of the sheet thickness from the steel sheet surface) is measured using SEM-EBSD (Electron Backscatter Diffraction). Using OIM Analysis available from AMETEK EDAX, the inverse intensity of each of ⁇ -fiber and ⁇ -fiber is determined from the obtained data, to calculate the inverse intensity ratio of ⁇ -fiber to ⁇ -fiber.
  • the finisher delivery temperature in the hot rolling needs to be 800° C. or more and 1000° C. or less.
  • the finisher delivery temperature is preferably 820° C. or more and 950° C. or less.
  • Finish rolling may be performed continuously by joining rough-rolled sheets in the hot rolling.
  • Rough-rolled sheets may be coiled on a temporary basis.
  • At least part of finish rolling may be conducted as lubrication rolling to reduce the rolling load in the hot rolling.
  • Such lubrication rolling is effective from the perspective of making the shape and material properties of the steel sheet uniform.
  • the coefficient of friction in the lubrication rolling is preferably in a range of 0.10 to 0.25.
  • Second Average Cooling Rate is Higher than Second Average Cooling Rate
  • This cooling to (T 2 temperature ⁇ 10° C.) or less is intended to increase the degree of undercooling of upper bainite transformation in the holding after the reheating. If the lower limit of the cooling end temperature after the second annealing treatment is less than 150° C., non-transformed austenite is almost entirely transformed into martensite at this point, so that desired amounts of upper bainite and retained austenite cannot be ensured. If the upper limit of the cooling end temperature after the second annealing treatment is more than (T 2 temperature ⁇ 10° C.), the amounts of upper bainite and retained austenite defined in the present disclosure cannot be ensured. The cooling end temperature after the second annealing treatment is therefore 150° C. or more and (T 2 temperature ⁇ 10° C.) or less.
  • the reheating temperature is less than (cooling end temperature+5° C.), the driving force for upper bainite transformation cannot be obtained, and desired amounts of upper bainite and retained austenite cannot be ensured.
  • the reheating temperature is therefore (cooling end temperature+5° C.) or more.
  • the temperature difference between the reheating temperature and the cooling end temperature has no upper limit, as long as the reheating temperature is not more than (T 2 temperature+50° C.) which is the upper limit temperature.
  • the holding time in the reheating temperature range is less than 10 s, the time for the concentration of C into austenite to progress is insufficient, making it difficult to obtain a desired volume fraction of retained austenite in the end.
  • the holding time in the reheating temperature range is therefore 10 s or more. If the holding time is more than 1000 s, the volume fraction of retained austenite does not increase and ductility does not improve significantly, where the effect is saturated.
  • the holding time in the reheating temperature range is therefore preferably 1000 s or less.
  • Cooling after the holding is not limited, and any method may be used to cool the steel sheet to a desired temperature.
  • the desired temperature is preferably around room temperature.
  • the steel sheet subjected to the above-described annealing treatment is immersed in a galvanizing bath at 440° C. or more and 500° C. or less for hot-dip galvanizing, after which coating weight adjustment is performed using gas wiping or the like.
  • a galvanizing bath with a Al content of 0.10 mass % or more and 0.23 mass % or less is preferably used.
  • the alloying treatment is performed on the galvanized layer in a temperature range of 470° C. to 600° C. after the hot-dip galvanizing treatment.
  • the alloying treatment is preferably performed on the galvanized layer in a temperature range of 470° C. to 600° C. Electrogalvanization may be performed.
  • the coating weight is preferably 20 g/m 2 to 80 g/m 2 per side (in the case of both-sided coating).
  • a galvannealed steel sheet (GA) is preferably subjected to alloying treatment so that the Fe concentration in the coated layer is 7 mass % to 15 mass %.
  • the skin pass rolling is preferably performed with a rolling reduction of 0.1% or more and 2.0% or less.
  • a rolling reduction of less than 0.1% is not very effective and complicates control, and hence 0.1% is the lower limit of the favorable range.
  • a rolling reduction of more than 2.0% significantly decreases productivity, and thus 2.0% is the upper limit of the favorable range.
  • hot-dip galvanized steel sheets GI
  • galvannealed steel sheets GA
  • electrogalvanized steel sheets EG
  • hot-dip galvanizing baths were a zinc bath containing 0.14 mass % or 0.19 mass % of Al for GI and a zinc bath containing 0.14 mass % of Al for GA, and in each case the bath temperature was 470° C.
  • the coating weight per side was 72 g/m 2 or 45 g/m 2 in GI (in the case of both-sided coating), and 45 g/m 2 in GA (in the case of both-sided coating).
  • the Fe concentration in the coated layer of each hot-dip galvannealed steel sheet (GA) was 9 mass % or more and 12 mass % or less.
  • T 1 temperature (° C.) 946 ⁇ 203 ⁇ [% C] 1/2 +45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn]+150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu]+11 ⁇ [% Cr]+400 ⁇ [% Ti].
  • the T 1 temperature denotes the Ac 3 point
  • the T 2 temperature denotes the upper bainite transformation start temperature
  • the tensile test was performed in accordance with JIS Z 2241 (2011) to measure TS (tensile strength) and El (total elongation), using JIS No. 5 test pieces collected so that the longitudinal direction of each tensile test piece coincided with three directions: the rolling direction (L direction) of the steel sheet, the direction (D direction) of 45° with respect to the rolling direction of the steel sheet, and the direction (C direction) orthogonal to the rolling direction of the steel sheet.
  • ductility, i.e. El was determined as excellent in the case where the value of TS ⁇ El was 19000 MPa ⁇ % or more.
  • the in-plane anisotropy of TS was determined as excellent in the case where the value of
  • F ferrite
  • UB upper bainite
  • M martensite
  • TM tempered martensite
  • RA retained austenite
  • P pearlite
  • LB lower bainite
  • cementite
  • AF acicular ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
US16/327,024 2016-08-31 2017-08-29 High-strength steel sheet and production method therefor Abandoned US20190203316A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-169730 2016-08-31
JP2016169730A JP6315044B2 (ja) 2016-08-31 2016-08-31 高強度鋼板およびその製造方法
PCT/JP2017/030893 WO2018043473A1 (ja) 2016-08-31 2017-08-29 高強度鋼板およびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030893 A-371-Of-International WO2018043473A1 (ja) 2016-08-31 2017-08-29 高強度鋼板およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/447,973 Division US11578381B2 (en) 2016-08-31 2021-09-17 Production method for high-strength steel sheet

Publications (1)

Publication Number Publication Date
US20190203316A1 true US20190203316A1 (en) 2019-07-04

Family

ID=61301014

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/327,024 Abandoned US20190203316A1 (en) 2016-08-31 2017-08-29 High-strength steel sheet and production method therefor
US17/447,973 Active 2037-10-02 US11578381B2 (en) 2016-08-31 2021-09-17 Production method for high-strength steel sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/447,973 Active 2037-10-02 US11578381B2 (en) 2016-08-31 2021-09-17 Production method for high-strength steel sheet

Country Status (7)

Country Link
US (2) US20190203316A1 (ja)
EP (1) EP3508600B1 (ja)
JP (1) JP6315044B2 (ja)
KR (1) KR102239637B1 (ja)
CN (1) CN109642288B (ja)
MX (1) MX2019002331A (ja)
WO (1) WO2018043473A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180016656A1 (en) * 2015-02-03 2018-01-18 Jfe Steel Corporation High-strength steel sheet and production method therefor
US20180023160A1 (en) * 2015-02-03 2018-01-25 Jfe Steel Corporation High-strength steel sheet and production method therefor
CN113215485A (zh) * 2021-04-15 2021-08-06 首钢集团有限公司 一种780MPa级热基镀层双相钢及其制备方法
US11401595B2 (en) 2016-08-31 2022-08-02 Jfe Steel Corporation High-strength steel sheet and production method therefor
US11578381B2 (en) 2016-08-31 2023-02-14 Jfe Steel Corporation Production method for high-strength steel sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186694B2 (ja) 2016-05-10 2022-12-09 ユナイテッド ステイツ スチール コーポレイション 高強度鋼製品及び該製品を製造するためのアニーリング工程
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
WO2020245626A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
KR20220024956A (ko) * 2019-07-31 2022-03-03 제이에프이 스틸 가부시키가이샤 고강도 강판, 고강도 부재 및 그것들의 제조 방법
WO2021034851A1 (en) * 2019-08-19 2021-02-25 United States Steel Corporation High strength steel products and annealing processes for making the same
MX2022010479A (es) * 2020-02-28 2022-09-19 Jfe Steel Corp Chapa de acero, miembro y metodos para fabricar la misma.
KR102379444B1 (ko) * 2020-07-22 2022-03-28 주식회사 포스코 성형성 및 가공경화율이 우수한 강판
JP7461840B2 (ja) * 2020-09-07 2024-04-04 株式会社神戸製鋼所 高強度鋼板、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
CN113174554B (zh) * 2021-04-02 2023-01-03 酒泉钢铁(集团)有限责任公司 一种铁基非晶纳米晶复合聚磁介质棒及其制备方法
CN113528933B (zh) * 2021-05-31 2023-05-26 武汉钢铁有限公司 一种热连轧复相高强钢及其生产方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256560A (en) 1975-11-05 1977-05-10 Keisuke Honda Fish finder allowing discrimination of fish type
JPS5943157B2 (ja) 1982-10-29 1984-10-19 工業技術院長 ピキア属菌によるソルビト−ルの製造法
JP4510488B2 (ja) 2004-03-11 2010-07-21 新日本製鐵株式会社 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
KR20090004840A (ko) * 2005-10-24 2009-01-12 엑손모빌 업스트림 리서치 캄파니 낮은 항복 비, 높은 인성 및 탁월한 용접성을 갖는 고강도복합조직 강
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4853575B2 (ja) * 2009-02-06 2012-01-11 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
WO2010114131A1 (ja) 2009-04-03 2010-10-07 株式会社神戸製鋼所 冷延鋼板およびその製造方法
JP5786319B2 (ja) 2010-01-22 2015-09-30 Jfeスチール株式会社 耐バリ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
KR101614230B1 (ko) * 2011-09-30 2016-04-20 신닛테츠스미킨 카부시키카이샤 베이킹 경화성이 우수한 고강도 용융 아연 도금 강판, 고강도 합금화 용융 아연 도금 강판 및 그것들의 제조 방법
EP2765212B1 (en) * 2011-10-04 2017-05-17 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
JP5821810B2 (ja) * 2012-08-28 2015-11-24 新日鐵住金株式会社 細粒鋼板の製造方法
JP5862591B2 (ja) 2013-03-28 2016-02-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2015015739A1 (ja) 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
KR101753510B1 (ko) 2013-08-02 2017-07-04 제이에프이 스틸 가부시키가이샤 고강도 고영률 강판 및 그 제조 방법
