US20180237752A1 - Differentiation of human embryonic stem cells - Google Patents

Differentiation of human embryonic stem cells Download PDF

Info

Publication number
US20180237752A1
US20180237752A1 US15/958,824 US201815958824A US2018237752A1 US 20180237752 A1 US20180237752 A1 US 20180237752A1 US 201815958824 A US201815958824 A US 201815958824A US 2018237752 A1 US2018237752 A1 US 2018237752A1
Authority
US
United States
Prior art keywords
cells
stem cells
pluripotent stem
cell
markers characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/958,824
Inventor
Benjamin Fryer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Biotech Inc
Original Assignee
Janssen Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janssen Biotech Inc filed Critical Janssen Biotech Inc
Priority to US15/958,824 priority Critical patent/US20180237752A1/en
Publication of US20180237752A1 publication Critical patent/US20180237752A1/en
Assigned to JANSSEN BIOTECH, INC. reassignment JANSSEN BIOTECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRYER, BENJAMIN H.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0678Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0613Cells from endocrine organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells.
  • the present invention provides a method to produce a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
  • ⁇ cells insulin-producing cells
  • ⁇ cells appropriate for engraftment.
  • One approach is the generation of functional ⁇ cells from pluripotent stem cells, such as, for example, embryonic stem cells.
  • a pluripotent cell gives rise to a group of cells comprising three germ layers (ectoderm, mesoderm, and endoderm) in a process known as gastrulation.
  • Tissues such as, for example, thyroid, thymus, pancreas, gut, and liver, will develop from the endoderm, via an intermediate stage.
  • the intermediate stage in this process is the formation of definitive endoderm.
  • Definitive endoderm cells express a number of markers, such as, HNF3 beta, GATA4, MIXL1, CXCR4 and SOX17.
  • pancreas arises from the differentiation of definitive endoderm into pancreatic endoderm.
  • Cells of the pancreatic endoderm express the pancreatic-duodenal homeobox gene, PDX1.
  • PDX1 expression marks a critical step in pancreatic organogenesis.
  • the mature pancreas contains, among other cell types, exocrine tissue and endocrine tissue. Exocrine and endocrine tissues arise from the differentiation of pancreatic endoderm.
  • islet cells bearing the features of islet cells have reportedly been derived from embryonic cells of the mouse.
  • Lumelsky et al. (Science 292:1389, 2001) report differentiation of mouse embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
  • Soria et al. (Diabetes 49:157, 2000) report that insulin-secreting cells derived from mouse embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice.
  • Hori et al. (PNAS 99: 16105, 2002) disclose that treatment of mouse embryonic stem cells with inhibitors of phosphoinositide 3-kinase (LY294002) produced cells that resembled 0 cells.
  • Blyszczuk et al. reports the generation of insulin-producing cells from mouse embryonic stem cells constitutively expressing Pax4.
  • retinoic acid can regulate the commitment of embryonic stem cells to form PDX1 positive pancreatic endoderm. Retinoic acid is most effective at inducing Pdx1 expression when added to cultures at day 4 of embryonic stem cell differentiation during a period corresponding to the end of gastrulation in the embryo (Diabetes 54:301, 2005).
  • Miyazaki et al. reports a mouse embryonic stem cell line over-expressing Pdx1 . Their results show that exogenous Pdx1 expression clearly enhanced the expression of insulin, somatostatin, glucokinase, neurogenin3, p48, Pax6, and Hnf6 genes in the resulting differentiated cells (Diabetes 53: 1030, 2004).
  • mouse model of embryonic stem cell development may not exactly mimic the developmental program in higher mammals, such as, for example, humans.
  • D'Amour et al. describes the production of enriched cultures of human embryonic stem cell-derived definitive endoderm in the presence of a high concentration of activin and low serum (Nature Biotechnology 2005). Transplanting these cells under the kidney capsule of mice resulted in differentiation into more mature cells with characteristics of some endodermal organs. Human embryonic stem cell-derived definitive endoderm cells can be further differentiated into PDX1 positive cells after addition of FGF-10 (US 2005/0266554A1).
  • D′Amour et al. states: “We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor en route to cells that express endocrine hormones”.
  • hES human embryonic stem
  • Fisk et al. reports a system for producing pancreatic islet cells from human embryonic stem cells (US2006/0040387A1).
  • the differentiation pathway was divided into three stages. Human embryonic stem cells were first differentiated to endoderm using a combination of sodium butyrate and activin A. The cells were then cultured with TGF- ⁇ antagonists such as Noggin in combination with EGF or betacellulin to generate PDX1 positive cells. The terminal differentiation was induced by nicotinamide.
  • the present invention takes an alternative approach to improve the efficiency of differentiating human embryonic stem cells toward insulin expressing cells, by generating a population of cells wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
  • the present invention provides a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
  • the present invention A method for generating a population of cells wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage, comprising the steps of:
  • FIG. 1 shows the FACS analysis of the expression of the proteins indicated in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 1.
  • FIG. 2A shows the effect of medium glucose concentration on CXCR4 expression levels in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 2B shows the effect of medium glucose concentration on cell number and viability in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 3A shows the effect of medium glucose concentration on CXCR4 expression levels and culture appearance in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 3B shows the effect of medium glucose concentration on SOX17 expression in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 4 shows the real-time PCR analysis of the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the first method disclosed in Example 2.
  • FIG. 5 shows the real-time PCR analysis of the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the second method disclosed in Example 2.
  • FIG. 6 shows the pH level of the various media following a 24 hour exposure to cells on days 1 through 4 of the methods disclosed in Example 2.
  • FIG. 7A and FIG. 7B show the effect of medium pH levels on the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the second method disclosed in Example 3.
  • FIG. 8 shows the real-time PCR analysis of the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the method disclosed in Example 4.
  • Stem cells are undifferentiated cells defined by their ability at the single cell level to both self-renew and differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation and to contribute substantially to most, if not all, tissues following injection into blastocysts.
  • Stem cells are classified by their developmental potential as: (1) totipotent, meaning able to give rise to all embryonic and extraembryonic cell types; (2) pluripotent, meaning able to give rise to all embryonic cell types; (3) multipotent, meaning able to give rise to a subset of cell lineages but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self- renewal), blood cell restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood); (4) oligopotent, meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) unipotent, meaning able to give rise to a single cell lineage (e.g., spermatogenic stem cells).
  • HSC hematopoietic stem cells
  • Differentiation is the process by which an unspecialized (“uncommitted”) or less specialized cell acquires the features of a specialized cell such as, for example, a nerve cell or a muscle cell.
  • a differentiated or differentiation-induced cell is one that has taken on a more specialized (“committed”) position within the lineage of a cell.
  • the term “committed”, when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type.
  • De-differentiation refers to the process by which a cell reverts to a less specialized (or committed) position within the lineage of a cell.
  • the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and what cells it can give rise to.
  • the lineage of a cell places the cell within a hereditary scheme of development and differentiation.
  • a lineage-specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.
  • Cells expressing markers characteristic of the definitive endoderm lineage refers to cells expressing at least one of the following markers: SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4 CD48, eomesodermin (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, or OTX2.
  • Cells expressing markers characteristic of the definitive endoderm lineage include primitive streak precursor cells, primitive streak cells, mesendoderm cells and definitive endoderm cells.
  • Cells expressing markers characteristic of the pancreatic endoderm lineage refers to cells expressing at least one of the following markers: PDX1, NKX6.1, HNF1 beta, PTF1 alpha, HNF6, HNF4 alpha, SOX9, HB9 or PROX1.
  • Cells expressing markers characteristic of the pancreatic endoderm lineage include pancreatic endoderm cells, primitive gut tube cells, and posterior foregut cells.
  • Definitive endoderm refers to cells which bear the characteristics of cells arising from the epiblast during gastrulation and which form the gastrointestinal tract and its derivatives. Definitive endoderm cells express the following markers: HNF3 beta, GATA4, SOX17, Cerberus, OTX2, goosecoid, C-Kit, CD99, and MIXL1.
  • Markers are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest.
  • differential expression means an increased level for a positive marker and a decreased level for a negative marker.
  • the detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.
  • Pancreatic endocrine cell or “Pancreatic hormone expressing cell”, or “Cells expressing markers characteristic of the pancreatic endocrine lineage” as used herein, refers to a cell capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
  • Pluripotent stem cells may express one or more of the stage-specific embryonic antigens (SSEA) 3 and 4, and markers detectable using antibodies designated Tra-1-60 and Tra-1-81 (Thomson et al., Science 282:1145, 1998). Differentiation of pluripotent stem cells in vitro results in the loss of SSEA-4, Tra 1-60, and Tra 1-81 expression (if present) and increased expression of SSEA-1. Undifferentiated pluripotent stem cells typically have alkaline phosphatase activity, which can be detected by fixing the cells with 4% paraformaldehyde, and then developing with Vector Red as a substrate, as described by the manufacturer (Vector Laboratories, Burlingame Calif.). Undifferentiated pluripotent stem cells also typically express OCT4 and TERT, as detected by RT-PCR.
  • SSEA stage-specific embryonic antigens
  • pluripotent stem cells Another desirable phenotype of propagated pluripotent stem cells is a potential to differentiate into cells of all three germinal layers: endoderm, mesoderm, and ectoderm tissues.
  • Pluripotency of pluripotent stem cells can be confirmed, for example, by injecting cells into severe combined immunodeficient (SCID) mice, fixing the teratomas that form using 4% paraformaldehyde, and then examining them histologically for evidence of cell types from the three germ layers.
  • SCID severe combined immunodeficient
  • pluripotency may be determined by the creation of embryoid bodies and assessing the embryoid bodies for the presence of markers associated with the three germinal layers.
  • Propagated pluripotent stem cell lines may be karyotyped using a standard G-banding technique and compared to published karyotypes of the corresponding primate species. It is desirable to obtain cells that have a “normal karyotype,” which means that the cells are euploid, wherein all human chromosomes are present and not noticeably altered.
  • pluripotent stem cells include established lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as, for example, a blastocyst), embryonic tissue, or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation.
  • pre-embryonic tissue such as, for example, a blastocyst
  • embryonic tissue or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation.
  • Non-limiting examples are established lines of human embryonic stem cells or human embryonic germ cells, such as, for example the human embryonic stem cell lines H1, H7, and H9 (WiCell).
  • the compositions of this disclosure during the initial establishment or stabilization of such cells, in which case the source cells would be primary pluripotent cells taken directly from the source tissues.
  • cells taken from a pluripotent stem cell population already cultured in the absence of feeder cells are also suitable are mutant human embryonic stem cell lines, such
  • human embryonic stem cells are prepared as described by Thomson et al. (U.S. Pat. No. 5,843,780; Science 282:1145, 1998; Curr. Top. Dev. Biol. 38:133 ff., 1998; Proc. Natl. Acad. Sci. U.S.A. 92:7844, 1995).
  • pluripotent stem cells are cultured on a layer of feeder cells that support the pluripotent stem cells in various ways.
  • pluripotent stem cells are cultured in a culture system that is essentially free of feeder cells, but nonetheless supports proliferation of pluripotent stem cells without undergoing substantial differentiation.
  • the growth of pluripotent stem cells in feeder-free culture without differentiation is supported using a medium conditioned by culturing previously with another cell type.
  • the growth of pluripotent stem cells in feeder-free culture without differentiation is supported using a chemically defined medium.
  • pluripotent stem cells may be cultured on a mouse embryonic fibroblast feeder cell layer according to the methods disclosed in Reubinoff et al. (Nature Biotechnology 18: 399-404 (2000)).
  • pluripotent stem cells may be cultured on a mouse embryonic fibroblast feeder cell layer according to the methods disclosed in Thompson et al. (Science 6 November 1998: Vol. 282. no. 5391, pp. 1145-1147).
  • pluripotent stem cells may be cultured on any one of the feeder cell layers disclosed in Richards et al., (Stem Cells 21: 546-556, 2003).
  • pluripotent stem cells may be cultured on a human feeder cell layer according to the methods disclosed in Wang et al. (Stem Cells 23: 1221-1227, 2005). In an alternate embodiment, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Stojkovic et al. (Stem Cells 2005 23: 306-314, 2005). Alternatively, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Miyamoto et al. (Stem Cells 22: 433-440, 2004). Alternatively, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Amit et al. (Biol. Reprod 68: 2150-2156, 2003). Alternatively, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Inzunza et al. (Stem Cells 23: 544-549, 2005).
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in US20020072117.
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in U.S. Pat. No. 6,642,048.
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in WO2005014799.
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in Xu et al. (Stem Cells 22: 972-980, 2004).
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in US20070010011.
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in US20050233446.
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in U.S. Pat. No. 6,800,480.
  • pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in WO2005065354.
  • pluripotent stem cells may be cultured in the culture media disclosed in WO2005065354.
  • pluripotent stem cells may be cultured in the culture media disclosed in WO2005086845.
  • pluripotent stem cells may be cultured according to the methods disclosed in Cheon et al. (BioReprod DOI:10.1095/biolreprod.105.046870, Oct. 19, 2005). Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in Levenstein et al. (Stem Cells 24: 568-574, 2006). Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in US20050148070. Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in US20050244962. Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in WO2005086845.
  • the pluripotent stem cells may be plated onto a suitable culture substrate.
  • the suitable culture substrate is an extracellular matrix component, such as, for example, those derived from basement membrane or that may form part of adhesion molecule receptor-ligand couplings.
  • the suitable culture substrate is MATRIGEL® (Becton Dickenson).
  • MATRIGEL® is a soluble preparation from Engelbreth-Holm Swarm tumor cells that gels at room temperature to form a reconstituted basement membrane.
  • extracellular matrix components and component mixtures are suitable as an alternative. Depending on the cell type being proliferated, this may include laminin, fibronectin, proteoglycan, entactin, heparan sulfate, and the like, alone or in various combinations.
  • the pluripotent stem cells may be plated onto the substrate in a suitable distribution and in the presence of a medium that promotes cell survival, propagation, and retention of the desirable characteristics. All these characteristics benefit from careful attention to the seeding distribution and can readily be determined by one of skill in the art.
  • Suitable culture media may be made from the following components, such as, for example, Dulbecco's modified Eagle's medium (DMEM), Gibco #11965-092; Knockout Dulbecco's modified Eagle's medium (KO DMEM), Gibco #10829-018; Ham's F12/50% DMEM basal medium; 200 mM L-glutamine, Gibco #15039-027; non-essential amino acid solution, Gibco 11140-050; ⁇ -mercaptoethanol, Sigma #M7522; human recombinant basic fibroblast growth factor (bFGF), Gibco #13256-029.
  • DMEM Dulbecco's modified Eagle's medium
  • KO DMEM Knockout Dulbecco's modified Eagle's medium
  • Ham's F12/50% DMEM basal medium 200 mM L-glutamine, Gibco #15039-027; non-essential amino acid solution, Gibco 11140-050; ⁇ -mercaptoethanol, Sigma
  • the present invention provides methods for the formation of populations of cells expressing markers characteristic of the definitive endoderm lineage from populations of pluripotent stem cells.
  • the present invention provides methods to further differentiate the cells expressing markers characteristic of the definitive endoderm lineage into cells expressing markers of the pancreatic endocrine lineage. In one embodiment, this is achieved utilizing a step-wise differentiation protocol, wherein populations of pluripotent stem cells are first differentiated into populations of cells expressing markers characteristic of the definitive endoderm lineage. Next, the populations of cells expressing markers characteristic of the definitive endoderm lineage are then differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage. Next, the populations of cells expressing markers characteristic of the pancreatic endoderm lineage are then differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage.
  • the present invention provides a population of cells wherein greater than 80% of the cells express markers characteristic of the definitive endoderm lineage.
  • the population of cells may be further treated to form a population of cells expressing markers characteristic of the pancreatic endoderm lineage.
  • the population of cells expressing markers characteristic of the pancreatic endoderm lineage may be further treated to form a population of cells expressing markers characteristic of the pancreatic endocrine lineage.
  • the efficiency of differentiation may be determined by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker expressed by cells expressing markers characteristic of the desired cell type.
  • an agent such as an antibody
  • RT-PCR quantitative reverse transcriptase polymerase chain reaction
  • Northern blots in situ hybridization
  • immunoassays such as immunohistochemical analysis of sectioned material, Western blotting, and for markers that are accessible in intact cells, flow cytometry analysis (FACS) (see, e.g., Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).
  • pluripotent stem cell markers include, for example, the expression of one or more of the following: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
  • the differentiated cells may be purified by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker, such as CXCR4, expressed by cells expressing markers characteristic of the definitive endoderm lineage.
  • an agent such as an antibody
  • a protein marker such as CXCR4
  • Pluripotent stem cells suitable for use in the present invention include, for example, the human embryonic stem cell line H9 (NIH code: WA09), the human embryonic stem cell line H1 (NIH code: WA01), the human embryonic stem cell line H7 (NIH code: WA07), and the human embryonic stem cell line SA002 (Cellartis, Sweden). Also suitable for use in the present invention are cells that express at least one of the following markers characteristic of pluripotent cells: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81.
  • markers characteristic of pluripotent cells ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81.
  • Markers characteristic of the definitive endoderm lineage are selected from the group consisting of SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4, CD48, eomesodermin (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, and OTX2.
  • Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the definitive endoderm lineage.
  • a cell expressing markers characteristic of the definitive endoderm lineage is a primitive streak precursor cell.
  • a cell expressing markers characteristic of the definitive endoderm lineage is a mesendoderm cell.
  • a cell expressing markers characteristic of the definitive endoderm lineage is a definitive endoderm cell.
  • Markers characteristic of the pancreatic endoderm lineage are selected from the group consisting of PDX1, NKX6.1, HNF1 beta, PTF1 alpha, HNF6, HNF4 alpha, SOX9, HB9 and PROX1.
  • Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endoderm lineage.
  • a cell expressing markers characteristic of the pancreatic endoderm lineage is a pancreatic endoderm cell.
  • a pancreatic endocrine cell is capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
  • Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endocrine lineage.
  • a cell expressing markers characteristic of the pancreatic endocrine lineage is a pancreatic endocrine cell.
  • the pancreatic endocrine cell may be a pancreatic hormone-expressing cell.
  • the pancreatic endocrine cell may be a pancreatic hormone-secreting cell.
  • the pancreatic endocrine cell is a cell expressing markers characteristic of the ⁇ cell lineage.
  • a cell expressing markers characteristic of the ⁇ cell lineage expresses PDX1 and at least one of the following transcription factors: NGN3, NKX2.2, NKX6.1, NEUROD, ISL1, HNF3 beta, MAFA, PAX4, and PAX6.
  • a cell expressing markers characteristic of the ⁇ cell lineage is a ⁇ cell.
  • populations of pluripotent stem cells may be differentiated into populations of cells expressing markers characteristic of the definitive endoderm lineage by culturing the pluripotent stem cells in a medium wherein the concentration of glucose does not exceed 10.5 mM.
  • differentiation of the population of pluripotent stem cells toward a population of cells expressing markers characteristic of the definitive endoderm lineage is achieved by treating the pluripotent stem cells with activin A and a Wnt ligand.
  • differentiation of the population of pluripotent stem cells toward a population of cells expressing markers characteristic of the definitive endoderm lineage is achieved by treating the pluripotent stem cells with GDF-8 and at least one other factor is selected from the group consisting of: an aniline-pyridinotriazine, a cyclic aniline-pyridinotriazine, N- ⁇ [1-(Phenylmethyl)azepan-4-yl]methyl ⁇ -2-pyridin-3-ylacetamide, 4- ⁇ [4-(4- ⁇ [2-(Pyridin-2-ylamino)ethyl]amino ⁇ -1,3,5-triazin-2-yl)pyridin-2-yl]oxy ⁇ butan-1-ol, 3-( ⁇ 3-[4( ⁇ 2-[Methyl(pyridin-2-yl)amino]ethyl ⁇ amino)-1,3,5-triazin-2-yl]pyridin-2-yl ⁇ amino)propan
  • the at least one other factor is 14-Prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo[19.3.1.1 ⁇ 2,6 ⁇ .1 ⁇ 8,12 ⁇ ]heptacosa-1(25),2(27),3,5,8(26),9,11,21,23-nonaen-16-one.
  • the population of pluripotent stem cells may be cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about seven days. Alternatively, the population of pluripotent stem cells may be cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about six days. Alternatively, the population of pluripotent stem cells may cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about five days. Alternatively, the population of pluripotent stem cells may cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about four days. Alternatively, the population of pluripotent stem cells may be cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about four days.
  • the GDF-8 is used at a concentration from about 5 ng/ml to about 500 ng/ml. In an alternate embodiment, the GDF-8 is used at a concentration from about 5 ng/ml to about 50 ng/ml. In an alternate embodiment, the GDF-8 is used at a concentration from about 5 ng/ml to about 25 ng/ml. In an alternate embodiment, the GDF-8 is used at a concentration of about 25 ng/ml.
  • Activin-A may be used at a concentration from about 1 pg/ml to about 100 m/ml. In an alternate embodiment, the concentration may be about 1 pg/ml to about 1 m/ml. In another alternate embodiment, the concentration may be about 1pg/ml to about 100 ng/ml. In another alternate embodiment, the concentration may be about 50 ng/ml to about 100 ng/ml. In another alternate embodiment, the concentration may be about 100 ng/ml.
  • the Wnt ligand may be selected from the group consisting of Wnt-1, Wnt-3a, Wnt-5a and Wnt-7a. In one embodiment, the Wnt ligand is Wnt-1. In an alternate embodiment, the Wnt ligand is Wnt-3a.
  • the Wnt ligand may be used at a concentration of about 1 ng/ml to about 1000 ng/ml. In an alternate embodiment, the Wnt ligand may be used at a concentration of about 10 ng/ml to about 100 ng/ml. In one embodiment, the concentration of the Wnt ligand is about 20 ng/ml.
  • populations of cells expressing markers characteristic of the definitive endoderm lineage formed by the methods of the present invention are further differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage by any method in the art.
  • populations of cells expressing markers characteristic of the definitive endoderm lineage obtained according to the methods of the present invention may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage by treating the population of cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in D'Amour et al., Nature Biotechnology 24, 1392-1401 (2006).
  • populations of cells expressing markers characteristic of the definitive endoderm lineage obtained according to the methods of the present invention may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage by treating the population of cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 11/736,908.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage by any method in the art.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in D'Amour et al., Nature Biotechnology, 2006.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed d in D'Amour et al., Nature Biotechnology, 2006.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 11/736,908.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 11/779,311.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 60/953,178.
  • populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 60/990,529.
  • cells of the human embryonic stem cell line H1 at passage 41 were seeded as cell colonies MATRIGEL® coated dishes (1:30 dilution) at a 1 to 3 passage ratio by lifting cells with Dispase (Catalog#17105-041, Invitrogen, CA) and plating the cells in MEF-CM with 20 ng/ml FGF2.
  • Dispase Catalog#17105-041, Invitrogen, CA
  • the media was changed 24 and 48 hours post seeding with fresh MEF-CM with 20 ng/ml FGF2.
  • the cultures were differentiated into cells expressing markers characteristic of the definitive endoderm lineage as follows:
  • FIG. 1 the flow cytometry results for CXCR4 and CD9 expression are shown in scatter plot format with CXCR4 expression plotted on the Y axis versus CD9 expression plotted on the X axis.
  • the percentage of cells expressing CXCR4, CD9, and CD99 are summarized in Table 1. Differentiation, as measured by the increased expression of the cellular surface markers CXCR4 and CD99, was improved by the use of MCDB-131 media, and expression of CXCR4 and CD99 was further increased by changing from colony style culture to a single cell culture. Furthermore, these data correlated with decreased expression of CD9, a cellular marker for undifferentiated cells, as measured by flow cytometry.
  • Glucose is a soluble hexose sugar added to almost all cell culture media including Ames' Medium; Basal Medium Eagle (BME); BGJb Medium Fitton-Jackson Modification; Click's Medium; CMRL-1066 Medium; Dulbecco's Modified Eagle's Medium (DMEM); DMEM/Ham's Nutrient Mixture F-12 (50:50); F-12 Coon's Modification; Fischer's Medium; H-Y Medium (Hybri-Max®); Iscove's Modified Dulbecco's Medium (IMDM); McCoy's 5A Modified Medium; MCDB Media; Medium 199; Minimum Essential Medium Eagle (EMEM); NCTC Medium; Nutrient Mixture, Ham's F-10; Nutrient Mixture, Ham's F-12; Nutrient Mixture Ham's F-12 Kaighn's Modification (F12K); RPMI-1640; Serum-Free/Protein Free Hybridoma Medium; Waymouth Medium MB; Williams Medium
  • the amount of glucose in cell culture formulations varies. While the MCDB media series contain glucose in the range from 3.9 to 10 mM, most media contain from 1 g/L (5.5 mM) to as high as 10 g/L (55 mM) glucose, with RPMI-1640 set at 11 mM glucose. Concentrations of glucose above 10 mM are analogous to a diabetic condition within the cell culture system. This is important because the same processes that can affect cells and molecules in vivo can occur in vitro. The consequence of growing cells under conditions that are essentially diabetic is that cells and cell products are modified by the processes of glycation and glyoxidation and can be damaged by glucose mediated oxidative and carbonyl stress.
  • Iscove's Modified Dulbecco's Medium which contains 25 mM glucose (Kubo et al.; Apr. 1, 2004, Development 131, 1651-1662), RPMI with 11 mM glucose (D'Amour et al., Nat Biotechnol. 2005 December; 23(12):1534-41), or DMEM-F12 with 17.5 mM glucose. Each of these media is above the 10 mM glucose concentration analogous to a diabetic condition.
  • MCDB-131 which contains a base glucose concentration of 5.5 mM.
  • the results indicate that basal levels of glucose (5.5 mM) in differentiation media are sufficient to generate a population of cells wherein greater than 80% of cells express markers characteristic of the definitive endoderm lineage.
  • Increasing glucose concentrations in the differentiation medium to 10.5 mM is sufficient to generate a similar population, however increasing glucose concentrations above 10.5 mM can result in increasing expression of markers of pluripotency/reduced differentiation such as CD9 or OCT4, or increased expression of markers associated with alternative fate differentiation/extraembryonic ectoderm such as SOX7 or CDX2.
  • MCDB-131 media with 3.7 g/l of Sodium Bicarbonate for a buffer had significantly higher CXCR4 expression and lower CD9 expression levels versus cells differentiated in MCDB-131 that contained only the base level of Bicarbonate (1 g/l) ( FIG. 7A and B). This is due in part to the fact that MCDB-131 media has a pH level of 7.5, and addition of 2.7 g/l of Sodium Bicarbonate raises the pH to 7.6.
  • the media (containing the pH color sensor phenol red) from cultures grown in undifferentiated media were significantly more yellow and acidic than cultures with supplemental sodium bicarbonate buffered media which remained red in color.
  • the cultures were differentiated into cells expressing markers characteristic of the definitive endoderm lineage as follows:
  • H1 human embryonic stem cells differentiate more efficiently in the presence of MCDB-131 medium than RPMI-1640 medium, and that differentiation in MCDB-131 can be further improved by differentiating the cells in the presence of GDF-8 and a GSK3B inhibitor versus differentiation with activin A and Wnt3a.

Abstract

The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 15/274,749, filed Sep. 23, 2016, which is a divisional of U.S. patent application Ser. No. 13/211,951, filed Aug. 17, 2011 (now U.S. Pat. No. 9,506,036, issued Nov. 29, 2016), which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/378,448, filed Aug. 31, 2010, all of which are incorporated herein by reference in their entirety for all purposes.
  • FIELD OF THE INVENTION
  • The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
  • BACKGROUND
  • Advances in cell-replacement therapy for Type I diabetes mellitus and a shortage of transplantable islets of Langerhans have focused interest on developing sources of insulin-producing cells, or β cells, appropriate for engraftment. One approach is the generation of functional β cells from pluripotent stem cells, such as, for example, embryonic stem cells.
  • In vertebrate embryonic development, a pluripotent cell gives rise to a group of cells comprising three germ layers (ectoderm, mesoderm, and endoderm) in a process known as gastrulation. Tissues such as, for example, thyroid, thymus, pancreas, gut, and liver, will develop from the endoderm, via an intermediate stage. The intermediate stage in this process is the formation of definitive endoderm. Definitive endoderm cells express a number of markers, such as, HNF3 beta, GATA4, MIXL1, CXCR4 and SOX17.
  • Formation of the pancreas arises from the differentiation of definitive endoderm into pancreatic endoderm. Cells of the pancreatic endoderm express the pancreatic-duodenal homeobox gene, PDX1. In the absence of PDX1, the pancreas fails to develop beyond the formation of ventral and dorsal buds. Thus, PDX1 expression marks a critical step in pancreatic organogenesis. The mature pancreas contains, among other cell types, exocrine tissue and endocrine tissue. Exocrine and endocrine tissues arise from the differentiation of pancreatic endoderm.
  • Cells bearing the features of islet cells have reportedly been derived from embryonic cells of the mouse. For example, Lumelsky et al. (Science 292:1389, 2001) report differentiation of mouse embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Soria et al. (Diabetes 49:157, 2000) report that insulin-secreting cells derived from mouse embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice.
  • In one example, Hori et al. (PNAS 99: 16105, 2002) disclose that treatment of mouse embryonic stem cells with inhibitors of phosphoinositide 3-kinase (LY294002) produced cells that resembled 0 cells.
  • In another example, Blyszczuk et al. (PNAS 100:998, 2003) reports the generation of insulin-producing cells from mouse embryonic stem cells constitutively expressing Pax4.
  • Micallef et al. reports that retinoic acid can regulate the commitment of embryonic stem cells to form PDX1 positive pancreatic endoderm. Retinoic acid is most effective at inducing Pdx1 expression when added to cultures at day 4 of embryonic stem cell differentiation during a period corresponding to the end of gastrulation in the embryo (Diabetes 54:301, 2005).
  • Miyazaki et al. reports a mouse embryonic stem cell line over-expressing Pdx1 . Their results show that exogenous Pdx1 expression clearly enhanced the expression of insulin, somatostatin, glucokinase, neurogenin3, p48, Pax6, and Hnf6 genes in the resulting differentiated cells (Diabetes 53: 1030, 2004).
  • Skoudy et al. reports that activin A (a member of the TGF-β superfamily) upregulates the expression of exocrine pancreatic genes (p48 and amylase) and endocrine genes (Pdx1 , insulin, and glucagon) in mouse embryonic stem cells. The maximal effect was observed using 1 nM activin A. They also observed that the expression level of insulin and Pdx1 mRNA was not affected by retinoic acid; however, 3 nM FGF7 treatment resulted in an increased level of the transcript for Pdx1 (Biochem. J. 379: 749, 2004).
  • Shiraki et al. studied the effects of growth factors that specifically enhance differentiation of embryonic stem cells into PDX1 positive cells. They observed that TGF-β2 reproducibly yielded a higher proportion of PDX1 positive cells (Genes Cells. 2005 June; 10(6): 503-16.).
  • Gordon et al. demonstrated the induction of brachyury [positive]/HNF3 beta [positive] endoderm cells from mouse embryonic stem cells in the absence of serum and in the presence of activin along with an inhibitor of Wnt signaling (US 2006/0003446A1).
  • Gordon et al. (PNAS, Vol 103, page 16806, 2006) states “Wnt and TGF-beta/nodal/activin signaling simultaneously were required for the generation of the anterior primitive streak”.
  • However, the mouse model of embryonic stem cell development may not exactly mimic the developmental program in higher mammals, such as, for example, humans.
  • Thomson et al. isolated embryonic stem cells from human blastocysts (Science 282:114, 1998). Concurrently, Gearhart and coworkers derived human embryonic germ (hEG) cell lines from fetal gonadal tissue (Shamblott et al., Proc. Natl. Acad. Sci. USA 95:13726, 1998). Unlike mouse embryonic stem cells, which can be prevented from differentiating simply by culturing with Leukemia Inhibitory Factor (LIF), human embryonic stem cells must be maintained under very special conditions (U.S. Pat. No. 6,200,806; WO 99/20741; WO 01/51616).
  • D'Amour et al. describes the production of enriched cultures of human embryonic stem cell-derived definitive endoderm in the presence of a high concentration of activin and low serum (Nature Biotechnology 2005). Transplanting these cells under the kidney capsule of mice resulted in differentiation into more mature cells with characteristics of some endodermal organs. Human embryonic stem cell-derived definitive endoderm cells can be further differentiated into PDX1 positive cells after addition of FGF-10 (US 2005/0266554A1).
  • D′Amour et al. (Nature Biotechnology—24, 1392-1401 (2006)) states: “We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor en route to cells that express endocrine hormones”.
  • In another example, Fisk et al. reports a system for producing pancreatic islet cells from human embryonic stem cells (US2006/0040387A1). In this case, the differentiation pathway was divided into three stages. Human embryonic stem cells were first differentiated to endoderm using a combination of sodium butyrate and activin A. The cells were then cultured with TGF-β antagonists such as Noggin in combination with EGF or betacellulin to generate PDX1 positive cells. The terminal differentiation was induced by nicotinamide.
  • There still remains a significant need to develop in vitro methods to generate a functional insulin expressing cell, that more closely resemble a β cell. The present invention takes an alternative approach to improve the efficiency of differentiating human embryonic stem cells toward insulin expressing cells, by generating a population of cells wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
  • SUMMARY
  • In one embodiment, the present invention provides a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
  • In one embodiment, the present invention A method for generating a population of cells wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage, comprising the steps of:
      • a. Culturing a population of pluripotent stem cells,
      • b. Differentiating the population of pluripotent stem cells to a population of cells wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage in medium wherein the concentration of glucose does not exceed 10.5 mM.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the FACS analysis of the expression of the proteins indicated in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 1.
  • FIG. 2A shows the effect of medium glucose concentration on CXCR4 expression levels in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 2B shows the effect of medium glucose concentration on cell number and viability in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 3A shows the effect of medium glucose concentration on CXCR4 expression levels and culture appearance in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 3B shows the effect of medium glucose concentration on SOX17 expression in cells of the human embryonic stem cell line H1, differentiated according to the methods disclosed in Example 2.
  • FIG. 4 shows the real-time PCR analysis of the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the first method disclosed in Example 2.
  • FIG. 5 shows the real-time PCR analysis of the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the second method disclosed in Example 2.
  • FIG. 6 shows the pH level of the various media following a 24 hour exposure to cells on days 1 through 4 of the methods disclosed in Example 2.
  • FIG. 7A and FIG. 7B show the effect of medium pH levels on the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the second method disclosed in Example 3.
  • FIG. 8 shows the real-time PCR analysis of the expression of the genes indicated in cells of the human embryonic stem cell line H1, differentiated according to the method disclosed in Example 4.
  • DETAILED DESCRIPTION
  • For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the following subsections that describe or illustrate certain features, embodiments or applications of the present invention.
  • Definitions
  • Stem cells are undifferentiated cells defined by their ability at the single cell level to both self-renew and differentiate to produce progeny cells, including self-renewing progenitors, non-renewing progenitors, and terminally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of various cell lineages from multiple germ layers (endoderm, mesoderm and ectoderm), as well as to give rise to tissues of multiple germ layers following transplantation and to contribute substantially to most, if not all, tissues following injection into blastocysts.
  • Stem cells are classified by their developmental potential as: (1) totipotent, meaning able to give rise to all embryonic and extraembryonic cell types; (2) pluripotent, meaning able to give rise to all embryonic cell types; (3) multipotent, meaning able to give rise to a subset of cell lineages but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSC) can produce progeny that include HSC (self- renewal), blood cell restricted oligopotent progenitors, and all cell types and elements (e.g., platelets) that are normal components of the blood); (4) oligopotent, meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) unipotent, meaning able to give rise to a single cell lineage (e.g., spermatogenic stem cells).
  • Differentiation is the process by which an unspecialized (“uncommitted”) or less specialized cell acquires the features of a specialized cell such as, for example, a nerve cell or a muscle cell. A differentiated or differentiation-induced cell is one that has taken on a more specialized (“committed”) position within the lineage of a cell. The term “committed”, when applied to the process of differentiation, refers to a cell that has proceeded in the differentiation pathway to a point where, under normal circumstances, it will continue to differentiate into a specific cell type or subset of cell types, and cannot, under normal circumstances, differentiate into a different cell type or revert to a less differentiated cell type. De-differentiation refers to the process by which a cell reverts to a less specialized (or committed) position within the lineage of a cell. As used herein, the lineage of a cell defines the heredity of the cell, i.e., which cells it came from and what cells it can give rise to. The lineage of a cell places the cell within a hereditary scheme of development and differentiation. A lineage-specific marker refers to a characteristic specifically associated with the phenotype of cells of a lineage of interest and can be used to assess the differentiation of an uncommitted cell to the lineage of interest.
  • “Cells expressing markers characteristic of the definitive endoderm lineage”, or “Stage 1 cells”, or “Stage 1”, as used herein, refers to cells expressing at least one of the following markers: SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4 CD48, eomesodermin (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, or OTX2. Cells expressing markers characteristic of the definitive endoderm lineage include primitive streak precursor cells, primitive streak cells, mesendoderm cells and definitive endoderm cells.
  • “Cells expressing markers characteristic of the pancreatic endoderm lineage”, as used herein, refers to cells expressing at least one of the following markers: PDX1, NKX6.1, HNF1 beta, PTF1 alpha, HNF6, HNF4 alpha, SOX9, HB9 or PROX1. Cells expressing markers characteristic of the pancreatic endoderm lineage include pancreatic endoderm cells, primitive gut tube cells, and posterior foregut cells.
  • “Definitive endoderm”, as used herein, refers to cells which bear the characteristics of cells arising from the epiblast during gastrulation and which form the gastrointestinal tract and its derivatives. Definitive endoderm cells express the following markers: HNF3 beta, GATA4, SOX17, Cerberus, OTX2, goosecoid, C-Kit, CD99, and MIXL1.
  • “Markers”, as used herein, are nucleic acid or polypeptide molecules that are differentially expressed in a cell of interest. In this context, differential expression means an increased level for a positive marker and a decreased level for a negative marker. The detectable level of the marker nucleic acid or polypeptide is sufficiently higher or lower in the cells of interest compared to other cells, such that the cell of interest can be identified and distinguished from other cells using any of a variety of methods known in the art.
  • “Pancreatic endocrine cell”, or “Pancreatic hormone expressing cell”, or “Cells expressing markers characteristic of the pancreatic endocrine lineage” as used herein, refers to a cell capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide.
  • Isolation, Expansion and Culture of Pluripotent Stem Cells Characterization of Pluripotent Stem Cells
  • Pluripotent stem cells may express one or more of the stage-specific embryonic antigens (SSEA) 3 and 4, and markers detectable using antibodies designated Tra-1-60 and Tra-1-81 (Thomson et al., Science 282:1145, 1998). Differentiation of pluripotent stem cells in vitro results in the loss of SSEA-4, Tra 1-60, and Tra 1-81 expression (if present) and increased expression of SSEA-1. Undifferentiated pluripotent stem cells typically have alkaline phosphatase activity, which can be detected by fixing the cells with 4% paraformaldehyde, and then developing with Vector Red as a substrate, as described by the manufacturer (Vector Laboratories, Burlingame Calif.). Undifferentiated pluripotent stem cells also typically express OCT4 and TERT, as detected by RT-PCR.
  • Another desirable phenotype of propagated pluripotent stem cells is a potential to differentiate into cells of all three germinal layers: endoderm, mesoderm, and ectoderm tissues. Pluripotency of pluripotent stem cells can be confirmed, for example, by injecting cells into severe combined immunodeficient (SCID) mice, fixing the teratomas that form using 4% paraformaldehyde, and then examining them histologically for evidence of cell types from the three germ layers. Alternatively, pluripotency may be determined by the creation of embryoid bodies and assessing the embryoid bodies for the presence of markers associated with the three germinal layers.
  • Propagated pluripotent stem cell lines may be karyotyped using a standard G-banding technique and compared to published karyotypes of the corresponding primate species. It is desirable to obtain cells that have a “normal karyotype,” which means that the cells are euploid, wherein all human chromosomes are present and not noticeably altered.
  • Sources of Pluripotent Stem Cells
  • The types of pluripotent stem cells that may be used include established lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as, for example, a blastocyst), embryonic tissue, or fetal tissue taken any time during gestation, typically but not necessarily before approximately 10 to 12 weeks gestation. Non-limiting examples are established lines of human embryonic stem cells or human embryonic germ cells, such as, for example the human embryonic stem cell lines H1, H7, and H9 (WiCell). Also contemplated is use of the compositions of this disclosure during the initial establishment or stabilization of such cells, in which case the source cells would be primary pluripotent cells taken directly from the source tissues. Also suitable are cells taken from a pluripotent stem cell population already cultured in the absence of feeder cells. Also suitable are mutant human embryonic stem cell lines, such as, for example, BG01v (BresaGen, Athens, Ga.).
  • In one embodiment, human embryonic stem cells are prepared as described by Thomson et al. (U.S. Pat. No. 5,843,780; Science 282:1145, 1998; Curr. Top. Dev. Biol. 38:133 ff., 1998; Proc. Natl. Acad. Sci. U.S.A. 92:7844, 1995).
  • Culture of Pluripotent Stem Cells
  • In one embodiment, pluripotent stem cells are cultured on a layer of feeder cells that support the pluripotent stem cells in various ways. Alternatively, pluripotent stem cells are cultured in a culture system that is essentially free of feeder cells, but nonetheless supports proliferation of pluripotent stem cells without undergoing substantial differentiation. The growth of pluripotent stem cells in feeder-free culture without differentiation is supported using a medium conditioned by culturing previously with another cell type. Alternatively, the growth of pluripotent stem cells in feeder-free culture without differentiation is supported using a chemically defined medium.
  • In one embodiment, pluripotent stem cells may be cultured on a mouse embryonic fibroblast feeder cell layer according to the methods disclosed in Reubinoff et al. (Nature Biotechnology 18: 399-404 (2000)). Alternatively, pluripotent stem cells may be cultured on a mouse embryonic fibroblast feeder cell layer according to the methods disclosed in Thompson et al. (Science 6 November 1998: Vol. 282. no. 5391, pp. 1145-1147). Alternatively, pluripotent stem cells may be cultured on any one of the feeder cell layers disclosed in Richards et al., (Stem Cells 21: 546-556, 2003).
  • In one embodiment, pluripotent stem cells may be cultured on a human feeder cell layer according to the methods disclosed in Wang et al. (Stem Cells 23: 1221-1227, 2005). In an alternate embodiment, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Stojkovic et al. (Stem Cells 2005 23: 306-314, 2005). Alternatively, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Miyamoto et al. (Stem Cells 22: 433-440, 2004). Alternatively, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Amit et al. (Biol. Reprod 68: 2150-2156, 2003). Alternatively, pluripotent stem cells may be cultured on the human feeder cell layer disclosed in Inzunza et al. (Stem Cells 23: 544-549, 2005).
  • In one embodiment, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in US20020072117. Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in U.S. Pat. No. 6,642,048. Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in WO2005014799. Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in Xu et al. (Stem Cells 22: 972-980, 2004). Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in US20070010011. Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in US20050233446. Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in U.S. Pat. No. 6,800,480. Alternatively, pluripotent stem cells may be cultured in culture media derived according to the methods disclosed in WO2005065354.
  • In one embodiment, pluripotent stem cells may be cultured in the culture media disclosed in WO2005065354. Alternatively, pluripotent stem cells may be cultured in the culture media disclosed in WO2005086845.
  • In one embodiment, pluripotent stem cells may be cultured according to the methods disclosed in Cheon et al. (BioReprod DOI:10.1095/biolreprod.105.046870, Oct. 19, 2005). Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in Levenstein et al. (Stem Cells 24: 568-574, 2006). Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in US20050148070. Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in US20050244962. Alternatively, pluripotent stem cells may be cultured according to the methods disclosed in WO2005086845.
  • The pluripotent stem cells may be plated onto a suitable culture substrate. In one embodiment, the suitable culture substrate is an extracellular matrix component, such as, for example, those derived from basement membrane or that may form part of adhesion molecule receptor-ligand couplings. In one embodiment, the suitable culture substrate is MATRIGEL® (Becton Dickenson). MATRIGEL® is a soluble preparation from Engelbreth-Holm Swarm tumor cells that gels at room temperature to form a reconstituted basement membrane.
  • Other extracellular matrix components and component mixtures are suitable as an alternative. Depending on the cell type being proliferated, this may include laminin, fibronectin, proteoglycan, entactin, heparan sulfate, and the like, alone or in various combinations.
  • The pluripotent stem cells may be plated onto the substrate in a suitable distribution and in the presence of a medium that promotes cell survival, propagation, and retention of the desirable characteristics. All these characteristics benefit from careful attention to the seeding distribution and can readily be determined by one of skill in the art.
  • Suitable culture media may be made from the following components, such as, for example, Dulbecco's modified Eagle's medium (DMEM), Gibco #11965-092; Knockout Dulbecco's modified Eagle's medium (KO DMEM), Gibco #10829-018; Ham's F12/50% DMEM basal medium; 200 mM L-glutamine, Gibco #15039-027; non-essential amino acid solution, Gibco 11140-050; β-mercaptoethanol, Sigma #M7522; human recombinant basic fibroblast growth factor (bFGF), Gibco #13256-029.
  • Formation of Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage from Pluripotent Stem Cells
  • The present invention provides methods for the formation of populations of cells expressing markers characteristic of the definitive endoderm lineage from populations of pluripotent stem cells. In one embodiment, the present invention provides methods to further differentiate the cells expressing markers characteristic of the definitive endoderm lineage into cells expressing markers of the pancreatic endocrine lineage. In one embodiment, this is achieved utilizing a step-wise differentiation protocol, wherein populations of pluripotent stem cells are first differentiated into populations of cells expressing markers characteristic of the definitive endoderm lineage. Next, the populations of cells expressing markers characteristic of the definitive endoderm lineage are then differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage. Next, the populations of cells expressing markers characteristic of the pancreatic endoderm lineage are then differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage.
  • The present invention provides a population of cells wherein greater than 80% of the cells express markers characteristic of the definitive endoderm lineage. The population of cells may be further treated to form a population of cells expressing markers characteristic of the pancreatic endoderm lineage. The population of cells expressing markers characteristic of the pancreatic endoderm lineage may be further treated to form a population of cells expressing markers characteristic of the pancreatic endocrine lineage.
  • The efficiency of differentiation may be determined by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker expressed by cells expressing markers characteristic of the desired cell type.
  • Methods for assessing expression of protein and nucleic acid markers in cultured or isolated cells are standard in the art. These include quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Northern blots, in situ hybridization (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)), and immunoassays such as immunohistochemical analysis of sectioned material, Western blotting, and for markers that are accessible in intact cells, flow cytometry analysis (FACS) (see, e.g., Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).
  • Characteristics of pluripotent stem cells are well known to those skilled in the art, and additional characteristics of pluripotent stem cells continue to be identified. Pluripotent stem cell markers include, for example, the expression of one or more of the following: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
  • After treating pluripotent stem cells with the methods of the present invention, the differentiated cells may be purified by exposing a treated cell population to an agent (such as an antibody) that specifically recognizes a protein marker, such as CXCR4, expressed by cells expressing markers characteristic of the definitive endoderm lineage.
  • Pluripotent stem cells suitable for use in the present invention include, for example, the human embryonic stem cell line H9 (NIH code: WA09), the human embryonic stem cell line H1 (NIH code: WA01), the human embryonic stem cell line H7 (NIH code: WA07), and the human embryonic stem cell line SA002 (Cellartis, Sweden). Also suitable for use in the present invention are cells that express at least one of the following markers characteristic of pluripotent cells: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81.
  • Markers characteristic of the definitive endoderm lineage are selected from the group consisting of SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-like homeobox protein, FGF4, CD48, eomesodermin (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99, and OTX2. Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the definitive endoderm lineage. In one aspect of the present invention, a cell expressing markers characteristic of the definitive endoderm lineage is a primitive streak precursor cell. In an alternate aspect, a cell expressing markers characteristic of the definitive endoderm lineage is a mesendoderm cell. In an alternate aspect, a cell expressing markers characteristic of the definitive endoderm lineage is a definitive endoderm cell.
  • Markers characteristic of the pancreatic endoderm lineage are selected from the group consisting of PDX1, NKX6.1, HNF1 beta, PTF1 alpha, HNF6, HNF4 alpha, SOX9, HB9 and PROX1. Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endoderm lineage. In one aspect of the present invention, a cell expressing markers characteristic of the pancreatic endoderm lineage is a pancreatic endoderm cell.
  • Markers characteristic of the pancreatic endocrine lineage are selected from the group consisting of NGN3, NEUROD, ISL1, PDX1, NKX6.1, PAX4, and PTF-1 alpha. In one embodiment, a pancreatic endocrine cell is capable of expressing at least one of the following hormones: insulin, glucagon, somatostatin, and pancreatic polypeptide. Suitable for use in the present invention is a cell that expresses at least one of the markers characteristic of the pancreatic endocrine lineage. In one aspect of the present invention, a cell expressing markers characteristic of the pancreatic endocrine lineage is a pancreatic endocrine cell. The pancreatic endocrine cell may be a pancreatic hormone-expressing cell. Alternatively, the pancreatic endocrine cell may be a pancreatic hormone-secreting cell.
  • In one aspect of the present invention, the pancreatic endocrine cell is a cell expressing markers characteristic of the β cell lineage. A cell expressing markers characteristic of the β cell lineage expresses PDX1 and at least one of the following transcription factors: NGN3, NKX2.2, NKX6.1, NEUROD, ISL1, HNF3 beta, MAFA, PAX4, and PAX6. In one aspect of the present invention, a cell expressing markers characteristic of the β cell lineage is a β cell.
  • Formation of Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage from Pluripotent Stem Cells
  • In one aspect of the present invention, populations of pluripotent stem cells may be differentiated into populations of cells expressing markers characteristic of the definitive endoderm lineage by culturing the pluripotent stem cells in a medium wherein the concentration of glucose does not exceed 10.5 mM. In one embodiment, differentiation of the population of pluripotent stem cells toward a population of cells expressing markers characteristic of the definitive endoderm lineage is achieved by treating the pluripotent stem cells with activin A and a Wnt ligand.
  • In an alternate embodiment, differentiation of the population of pluripotent stem cells toward a population of cells expressing markers characteristic of the definitive endoderm lineage is achieved by treating the pluripotent stem cells with GDF-8 and at least one other factor is selected from the group consisting of: an aniline-pyridinotriazine, a cyclic aniline-pyridinotriazine, N-{[1-(Phenylmethyl)azepan-4-yl]methyl}-2-pyridin-3-ylacetamide, 4-{[4-(4-{[2-(Pyridin-2-ylamino)ethyl]amino}-1,3,5-triazin-2-yl)pyridin-2-yl]oxy}butan-1-ol, 3-({3-[4({2-[Methyl(pyridin-2-yl)amino]ethyl}amino)-1,3,5-triazin-2-yl]pyridin-2-yl}amino)propan-1-ol, N-4˜-[2-(3-Fluorophenyl)ethyl]-N˜2˜-[3-(4-methylpiperazin-1-yl)propyl]pyrido[2,3-d]pyrimidine-2,4-diamine, 1-Methyl-N-[(4-pyridin-3-yl-2-{[3-(trifluoromethyl)phenyl]amino}-1,3-thiazol-5-yl)methyl]piperidine-4-carboxamide, 1,1-Dimethylethyl {2-[4-({5-[3-(3-hydroxypropyl)phenyl]-4H-1,2,4-triazol-3-yl}amino)phenyl]ethyl}carbamate, 1,1-Dimethylethyl {[3-({5-[5-(3-hydroxypropyl)-2-(methyloxy)phenyl]-1,3-oxazol-2-yl}amino)phenyl]methyl}carbamate, 1-({5-[6-({4-[(4-Methylpiperazin-1-yl)sulfonyl]phenyl}amino)pyrazin-2-yl]thiophen-2-yl}methyl)piperidin-4-ol, 1-({4-[6-({4-[(4-Methylpiperazin-1-yl)sulfonyl]phenyl}amino)pyrazin-2-yl]thiophen-2-yl}methyl)piperidine-4-carboxamide, and 2-{[4-(1-Methylethyl)phenyl]amino}-N-(2-thiophen-2-ylethyl)-7,8-dihydropyrido[4,3-d]pyrimidine-6(5H)-carboxamide. Examples of the factors suitable for use may be found in U.S. patent application Ser. No. 12/494,789. In one embodiment, the at least one other factor is 14-Prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo[19.3.1.1˜2,6˜.1˜8,12˜]heptacosa-1(25),2(27),3,5,8(26),9,11,21,23-nonaen-16-one.
  • The population of pluripotent stem cells may be cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about seven days. Alternatively, the population of pluripotent stem cells may be cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about six days. Alternatively, the population of pluripotent stem cells may cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about five days. Alternatively, the population of pluripotent stem cells may cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about one day to about four days. Alternatively, the population of pluripotent stem cells may be cultured in the medium wherein the concentration of glucose does not exceed 10.5 mM for about four days.
  • In one embodiment, the GDF-8 is used at a concentration from about 5 ng/ml to about 500 ng/ml. In an alternate embodiment, the GDF-8 is used at a concentration from about 5 ng/ml to about 50 ng/ml. In an alternate embodiment, the GDF-8 is used at a concentration from about 5 ng/ml to about 25 ng/ml. In an alternate embodiment, the GDF-8 is used at a concentration of about 25 ng/ml.
  • Activin-A may be used at a concentration from about 1 pg/ml to about 100 m/ml. In an alternate embodiment, the concentration may be about 1 pg/ml to about 1 m/ml. In another alternate embodiment, the concentration may be about 1pg/ml to about 100 ng/ml. In another alternate embodiment, the concentration may be about 50 ng/ml to about 100 ng/ml. In another alternate embodiment, the concentration may be about 100 ng/ml.
  • The Wnt ligand may be selected from the group consisting of Wnt-1, Wnt-3a, Wnt-5a and Wnt-7a. In one embodiment, the Wnt ligand is Wnt-1. In an alternate embodiment, the Wnt ligand is Wnt-3a.
  • The Wnt ligand may be used at a concentration of about 1 ng/ml to about 1000 ng/ml. In an alternate embodiment, the Wnt ligand may be used at a concentration of about 10 ng/ml to about 100 ng/ml. In one embodiment, the concentration of the Wnt ligand is about 20 ng/ml.
  • Formation of Cells Expressing Markers Characteristic of the Pancreatic Endoderm Lineage
  • In one embodiment, populations of cells expressing markers characteristic of the definitive endoderm lineage formed by the methods of the present invention are further differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage by any method in the art.
  • For example, populations of cells expressing markers characteristic of the definitive endoderm lineage obtained according to the methods of the present invention may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage by treating the population of cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in D'Amour et al., Nature Biotechnology 24, 1392-1401 (2006).
  • For example, populations of cells expressing markers characteristic of the definitive endoderm lineage obtained according to the methods of the present invention may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endoderm lineage by treating the population of cells expressing markers characteristic of the definitive endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 11/736,908.
  • Formation of Cells Expressing Markers Characteristic of the Pancreatic Endocrine Lineage
  • In one embodiment, populations of cells expressing markers characteristic of the pancreatic endoderm lineage are further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage by any method in the art.
  • For example, populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in D'Amour et al., Nature Biotechnology, 2006.
  • For example, populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed d in D'Amour et al., Nature Biotechnology, 2006.
  • For example, populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 11/736,908.
  • For example, populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 11/779,311.
  • For example, populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 60/953,178.
  • For example, populations of cells expressing markers characteristic of the pancreatic endoderm lineage may be further differentiated into populations of cells expressing markers characteristic of the pancreatic endocrine lineage, by treating the population of cells expressing markers characteristic of the pancreatic endoderm lineage according to the methods disclosed in U.S. patent application Ser. No. 60/990,529.
  • The present invention is further illustrated, but not limited by, the following examples.
  • EXAMPLES Example 1 The Role of Media and Seeding Protocol in the Differentiation of Human Pluripotent Stem Cells to Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage
  • Cells of the human embryonic stem cell line H1 at passage 41 (p41) were lifted by TrypLE (Catalog#12604-013, Invitrogen, CA) and seeded as single cells at a density of 100,000 cells/cm2 on MATRIGEL® coated dishes (1:30 dilution) in MEF-CM (mouse embryonic fibroblast conditioned media) supplemented with 20 ng/ml FGF2 (Catalog#100-18B, PeproTech, NJ) and 10 μM of Y-27632 (a Rho Kinase Inhibitor, Catalog#Y0503, Sigma, MO).
  • In parallel, cells of the human embryonic stem cell line H1 at passage 41 were seeded as cell colonies MATRIGEL® coated dishes (1:30 dilution) at a 1 to 3 passage ratio by lifting cells with Dispase (Catalog#17105-041, Invitrogen, CA) and plating the cells in MEF-CM with 20 ng/ml FGF2. For both single cell and colony format cultures the media was changed 24 and 48 hours post seeding with fresh MEF-CM with 20 ng/ml FGF2.
  • At 72 hours post seeding, the cultures were differentiated into cells expressing markers characteristic of the definitive endoderm lineage as follows:
      • a. MCDB-131 (Catalog#10372-019, Invitrogen, CA) containing an additional 0.0025 g/ml sodium bicarbonate (Catalog#S3187, Sigma, MO), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN) for one day, then MCDB-131 with an additional 0.0025 g/ml sodium bicarbonate, 2% BSA, GlutaMax™, and 100 ng/ml activin A for three days (Condition 1); or,
      • b. RPMI-1640 (Catalog #22400-105, Invitrogen, CA), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN), for one day, then RPMI-1640 medium supplemented with 2% BSA, and 100 ng/ml activin A each day for an additional three days (Condition 2).
  • At day 4, samples were collected for FACS analysis. In FIG. 1, the flow cytometry results for CXCR4 and CD9 expression are shown in scatter plot format with CXCR4 expression plotted on the Y axis versus CD9 expression plotted on the X axis. The percentage of cells expressing CXCR4, CD9, and CD99 (an additional marker of differentiation) are summarized in Table 1. Differentiation, as measured by the increased expression of the cellular surface markers CXCR4 and CD99, was improved by the use of MCDB-131 media, and expression of CXCR4 and CD99 was further increased by changing from colony style culture to a single cell culture. Furthermore, these data correlated with decreased expression of CD9, a cellular marker for undifferentiated cells, as measured by flow cytometry.
  • Interestingly, with the use of MCDB-131 in either cluster or colony style format, there are fewer co-negative (CXCR4/CD9) cells in FIG. 1, indicating less non-specific differentiation, or fewer cells that do not express markers characteristic of the definitive endoderm lineage in cultures treated MCDB-131 medium. As a whole, these data indicate that H1 human embryonic stem cells differentiate more efficiently in the presence of MCDB-131 medium than RPMI-1640 medium, and that differentiation in MCDB-13 lcan be further improved by seeding and culturing the cells as single cells versus colony style seeding and culture.
  • TABLE 1
    CXCR4 CD9 CD99
    MCDB (cluster) 88.6 10.1 21.7
    RPMI (cluster) 81.8 8.8 30.5
    MCDB (single cell) 92.3 6.7 62.2
    RPMI (single cell) 72.4 12.7 43.1
  • Example 2 The Role of Glucose in the Differentiation of Human Pluripotent Stem Cells to Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage
  • Glucose is a soluble hexose sugar added to almost all cell culture media including Ames' Medium; Basal Medium Eagle (BME); BGJb Medium Fitton-Jackson Modification; Click's Medium; CMRL-1066 Medium; Dulbecco's Modified Eagle's Medium (DMEM); DMEM/Ham's Nutrient Mixture F-12 (50:50); F-12 Coon's Modification; Fischer's Medium; H-Y Medium (Hybri-Max®); Iscove's Modified Dulbecco's Medium (IMDM); McCoy's 5A Modified Medium; MCDB Media; Medium 199; Minimum Essential Medium Eagle (EMEM); NCTC Medium; Nutrient Mixture, Ham's F-10; Nutrient Mixture, Ham's F-12; Nutrient Mixture Ham's F-12 Kaighn's Modification (F12K); RPMI-1640; Serum-Free/Protein Free Hybridoma Medium; Waymouth Medium MB; Williams Medium E and various proprietary media.
  • The amount of glucose in cell culture formulations varies. While the MCDB media series contain glucose in the range from 3.9 to 10 mM, most media contain from 1 g/L (5.5 mM) to as high as 10 g/L (55 mM) glucose, with RPMI-1640 set at 11 mM glucose. Concentrations of glucose above 10 mM are analogous to a diabetic condition within the cell culture system. This is important because the same processes that can affect cells and molecules in vivo can occur in vitro. The consequence of growing cells under conditions that are essentially diabetic is that cells and cell products are modified by the processes of glycation and glyoxidation and can be damaged by glucose mediated oxidative and carbonyl stress.
  • One medium that is currently used for generating definitive endoderm is Iscove's Modified Dulbecco's Medium (IMDM) which contains 25 mM glucose (Kubo et al.; Apr. 1, 2004, Development 131, 1651-1662), RPMI with 11 mM glucose (D'Amour et al., Nat Biotechnol. 2005 December; 23(12):1534-41), or DMEM-F12 with 17.5 mM glucose. Each of these media is above the 10 mM glucose concentration analogous to a diabetic condition. Consequently, to reduce stress on the cells that might be induced by high glucose in the culture medium, it was attempted to find a glucose concentration lower than 10 mM for differentiation of human embryonic stem cells to cells expressing markers characteristic of the definitive endoderm lineage. One such medium with a glucose concentration below 10 mM is MCDB-131 which contains a base glucose concentration of 5.5 mM.
  • Cells of the human embryonic stem cell line H1 at passage 41 (p41) were lifted by TrypLE (Catalog#12604-013, Invitrogen, CA) and seeded as single cells at a density of 100,000 cells/cm2 on MATRIGEL® coated dishes (1:30 dilution) in MEF-CM (mouse embryonic fibroblast conditioned media) supplemented with 20 ng/ml of FGF2 (Catalog#100-18B, PeproTech, NJ) and 10 04 of Y-27632 (a Rho Kinase Inhibitor, Catalog#Y0503, Sigma, MO). The media was changed 24 and 48 hours post seeding with fresh MEF-CM with 20 ng/ml of FGF2. The cultures were differentiated into cells expressing markers characteristic of the definitive endoderm lineage 72 hours post as follows:
      • a. MCDB-131 (Catalog#10372-019, Invitrogen, CA) medium supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 0.0025 g/ml sodium bicarbonate (Catalog#S3187, Sigma, MO), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) 100 ng/ml activin A (R&D Systems, MN), 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN), and either 0, 5, 10, 15, 20, or 25 mM of glucose (Catalog#G8769, Sigma, MO) for one day, then
      • b. MCDB-131 medium supplemented with 2% BSA, sodium bicarbonate, GlutaMax™, 100 ng/ml activin A, and either 0, 5, 10, 15, 20, or 25 mM of glucose for an additional three days.
  • At day 4, samples were collected for FACS and gene expression analysis using real-time PCR, and counted by ViaCount® (Guava®, Millipore, Billerica, Mass.). Consistent with results from Example 1, differentiation of pluripotent stem cells to cells expressing markers characteristic of the definitive endoderm lineage resulted in the robust expression of markers associated with the definitive endoderm lineage (FIG. 2A). When the glucose concentration in the media was supplemented with 0, 5, 10, 15, 20, or 25 mM glucose (final concentration: 5.5, 10.5, 15.5, 20.5, 25.5, or 30.5 mM glucose respectively), a modest increase in cell number was observed in samples treated with additional 10 mM glucose (15.5 mM final glucose concentration) as shown in FIG. 2B. A modest increase in CXCR4 expression for cells supplemented with additional 5 mM glucose (10.5 mM final glucose concentration) was also observed, as shown in FIG. 2A. However, these increases in cell number and CXCR4 were offset by a reduction in total cell viability (FIG. 2B).
  • At the basal level of glucose (5.5 mM), almost every cell in the culture was SOX17 positive, and the cells were dispersed in the culture dish in a uniform pattern (FIG. 3 A&B). As the glucose concentration increased, the cells maintained a high expression of SOX17, however the cells were observed to cluster. These clustered cells were subsequently less evenly dispersed on the culture surface than populations of cells cultured in the basal level of glucose. This effect correlated with a slight increase in expression of CD9 and OCT4—cellular markers for undifferentiated cells, and SOX7—a cellular marker for extraembryonic ectoderm, and a decrease in the gene expression of pancreatic pancreas homeobox 1 (MNX1) also known as Homeobox HB9 (HLXB9) in the clustered cells (FIG. 4).
  • Similar glucose related effects on differentiation were also observed in cultures differentiated with DMEM containing either 5.5 mM (low) or 25 mM (high) glucose concentration (Cat#s 10567-014 and 21063-029, Invitrogen, CA). As described above, for controls, cells were seeded as single cells, cultured 3 days in MEF conditioned media and differentiated in MCDB-131 with 5.5 mM or 25 mM glucose supplemented media, or in DMEM high or low glucose media supplemented with 2% fatty acid free BSA, 100 ng/ml activin A, and 20 ng/ml WNT-3a on the first day, and 2% fatty acid free BSA and 100 ng/ml activin A for the next three days with daily media change.
  • Similar to results with MCDB-131 media, where elevated glucose inhibits definitive endoderm formation as compared to low glucose media treated cells, it was observed that a high glucose concentration in DMEM reduced hES cell differentiation. By flow cytometry, following differentiation to definitive endoderm, 88.6% of cells were positive for CXCR4 in media containing 5.5 mM glucose versus 80% CXCR4 positive cells in media containing 25 mM glucose. Additionally, markers of differentiation to definitive endoderm as measured by qRT-PCR (50X17) were decreased while markers of undifferentiated cells (OCT4) or alternative differentiation fates (CDX2) were increased (FIG. 5) in cells fed media containing high glucose versus those fed low glucose media. This effect was due at least in part to the pH of the media as over the four-day differentiation, media pH dropped after 48 hours of differentiation day. Furthermore, the higher the starting and ending pH of culture media (8.1>pH>7.6) (FIG. 6) during definitive endoderm formation, the more complete the conversion to definitive endoderm.
  • In summary, the results indicate that basal levels of glucose (5.5 mM) in differentiation media are sufficient to generate a population of cells wherein greater than 80% of cells express markers characteristic of the definitive endoderm lineage. Increasing glucose concentrations in the differentiation medium to 10.5 mM is sufficient to generate a similar population, however increasing glucose concentrations above 10.5 mM can result in increasing expression of markers of pluripotency/reduced differentiation such as CD9 or OCT4, or increased expression of markers associated with alternative fate differentiation/extraembryonic ectoderm such as SOX7 or CDX2.
  • Example 3 The Role of pH Control in the Differentiation of Human Pluripotent Stem Cells to Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage
  • Cells of the human embryonic stem (hES) cell line H1 at passage 46 (p46) were seeded as cell colonies to MATRIGEL (1:30 dilution) coated dishes at a 1 to 3 passage ratio by lifting cells with Dispase (Catalog#17105-041, Invitrogen, CA) and plating the cells in MEF-CM with 20 ng/ml of FGF2. The media was changed daily with fresh MEF-CM with 20 ng/ml of FGF2, until initiation of differentiation into definitive endoderm (DE) as follows:
      • a. MCDB-131 (Catalog#10372-019, Invitrogen, CA) medium supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN) for one day, followed by treatment with MCDB-131 supplemented with 2% BSA, GlutaMax™, and 100 ng/ml activin A each day for an additional three days; or
      • b. MCDB131 containing an additional 0.0025 g/ml sodium bicarbonate (Catalog#S3187, Sigma, MO) medium supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN) for one day, followed by treatment with MCDB-131 with an additional 0.0025 g/ml sodium bicarbonate supplemented with 2% BSA, GlutaMax™, and 100 ng/ml activin A each day for an additional three days.
  • At day 4, samples were collected for FACS and gene expression analysis using real-time PCR, and counted by ViaCount® (Guava®, Millipore, Billerica, MA). As shown in Example 2, a relatively more acidic pH of differentiation media (<7.6 pH) can reduce CXCR4 expression due to less directed differentiation and increased alternative differentiation.
  • In order to test if this effect was due to pH, cells were differentiated in basal MCDB-131 that contains the published concentration of 1 g/l of sodium bicarbonate and cells were differentiated in media supplemented to the bicarbonate concentration of DMEM, which is 3.7 g/l. It was observed that differentiation, as measured by the increased expression of the cellular surface markers CXCR4 and decreased expression of CD9, was improved by the use of a buffering agent. MCDB-131 media with 3.7 g/l of Sodium Bicarbonate for a buffer had significantly higher CXCR4 expression and lower CD9 expression levels versus cells differentiated in MCDB-131 that contained only the base level of Bicarbonate (1 g/l) (FIG. 7A and B). This is due in part to the fact that MCDB-131 media has a pH level of 7.5, and addition of 2.7 g/l of Sodium Bicarbonate raises the pH to 7.6.
  • Furthermore, at the end of differentiation, the media (containing the pH color sensor phenol red) from cultures grown in undifferentiated media were significantly more yellow and acidic than cultures with supplemental sodium bicarbonate buffered media which remained red in color. These results indicate that increasing media pH to 7.6 or higher promotes more efficient definitive endoderm differentiation from pluripotent stem cells, and raising and stabilizing media pH could be achieved by alternatives to bicarbonate buffering including, but not limited to, increasing incubator CO2 levels and other soluble buffer systems like HEPES, or phosphate.
  • Example 4
  • The Role of RPMI-1640 or MCDB-131 Media and the TGF-Beta Superfamily Members Activin A and GDF-8 in the Differentiation of Human Pluripotent Stem Cells to Cells Expressing Markers Characteristic of the Definitive Endoderm Lineage
  • Cells of the human embryonic stem cell line H1 at passage 47 (p4′7) were lifted by TrypLE (Catalog#12604-013, Invitrogen, CA) and seeded as single cells at a density of 100,000 cells/cm2 on MATRIGEL® coated dishes (1:30 dilution) in MEF-CM (mouse embryonic fibroblast conditioned media) supplemented with 20 ng/ml FGF2 (Catalog#100-18B, PeproTech, NJ) and 3μM of H-1152, glycyl (a Rho Kinase Inhibitor, Catalog#555554, EMD chemicals, Gibbstown, N.J.).
  • At 72 hours post seeding, the cultures were differentiated into cells expressing markers characteristic of the definitive endoderm lineage as follows:
      • a. MCDB-131 (Catalog#10372-019, Invitrogen, CA) containing an additional 0.0025 g/ml sodium bicarbonate (Catalog#S3187, Sigma, MO), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN) for one day, then MCDB-131 with an additional 0.0025 g/ml sodium bicarbonate, 2% BSA, GlutaMax™, and 100 ng/ml activin A for three days , or,
      • b. MCDB-131 (Catalog#10372-019, Invitrogen, CA) containing an additional 0.0025 g/ml sodium bicarbonate (Catalog#S3187, Sigma, MO), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) and 100 ng/ml GDF-8 (R&D Systems, MN) plus 2.5 μM of the GSK3B inhibitor 14-Prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo[19.3.1.1˜2,6˜.1˜8,12˜]heptacosa-1(25),2(27),3,5,8(26),9,11,21,23-nonaen-16-one for one day, then MCDB-131 with an additional 0.0025 g/ml sodium bicarbonate, 2% BSA, GlutaMax™, and 100 ng/ml GDF-8 for three days, or,
      • c. MCDB-131 (Catalog#10372-019, Invitrogen, CA) containing an additional 0.0025 g/ml sodium bicarbonate (Catalog#S3187, Sigma, MO), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), 1X GlutaMax™ (Catalog #35050-079, Invitrogen, Ca) and 100 ng/ml GDF-8 (R&D Systems, MN) for four days, or,
      • d. RPMI-1640 (Catalog #22400-105, Invitrogen, CA), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), and 100 ng/ml activin A (R&D Systems, MN) plus 20 ng/ml WNT-3a (Catalog#1324-WN-002, R&D Systems, MN), for one day, then RPMI-1640 medium supplemented with 2% BSA, and 100 ng/ml activin A each day for an additional three days.
      • e. RPMI-1640 (Catalog #22400-105, Invitrogen, CA), was supplemented with 2% fatty acid-free BSA (Catalog#68700, Proliant, IA), and 100 ng/ml GDF-8 (R&D Systems, MN) plus 2.5 μM of the GSK3B inhibitor 14-Prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo[19.3.1.1˜2,6˜.1˜8,12˜]heptacosa-1(25),2(27),3,5,8(26),9,11,21,23-nonaen-16-one for one day, then RPMI-1640 medium supplemented with 2% BSA, and 100 ng/ml GDF-8 each day for an additional three days.
  • At day 4, samples were collected for FACS analysis and qRT-PCR. In Table 2, the percentage of cells expressing CXCR4, CD9, and CD99 (an additional marker of differentiation) are summarized in Table 2. Differentiation, as measured by the increased expression of the cellular surface marker CXCR4 was improved by the use of MCDB-131 media compared to RPMI-1640, and expression of CXCR4 was further increased by using GDF-8 in combination with GSK3B inhibitor (“MCX”), compared to cells treated with activin A and Wnt3a. Similar results, showing improved differentiation with the use of MCDB-131 media compared to RPMI-1640, and by using GDF-8 in combination with a GSK3B inhibitor compared to cells treated with activin A and Wnt3a were observed by qRT-PCR for the gene MNX-1 (FIG. 8). Furthermore, these data correlated with decreased expression of CD9, a cellular marker for undifferentiated cells, as measured by flow cytometry (Table 2) or OCT4 and CD9, as measured by qRT-PCR (FIG. 8). These data indicate that H1 human embryonic stem cells differentiate more efficiently in the presence of MCDB-131 medium than RPMI-1640 medium, and that differentiation in MCDB-131 can be further improved by differentiating the cells in the presence of GDF-8 and a GSK3B inhibitor versus differentiation with activin A and Wnt3a.
  • TABLE 2
    Media Treatment CD184 CD9 CD99
    RPMI + AA + Wnt 77.8 20.9 77.8
    RPMI + GDF8 + GSK3B inhibitor 81.6 13.8 83.4
    MCDB131 + AA + Wnt 81.2 21.1 60.0
    MCDB131 + GDF8 + GSK3B 87.1 14.3 50.9
    inhibitor
    MCDB131 + GDF8 43.2 31.2 23.7
  • Publications cited throughout this document are hereby incorporated by reference in their entirety. Although the various aspects of the invention have been illustrated above by reference to examples and preferred embodiments, it will be appreciated that the scope of the invention is defined not by the foregoing description but by the following claims properly construed under principles of patent law.

Claims (18)

What is claimed is:
1. A method for generating a population of cells wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage, comprising the steps of:
a) culturing a population of pluripotent stem cells,
b) differentiating the population of pluripotent stem cells in a medium with a pH of 7.6 or higher and supplemented with:
(i.) activin A;
(ii.) wnt3a; and
(iii.) glucose at a concentration that does not exceed 10.5 mM, thereby generating a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
2. The method of claim 2, wherein the concentration of glucose does not exceed 5.5 mM.
3. The method of claim 1, wherein the cells express CXCR4 and CD99.
4. The method of claim 1, wherein the cells expressing markers characteristic of the definitive endoderm lineage are definitive endoderm cells.
5. The method of claim 1, wherein the pluripotent stem cells are human pluripotent stem cells.
6. The method of claim 1, wherein the pluripotent stem cells are human embryonic stem cells.
7. The method of claim 1, wherein the medium comprises about 20 ng/ml of wtn-3A.
8. The method of claim 1, wherein the medium comprises about 100 ng/ml of activin A.
9. The method of claim 1, wherein the medium is serum free.
10. The method of claim 1, wherein the step of differentiation comprises
culturing the pluripotent stem cells for about one day in serum-free medium supplemented with about 100 ng/ml of activin A, about 20 ng/ml of wnt-3a and glucose at a concentration that does not exceed 10.5 mM followed by
culturing the cells for about three days in serum-free medium supplemented with about 100 ng/ml of activin A and glucose at a concentration that does not exceed 10.5 mM.
11. A method of differentiating pluripotent stem cells into definitive endoderm cells comprising culturing pluripotent stem cells in a medium with a pH of 7.6 or higher and supplemented with:
a) activin A;
b) wnt3a; and
c) glucose at a concentration that does not exceed 10.5 mM.
12. The method of claim 11, wherein the method further comprises culturing the pluripotent stem cells prior to differentiating.
13. The method of claim 11, wherein the concentration of glucose does not exceed 5.5 mM.
14. The method of claim 11, wherein the pluripotent stem cells are human pluripotent stem cells.
15. The method of claim 11, wherein the pluripotent stem cells are human embryonic stem cells.
16. The method of claim 11, wherein the medium comprises about 100 ng/ml of activin A.
17. The method of claim 11, wherein the medium comprises about 20 ng/ml of wnt-3a.
18. The method of claim 11, wherein the medium is serum free.
US15/958,824 2010-08-31 2018-04-20 Differentiation of human embryonic stem cells Abandoned US20180237752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/958,824 US20180237752A1 (en) 2010-08-31 2018-04-20 Differentiation of human embryonic stem cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US37844810P 2010-08-31 2010-08-31
US13/211,951 US9506036B2 (en) 2010-08-31 2011-08-17 Differentiation of human embryonic stem cells
US15/274,749 US9951314B2 (en) 2010-08-31 2016-09-23 Differentiation of human embryonic stem cells
US15/958,824 US20180237752A1 (en) 2010-08-31 2018-04-20 Differentiation of human embryonic stem cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/274,749 Continuation US9951314B2 (en) 2010-08-31 2016-09-23 Differentiation of human embryonic stem cells

Publications (1)

Publication Number Publication Date
US20180237752A1 true US20180237752A1 (en) 2018-08-23

Family

ID=45697773

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/211,951 Active 2032-09-03 US9506036B2 (en) 2010-08-31 2011-08-17 Differentiation of human embryonic stem cells
US15/274,749 Active US9951314B2 (en) 2010-08-31 2016-09-23 Differentiation of human embryonic stem cells
US15/958,824 Abandoned US20180237752A1 (en) 2010-08-31 2018-04-20 Differentiation of human embryonic stem cells

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/211,951 Active 2032-09-03 US9506036B2 (en) 2010-08-31 2011-08-17 Differentiation of human embryonic stem cells
US15/274,749 Active US9951314B2 (en) 2010-08-31 2016-09-23 Differentiation of human embryonic stem cells

Country Status (15)

Country Link
US (3) US9506036B2 (en)
EP (2) EP3372672A1 (en)
JP (2) JP6168991B2 (en)
KR (1) KR101851956B1 (en)
CN (1) CN103221536B (en)
AR (1) AR082819A1 (en)
AU (1) AU2011296381B2 (en)
BR (1) BR112013004616A2 (en)
CA (1) CA2809300A1 (en)
ES (1) ES2660897T3 (en)
MX (1) MX355340B (en)
PL (1) PL2611909T3 (en)
RU (1) RU2620938C2 (en)
SG (2) SG187946A1 (en)
WO (1) WO2012030538A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3372672A1 (en) * 2010-08-31 2018-09-12 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
CN108220224A (en) 2011-06-21 2018-06-29 诺沃—诺迪斯克有限公司 Definitive entoderm is effectively induced from pluripotent stem cell
US20140242038A1 (en) * 2011-10-11 2014-08-28 The Trustees Of Columbia University In The City Of New York Method for generating beta cells
WO2013186946A1 (en) * 2012-06-11 2013-12-19 国立大学法人北海道大学 Method for selecting pluripotent stem cell
DE202014011287U1 (en) 2013-06-11 2019-02-06 The President And Fellows Of Harvard College SC-β cells and compositions for producing the cells
WO2016100898A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof
CN107614678B (en) 2014-12-18 2021-04-30 哈佛学院校长同事会 Method for producing stem cell-derived beta cells and method for using same
EP3234110B1 (en) 2014-12-18 2024-02-28 President and Fellows of Harvard College METHODS FOR GENERATING STEM CELL-DERIVED ß CELLS AND USES THEREOF
EP4194549A1 (en) * 2017-01-27 2023-06-14 Kaneka Corporation Endodermal cell population, and method for producing cell population of any of three germ layers from pluripotent cell
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
AU2018370029A1 (en) 2017-11-15 2020-07-02 Vertex Pharmaceuticals Incorporated Islet cell manufacturing compositions and methods of use
WO2020033879A1 (en) 2018-08-10 2020-02-13 Semma Therapeutics, Inc. Stem cell derived islet differentiation
EP3976237A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates Inc. Cell encapsulation devices with controlled oxygen diffusion distances
EP3975926A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates, Inc. A biocompatible membrane composite
WO2020243665A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. A biocompatible membrane composite
EP3976236A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates Inc. A biocompatible membrane composite
US20240117317A1 (en) * 2021-02-08 2024-04-11 Qatar Foundation For Education, Science And Community Development Generation of induced pluripotent stem cell lines from human patients with mutations in the glucokinase gene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015711A1 (en) * 2008-06-30 2010-01-21 Janet Davis Differentiation of Pluripotent Stem Cells
US9951314B2 (en) * 2010-08-31 2018-04-24 Janssen Biotech, Inc. Differentiation of human embryonic stem cells

Family Cites Families (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (en) 1968-08-26 1975-12-29 Binder Fa G MESHWARE AND METHOD OF MANUFACTURING THE SAME
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
KR100249937B1 (en) 1991-04-25 2000-04-01 나가야마 오사무 Reshaped human antibody to human interleukin-6 receptor
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (en) 1993-02-17 2004-05-10 味の素株式会社 Immunosuppressants
WO1994023572A1 (en) 1993-04-08 1994-10-27 Human Cell Cultures, Inc. Cell culturing method and medium
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (en) 1993-11-19 1995-09-21 Ciba Geigy
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
WO1996020728A1 (en) 1994-12-29 1996-07-11 Chugai Seiyaku Kabushiki Kaisha Antitumor agent potentiator comprising il-6 antagonist
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
US5681561A (en) 1995-06-07 1997-10-28 Life Medical Sciences, Inc. Compositions and methods for improving autologous fat grafting
KR100568438B1 (en) 1997-04-24 2006-04-07 오르토-맥네일 파마슈티칼, 인코퍼레이티드 Substituted imidazoles useful in the treatment of inflammatory diseases, a process for the preparation thereof and pharmaceutical compositions containing the same
AU8476698A (en) 1997-07-03 1999-01-25 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
EP1538206B1 (en) 1997-09-16 2010-03-24 Centocor, Inc. Method for the complete chemical synthesis and assembly of genes and genomes
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
AU1197699A (en) 1997-10-23 1999-05-10 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells
US6372779B1 (en) 1997-12-29 2002-04-16 Ortho Pharmaceutical Corporation Anti-inflammatory compounds
ATE316795T1 (en) 1998-03-18 2006-02-15 Osiris Therapeutics Inc MESENCHYMAL STEM CELLS FOR THE PREVENTION AND TREATMENT OF IMMUNE RESPONSE DURING TRANSPLANTATIONS
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
CA2359159A1 (en) 1999-01-21 2000-07-27 Vitro Diagnostics, Inc. Immortalized cell lines and methods of making the same
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
WO2001023528A1 (en) 1999-09-27 2001-04-05 University Of Florida Research Foundation Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
US6753153B2 (en) 1999-12-13 2004-06-22 The Scripps Research Institute Markers for identification and isolation of pancreatic islet α and β progenitors
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
CN1449439A (en) 2000-06-26 2003-10-15 株式会社雷诺再生医学研究所 Cell fraction containing cells capable of differentiating into nervous system cells
KR100850812B1 (en) 2000-10-23 2008-08-06 스미스클라인 비참 코포레이션 Novel Compounds
JP2004526676A (en) 2000-12-08 2004-09-02 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド Large-membered heterocyclic compounds useful as kinase inhibitors
DK1362047T3 (en) 2000-12-08 2006-09-04 Ortho Mcneil Pharm Inc Indazolyl-substituted pyrroline compounds as kinase inhibitors
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
JP2005503759A (en) 2001-01-24 2005-02-10 アメリカ合衆国 Differentiation of stem cells into pancreatic endocrine cells
DK1355910T3 (en) 2001-01-25 2011-06-27 Us Of America Represented By The Secretary Dept Of Health And Human Services Formulation of boric acid compounds
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
EP1379626A2 (en) 2001-04-19 2004-01-14 DeveloGen Aktiengesellschaft für entwicklungsbiologische Forschung A method for differentiating stem cells into insulin-producing cells
JP4296781B2 (en) 2001-04-24 2009-07-15 味の素株式会社 Stem cells and methods for separating them
CA2447015A1 (en) 2001-05-15 2002-11-21 Rappaport Family Institute For Research In The Medical Sciences Insulin producing cells derived from human embryonic stem cells
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (en) 2001-07-05 2004-02-11 주식회사 우리기술 Apparatus and method for multi-testing insulation of power cables
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
WO2003014313A2 (en) 2001-08-06 2003-02-20 Bresagen, Ltd. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
WO2003033697A1 (en) 2001-10-18 2003-04-24 Ixion Biotechnology, Inc. Conversion of liver stem and progenitor cells to pancreatic functional cells
EP1442115B9 (en) 2001-11-15 2009-12-16 Children's Medical Center Corporation Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof
KR20120003961A (en) 2001-12-07 2012-01-11 사이토리 테라퓨틱스, 인크. Systems and methods for treating patients with processed lipoaspirate cells
EP2264146A1 (en) 2001-12-07 2010-12-22 Geron Corporation Islet cells from human embryonic stem cells
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
JP2005512593A (en) 2001-12-28 2005-05-12 セルアーティス アーベー Establishing a pluripotent human blastocyst-derived stem cell line
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
US20030180268A1 (en) 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
JPWO2003087349A1 (en) 2002-04-17 2005-08-18 大塚製薬株式会社 Method of forming pancreatic β cells from mesenchymal cells
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
DE60319364T2 (en) 2002-05-08 2009-02-19 Janssen Pharmaceutica N.V. SUBSTITUTED PYRROLINS AS KINASE INHIBITORS
US20060003446A1 (en) 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
JP2006512046A (en) 2002-05-28 2006-04-13 ベクトン・ディキンソン・アンド・カンパニー Methods for proliferation of human pancreatic acinar cells and transdifferentiation into insulin producing cells in vitro
BR0311821A (en) 2002-06-05 2005-04-05 Janssen Pharmaceutica Nv Bisindolyl maleimid derivatives as kinase inhibitors
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (en) 2002-07-08 2004-10-20 徐如祥 Culture process of human nerve stem cell
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
EP1539930A4 (en) 2002-07-29 2006-08-09 Es Cell Int Pte Ltd Multi-step method for the differentiation of insulin positive, glucose
US20040063204A1 (en) 2002-08-14 2004-04-01 Lijun Yang Bone marrow cell differentiation
EP1539928A4 (en) 2002-09-06 2006-09-06 Amcyte Inc Cd56 positive human adult pancreatic endocrine progenitor cells
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
AU2003285172A1 (en) 2002-11-08 2004-06-03 The Johns Hopkins University Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
EP1567639A4 (en) 2002-12-05 2005-12-21 Technion Res & Dev Foundation Cultured human pancreatic islets, and uses thereof
JP4613069B2 (en) 2002-12-16 2011-01-12 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Method for preparing feeder cell-free and xeno-free human embryonic stem cells and stem cell culture prepared using them
KR101114808B1 (en) 2003-01-29 2012-02-15 다케다 야쿠힌 고교 가부시키가이샤 Process for producing coated preparation
RU2359671C2 (en) 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Method of obtaining of preparation with covering
US20070154981A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
US20070155661A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Standord Junior University Methods and compositions for modulating the development of stem cells
CA2520861A1 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
WO2004090110A2 (en) 2003-03-31 2004-10-21 Bresagen Inc. Compositions and methods for the control, differentiation and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
EP1641914B1 (en) 2003-06-27 2016-07-20 DePuy Synthes Products, Inc. Postpartum cells derived from placental tissue, and methods of making and using the same
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (en) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz CULTURE GROUND FOR MAINTENANCE, PROLIFERATION AND DIFFERENTIATION OF MAMMALIAN CELLS.
US7569385B2 (en) 2003-08-14 2009-08-04 The Regents Of The University Of California Multipotent amniotic fetal stem cells
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
AU2004269395A1 (en) 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
JP2007515433A (en) 2003-12-17 2007-06-14 アラーガン インコーポレイテッド Methods of treating retinoid responsive disorders using selective inhibitors of CYP26A and CYP26B
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
US7704738B2 (en) 2003-12-23 2010-04-27 Cythera, Inc. Definitive endoderm
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
CN112813019A (en) * 2003-12-23 2021-05-18 维亚希特公司 Definitive endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
WO2005065354A2 (en) 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
GB2441530B (en) 2004-02-12 2009-09-23 Univ Newcastle Stem Cells
WO2005080598A1 (en) 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. Method of screening somatic cell nucleus initializer
AU2005221095A1 (en) 2004-03-09 2005-09-22 John J. O'neil Methods for generating insulin-producing cells
CN1950498A (en) 2004-03-10 2007-04-18 加利福尼亚大学董事会 Compositions and methods for growth of embryonic stem cells
KR101178786B1 (en) 2004-03-23 2012-09-07 다이이찌 산쿄 가부시키가이샤 Method of proliferating pluripotent stem cell
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
WO2005097977A2 (en) 2004-04-01 2005-10-20 Wisconsin Alumni Research Foundation Differentiation of stem cells to endoderm and pancreatic lineage
JP4926946B2 (en) 2004-04-27 2012-05-09 ヴィアサイト,インコーポレイテッド PDX1-expressing endoderm
JP5687816B2 (en) 2004-07-09 2015-03-25 ヴィアサイト,インコーポレイテッド Methods for identifying factors for differentiating definitive endoderm
JP5102030B2 (en) 2004-08-13 2012-12-19 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド Compositions and methods for self-renewal and differentiation in human embryonic stem cells
US20080268533A1 (en) 2004-08-25 2008-10-30 University Of Georgia Research Foundation, Inc. Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells
DE102004043256B4 (en) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Scalable process for culturing undifferentiated stem cells in suspension
MX2007002389A (en) 2004-09-08 2009-02-12 Wisconsin Alumni Res Found Culturing human embryonic stem cells.
ES2383813T3 (en) 2004-09-08 2012-06-26 Wisconsin Alumni Research Foundation Embryonic stem cell culture and culture method
AU2006208944A1 (en) 2005-01-28 2006-08-03 Imperial College Innovations Limited Methods for embryonic stem cell culture
AU2006210955A1 (en) 2005-01-31 2006-08-10 Es Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
WO2006088867A2 (en) 2005-02-15 2006-08-24 Medistem Laboratories, Incorporated Method for expansion of stem cells
ES2627419T3 (en) 2005-03-04 2017-07-28 Lifescan, Inc. Adult stromal cells derived from the pancreas
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
CN100425694C (en) 2005-04-15 2008-10-15 北京大学 Method of inducing embryo stem cell to differentiate toward pancreatic cell
EP1876893B1 (en) 2005-04-15 2012-04-11 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
EP1874367B1 (en) 2005-04-26 2011-07-06 Arhus Universitet Biocompatible material for surgical implants and cell guiding tissue culture surfaces
JP5092124B2 (en) 2005-05-24 2012-12-05 国立大学法人 熊本大学 ES cell differentiation induction method
AU2006202209B2 (en) 2005-05-27 2011-04-14 Lifescan, Inc. Amniotic fluid derived cells
MX2007015610A (en) 2005-06-10 2008-02-21 Irm Llc Compounds that maintain pluripotency of embryonic stem cells.
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
EP1931764A1 (en) 2005-06-21 2008-06-18 GE Healthcare Bio-Sciences AB Method for cell culture
AU2006262369B2 (en) 2005-06-22 2012-07-05 Asterias Biotherapeutics, Inc. Suspension culture of human embryonic stem cells
NZ564179A (en) 2005-06-30 2010-09-30 Janssen Pharmaceutica Nv Cyclic anilino - pyridinotriazines as GSK-3 inhibitors
US20080194021A1 (en) 2005-07-29 2008-08-14 Mays Robert W Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells
CA2616863A1 (en) 2005-07-29 2007-02-01 Australian Stem Cell Centre Limited Compositions and methods for growth of pluripotent cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
US8476070B2 (en) 2005-08-29 2013-07-02 Technion Research & Development Foundation Limited Media for culturing stem cells
KR20080056181A (en) 2005-09-02 2008-06-20 에이전시 포 사이언스, 테크놀로지 앤드 리서치 Method of deriving progenitor cell line
GB2444686B (en) 2005-09-12 2010-08-25 Es Cell Int Pte Ltd Differentiation of pluripotent stem cells using p38 MAPK inhibitors or prostaglandins
CN101310012B (en) 2005-10-14 2012-05-09 明尼苏达大学董事会 Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
US20070122905A1 (en) 2005-10-27 2007-05-31 D Amour Kevin A PDX1-expressing dorsal and ventral foregut endoderm
EP2206724A1 (en) 2005-12-13 2010-07-14 Kyoto University Nuclear reprogramming factor
WO2007082963A1 (en) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Human embryo stem-cell lines and methods for using same
EP1994141B1 (en) 2006-02-23 2017-11-15 ViaCyte, Inc. Compositions and methods useful for culturing differentiable cells
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
WO2007103282A2 (en) 2006-03-02 2007-09-13 Cythera, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
CA2650812C (en) 2006-04-28 2017-12-12 Lifescan, Inc. Differentiation of human embryonic stem cells
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
US20070259423A1 (en) 2006-05-02 2007-11-08 Jon Odorico Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
WO2007136673A2 (en) * 2006-05-19 2007-11-29 Medistem Laboratories, Inc. Treatment of disc degenerative disease and compositions for same
WO2007139929A2 (en) 2006-05-25 2007-12-06 The Burnham Institute For Medical Research Methods for culture and production of single cell populations of human embryonic stem cells
AU2007254766A1 (en) * 2006-06-02 2007-12-13 University Of Georgia Research Foundation, Inc. Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
CN101541953A (en) 2006-06-02 2009-09-23 佐治亚大学研究基金会 Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
US8415153B2 (en) 2006-06-19 2013-04-09 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (en) 2006-06-23 2009-06-03 中日友好医院 Method for in vitro amplifying and in 3D solid culturing for nerve stem cell
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
EP2046946B8 (en) 2006-06-26 2017-01-25 Lifescan, Inc. Pluripotent stem cell culture
US8968994B2 (en) 2006-07-06 2015-03-03 Jeremy Micah Crook Method for stem cell culture and cells derived therefrom
AU2007277364B2 (en) 2006-07-26 2010-08-12 Viacyte, Inc. Methods of producing pancreatic hormones
ES2704401T3 (en) 2006-08-02 2019-03-18 Technion Res & Dev Foundation Methods of embryonic stem cell expansion in a suspension culture
KR101331510B1 (en) * 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 Media compostions containing low concentrations of glucose useful for human embryonic stem cells, differentiation method of human embryonic stem cells into insulin-producing cells or cell clusters using thereof, and insulin-producing cells or cell clusters differentiated thereby
JP2008099662A (en) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research Method for culturing stem cell
US20080091234A1 (en) 2006-09-26 2008-04-17 Kladakis Stephanie M Method for modifying a medical implant surface for promoting tissue growth
MX2009004096A (en) 2006-10-17 2009-06-16 Stiefel Laboratories Talarazole metabolites.
US20100323442A1 (en) 2006-10-17 2010-12-23 Emmanuel Edward Baetge Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
CA2666789C (en) 2006-10-18 2016-11-22 Yong Zhao Embryonic-like stem cells derived from adult human peripheral blood and methods of use
US20110151554A1 (en) 2006-11-09 2011-06-23 Akira Yuo Method for culturing and subculturing primate embryonic stem cell, as well as method for inducing differentiation thereof
TW200836749A (en) 2007-01-09 2008-09-16 Vioquest Pharmaceuticals Inc Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
CN103627671A (en) 2007-01-30 2014-03-12 佐治亚大学研究基金会 Method for generating endoderm and mesoderm lineages and multipotent migratory cells (MMC), and cell population and use
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
US20090053182A1 (en) 2007-05-25 2009-02-26 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
CA2691793A1 (en) 2007-06-29 2009-01-08 Cellular Dynamics International, Inc. Automated method and apparatus for embryonic stem cell culture
EP3957716A1 (en) 2007-07-18 2022-02-23 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
EP2185693B1 (en) 2007-07-31 2019-07-03 Lifescan, Inc. Differentiation of human embryonic stem cells
EP2185691B1 (en) 2007-07-31 2018-03-14 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells
KR101544498B1 (en) 2007-08-24 2015-08-17 스티칭 허트 네덜란드 칸커 인스티튜트 Compositions for the treatment of neoplastic diseases
US20110151447A1 (en) 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
US9062290B2 (en) 2007-11-27 2015-06-23 Lifescan, Inc. Differentiation of human embryonic stem cells
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (en) 2008-02-01 2009-08-06 Kyoto University Differentiated cells originating in artificial pluripotent stem cells
EP2250252A2 (en) 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
MX2010009251A (en) 2008-02-21 2010-11-25 Centocor Ortho Biotech Inc Methods, surface modified plates and compositions for cell attachment, cultivation and detachment.
JPWO2009110215A1 (en) * 2008-03-03 2011-07-14 独立行政法人科学技術振興機構 Ciliary cell differentiation induction method
EP2479260B1 (en) 2008-03-17 2016-01-06 Agency For Science, Technology And Research Microcarriers for stem cell culture
RU2359030C1 (en) * 2008-03-19 2009-06-20 Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" Method for obtaining endotheliocytes from human embryonic stem cells (versions)
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
DK2283117T3 (en) 2008-04-21 2014-01-20 Viacyte Inc PROCEDURE FOR CLEANING PANCREATIC ENDODERM CELLS DERIVED FROM HUMAN EMBRYONIC STEM CELLS
WO2009132083A2 (en) 2008-04-22 2009-10-29 President And Fellows Of Harvard College Compositions and methods for promoting the generation of pdx1+ pancreatic cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
WO2009154606A1 (en) * 2008-06-03 2009-12-23 Cythera, Inc. Growth factors for production of definitive endoderm
DE102008032236A1 (en) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolation and / or identification of stem cells with adipocytic, chondrocytic and pancreatic differentiation potential
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
WO2010022395A2 (en) 2008-08-22 2010-02-25 President And Fellows Of Harvard College Methods of reprogramming cells
CN102333862B (en) 2008-10-31 2018-04-27 詹森生物科技公司 Differentiation of the human embryo stem cell to pancreatic endocrine pedigree
CA2742268C (en) 2008-10-31 2020-02-18 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells to the pancreatic endocrine lineage
CA2742583C (en) 2008-11-04 2022-09-27 Viacyte, Inc. Stem cell aggregate suspension compositions and methods for differentiation thereof
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
JP2012508584A (en) 2008-11-14 2012-04-12 ヴィアサイト,インコーポレイテッド Encapsulation of human pluripotent stem cell-derived pancreatic cells
AU2009316580B2 (en) 2008-11-20 2016-04-14 Janssen Biotech, Inc. Pluripotent stem cell culture on micro-carriers
WO2010063848A1 (en) 2008-12-05 2010-06-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and medium for neural differentiation of pluripotent cells
KR20170118969A (en) 2009-07-20 2017-10-25 얀센 바이오테크 인코포레이티드 Differentiation of human embryonic stem cells
GB2485113B (en) 2009-07-20 2016-12-28 Janssen Biotech Inc Differentiation of human embryonic stem cells into cells of the pancreatic endoderm lineage
KR101861584B1 (en) 2009-10-29 2018-05-28 얀센 바이오테크 인코포레이티드 Pluripotent stem cells
FI20096288A0 (en) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and Methods for Culturing Stem Cells
WO2011079017A2 (en) 2009-12-23 2011-06-30 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
PL2516626T3 (en) 2009-12-23 2017-10-31 Janssen Biotech Inc Differentiation of human embryonic stem cells
SG10201501513TA (en) 2010-03-02 2015-04-29 Univ Singapore Culture additives to boost stem cell proliferation and differentiation response
JP5909482B2 (en) 2010-03-31 2016-04-26 ザ スクリプス リサーチ インスティテュート Cell reprogramming
JP2013524836A (en) 2010-04-25 2013-06-20 マウント・シナイ・スクール・オブ・メディスン Generation of anterior foregut endoderm from pluripotent cells
RU2663339C1 (en) 2010-05-12 2018-08-03 Янссен Байотек, Инк. Differentiation of human embryo stem cells
KR101829488B1 (en) 2010-08-05 2018-02-14 위스콘신 얼럼나이 리서어치 화운데이션 Simplified basic media for human pluripotent cell culture
BR112013004614A2 (en) 2010-08-31 2024-01-16 Janssen Biotech Inc DIFFERENTIATION OF PLURIPOTENT STEM CELLS
MY177150A (en) 2011-02-28 2020-09-08 Stempeutics Res Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
US20130274184A1 (en) 2011-10-11 2013-10-17 The Trustees Of Columbia University In The City Of New York Er stress relievers in beta cell protection
US9670463B2 (en) 2011-10-14 2017-06-06 Children's Medical Center Corporation Inhibition and enhancement of reprogramming by chromatin modifying enzymes
JP6441080B2 (en) 2011-12-22 2018-12-19 ヤンセン バイオテツク,インコーポレーテツド Differentiation of human embryonic stem cells into single hormone insulin-positive cells
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
EP2859091B1 (en) * 2012-06-08 2018-08-29 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells
JP6470687B2 (en) 2012-09-03 2019-02-13 ノヴォ ノルディスク アー/エス Production of pancreatic endoderm from pluripotent stem cells using small molecules
RU2684215C2 (en) 2012-12-31 2019-04-04 Янссен Байотек, Инк. Method for obtaining pancreatic endocrine cells (versions) and method for increasing output of beta cells
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
AU2014239954B2 (en) 2013-03-15 2020-07-16 The Jackson Laboratory Isolation of non-embryonic stem cells and uses thereof
US11779311B2 (en) 2018-09-14 2023-10-10 Fujifilm Sonosite, Inc. Method and apparatus for performing spectral doppler imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015711A1 (en) * 2008-06-30 2010-01-21 Janet Davis Differentiation of Pluripotent Stem Cells
US9951314B2 (en) * 2010-08-31 2018-04-24 Janssen Biotech, Inc. Differentiation of human embryonic stem cells

Also Published As

Publication number Publication date
MX355340B (en) 2018-04-16
US20170009212A1 (en) 2017-01-12
RU2013114373A (en) 2014-10-10
KR20130138761A (en) 2013-12-19
EP2611909A2 (en) 2013-07-10
SG187946A1 (en) 2013-03-28
EP3372672A1 (en) 2018-09-12
JP6168991B2 (en) 2017-07-26
EP2611909B1 (en) 2018-01-17
CN103221536B (en) 2016-08-31
AU2011296381A1 (en) 2013-03-14
CA2809300A1 (en) 2012-03-08
PL2611909T3 (en) 2018-05-30
MX2013002405A (en) 2013-04-05
JP2013536685A (en) 2013-09-26
CN103221536A (en) 2013-07-24
WO2012030538A3 (en) 2012-06-07
EP2611909A4 (en) 2014-03-05
JP2017038614A (en) 2017-02-23
AR082819A1 (en) 2013-01-09
US9506036B2 (en) 2016-11-29
US20120052571A1 (en) 2012-03-01
WO2012030538A2 (en) 2012-03-08
US9951314B2 (en) 2018-04-24
AU2011296381B2 (en) 2016-03-31
RU2620938C2 (en) 2017-05-30
SG10201506855RA (en) 2015-10-29
KR101851956B1 (en) 2018-04-25
BR112013004616A2 (en) 2016-07-05
JP6449829B2 (en) 2019-01-09
ES2660897T3 (en) 2018-03-26

Similar Documents

Publication Publication Date Title
US9951314B2 (en) Differentiation of human embryonic stem cells
US9458430B2 (en) Differentiation of pluripotent stem cells
US20170081634A1 (en) Differentiation of human embryonic stem cells

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: JANSSEN BIOTECH, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRYER, BENJAMIN H.;REEL/FRAME:047910/0643

Effective date: 20180110

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION