US20190189494A1 - Package structure and manufacturing method thereof - Google Patents

Package structure and manufacturing method thereof Download PDF

Info

Publication number
US20190189494A1
US20190189494A1 US15/847,936 US201715847936A US2019189494A1 US 20190189494 A1 US20190189494 A1 US 20190189494A1 US 201715847936 A US201715847936 A US 201715847936A US 2019189494 A1 US2019189494 A1 US 2019189494A1
Authority
US
United States
Prior art keywords
package
singulated
encapsulation
integrated circuit
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/847,936
Other versions
US10304716B1 (en
Inventor
Hsing-Te Chung
Yong-Cheng Chuang
Kuo-Ting Lin
Nan-Chun Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powertech Technology Inc
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to US15/847,936 priority Critical patent/US10304716B1/en
Assigned to POWERTECH TECHNOLOGY INC. reassignment POWERTECH TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUANG, YONG-CHENG, CHUNG, HSING-TE, LIN, KUO-TING, LIN, NAN-CHUN
Priority to JP2018074451A priority patent/JP2019114761A/en
Priority to TW107144142A priority patent/TW201929103A/en
Priority to CN201811563080.6A priority patent/CN109979832A/en
Application granted granted Critical
Publication of US10304716B1 publication Critical patent/US10304716B1/en
Publication of US20190189494A1 publication Critical patent/US20190189494A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68309Auxiliary support including alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/48149Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the wire connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48155Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48157Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48159Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4905Shape
    • H01L2224/49051Connectors having different shapes
    • H01L2224/49052Different loop heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/85005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06506Wire or wire-like electrical connections between devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate

Definitions

  • the present invention relates to a manufacturing method thereof, and more particularly, to a manufacturing method of package structure.
  • wafer level or panel level package is to be understood as meaning that the entire packaging and all the interconnections on the wafer as well as other processing steps such as wire bonding, die bonding or molding, are carried out before the singulation by dicing into a plurality of semiconductor dies.
  • it requires large-scale equipment to perform such processes in wafer or panel level format.
  • it requires very heavy capital investment for such large-scale equipment, while such capital investment does not provide cost benefits. Therefore, how to accomplish the processing steps using existing equipment to minimize equipment costs and overall manufacturing costs has become a challenge to researchers in the field.
  • the invention provides a manufacturing method of a package structure, which increases the production and provides processing stability.
  • the invention provides a manufacturing method of a package structure.
  • the method includes the following steps.
  • a package panel is provided.
  • the package panel includes a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are distributed on the first encapsulation and the first integrated circuit components.
  • the first encapsulation of the package panel is cut to form a plurality of singulated package strips.
  • Each of the singulated package strips includes a first singulated encapsulation, one of the redistribution circuit patterns and at least one of the first integrated circuit components encapsulated by the first singulated encapsulation.
  • One of the singulated package strips is attached onto an attachment region of a substrate.
  • the substrate includes at least one tooling hole distributed outside of the attachment region.
  • a package process is performed over the singulated package strip attached onto the substrate with the substrate affixed through the at least one tooling hole to form the package structure.
  • the invention provides a manufacturing method of a package structure.
  • the method includes the following steps.
  • a package panel is provided in a first process chamber.
  • the package panel includes a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are distributed on the first encapsulation and the first integrated circuit components.
  • the first encapsulation of the package panel is cut to form a plurality of singulated package strips in the first process chamber.
  • Each of the singulated package strips includes a first singulated encapsulation, one of the redistribution circuit patterns and at least one of the first integrated circuit components encapsulated by the first singulated encapsulation.
  • the singulated package strips are transferred to a second process chamber.
  • At least one holding fixture is configured in the second process chamber.
  • One of the singulated package strips is attached onto an attachment region of a substrate in the second process chamber.
  • the substrate includes at least one tooling hole distributed outside of the attachment region.
  • the substrate is affixed by the at least one holding fixture in the second process chamber.
  • the at least one holding fixture corresponding to the at least one tooling hole of the substrate.
  • a package process is performed over the singulated package strip attached onto the substrate to form the package structure in the second process chamber.
  • the package panel is cut to form the singulated package strips before the package process so as to avoid using large-scale equipment to perform such package process.
  • existing equipment may be leveraged with changes and compatible to the manufacturing process flow and also it maintains a stable manufacturing process which can be cost optimized according to the applications being implemented in the package.
  • FIG. 1 is a schematic cross-sectional view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 2A is a schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 2B is a schematic cross-sectional view illustrating along the line A-A of the manufacturing method of the package structure in FIG. 2A .
  • FIG. 3A is schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 3B is a schematic cross-sectional view along the line A-A of the manufacturing method of the package structure in FIG. 3A .
  • FIG. 3C to FIG. 3D are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 1 is a schematic cross-sectional view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 1 shows a portion of a package at an intermediate stage of manufacturing process.
  • a plurality of redistribution circuit patterns 120 is formed over a carrier 110 a .
  • the carrier 110 a is, for example, a glass substrate or other suitable substrate material, which is not limited thereto as long as the material is able to withstand the subsequent processes while carrying the package formed thereon.
  • the redistribution circuit patterns 120 include a first surface 120 a and a second surface 120 b opposite to the first surface 120 a .
  • the second surface 120 b faces towards and is adhered to the carrier 110 a .
  • a plurality of conductive terminals 150 are formed over the first surface 120 a of the redistribution circuit patterns 120 by a placement process and/or a reflow process so as to electrically connect to the redistribution circuit patterns 120 .
  • the conductive terminals 150 may be conductive bumps, conductive pillars or other possible forms and shapes, which is not limited thereto.
  • a plurality of first integrated circuit components 130 are formed over the first surface 120 a of the redistribution circuit patterns 120 with the conductive terminals 150 surrounding the first integrated circuit components 130 .
  • the first integrated circuit component 130 has a rear surface 130 a and an active surface 130 b opposite to the rear surface 130 a .
  • the active surface 130 b of the first integrated circuit components 130 are electrically connected to the redistribution circuit patterns 120 by bumps 130 c .
  • the first integrated circuit components 130 may be an ASIC (Application-Specific Integrated Circuit) or other suitable active devices, which is not limited thereto.
  • the chip bonding process of the first integrated circuit components 130 is performed prior to the formation of the conductive terminals 150 .
  • the chip bonding process of the first integrated circuit components 130 is performed after the formation of the conductive terminals 150 .
  • a first encapsulation 140 is formed over the first surface 120 a of the redistribution circuit patterns 120 to encapsulate the first integrated circuit components 130 and the conductive terminals 150 .
  • the first encapsulation 140 may be a molding compound formed by molding processes.
  • the first encapsulation 140 may be formed by an insulating material such as epoxy or other suitable insulating resins, which is not limited thereto.
  • the first encapsulation 140 may be grinded by a chemical mechanical polishing (CMP) or other suitable grinding technique in order to expose the conductive terminals 150 and reduce the overall thickness of the package structure 400 (shown in FIG. 3D ).
  • CMP chemical mechanical polishing
  • the rear surface 130 a of the first integrated circuit components 130 and the conductive terminals 150 may be exposed simultaneously.
  • the exposed rear surface 130 a of the integrated circuit components 130 and the exposed surface of the conductive terminals 150 may be aligned after grinding.
  • the conductive terminals 150 may be exposed while the rear surface 130 a of the first integrated circuit components 130 may be covered by the first encapsulation 140 .
  • the thickness of the first integrated circuit components 130 may be, for instance, less than the diameter (or thickness) of the grinded conductive terminals 150 . In some embodiment, the grinding process may be omitted depending on the design requirement.
  • the second surface 120 b of the redistribution circuit patterns 120 is de-bonded from the carrier 110 a by physical treatment (e.g. laser lift-off process) or chemical treatment (e.g. chemical etching).
  • the de-bonding layer (not shown) may be disposed between the second surface 120 b of the redistribution circuit patterns 120 and the carrier 100 a .
  • the de-bonding layer may be formed on the carrier 100 a prior to the formation of the redistribution circuit patterns 120 .
  • the de-bonding between the redistribution circuit patterns 120 and the carrier 110 a may be performed by peeling off the de-bonding layer from the redistribution circuit patterns 120 or the carrier 100 a.
  • FIG. 2A is a schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention
  • FIG. 2B is a schematic cross-sectional view illustrating along the line A-A of the manufacturing method of the package structure in FIG. 2A
  • the structure illustrated in FIG. 1 is flipped upside down and disposed on the carrier 110 b to form the package panel 200 after de-bonding the second surface 120 b of the redistribution circuit patterns 120 from the carrier 110 a . Therefore, the package panel 200 is provided with the second surface 120 b facing upward.
  • the first integrated circuit components 130 may be arranged in an array on the carrier 110 b.
  • FIG. 3A is schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 3B is a schematic cross-sectional view along the line A-A of the manufacturing method of the package structure in FIG. 3A .
  • the package panel 200 sealed with the first encapsulation 140 is cut along the scribe line into strip level to form a plurality of singulated package strips 300 .
  • the cutting process in a two-dimensional array, such as a set of row cuts and column cuts may be performed by rotating blade or laser beam, which is not limited thereto.
  • each of the singulated package strips 300 includes a first singulated encapsulation 240 , one of the redistribution circuit patterns 120 and at least one of the first integrated circuit components 130 encapsulated by the first singulated encapsulation 240 .
  • the aforementioned processes may be performed in a first process chamber (not illustrated) with large-scale equipment.
  • the singulated package strips 300 may be transferred to a second process chamber (not illustrated) with relatively small-scale equipment in order to perform the following processes.
  • the first process chamber and the second process chamber may be isolated or combined, which is not limited thereto.
  • the equipment in the first process chamber may perform the package process in a wafer level or a panel level
  • the equipment in the second process chamber may perform the package process in a strip level or a block level for efficient assembly.
  • the existing assembly technologies and the existing equipment may be compatible to perform the subsequent package process instead of performing the most package process or even the entire package process with large-scale equipment.
  • the singulated package strip 300 is attached onto an attachment region 310 a of a substrate 310 .
  • the substrate 310 is, for example, a glass or other suitable material. It should be noted that the shape, material and thickness of the substrate construe no limitation in the invention as long the substrate 310 is able to withstand the subsequent processes while carrying the package structure formed thereon.
  • an adhesive layer 330 is at least formed on the attachment region 310 a of the substrate 310 to enhance the adhesion between the singulated package strips 300 and the substrate 310 .
  • the formation of the adhesive layer 330 on the substrate 310 may be, for instance, performed prior to or after the transferring process of the singulated package strips 300 .
  • the formation of the adhesive layer 330 on the substrate 310 is performed before attaching one of the singulated package strips 300 onto the attachment region 310 a of the substrate 310 .
  • the adhesive layer 330 may be formed by, for example, attaching a film, applying a paste or glue, or other suitable material and manner, which is not limited thereto.
  • the area of the substrate 310 is greater than the area of the singulated package strip 300 .
  • the substrate 310 includes at least one tooling hole 320 distributed outside of the attachment region 310 a .
  • the tooling holes 320 may be distributed at a periphery area surrounding the attachment region 310 a .
  • the tooling hole 320 may be utilized for alignment or affixation of the substrate 310 for the subsequent processes. It should be noted that although three tooling holes 320 are shown in FIG. 3A , the amount of tooling holes 320 is not limited thereto.
  • the tooling holes 320 may be located on the different planes with the adhesive layer 330 . For instance, the tooling holes 320 may be disposed on the sidewalls of the substrate 310 . The configuration of the tooling holes is not limited thereto.
  • the process equipment in the second chamber may perform the subsequent processes by positioning the tooling holes 320 so as to align the location of the singulated package strips 300 on the substrate 310 .
  • the substrate 310 may be affixed by the tooling holes 320 fixed with a holding fixture (not illustrated).
  • the holding fixture provides a mechanical support for the substrate 310 .
  • the holding fixture may be configured in the second process chamber or to the transferring equipment so as to ensure performing the processes in a stable state.
  • the holding fixture may be positioned at the tooling holes 320 of the substrate 310 .
  • the holding fixture may include a plurality of pins which corresponds to the tooling holes 320 .
  • the pins of the holding fixture may be inserted into the tooling holes to avoid any undesired movement or shift of the substrate 310 .
  • the holding fixture may be a vacuum fixture or a clamp, but is not limited thereto as long as it may affix the substrate 310 without causing the damage of the singulated package strips 300 during transferring or processing.
  • FIG. 3C to FIG. 3D are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • a plurality of passive components 340 are formed over the second surface 120 b of the redistribution circuit patterns 120 .
  • the passive components 340 may be, for instance, disposed corresponding to the conductive terminals 150 . It should be noted that the passive components 340 may be disposed in any manner as long as the passive components 340 are electrically connected to the redistribution circuit patterns 120 .
  • the passive components 340 may be, for instance, capacitors, resistors, inductors and so on.
  • the second integrated circuit component 350 is also formed over the second surface 120 b of the redistribution circuit patterns 120 by bonding process.
  • the second integrated circuit component 350 may be memory devices such as NAND flash die or other suitable chips, which is not limited thereto.
  • the second integrated circuit component 350 is electrically connected to the redistribution circuit patterns 120 through wires by wire bonding process. That is to say, the second integrated circuit component 350 is electrically connected to the conductive terminals 150 by wires.
  • the bonding process of the passive components 340 is performed prior to the bonding process of the second integrated circuit component 350 .
  • the bonding process of the passive components 340 is performed after the bonding process of the second integrated circuit component 350 .
  • the sequential order of bonding process between the passive components 340 and the second integrated circuit component 350 construe no limitation in the invention.
  • a second encapsulation 360 is formed to encapsulate the passive components 340 and the second integrated circuit component 350 .
  • the second encapsulation 360 may be also formed by a molding compound or an insulating material by molding process. It may be understood that other components may also be assembled onto the substrate 310 , such as when packages in system are being fabricated. Subsequently, a singulation process is performed on the singulated package strips 300 so as to obtain a plurality of package structures 400 .
  • each of the package structures 400 includes a second singulated encapsulation 360 a , the passive components 340 and at least one second integrated circuit component 350 .
  • the second integrated circuit component 350 is electrically connected to the redistribution circuit patterns 120 of the singulated package strip 300 .
  • the passive components 340 and the second integrated circuit components 350 are encapsulated by the second singulated encapsulation 360 a .
  • the singulation process may be, for example, cutting with rotating blade or laser beam or other suitable technique, which is not limited thereto.
  • the adhesive layer 330 and the substrate 310 are removed from the package structures 400 .
  • the external energy for example, UV laser, visible light, or heat
  • the adhesive layer 330 may be applied to the adhesive layer 330 , so as to allow the package structures 400 to de-bond from the substrate 310 .
  • an epoxy mold compound (EMC) layer may be further formed over the rear surface 130 a in order to encapsulate the first integrated circuit components 130 .
  • the substrate 310 with the tooling holes 320 may be reused after de-bonding from the package structures 400 so as to reduce the packaging costs.
  • the package panel is cut to form the singulated package strips before the package process so as to avoid using large-scale equipment to perforin such package process.
  • the package process is more efficient in strip format.
  • the package process performed on the substrate with fixed the tooling hole may ensure the stability of the manufacturing process. As such, existing equipment may be leveraged with changes and compatible to the manufacturing process flow and also it maintains a stable manufacturing process as well as improvement of the product yield.

Abstract

A manufacturing method of a package structure is provided. The method includes the following steps. A package panel is provided. The package panel includes a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are distributed on the first encapsulation and the first integrated circuit components. The first encapsulation of the package panel is cut to form a plurality of singulated package strips. One of the singulated package strips is attached onto an attachment region of a substrate. The substrate includes at least one tooling hole distributed outside of the attachment region. The package process is performed over the singulated package strip with the substrate affixed through the tooling hole to form the package structure.

Description

    BACKGROUND OF THE INVENTION Field of Invention
  • The present invention relates to a manufacturing method thereof, and more particularly, to a manufacturing method of package structure.
  • Description of Related Art
  • Generally, wafer level or panel level package is to be understood as meaning that the entire packaging and all the interconnections on the wafer as well as other processing steps such as wire bonding, die bonding or molding, are carried out before the singulation by dicing into a plurality of semiconductor dies. However, it requires large-scale equipment to perform such processes in wafer or panel level format. Further, it requires very heavy capital investment for such large-scale equipment, while such capital investment does not provide cost benefits. Therefore, how to accomplish the processing steps using existing equipment to minimize equipment costs and overall manufacturing costs has become a challenge to researchers in the field.
  • SUMMARY OF THE INVENTION
  • The invention provides a manufacturing method of a package structure, which increases the production and provides processing stability.
  • The invention provides a manufacturing method of a package structure. The method includes the following steps. A package panel is provided. The package panel includes a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are distributed on the first encapsulation and the first integrated circuit components. The first encapsulation of the package panel is cut to form a plurality of singulated package strips. Each of the singulated package strips includes a first singulated encapsulation, one of the redistribution circuit patterns and at least one of the first integrated circuit components encapsulated by the first singulated encapsulation. One of the singulated package strips is attached onto an attachment region of a substrate. The substrate includes at least one tooling hole distributed outside of the attachment region. A package process is performed over the singulated package strip attached onto the substrate with the substrate affixed through the at least one tooling hole to form the package structure.
  • The invention provides a manufacturing method of a package structure. The method includes the following steps. A package panel is provided in a first process chamber. The package panel includes a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are distributed on the first encapsulation and the first integrated circuit components. The first encapsulation of the package panel is cut to form a plurality of singulated package strips in the first process chamber. Each of the singulated package strips includes a first singulated encapsulation, one of the redistribution circuit patterns and at least one of the first integrated circuit components encapsulated by the first singulated encapsulation. The singulated package strips are transferred to a second process chamber. At least one holding fixture is configured in the second process chamber. One of the singulated package strips is attached onto an attachment region of a substrate in the second process chamber. The substrate includes at least one tooling hole distributed outside of the attachment region. The substrate is affixed by the at least one holding fixture in the second process chamber. The at least one holding fixture corresponding to the at least one tooling hole of the substrate. A package process is performed over the singulated package strip attached onto the substrate to form the package structure in the second process chamber.
  • Based on the above, the package panel is cut to form the singulated package strips before the package process so as to avoid using large-scale equipment to perform such package process. As such, existing equipment may be leveraged with changes and compatible to the manufacturing process flow and also it maintains a stable manufacturing process which can be cost optimized according to the applications being implemented in the package.
  • To make the above features and advantages of the present invention more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1 is a schematic cross-sectional view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 2A is a schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 2B is a schematic cross-sectional view illustrating along the line A-A of the manufacturing method of the package structure in FIG. 2A.
  • FIG. 3A is schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 3B is a schematic cross-sectional view along the line A-A of the manufacturing method of the package structure in FIG. 3A.
  • FIG. 3C to FIG. 3D are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • DESCRIPTION OF EMBODIMENTS
  • Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
  • FIG. 1 is a schematic cross-sectional view illustrating a manufacturing method of a package structure according to an embodiment of the invention. Referring to FIG. 1, FIG. 1 shows a portion of a package at an intermediate stage of manufacturing process. A plurality of redistribution circuit patterns 120 is formed over a carrier 110 a. The carrier 110 a is, for example, a glass substrate or other suitable substrate material, which is not limited thereto as long as the material is able to withstand the subsequent processes while carrying the package formed thereon. The redistribution circuit patterns 120 include a first surface 120 a and a second surface 120 b opposite to the first surface 120 a. The second surface 120 b faces towards and is adhered to the carrier 110 a. A plurality of conductive terminals 150 are formed over the first surface 120 a of the redistribution circuit patterns 120 by a placement process and/or a reflow process so as to electrically connect to the redistribution circuit patterns 120. For example, the conductive terminals 150 may be conductive bumps, conductive pillars or other possible forms and shapes, which is not limited thereto.
  • In the present embodiment, a plurality of first integrated circuit components 130 are formed over the first surface 120 a of the redistribution circuit patterns 120 with the conductive terminals 150 surrounding the first integrated circuit components 130. Moreover, the first integrated circuit component 130 has a rear surface 130 a and an active surface 130 b opposite to the rear surface 130 a. The active surface 130 b of the first integrated circuit components 130 are electrically connected to the redistribution circuit patterns 120 by bumps 130 c. For instance, the first integrated circuit components 130 may be an ASIC (Application-Specific Integrated Circuit) or other suitable active devices, which is not limited thereto. In some embodiments, the chip bonding process of the first integrated circuit components 130 is performed prior to the formation of the conductive terminals 150. In some alternative embodiments, the chip bonding process of the first integrated circuit components 130 is performed after the formation of the conductive terminals 150. In addition, a first encapsulation 140 is formed over the first surface 120 a of the redistribution circuit patterns 120 to encapsulate the first integrated circuit components 130 and the conductive terminals 150. For example, the first encapsulation 140 may be a molding compound formed by molding processes. However, in some embodiments, the first encapsulation 140 may be formed by an insulating material such as epoxy or other suitable insulating resins, which is not limited thereto.
  • Furthermore, the first encapsulation 140 may be grinded by a chemical mechanical polishing (CMP) or other suitable grinding technique in order to expose the conductive terminals 150 and reduce the overall thickness of the package structure 400 (shown in FIG. 3D). In one embodiment, after the grinding process, the rear surface 130 a of the first integrated circuit components 130 and the conductive terminals 150 may be exposed simultaneously. Moreover, the exposed rear surface 130 a of the integrated circuit components 130 and the exposed surface of the conductive terminals 150 may be aligned after grinding. In another embodiment, after the grinding process, the conductive terminals 150 may be exposed while the rear surface 130 a of the first integrated circuit components 130 may be covered by the first encapsulation 140. Moreover, the thickness of the first integrated circuit components 130 may be, for instance, less than the diameter (or thickness) of the grinded conductive terminals 150. In some embodiment, the grinding process may be omitted depending on the design requirement. Next, the second surface 120 b of the redistribution circuit patterns 120 is de-bonded from the carrier 110 a by physical treatment (e.g. laser lift-off process) or chemical treatment (e.g. chemical etching). In one embodiment, the de-bonding layer (not shown) may be disposed between the second surface 120 b of the redistribution circuit patterns 120 and the carrier 100 a. In other words, the de-bonding layer (not shown) may be formed on the carrier 100 a prior to the formation of the redistribution circuit patterns 120. As such, the de-bonding between the redistribution circuit patterns 120 and the carrier 110 a may be performed by peeling off the de-bonding layer from the redistribution circuit patterns 120 or the carrier 100 a.
  • FIG. 2A is a schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention, and FIG. 2B is a schematic cross-sectional view illustrating along the line A-A of the manufacturing method of the package structure in FIG. 2A. Referring to FIG. 2A and FIG. 2B, the structure illustrated in FIG. 1 is flipped upside down and disposed on the carrier 110 b to form the package panel 200 after de-bonding the second surface 120 b of the redistribution circuit patterns 120 from the carrier 110 a. Therefore, the package panel 200 is provided with the second surface 120 b facing upward. It should be noted that the first integrated circuit components 130 may be arranged in an array on the carrier 110 b.
  • FIG. 3A is schematic top view illustrating a manufacturing method of a package structure according to an embodiment of the invention. FIG. 3B is a schematic cross-sectional view along the line A-A of the manufacturing method of the package structure in FIG. 3A. Referring to FIG. 3A and FIG. 3B, the package panel 200 sealed with the first encapsulation 140 is cut along the scribe line into strip level to form a plurality of singulated package strips 300. For example, the cutting process in a two-dimensional array, such as a set of row cuts and column cuts may be performed by rotating blade or laser beam, which is not limited thereto. In addition, each of the singulated package strips 300 includes a first singulated encapsulation 240, one of the redistribution circuit patterns 120 and at least one of the first integrated circuit components 130 encapsulated by the first singulated encapsulation 240. The aforementioned processes may be performed in a first process chamber (not illustrated) with large-scale equipment. However, after the cutting process, the singulated package strips 300 may be transferred to a second process chamber (not illustrated) with relatively small-scale equipment in order to perform the following processes. Moreover, the first process chamber and the second process chamber may be isolated or combined, which is not limited thereto.
  • For instance, the equipment in the first process chamber may perform the package process in a wafer level or a panel level, while the equipment in the second process chamber may perform the package process in a strip level or a block level for efficient assembly. As such, the existing assembly technologies and the existing equipment may be compatible to perform the subsequent package process instead of performing the most package process or even the entire package process with large-scale equipment.
  • The singulated package strip 300 is attached onto an attachment region 310 a of a substrate 310. The substrate 310 is, for example, a glass or other suitable material. It should be noted that the shape, material and thickness of the substrate construe no limitation in the invention as long the substrate 310 is able to withstand the subsequent processes while carrying the package structure formed thereon. In one embodiment, an adhesive layer 330 is at least formed on the attachment region 310 a of the substrate 310 to enhance the adhesion between the singulated package strips 300 and the substrate 310. The formation of the adhesive layer 330 on the substrate 310 may be, for instance, performed prior to or after the transferring process of the singulated package strips 300. In one embodiment, the formation of the adhesive layer 330 on the substrate 310 is performed before attaching one of the singulated package strips 300 onto the attachment region 310 a of the substrate 310. The adhesive layer 330 may be formed by, for example, attaching a film, applying a paste or glue, or other suitable material and manner, which is not limited thereto.
  • In the present embodiment, the area of the substrate 310 is greater than the area of the singulated package strip 300. In addition, the substrate 310 includes at least one tooling hole 320 distributed outside of the attachment region 310 a. In other words, the tooling holes 320 may be distributed at a periphery area surrounding the attachment region 310 a. The tooling hole 320 may be utilized for alignment or affixation of the substrate 310 for the subsequent processes. It should be noted that although three tooling holes 320 are shown in FIG. 3A, the amount of tooling holes 320 is not limited thereto. In one embodiment, the tooling holes 320 may be located on the different planes with the adhesive layer 330. For instance, the tooling holes 320 may be disposed on the sidewalls of the substrate 310. The configuration of the tooling holes is not limited thereto.
  • For example, the process equipment in the second chamber may perform the subsequent processes by positioning the tooling holes 320 so as to align the location of the singulated package strips 300 on the substrate 310. Furthermore, for the stability of the subsequent processes, the substrate 310 may be affixed by the tooling holes 320 fixed with a holding fixture (not illustrated). The holding fixture provides a mechanical support for the substrate 310. For instance, the holding fixture may be configured in the second process chamber or to the transferring equipment so as to ensure performing the processes in a stable state. The holding fixture may be positioned at the tooling holes 320 of the substrate 310. For example, the holding fixture may include a plurality of pins which corresponds to the tooling holes 320. When transferring or processing the substrate 310 thereon, the pins of the holding fixture may be inserted into the tooling holes to avoid any undesired movement or shift of the substrate 310. In one embodiment, the holding fixture may be a vacuum fixture or a clamp, but is not limited thereto as long as it may affix the substrate 310 without causing the damage of the singulated package strips 300 during transferring or processing.
  • FIG. 3C to FIG. 3D are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention. Referring to FIG. 3C and FIG. 3D, a plurality of passive components 340 are formed over the second surface 120 b of the redistribution circuit patterns 120. In addition, the passive components 340 may be, for instance, disposed corresponding to the conductive terminals 150. It should be noted that the passive components 340 may be disposed in any manner as long as the passive components 340 are electrically connected to the redistribution circuit patterns 120. The passive components 340 may be, for instance, capacitors, resistors, inductors and so on. Moreover, at least one second integrated circuit component 350 is also formed over the second surface 120 b of the redistribution circuit patterns 120 by bonding process. For example, the second integrated circuit component 350 may be memory devices such as NAND flash die or other suitable chips, which is not limited thereto. In addition, the second integrated circuit component 350 is electrically connected to the redistribution circuit patterns 120 through wires by wire bonding process. That is to say, the second integrated circuit component 350 is electrically connected to the conductive terminals 150 by wires. In some embodiments, the bonding process of the passive components 340 is performed prior to the bonding process of the second integrated circuit component 350. In some alternative embodiments, the bonding process of the passive components 340 is performed after the bonding process of the second integrated circuit component 350. However, the sequential order of bonding process between the passive components 340 and the second integrated circuit component 350 construe no limitation in the invention.
  • In the present embodiment, a second encapsulation 360 is formed to encapsulate the passive components 340 and the second integrated circuit component 350. Similar to the first encapsulation 140, the second encapsulation 360 may be also formed by a molding compound or an insulating material by molding process. It may be understood that other components may also be assembled onto the substrate 310, such as when packages in system are being fabricated. Subsequently, a singulation process is performed on the singulated package strips 300 so as to obtain a plurality of package structures 400. Moreover, each of the package structures 400 includes a second singulated encapsulation 360 a, the passive components 340 and at least one second integrated circuit component 350. In addition, the second integrated circuit component 350 is electrically connected to the redistribution circuit patterns 120 of the singulated package strip 300. The passive components 340 and the second integrated circuit components 350 are encapsulated by the second singulated encapsulation 360 a. Furthermore, the singulation process may be, for example, cutting with rotating blade or laser beam or other suitable technique, which is not limited thereto.
  • Referring to FIG. 3D, after the singulation process described above, the adhesive layer 330 and the substrate 310 are removed from the package structures 400. For instance, the external energy (for example, UV laser, visible light, or heat) may be applied to the adhesive layer 330, so as to allow the package structures 400 to de-bond from the substrate 310. However, other suitable technique depending on the structure and material of the adhesive layer 330 may be applied, which is not limited thereto. In one embodiment, after removing the adhesive layer 330, an epoxy mold compound (EMC) layer may be further formed over the rear surface 130 a in order to encapsulate the first integrated circuit components 130. Moreover, the substrate 310 with the tooling holes 320 may be reused after de-bonding from the package structures 400 so as to reduce the packaging costs.
  • Based on the foregoing, the package panel is cut to form the singulated package strips before the package process so as to avoid using large-scale equipment to perforin such package process. In addition, the package process is more efficient in strip format. Moreover, the package process performed on the substrate with fixed the tooling hole may ensure the stability of the manufacturing process. As such, existing equipment may be leveraged with changes and compatible to the manufacturing process flow and also it maintains a stable manufacturing process as well as improvement of the product yield.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims (19)

1. A manufacturing method of a package structure, comprising:
forming a plurality of packaged strips on a carrier in an array, each of the plurality of packaged strips comprises a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are formed on the first encapsulation and the first integrated circuit components, wherein the first encapsulation covers a whole area of the carrier to interconnect the plurality of packaged strips;
cutting along the first encapsulation to separate the plurality of packaged strips from each other;
attaching one singulated package strip of the plurality of packaged strips to a corresponding substrate, the substrate having at least one tooling hole on a periphery of the singulated packaged strip to hold the substrate in place; and
performing a package process over the singulated package strip.
2. The manufacturing method of a package structure according to claim 1, wherein the package process comprises:
forming a plurality of passive components and at least one second integrated circuit component on the singulated package strip, wherein the passive components and the at least one second integrated circuit component are electrically connected to the redistribution circuit pattern of the singulated package strip.
3. The manufacturing method of a package structure according to claim 2, wherein the package process further comprises:
encapsulating the passive components and the at least one second integrated circuit component by a second encapsulation.
4. The manufacturing method of a package structure according to claim 3, wherein the package process further comprises:
singulating the second encapsulation to form a plurality of package structures, wherein each of the package structure comprises a second singulated second encapsulation, a plurality of passive components, and at least one second integrated circuit component electrically connected to the redistribution circuit pattern of the singulated package strip, the passive components and the second integrated circuit components are encapsulated by the second singulated encapsulation.
5. The manufacturing method of a package structure according to claim 1, wherein the package process comprises a bonding process, a molding process and a singulation process.
6. The manufacturing method of a package structure according to claim 1 further comprising:
forming an adhesive layer on the substrate before attaching one singulated package strip of the plurality of packaged strips to the substrate; and
after performing the package process, removing the adhesive layer from the singulated package strip.
7. The manufacturing method of a package structure according to claim 1, wherein the area of the substrate is greater than the area of one of the singulated package strips.
8. The manufacturing method of a package structure according to claim 1 further comprising:
after performing the package process, de-bonding the singulated package strip from the substrate.
9. The manufacturing method of a package structure according to claim 1, wherein the package panel further comprises a plurality of conductive terminals electrically connected to the redistribution circuit patterns, and each of the singulated package strips comprises the conductive terminals encapsulated by the first singulated encapsulation.
10. A manufacturing method of a package structure, comprising:
forming a plurality of packaged strips on a carrier in an array in a first process chamber, each of the plurality of packaged strips comprises a first encapsulation, a plurality of first integrated circuit components and a plurality of redistribution circuit patterns electrically connected to the first integrated circuit components, the first integrated circuit components are encapsulated by the first encapsulation, and the redistribution circuit patterns are formed on the first encapsulation and the first integrated circuit components, wherein the first encapsulation covers a whole area of the carrier to interconnect the plurality of packaged strips;
cutting along the first encapsulation to separate the plurality of packaged strips from each other in the first process chamber;
transferring the singulated package strips to a second process chamber, wherein at least one holding fixture is configured in the second process chamber;
attaching one singulated package strip of the plurality of packaged strips to a corresponding substrate—in the second process chamber, the substrate—having at least one tooling hole on a periphery of the singulated packaged strip to hold the substrate in place;
affixing the substrate by the at least one holding fixture in the second process chamber, wherein the at least one holding fixture corresponding to the at least one tooling hole of the substrate; and
performing a package process over the singulated package strip in the second process chamber.
11. The manufacturing method of a package structure according to claim 10, wherein the equipment scale in the first process chamber for providing the package panel is greater than the equipment scale in the second process chamber for performing the package process.
12. The manufacturing method of a package structure according to claim 10, wherein the package process comprises:
forming a plurality of passive components and at least one second integrated circuit component on the singulated package strip, wherein the passive components and the at least one second integrated circuit component are electrically connected to the redistribution circuit pattern of the singulated package strip.
13. The manufacturing method of a package structure according to claim 12, wherein the package process comprises:
encapsulating the passive components and the at least one second integrated circuit component by a second encapsulation.
14. The manufacturing method of a package structure according to claim 13, wherein the package process comprises:
singulating the second encapsulation to form a plurality of package structures, wherein each of the package structure comprises a second singulated encapsulation, a plurality of passive components and at least one second integrated circuit component electrically connected to the redistribution circuit pattern of the singulated package strip, the passive components and the second integrated circuit components are encapsulated by the second singulated encapsulation.
15. The manufacturing method of a package structure according to claim 10, wherein the package process comprises a bonding process, a molding process and a singulation process.
16. The manufacturing method of a package structure according to claim 10 further comprising:
forming an adhesive layer on the substrate before attaching one singulated package strip of the plurality of packaged strips to the substrate; and
after performing the package process, de-bonding the singulated package strip from the substrate.
17. The manufacturing method of a package structure according to claim 10, wherein the area of the substrate is greater than the area of one of the singulated package strips.
18. The manufacturing method of a package structure according to claim 17 further comprising:
after performing the package process, removing the adhesive layer from the singulated package strip.
19. The manufacturing method of a package structure according to claim 10, wherein the package panel further comprises a plurality of conductive terminals electrically connected to the redistribution circuit patterns, and each of the singulated package strips comprises the conductive terminals encapsulated by the first singulated encapsulation.
US15/847,936 2017-12-20 2017-12-20 Package structure and manufacturing method thereof Active US10304716B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/847,936 US10304716B1 (en) 2017-12-20 2017-12-20 Package structure and manufacturing method thereof
JP2018074451A JP2019114761A (en) 2017-12-20 2018-04-09 Package structure and method for manufacturing the same
TW107144142A TW201929103A (en) 2017-12-20 2018-12-07 Package structure and manufacturing method thereof
CN201811563080.6A CN109979832A (en) 2017-12-20 2018-12-20 Encapsulating structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/847,936 US10304716B1 (en) 2017-12-20 2017-12-20 Package structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
US10304716B1 US10304716B1 (en) 2019-05-28
US20190189494A1 true US20190189494A1 (en) 2019-06-20

Family

ID=66636308

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/847,936 Active US10304716B1 (en) 2017-12-20 2017-12-20 Package structure and manufacturing method thereof

Country Status (4)

Country Link
US (1) US10304716B1 (en)
JP (1) JP2019114761A (en)
CN (1) CN109979832A (en)
TW (1) TW201929103A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231531B2 (en) * 2019-11-27 2023-03-01 大成建設株式会社 Steel shoring erection method
KR20230015402A (en) * 2021-01-26 2023-01-31 양쯔 메모리 테크놀로지스 씨오., 엘티디. Substrate structure, manufacturing and packaging method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546629B2 (en) * 1994-09-13 1996-10-23 株式会社イースタン Tape carrier package for semiconductor device, manufacturing method thereof, and manufacturing method of semiconductor device
US5859475A (en) * 1996-04-24 1999-01-12 Amkor Technology, Inc. Carrier strip and molded flex circuit ball grid array
CN101009230A (en) 2006-01-24 2007-08-01 探微科技股份有限公司 Wafer-level encapsulation and cutting method
CN102130072B (en) * 2010-01-15 2013-03-13 矽品精密工业股份有限公司 Bearing plate and manufacturing method thereof
TWI480992B (en) 2010-01-26 2015-04-11 Powertech Technology Inc Flip-chip package maintaining alignment during soldering
US8884431B2 (en) 2011-09-09 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods and structures for semiconductor devices
US8367475B2 (en) * 2011-03-25 2013-02-05 Broadcom Corporation Chip scale package assembly in reconstitution panel process format
US9679836B2 (en) 2011-11-16 2017-06-13 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods for forming the same
US9831170B2 (en) * 2011-12-30 2017-11-28 Deca Technologies, Inc. Fully molded miniaturized semiconductor module
JP5949193B2 (en) * 2012-06-12 2016-07-06 富士通株式会社 Manufacturing method of electronic device
US9704780B2 (en) 2012-12-11 2017-07-11 STATS ChipPAC, Pte. Ltd. Semiconductor device and method of forming low profile fan-out package with vertical interconnection units
TWI635585B (en) 2013-07-10 2018-09-11 矽品精密工業股份有限公司 Semiconductor package and method of manufacture
EP3126541A1 (en) * 2014-04-02 2017-02-08 Applied Materials, Inc. Vacuum processing system and method for mounting a processing system
US9799622B2 (en) * 2014-06-18 2017-10-24 Dyi-chung Hu High density film for IC package
US9947625B2 (en) * 2014-12-15 2018-04-17 Bridge Semiconductor Corporation Wiring board with embedded component and integrated stiffener and method of making the same
US9502272B2 (en) * 2014-12-29 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Devices and methods of packaging semiconductor devices
US9461018B1 (en) * 2015-04-17 2016-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out PoP structure with inconsecutive polymer layer
US9659911B1 (en) * 2016-04-20 2017-05-23 Powertech Technology Inc. Package structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN109979832A (en) 2019-07-05
US10304716B1 (en) 2019-05-28
JP2019114761A (en) 2019-07-11
TW201929103A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
US9716080B1 (en) Thin fan-out multi-chip stacked package structure and manufacturing method thereof
US6818550B2 (en) Method of cutting a wafer into individual chips
KR100517075B1 (en) Method for manufacturing semiconductor device
US20230260920A1 (en) Chip package and manufacturing method thereof
US20120104578A1 (en) Approach for Bonding Dies onto Interposers
US6885101B2 (en) Methods for wafer-level packaging of microelectronic devices and microelectronic devices formed by such methods
US11508712B2 (en) Method of manufacturing a package-on-package type semiconductor package
US9230894B2 (en) Methods for manufacturing a chip package
US20150187745A1 (en) Solder pillars for embedding semiconductor die
US9281182B2 (en) Pre-cut wafer applied underfill film
US20110316152A1 (en) Manufacturing method of semiconductor packages and a semiconductor package
US10304716B1 (en) Package structure and manufacturing method thereof
US8101470B2 (en) Foil based semiconductor package
US9362105B2 (en) Pre-cut wafer applied underfill film on dicing tape
US11646296B2 (en) Semiconductor package and manufacturing method of semiconductor package
US9324686B2 (en) Semiconductor chips having improved solidity, semiconductor packages including the same and methods of fabricating the same
US9515048B2 (en) Method for fabricating an interposer
TW201724391A (en) Electronic component, method for manufacturing same, and electronic component manufacturing device
US10796931B2 (en) Manufacturing method of package structure
KR102635853B1 (en) Semiconductor package and manufacturing method thereof
CN113345847B (en) Chip packaging structure and manufacturing method thereof
US20220344231A1 (en) Flip chip package unit and associated packaging method
JP5921219B2 (en) Manufacturing method of semiconductor device
CN113257692A (en) Semiconductor packaging structure manufacturing method and semiconductor packaging structure
JP2009027127A (en) Method for manufacturing semiconductor package by adopting large-scaled panel size

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWERTECH TECHNOLOGY INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHUNG, HSING-TE;CHUANG, YONG-CHENG;LIN, KUO-TING;AND OTHERS;REEL/FRAME:044442/0380

Effective date: 20170315

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4