JP5821912B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP5728115B1 (ja) 2013-09-27 2015-06-03 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
EP3178957B1 (en) 2014-08-07 2018-12-19 JFE Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
MX2017001689A (es) 2014-08-07 2017-04-27 Jfe Steel Corp Lamina de acero de alta resistencia y metodo de produccion para la misma, y metodo de produccion para lamina de acero galvanizada de alta resistencia.
MX2017001529A (es) * 2014-08-07 2017-05-11 Jfe Steel Corp Lamina de acero de alta resistencia y metodo de produccion para la misma, y metodo de produccion para lamina de acero galvanizada de alta resistencia.
JP6032299B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032300B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032298B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2017169561A1 (ja) 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6315044B2 (ja) 2016-08-31 2018-04-25 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP3508601B1 (en) 2016-08-31 2020-03-18 JFE Steel Corporation High-strength steel plate and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180016656A1 (en) * 2015-02-03 2018-01-18 Jfe Steel Corporation High-strength steel sheet and production method therefor
US20180023160A1 (en) * 2015-02-03 2018-01-25 Jfe Steel Corporation High-strength steel sheet and production method therefor
US10934600B2 (en) * 2015-02-03 2021-03-02 Jfe Steel Corporation High-strength steel sheet and production method therefor
US11035019B2 (en) * 2015-02-03 2021-06-15 Jfe Steel Corporation High-strength steel sheet and production method therefor
US11401595B2 (en) 2016-08-31 2022-08-02 Jfe Steel Corporation High-strength steel sheet and production method therefor
US11578381B2 (en) 2016-08-31 2023-02-14 Jfe Steel Corporation Production method for high-strength steel sheet
CN113215485A (zh) * 2021-04-15 2021-08-06 首钢集团有限公司 一种780MPa级热基镀层双相钢及其制备方法

Also Published As

Publication number Publication date
CN109642288A (zh) 2019-04-16
EP3508600B1 (en) 2020-06-24
JP2018035399A (ja) 2018-03-08
MX2019002331A (es) 2019-05-16
WO2018043473A1 (ja) 2018-03-08
US20220002832A1 (en) 2022-01-06
KR102239637B1 (ko) 2021-04-13
US11578381B2 (en) 2023-02-14
EP3508600A4 (en) 2019-07-10
KR20190045277A (ko) 2019-05-02
EP3508600A1 (en) 2019-07-10
CN109642288B (zh) 2021-03-12
JP6315044B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
US11578381B2 (en) Production method for high-strength steel sheet
US10570475B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US11401595B2 (en) High-strength steel sheet and production method therefor
US10662495B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10711333B2 (en) High-strength steel sheet and method for manufacturing same
US10662496B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10954578B2 (en) High-strength steel sheet and method for manufacturing same
US10934600B2 (en) High-strength steel sheet and production method therefor
US11447841B2 (en) High-strength steel sheet and method for producing same
US10472697B2 (en) High-strength steel sheet and production method therefor
US11035019B2 (en) High-strength steel sheet and production method therefor
US20170204490A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
US20190276907A1 (en) Steel sheet, coated steel sheet, and methods for manufacturing same
US11447840B2 (en) High-strength steel sheet and method for producing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: JFE STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MINAMI, HIDEKAZU;KANEKO, SHINJIRO;REEL/FRAME:048396/0098

Effective date: 20181206

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION