US20180215929A1 - Primer compositions for injection molding - Google Patents

Primer compositions for injection molding Download PDF

Info

Publication number
US20180215929A1
US20180215929A1 US15/938,547 US201815938547A US2018215929A1 US 20180215929 A1 US20180215929 A1 US 20180215929A1 US 201815938547 A US201815938547 A US 201815938547A US 2018215929 A1 US2018215929 A1 US 2018215929A1
Authority
US
United States
Prior art keywords
polystyrene
ethylene
butylene
styrene
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/938,547
Inventor
Brian Deegan
Darren Nolan
Brendan Kneafsey
Mark Loane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel IP and Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel IP and Holding GmbH filed Critical Henkel IP and Holding GmbH
Publication of US20180215929A1 publication Critical patent/US20180215929A1/en
Assigned to Henkel IP & Holding GmbH reassignment Henkel IP & Holding GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENKEL IRELAND OPERATIONS AND RESEARCH LIMITED
Assigned to HENKEL IRELAND OPERATIONS AND RESEARCH LIMITED reassignment HENKEL IRELAND OPERATIONS AND RESEARCH LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEEGAN, Brian, KNEAFSEY, BRENDAN, LOANE, MARK, NOLAN, DARREN
Priority to US16/922,065 priority Critical patent/US11697740B2/en
Assigned to HENKEL AG & CO. KGAA reassignment HENKEL AG & CO. KGAA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Henkel IP & Holding GmbH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/7207Heating or cooling of the moulded articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D153/02Vinyl aromatic monomers and conjugated dienes
    • C09D153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • B29K2709/08Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate

Definitions

  • the present invention relates to curable compositions, which may be cured by way of exposure to radiation in the electromagnetic spectrum, for use as a primer composition for injection molding applications.
  • WO 2014/193903 discloses a photocurable primer composition, comprising: a (meth)acrylate monomer component; a photoinitiator component; and a rubber component comprising a polyvinyl butyral component having a molecular weight of less than about 120,000 MW or an acrylonitrile butadiene styrene copolymer, and optionally a core shell rubber having a mean diameter in the range of about 100 to about 300 nm.
  • Bonding polyolefinic plastics to substrates can be accomplished by conventional adhesives such as wet adhesives (e.g. 2K acrylics) or PSA tapes. Such methods can be employed when bringing two pre-formed substrates together such as a polyolefin castings to a metal surface in car bumper assemblies.
  • Polyolefins are perceived as “difficult to bond” substrates, in part due to their low surface energy, and in part due to their being non-polar, non-porous and to a great extent chemically inert. Accordingly, a need also exists for alternative compositions that can bond polyolefins to other substrates for example metal or glass substrates.
  • the present invention provides a curable primer composition comprising:
  • Component (c) is a copolymer, and thus a composition where A does not differ from S, such as when the S-A-S material is polystyrene (i.e. S and A are each polystyrene), is not within the present invention.
  • composition of the invention includes materials that are of the formula S-A-S.
  • the present invention provides a curable composition
  • the polymer material is selected from block polymers represented by S-A-S where S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene which are optionally substituted with carboxylic acid or maleic anhydride, provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene, and is optionally substituted with carboxylic acid or maleic anhydride; and any combination of said polymer materials.
  • S polystyrene
  • A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene which are optionally substituted with carboxylic acid or maleic anhydride, provided that when A comprises styrene then A is a copolymer of styrene with at
  • the component (c) is not simply polystyrene.
  • the present invention provides a curable composition (adhesive) which can be applied to a (rigid) substrate (such as metal or glass), yielding a tack-free coating.
  • the curable composition has a specific on-part life.
  • the coated part can then be overmolded with a polyolefin material such as a polyolefinic plastic (for example polypropylene) via any suitable process, for example an injection molding process.
  • a substrate to polyolefin part This part will have a desired structural strength.
  • the compositions of the invention when cured form a bond between the polyolefin material and the substrate which is durable.
  • a bond formed using a composition of the invention has resistance to factors such as humidity, impact and tensile stress.
  • a plastic substrate can be formed whilst substantially simultaneously creating a bond to another substrate such as a rigid substrate. This circumvents the need for a pre-molded plastic part to be made and then bonded to the other substrate in two distinct steps.
  • A is formed from one or more of ethylene, propylene, butylene and styrene, provided that A is not formed from styrene alone.
  • compositions of the present invention include those where A is formed from at least two, desirably three, of ethylene, propylene, butylene and styrene.
  • the component (c) may be selected from polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”); polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”); and combinations thereof.
  • SEPS polystyrene-poly(ethylene-propylene)-polystyrene
  • SEBS polystyrene-poly(ethylene-butylene)-polystyrene
  • S(EBS)S polystyrene-poly(ethylene-butylene-styrene)-polystyrene
  • component (c) polymer comprises from about 10 to about 70 weight percent of styrene based on the total weight of polymer.
  • the component (c) polymer may comprise from about 15 to about 60 weight percent of styrene based on the total weight of polymer.
  • the component (c) may comprise from about 20 to about 60 weight percent of styrene based on the total weight of polymer.
  • These materials are of particular interest in the present invention as they confer good bond strength between a polyolefin that is subsequently overmolded and a substrate such as a metal substrate.
  • A may be substituted with carboxylic acid groups and/or maleic anhydride groups. Those substituted with maleic anhydride groups may be of particular interest.
  • the material S-A-S is at least one of polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”). These materials may be optionally substituted with carboxylic acid groups and/or maleic anhydride groups.
  • any or each carboxylic acid may be formed from maleic anhydride, for example by hydrolysis.
  • the carboxylic acid may be saturated or unsaturated.
  • the carboxylic acid may be a C 1 to C 10 carboxylic acid for example a C 4 carboxylic acid.
  • A should have no unsaturated carbon-carbon bonds.
  • compositions of the invention give better bonding performance.
  • compositions include materials, where the S-A-S is at least one of: polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”); polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”); and polystyrene-poly(ethylene-ethylene/propylene)-polystyrene (“SEEPS”).
  • SEPS polystyrene-poly(ethylene-propylene)-polystyrene
  • SEBS polystyrene-poly(ethylene-butylene-styrene)-polystyrene
  • SEEPS polystyrene-poly(ethylene-ethylene/propylene)-polystyrene
  • SEEPS polystyrene-poly(ethylene-
  • the materials of the invention include the following, where the material S-A-S at least one of: polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”); polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”).
  • SEPS polystyrene-poly(ethylene-propylene)-polystyrene
  • SEBS polystyrene-poly(ethylene-butylene)-polystyrene
  • S(EBS)S polystyrene-poly(ethylene-butylene-styrene)-polystyrene
  • the SEP material may be represented by:
  • PS is shorthand for polystyrene
  • Poly(ethylene-propylene) indicates a co-polymer composed of (i) ethylene units and (ii) propylene units.
  • the SEPS material may be represented by:
  • PS is shorthand for polystyrene
  • Poly(ethylene-propylene) indicates a co-polymer composed of (i) ethylene units and (ii) propylene units.
  • the SEBS material may be represented by:
  • PS is shorthand for polystyrene
  • Poly(ethylene-butylene) indicates a co-polymer composed of (i) ethylene units and (ii) butylene units.
  • the SEEPS material may be represented by:
  • PS is shorthand for polystyrene
  • Poly(ethylene-ethylene/propylene) indicates a co-polymer composed of (i) ethylene units and (ii) ethylene/propylene units.
  • n and o are integers greater than or equal to 1. In the above structures when m and n are 1, o is greater than or equal to 2.
  • Each polymer comprises from about 10 to about 70 weight percent styrene based on the total weight of polymer. Preferably the polymer comprises from about 15 to about 60 weight percent styrene based on the total weight of polymer.
  • SB polystyrene-polybutadiene
  • SBS polystyrene-polybutadiene-polystyrene
  • SIS polystyrene-polyisoprene-polystyrene
  • SIBS polystyrene-poly(isoprene-butadiene)-polystyrene
  • maleic anhydride grafted saturated S-A-S type polymers such as maleic anhydride grafted SEBS (e.g. FG1901, 6.3 MPa).
  • SEP performed well also (e.g. G1730, 2.3 MPa).
  • shore A value greater than 60 is preferred (e.g. 502T [in table] is 30% styrene, shore A of 43, and gives a bond of 4.6 MPa, similar product of H1041 [also in table] has same 30% styrene but has shore A of 84 and bond strength improved to 5.7 MPa)
  • the metal substrate to be bonded may be aluminium including aluminium clad materials including those referred to as Al-clad which are of a type with aluminium on an aluminium alloy core, or steel such as stainless steel.
  • the present invention provides a novel formulation which has excellent bonding capabilities for overmolding substrates (such as aluminium including anodised aluminium, zinc dichromate) with polyolefinic plastics (such as PP and HDPE) via a molding process such as an injection molding process.
  • substrates such as aluminium including anodised aluminium, zinc dichromate
  • polyolefinic plastics such as PP and HDPE
  • the invention provides a curable composition optionally in the form of a UV curable adhesive which when cured on-part yields a tack-free rigid coating optionally in the form of a film.
  • the coating typically has an on-part life of at least 24 hours.
  • the adhesive system desirably comprises a UV cure system with a base of acrylate monomers (e.g. THFA and IBOA).
  • a base of acrylate monomers e.g. THFA and IBOA.
  • the coated part can then be overmolded, e.g. via injection molding, with a polyolefinic plastic (e.g. PE) to yield a bonded plastic to substrate assembly.
  • a polyolefinic plastic e.g. PE
  • the invention extends to use of a composition of the invention as a primer on a substrate to be bonded to a thermoplastic material, for example a polyolefin material.
  • thermoplastic for example polyolefin, plastic
  • the invention also provides a substrate having coated as a layer on at least a surface thereof the cure product of a composition according to the invention wherein the cure product is in a B stage, optionally for subsequent bonding to a thermoplastic material, for example a polyolefin material.
  • a combination comprising: an article having coated as a layer on at least a surface thereof a B-staged version of the composition of the invention; and a thermoplastic, for example polyolefin, plastic in contact with the B-staged version of the composition.
  • a process for forming an injection molding about an article comprising the steps of disposing into an injection molding cavity an article about which a thermoplastic, for example polyolefin, plastic material is to be molded into a shape; and injecting into the injection molding cavity in which is disposed the article the thermoplastic, for example polyolefin, plastic material at a temperature and pressure to permit the material to flow around and about the article in the mold and maintaining the mold under a temperature and pressure appropriate to permit the thermoplastic, for example polyolefin, plastic material to solidify, where prior to disposition of the article, the article is primed with the composition of any of the foregoing aspects and exposed to radiation in the electromagnetic spectrum appropriate to cure the composition.
  • a thermoplastic for example polyolefin, plastic material
  • the polyolefin material is desirably a polyolefin-based thermoplastic material such as at least one of a polyolefin-based thermoplastic elastomer, polyethylene (PE), and polypropylene (PP).
  • a polyolefin-based thermoplastic material such as at least one of a polyolefin-based thermoplastic elastomer, polyethylene (PE), and polypropylene (PP).
  • the article may be constructed from glass and aluminium such as anodized aluminium.
  • a (meth)acrylate is the most common choice.
  • Examples include N,N-dimethyl acrylamide, phenoxy ethyl(meth)acrylate, tetrahydrofurfuryl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxypropyl (meth)acrylate.
  • Additional (meth)acrylates suitable for use herein include polyfunctional (meth)acrylates, such as, but not limited to, di- or tri-functional (meth)acrylates like polyethylene glycol di(meth)acrylates, tetrahydrofuran (meth)acrylates and di(meth)acrylates, hydroxypropyl (meth)acrylate (“HPMA”), hexanediol di(meth)acrylate, trimethylol propane tri(meth)acrylate (“TMPTMA”), diethylene glycol dimethacrylate, triethylene glycol dimethacrylate (“TRIEGMA”), tetraethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, di-(pentamethylene glycol) dimethacrylate, tetraethylene diglycol diacrylate, diglycerol tetramethacrylate, tetramethylene dimethacrylate, ethylene dimethacrylate, neopentyl glycol diacrylate, tri
  • SiMA silicone (meth)acrylates
  • the (meth)acrylate component is selected from one or more of N,N-dimethyl acrylamide, phenoxy ethyl(meth)acrylate, tetrahydrofurfuryl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxypropyl (meth)acrylate.
  • the (meth)acrylate component should comprise from about 10% to about 90% by weight, such as about 40% to about 80% by weight, based on the total weight.
  • the material S-A-S may be present in a B stage cure product of the composition, in an amount from about 5% to about 80% based on the total weight of the composition, for example from about 30% to about 60% by weight based on the total weight of the composition.
  • the composition of the invention may be applied using a carrier such as a solvent, which, for the purposes of the weight percentages given here and in the claims is not included.
  • a solvent such as a solvent
  • the material S-A-S desirably has a Shore A hardness of 20 to 100, for example from about 60 to 100.
  • the cure initiating component may be a photoinitiator component.
  • the photoinitiator may be selected from one or more of initiators triggered by radiation in the ultraviolet region of the electromagnetic spectrum, the visible region of the electromagnetic spectrum, or both.
  • the photoinitiator may be a benzophenone or substituted benzophenone, such as, for example, an ⁇ -hydroxyketone.
  • ⁇ -hydroxyketone is 1-hydroxy-cyclohexyl-phenyl-ketone (commercially available as IRGACURE 184 from Ciba Specialty Chemicals, Inc.).
  • Other suitable ⁇ -hydroxyketones and blends thereof include: 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR 1173); 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone (IRGACURE 2959); and blends such as IRGACURE 1000 and IRGACURE 500 (all commercially available from Ciba Specialty Chemicals, Inc.).
  • UV photoinitiators include: acetophenone and substituted acetophenones; benzoin and its alkyl esters; xanthone and substituted xanthones; diethoxy-acetophenone; benzoin methyl ether; benzoin ethyl ether; benzoin isopropyl ether; diethoxyxanthone; chloro-thioxanthone; N-methyl diethanol-amine-benzophenone; 1-benzoyl cyclohexanol; 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone; amino ketones, such as IRGACURE 907, IRGACURE 369 and IRGACURE 1300 (all commercially available from Ciba Specialty Chemicals, Inc.); benzildimethyl-ketals, such as IRGACURE 651 (commercially available from Ciba Specialty Chemicals, Inc.); BAPO (bis
  • U.S. Pat. No. 5,399,770 discloses and claims a class of compounds functional as such photoinitiators.
  • the disclosure of the '770 patent is hereby express incorporated herein by reference in its entirety.
  • a particularly desirable photoinitiator embraced by the 770 patent is available commercially from Ciba Specialty Chemicals under the trade name IRGACURE 819.
  • IRGACURE 819 is bis(2,4,6-trimethyl benzoyl)phenyl phosphine oxide.
  • Camphorquinone peroxyester initiators 9-fluorene carboxylic acid peroxyesters; dl-camphorquinone; IRGACURE 784DC (photoinitiator based on substituted titanocenes); two-component initiators including a dye and electron donor; three-component initiators including a dye, electron donor and oxidant; and combinations thereof, may also be used. These visible light photoinitiators may be used in conjunction with bisacyl phosphine oxide photoinitiators to achieve the desired effect.
  • suitable dyes include, but are not limited to camphorquinone, 5,7-diiodo-3-butoxy-6-fluorone, rose bengal, riboflavin, eosin Y, benzil, fluorone dyes, benzil derivatives, ketocoumarins, acridine dyes, benzoflavin and combinations thereof, and suitable electron donors include, but are not limited to methyldiethanolamine, dimethyl-p-toluidine, N,N-dimethylaminoethyl methacrylate, ethyl 4-dimethylaminobenzoate and combinations thereof.
  • suitable oxidants include, but are not limited to bis(trichloromethyl)triazines, onium salts and combinations thereof.
  • onium salts include sulfonium and iodonium salts.
  • U.S. Pat. No. 4,505,793 which is incorporated by reference herein, discloses photopolymerization initiators that include a combination of a 3-keto-substituted coumarin compound and an active halogen compound. A number of exemplary compounds are disclosed. Such photopolymerization initiators cure by exposure to light having wavelengths ranging between about 180 nm and 600 nm.
  • U.S. Pat. No. 4,258,123 which is incorporated by reference herein, discloses photosensitive resin compositions including initiator components that generate a free radical upon irradiation with actinic light. Such components include various triazine compounds, as more fully described therein.
  • EP 0 369 645 A1 discloses a three-part photoinitiator system which includes a trihalomethyl substituted-s-triazine, a sensitizing compound capable of absorbing radiation in the range of about 300-1000 nm and an electron donor.
  • Exemplary sensitizing compounds are disclosed, including: ketones; coumarin dyes; xanthene dyes; 3H-xanthen-3-one dyes; acridine dyes; thiazole dyes; thiazine dyes; oxazine dyes; azine dyes; aminoketone dyes; methane and polymethine dyes; porphyrins; aromatic polycyclic hydrocarbons; p-substituted aminostyryl ketone compounds; aminotriaryl methanes; merocyanines; squarylium dyes; and pyridinium dyes.
  • Exemplary donors also are disclosed, including: amines; amides; ethers; ureas; ferrocene; sulfinic acids and their salts; salts of ferrocyanide; ascorbic acid and its salts; dithiocarbamic acid and its salts; salts of xanthates; salts of ethylene diamine tetraacetic acid; and salts of tetraphenylboronic acid.
  • Such initiators are sensitive to both UV and visible light.
  • EP 0 563 925 A1 discloses photopolymerization initiators including a sensitizing compound that is capable of absorbing radiation in the range of about 250-1000 nm and 2-aryl-4,6-bis(trichloromethyl)-1,3,5-triazine.
  • Exemplary sensitizing compounds that are disclosed include dyes such as cyanine, merocyanine, coumarin, ketocoumarin, (thio)xanthene, acridine, thiazole, thiazine, oxazine, azine, aminoketone, squarylium, pyridinium, (thia)pyrylium, porphyrin, triaryl methane, (poly)methine, amino styryl compounds and aromatic polycyclic hydrocarbons.
  • These photopolymerization initiators are sensitive to UV and visible light.
  • U.S. Pat. No. 5,395,862 which is expressly incorporated by reference herein, discloses fluorone photoinitiators, which are sensitive to visible light. Such fluorone initiator systems also include a co-initiator, which is capable of accepting an electron from the excited fluorone species. Exemplary co-initiators are disclosed, including: onium salts, nitrohalomethanes and diazosulfones.
  • U.S. Pat. No. 5,451,343, which is incorporated herein by reference discloses fluorone and pyronin-Y derivatives as initiators that absorb light at wavelengths of greater than 350 nm.
  • 5,545,676 which is incorporated by reference herein, discloses a three-part photoinitiator system, which cures under UV or visible light.
  • the three-part system includes an arylidonium salt, a sensitizing compound and an electron donor.
  • Exemplary iodonium salts include diphenyliodonium salts.
  • 2,4,6 trimethylbenzoyldiphosphine oxide and 1-hydrocyclohexyl-phenyl ketone are two particularly desirable photoinitiators for use in the compositions.
  • the photoinitiator component should be present in an amount of about 1 to about 5 weight percent.
  • the inventive composition may be used as a primer for an article which is to be subjected to an overmolding process in which an injection molding is to be formed about the article.
  • the article may be constructed from a variety of substrates, though glass and aluminium are the preferred choices, with anodized aluminium being a particularly desirable choice.
  • the inventive composition may be applied to the article to be overmolded and then exposed to radiation in the electromagnetic spectrum in order to fix the composition on at least a portion of the surface of the article.
  • composition may be applied to the article in any of several ways, such as spraying, screen printing, touch transfer and the like. After application it is cured (or B staged) to a dry-to-the-touch (or tack free) surface by exposure to energy in the electromagnetic spectrum, such as UV or UV/visible radiation.
  • This B staging permits the primer coated article to be stored for later use in the overmolding process.
  • the primer coated article is disposed into an injection molding cavity and the cavity closed in order to receive the thermoplastic resin to be injected therein under elevated temperature and/or pressure conditions.
  • thermoplastic material e.g. resin is ordinarily chosen from polyolefin materials such as polyethylene and polypropylene.
  • the thermoplastic resin should be injected into the molding cavity at an elevated temperature and pressure; suitable to completely mold the finished assembly in 0.5-5 seconds.
  • the temperature time and pressure will depend on the particular thermoplastic as well as the size, geometry and path length of the mold cavity. Typical temperatures will be in the range of about 180° C. to 300° C., such as 260° C. and pressures of 50 to 5000 psi, such as 500 psi.
  • the flow rate must be suitable to fill the entire mold cavity before the thermoplastic reaches a no-flow state.
  • FIG. 1 An example of one or more articles that may be formed by the overmolding process so described may be seen with reference to FIG. 1 .
  • FIG. 1 An example of one or more articles that may be formed by the overmolding process so described may be seen with reference to FIG. 1 .
  • FIG. 1 An example of one or more articles that may be formed by the overmolding process so described may be seen with reference to FIG. 1 .
  • four articles may be prepared with the so-disclosed overmolding technology: 1. touch panel window 11 and cover 12 ; 2. speaker 21 and camera lens 22 ; 3. cover 31 , metal trim 32 and subframe 33 ; and 4. touch panel 41 , plastic bezel 42 and metal trim 43 .
  • FIG. 1 depicts an exploded view of various component layers of a hand held consumer electronic display device, about which overmolding may be used as the interface therebetween;
  • FIG. 2 is a graph showing the bonding results achieved with Example 4 from Table 1;
  • FIG. 3 is a graph showing the bonding results achieved with Example 7 from Table 1.
  • a polyolefin pin of diameter 12.65 to 12.675 mm and a minimum of 37.5 mm length is injection molded onto a metal or glass plate 101.6 mm ⁇ 25.4 mm and thickness from 1.0 to 5.5 mm.
  • the injection molding machine used was a Travin MINI MOULDER TP1, the barrel temperature used was 220° C., and the mold was unheated.
  • the glass or metal plate has already been provided with a cured coating of the test formulation covering the surface. This coating is a B-staged version of the composition. It has been cured with a first cure mechanism, which is UV light, but can react when subsequently contacted with the melted thermoplastic, e.g. polyolefin. The coating thus has the material from the pin molded thereon.
  • test plastic used in the results below is polypropylene (sold under the trade name) TATREN IM 25 75, and the solid substrate used in the reported data is an anodised aluminium plate 101.6 mm ⁇ 25.4 mm and thickness of 1.6 mm.
  • This pin is pulled in a tensile test 24 hours after bonding at a rate of 2.0 mm/min using a Hounsfield tensile testing machine with a calibrated 5 kN load cell attached.
  • Table 1 below is a list of additives that were tested in formulations specified in the Examples below. These compositions were applied to anodised aluminium and cured. Polypropylene was then injected moulded onto the cured films. The bond strengths measured at 24 hours post-bonding are included for each.
  • % S in polymer is the percentage of polystyrene by weight in the polymer.
  • Example 1 (from Table 1) was the following formulation (the Polymer Material is the VAMAC material):
  • Examples 2 and 5 were based on the following formulation. Only the Polymer Material differs between these Examples and the Example no.s set out in Table 1 correspond to the following formulations with the Polymer Material being that indicated in Table 1 for the respective Examples.
  • Example 3 (from Table 1) was the following formulation (the Polymer Material is the Polytail material):
  • Examples 4 and 6 to 23 were based on the following formulation. Only the Polymer Material differs between these Examples and the Example no.s set out in Table 1 correspond to the following formulations with the Polymer Material being that indicated in Table 1 for the respective Examples.
  • Example 4 A graph showing further bonding results achieved with the composition of Example 4 on various combinations of substrates is shown in FIG. 2 .
  • the injection barrel temperature was 220° C.
  • Example 7 A graph showing further bonding results achieved with the composition of Example 7 on various combinations of substrates is shown in FIG. 3 .
  • the injection barrel temperature was 220° C.
  • THFA Tetrahydrofurfuryl Acrylate
  • IBOA Isobornyl Acrylate
  • Examples 1 to 3 are comparative examples. No bond strength is achieved.
  • Examples 9, 10, 11, 22 and 23 are comparative examples. No bond strength is achieved.
  • the “B” in the acronym for the materials is used in a non-unique manner, for example in SB; SIBS; and SBS the “B” stands for a polymer based on butadiene whereas in SEBS and S(EBS)S the “B” stands for a polymer based on butylene.

Abstract

A curable primer composition comprising: (a) a curable component such as methacrylate; (b) a cure initiating component; and (c) a polymer material selected from the group consisting of: (i) block polymers represented by S-A-S where S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene, and styrene, which are optionally substituted with carboxylic acid or maleic anhydride; provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene, and is optionally substituted with carboxylic acid or maleic anhydride; and (ii) polystyrene-poly(ethylene-propylene) (“SEP”); and (iii) any combination of said polymer materials. The composition is applied to a part then photocured. It is dry to touch. Thereafter a thermoplastic material such as a polyolefin is overmolded (e.g. injection molded) over the applied composition. It enhances bond strength of the polyolefin to the part.

Description

    FIELD
  • The present invention relates to curable compositions, which may be cured by way of exposure to radiation in the electromagnetic spectrum, for use as a primer composition for injection molding applications.
  • BACKGROUND
  • Presently, there is a drive to streamline the manufacturing process in numerous markets, but especially for hand held consumer electronics. To this end, it would be desirable to eliminate the often slow and sometimes costly process of joining plastic parts to other substrates such as metal frames and glass displays with traditional adhesives, in what is called an overmolding process.
  • Another drawback to the use of these types of adhesives is that the on-part work life before overmolding is short and therefore does not lend itself to a separate offline process from the main overmolding assembly process. In other words, it becomes impractical to perform a B stage process with these traditional adhesives on the part to be overmolded prior to use in the overmolding assembly process.
  • One composition that sets out to address this need is described in International Publication No. WO 2014/193903 which discloses a photocurable primer composition, comprising: a (meth)acrylate monomer component; a photoinitiator component; and a rubber component comprising a polyvinyl butyral component having a molecular weight of less than about 120,000 MW or an acrylonitrile butadiene styrene copolymer, and optionally a core shell rubber having a mean diameter in the range of about 100 to about 300 nm.
  • Other compositions are described in JP2005146177, JP4485172, and WO200202703, all to Mistui Chemicals and WO2014118213, to Evonik Industries.
  • The need still exists for alternative primer compositions for use in an overmolding assembly process that provide adequate bond strength.
  • Bonding polyolefinic plastics to substrates (such as metals or glass) can be accomplished by conventional adhesives such as wet adhesives (e.g. 2K acrylics) or PSA tapes. Such methods can be employed when bringing two pre-formed substrates together such as a polyolefin castings to a metal surface in car bumper assemblies.
  • Polyolefins are perceived as “difficult to bond” substrates, in part due to their low surface energy, and in part due to their being non-polar, non-porous and to a great extent chemically inert. Accordingly, a need also exists for alternative compositions that can bond polyolefins to other substrates for example metal or glass substrates.
  • SUMMARY
  • In one aspect, the present invention provides a curable primer composition comprising:
  • (a) a curable component;
  • (b) a cure initiating component; and
  • (c) a polymer material selected from the group consisting of:
      • (i) block polymers represented by S-A-S where S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene, which are optionally substituted with carboxylic acid or maleic anhydride, provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene and is optionally substituted with carboxylic acid or maleic anhydride; and
      • (ii) polystyrene-poly(ethylene-propylene) (“SEP”); and
      • (iii) any combination of said polymer materials.
  • Component (c) is a copolymer, and thus a composition where A does not differ from S, such as when the S-A-S material is polystyrene (i.e. S and A are each polystyrene), is not within the present invention.
  • It is desirable that a composition of the invention includes materials that are of the formula S-A-S.
  • Accordingly the present invention provides a curable composition comprising the components (a) to (c) as set out above where the polymer material is selected from block polymers represented by S-A-S where S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene which are optionally substituted with carboxylic acid or maleic anhydride, provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene, and is optionally substituted with carboxylic acid or maleic anhydride; and any combination of said polymer materials.
  • Accordingly, the component (c) is not simply polystyrene.
  • The present invention provides a curable composition (adhesive) which can be applied to a (rigid) substrate (such as metal or glass), yielding a tack-free coating. The curable composition has a specific on-part life. The coated part can then be overmolded with a polyolefin material such as a polyolefinic plastic (for example polypropylene) via any suitable process, for example an injection molding process. This yields a substrate to polyolefin part. This part will have a desired structural strength. The compositions of the invention when cured form a bond between the polyolefin material and the substrate which is durable. For example a bond formed using a composition of the invention has resistance to factors such as humidity, impact and tensile stress.
  • With the present invention a plastic substrate can be formed whilst substantially simultaneously creating a bond to another substrate such as a rigid substrate. This circumvents the need for a pre-molded plastic part to be made and then bonded to the other substrate in two distinct steps.
  • It is desirable that A is formed from one or more of ethylene, propylene, butylene and styrene, provided that A is not formed from styrene alone.
  • Suitable compositions of the present invention include those where A is formed from at least two, desirably three, of ethylene, propylene, butylene and styrene.
  • The component (c) may be selected from polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”); polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”); and combinations thereof.
  • Suitably, component (c) polymer comprises from about 10 to about 70 weight percent of styrene based on the total weight of polymer. The component (c) polymer may comprise from about 15 to about 60 weight percent of styrene based on the total weight of polymer. Optionally the component (c) may comprise from about 20 to about 60 weight percent of styrene based on the total weight of polymer.
  • These materials are of particular interest in the present invention as they confer good bond strength between a polyolefin that is subsequently overmolded and a substrate such as a metal substrate.
  • A may be substituted with carboxylic acid groups and/or maleic anhydride groups. Those substituted with maleic anhydride groups may be of particular interest.
  • Desirably the material S-A-S is at least one of polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”). These materials may be optionally substituted with carboxylic acid groups and/or maleic anhydride groups.
  • It is to be noted that any or each carboxylic acid may be formed from maleic anhydride, for example by hydrolysis. The carboxylic acid may be saturated or unsaturated. The carboxylic acid may be a C1 to C10 carboxylic acid for example a C4 carboxylic acid.
  • A should have no unsaturated carbon-carbon bonds.
  • Compositions of the invention give better bonding performance.
  • These compositions include materials, where the S-A-S is at least one of: polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”); polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”); and polystyrene-poly(ethylene-ethylene/propylene)-polystyrene (“SEEPS”). The notation ethylene/propylene indicates ethylene propylene units that are copolymerized with other units. The notation ethylene-ethylene/propylene indicates a copolymer of (i) ethylene units with (ii) ethylene propylene units.
  • Desirably the materials of the invention (having no unsaturated carbon-carbon bonds) include the following, where the material S-A-S at least one of: polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”); polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”).
  • The SEP material may be represented by:
  • Figure US20180215929A1-20180802-C00001
  • where PS is shorthand for polystyrene and
  • Figure US20180215929A1-20180802-C00002
  • represents poly(ethylene-propylene). m is an integer greater than or equal to 2. Poly(ethylene-propylene) indicates a co-polymer composed of (i) ethylene units and (ii) propylene units.
  • The SEPS material may be represented by:
  • Figure US20180215929A1-20180802-C00003
  • where PS is shorthand for polystyrene and
  • Figure US20180215929A1-20180802-C00004
  • represents poly(ethylene-propylene). m is an integer greater than or equal to 2. Poly(ethylene-propylene) indicates a co-polymer composed of (i) ethylene units and (ii) propylene units.
  • The SEBS material may be represented by:
  • Figure US20180215929A1-20180802-C00005
  • where PS is shorthand for polystyrene, and
  • Figure US20180215929A1-20180802-C00006
  • represents poly(ethylene-butylene). m, n and o are integers greater than or equal to 1. When m and n are 1, o is greater than or equal to 2. Poly(ethylene-butylene) indicates a co-polymer composed of (i) ethylene units and (ii) butylene units.
  • The SEEPS material may be represented by:
  • Figure US20180215929A1-20180802-C00007
  • where PS is shorthand for polystyrene, and
  • Figure US20180215929A1-20180802-C00008
  • represents poly(ethylene-ethylene/propylene). m, n and o are integers greater than or equal to 1. When m and n are 1, o is greater than or equal to 2. Poly(ethylene-ethylene/propylene) indicates a co-polymer composed of (i) ethylene units and (ii) ethylene/propylene units.
  • In each of the above structures m, n and o are integers greater than or equal to 1. In the above structures when m and n are 1, o is greater than or equal to 2. Each polymer comprises from about 10 to about 70 weight percent styrene based on the total weight of polymer. Preferably the polymer comprises from about 15 to about 60 weight percent styrene based on the total weight of polymer.
  • Materials with unsaturated carbon-carbon bonds including the following did not perform well in testing: polystyrene-polybutadiene (“SB”); polystyrene-polybutadiene-polystyrene (“SBS”); polystyrene-polyisoprene-polystyrene (“SIS”); and polystyrene-poly(isoprene-butadiene)-polystyrene (“SIBS”). These materials were tested and form comparative examples in Table 1 below.
  • As seen from the Examples below, good results in terms of bond strength were obtained with the S-A-S type materials, in particular SEBS (e.g. H1517 at 8.1 MPa) and S(EBS)S (e.g. A1535, 7.2 MPa).
  • Materials that also performed well are, maleic anhydride grafted saturated S-A-S type polymers, such as maleic anhydride grafted SEBS (e.g. FG1901, 6.3 MPa).
  • SEP performed well also (e.g. G1730, 2.3 MPa).
  • No significant bonding was observed with the comparative unsaturated type materials.
  • Within the groups shore A value greater than 60 is preferred (e.g. 502T [in table] is 30% styrene, shore A of 43, and gives a bond of 4.6 MPa, similar product of H1041 [also in table] has same 30% styrene but has shore A of 84 and bond strength improved to 5.7 MPa)
  • The metal substrate to be bonded may be aluminium including aluminium clad materials including those referred to as Al-clad which are of a type with aluminium on an aluminium alloy core, or steel such as stainless steel.
  • The present invention provides a novel formulation which has excellent bonding capabilities for overmolding substrates (such as aluminium including anodised aluminium, zinc dichromate) with polyolefinic plastics (such as PP and HDPE) via a molding process such as an injection molding process.
  • The invention provides a curable composition optionally in the form of a UV curable adhesive which when cured on-part yields a tack-free rigid coating optionally in the form of a film. The coating typically has an on-part life of at least 24 hours.
  • The adhesive system desirably comprises a UV cure system with a base of acrylate monomers (e.g. THFA and IBOA).
  • The coated part can then be overmolded, e.g. via injection molding, with a polyolefinic plastic (e.g. PE) to yield a bonded plastic to substrate assembly.
  • The invention extends to use of a composition of the invention as a primer on a substrate to be bonded to a thermoplastic material, for example a polyolefin material.
  • In a further aspect is provided a combination comprising: the composition of the invention; and a thermoplastic, for example polyolefin, plastic.
  • The invention also provides a substrate having coated as a layer on at least a surface thereof the cure product of a composition according to the invention wherein the cure product is in a B stage, optionally for subsequent bonding to a thermoplastic material, for example a polyolefin material.
  • In a still further aspect is provided a combination comprising: an article having coated as a layer on at least a surface thereof a B-staged version of the composition of the invention; and a thermoplastic, for example polyolefin, plastic in contact with the B-staged version of the composition.
  • In an additional aspect is provided a process for forming an injection molding about an article, comprising the steps of disposing into an injection molding cavity an article about which a thermoplastic, for example polyolefin, plastic material is to be molded into a shape; and injecting into the injection molding cavity in which is disposed the article the thermoplastic, for example polyolefin, plastic material at a temperature and pressure to permit the material to flow around and about the article in the mold and maintaining the mold under a temperature and pressure appropriate to permit the thermoplastic, for example polyolefin, plastic material to solidify, where prior to disposition of the article, the article is primed with the composition of any of the foregoing aspects and exposed to radiation in the electromagnetic spectrum appropriate to cure the composition.
  • The polyolefin material is desirably a polyolefin-based thermoplastic material such as at least one of a polyolefin-based thermoplastic elastomer, polyethylene (PE), and polypropylene (PP).
  • The article may be constructed from glass and aluminium such as anodized aluminium.
  • As the component (a), a (meth)acrylate is the most common choice. The (meth)acrylate may be selected from one or more of a wide variety of materials, such as those represented by H2C=CGCO2R1 where G may be hydrogen or alkyl groups having from 1 to about 4 carbon atoms, and R1 may be selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl or aryl groups having from 1 to about 16 carbon atoms, any of which may be optionally substituted or interrupted as the case may be with silane, silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbonate, amine, amide, sulfur, sulfonate, sulfone and the like. Examples include N,N-dimethyl acrylamide, phenoxy ethyl(meth)acrylate, tetrahydrofurfuryl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxypropyl (meth)acrylate.
  • Additional (meth)acrylates suitable for use herein include polyfunctional (meth)acrylates, such as, but not limited to, di- or tri-functional (meth)acrylates like polyethylene glycol di(meth)acrylates, tetrahydrofuran (meth)acrylates and di(meth)acrylates, hydroxypropyl (meth)acrylate (“HPMA”), hexanediol di(meth)acrylate, trimethylol propane tri(meth)acrylate (“TMPTMA”), diethylene glycol dimethacrylate, triethylene glycol dimethacrylate (“TRIEGMA”), tetraethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, di-(pentamethylene glycol) dimethacrylate, tetraethylene diglycol diacrylate, diglycerol tetramethacrylate, tetramethylene dimethacrylate, ethylene dimethacrylate, neopentyl glycol diacrylate, trimethylol propane triacrylate and bisphenol-A mono and di(meth)acrylates, such as ethoxylated bisphenol-A (meth)acrylate (“EBIPMA”), and bisphenol-F mono and di(meth)acrylates, such as ethoxylated bisphenol-F (meth)acrylate.
  • Still other (meth)acrylates that may be used herein include silicone (meth)acrylates (“SiMA”), such as those taught by and claimed in U.S. Pat. No. 5,605,999 (Chu), the disclosure of which is hereby expressly incorporated herein by reference.
  • Of course, combinations of these (meth)acrylates may also be used. Though desirably, the (meth)acrylate component is selected from one or more of N,N-dimethyl acrylamide, phenoxy ethyl(meth)acrylate, tetrahydrofurfuryl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxypropyl (meth)acrylate.
  • The (meth)acrylate component should comprise from about 10% to about 90% by weight, such as about 40% to about 80% by weight, based on the total weight.
  • The material S-A-S may be present in a B stage cure product of the composition, in an amount from about 5% to about 80% based on the total weight of the composition, for example from about 30% to about 60% by weight based on the total weight of the composition. The composition of the invention may be applied using a carrier such as a solvent, which, for the purposes of the weight percentages given here and in the claims is not included. (In the experimental work below the weight of a solvent is included in the overall weight of the composition, but this is before cure, and the solvent is not part of the cure product, e.g. UV cure product.) The removal of the solvent (and thus the weight calculation difference) between the initial composition and the B stage cure product has thus been taken into account. For the other components in the experimental work below the weight percentage is calculated taking account of the solvent.
  • The material S-A-S desirably has a Shore A hardness of 20 to 100, for example from about 60 to 100.
  • The cure initiating component may be a photoinitiator component. The photoinitiator may be selected from one or more of initiators triggered by radiation in the ultraviolet region of the electromagnetic spectrum, the visible region of the electromagnetic spectrum, or both.
  • The photoinitiator may be a benzophenone or substituted benzophenone, such as, for example, an α-hydroxyketone. One particularly suitable α-hydroxyketone is 1-hydroxy-cyclohexyl-phenyl-ketone (commercially available as IRGACURE 184 from Ciba Specialty Chemicals, Inc.). Other suitable α-hydroxyketones and blends thereof include: 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR 1173); 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone (IRGACURE 2959); and blends such as IRGACURE 1000 and IRGACURE 500 (all commercially available from Ciba Specialty Chemicals, Inc.). Other suitable UV photoinitiators include: acetophenone and substituted acetophenones; benzoin and its alkyl esters; xanthone and substituted xanthones; diethoxy-acetophenone; benzoin methyl ether; benzoin ethyl ether; benzoin isopropyl ether; diethoxyxanthone; chloro-thioxanthone; N-methyl diethanol-amine-benzophenone; 1-benzoyl cyclohexanol; 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone; amino ketones, such as IRGACURE 907, IRGACURE 369 and IRGACURE 1300 (all commercially available from Ciba Specialty Chemicals, Inc.); benzildimethyl-ketals, such as IRGACURE 651 (commercially available from Ciba Specialty Chemicals, Inc.); BAPO (bis acyl phosphine oxide) and blends thereof, such as IRGACURE 819, IRGACURE 1700, IRGACURE 1800, IRGACURE 1850, and DAROCUR 4265 (all commercially available from Ciba Specialty Chemicals, Inc.); 2,4,6 trimethylbenzoyldiphosphine oxide with or without 1-hydroxy-cyclohexyl-phenyl ketone, metallocenes, such as IRGACURE 784 and IRGACURE 261 (both commercially available from Ciba Specialty Chemicals, Inc.); benzophenones, such as DAROCUR BP (commercially available from Ciba Specialty Chemicals, Inc.); and mixtures thereof.
  • U.S. Pat. No. 5,399,770 discloses and claims a class of compounds functional as such photoinitiators. Thus, the disclosure of the '770 patent is hereby express incorporated herein by reference in its entirety. A particularly desirable photoinitiator embraced by the 770 patent is available commercially from Ciba Specialty Chemicals under the trade name IRGACURE 819. IRGACURE 819 is bis(2,4,6-trimethyl benzoyl)phenyl phosphine oxide.
  • Camphorquinone peroxyester initiators; 9-fluorene carboxylic acid peroxyesters; dl-camphorquinone; IRGACURE 784DC (photoinitiator based on substituted titanocenes); two-component initiators including a dye and electron donor; three-component initiators including a dye, electron donor and oxidant; and combinations thereof, may also be used. These visible light photoinitiators may be used in conjunction with bisacyl phosphine oxide photoinitiators to achieve the desired effect.
  • As regards two component initiators, suitable dyes include, but are not limited to camphorquinone, 5,7-diiodo-3-butoxy-6-fluorone, rose bengal, riboflavin, eosin Y, benzil, fluorone dyes, benzil derivatives, ketocoumarins, acridine dyes, benzoflavin and combinations thereof, and suitable electron donors include, but are not limited to methyldiethanolamine, dimethyl-p-toluidine, N,N-dimethylaminoethyl methacrylate, ethyl 4-dimethylaminobenzoate and combinations thereof.
  • And as regards three component initiators, in addition to the two components noted above, as the third component suitable oxidants include, but are not limited to bis(trichloromethyl)triazines, onium salts and combinations thereof. Examples of onium salts include sulfonium and iodonium salts.
  • Other suitable visible photoinitiator systems include those disclosed in each of the following patents or publications, each of which is incorporated by reference herein in its entirety. U.S. Pat. No. 4,505,793, which is incorporated by reference herein, discloses photopolymerization initiators that include a combination of a 3-keto-substituted coumarin compound and an active halogen compound. A number of exemplary compounds are disclosed. Such photopolymerization initiators cure by exposure to light having wavelengths ranging between about 180 nm and 600 nm. U.S. Pat. No. 4,258,123, which is incorporated by reference herein, discloses photosensitive resin compositions including initiator components that generate a free radical upon irradiation with actinic light. Such components include various triazine compounds, as more fully described therein.
  • European Patent Publication No. EP 0 369 645 A1 discloses a three-part photoinitiator system which includes a trihalomethyl substituted-s-triazine, a sensitizing compound capable of absorbing radiation in the range of about 300-1000 nm and an electron donor. Exemplary sensitizing compounds are disclosed, including: ketones; coumarin dyes; xanthene dyes; 3H-xanthen-3-one dyes; acridine dyes; thiazole dyes; thiazine dyes; oxazine dyes; azine dyes; aminoketone dyes; methane and polymethine dyes; porphyrins; aromatic polycyclic hydrocarbons; p-substituted aminostyryl ketone compounds; aminotriaryl methanes; merocyanines; squarylium dyes; and pyridinium dyes. Exemplary donors also are disclosed, including: amines; amides; ethers; ureas; ferrocene; sulfinic acids and their salts; salts of ferrocyanide; ascorbic acid and its salts; dithiocarbamic acid and its salts; salts of xanthates; salts of ethylene diamine tetraacetic acid; and salts of tetraphenylboronic acid. Such initiators are sensitive to both UV and visible light.
  • European Patent Publication No. EP 0 563 925 A1 discloses photopolymerization initiators including a sensitizing compound that is capable of absorbing radiation in the range of about 250-1000 nm and 2-aryl-4,6-bis(trichloromethyl)-1,3,5-triazine. Exemplary sensitizing compounds that are disclosed include dyes such as cyanine, merocyanine, coumarin, ketocoumarin, (thio)xanthene, acridine, thiazole, thiazine, oxazine, azine, aminoketone, squarylium, pyridinium, (thia)pyrylium, porphyrin, triaryl methane, (poly)methine, amino styryl compounds and aromatic polycyclic hydrocarbons. These photopolymerization initiators are sensitive to UV and visible light.
  • U.S. Pat. No. 5,395,862, which is expressly incorporated by reference herein, discloses fluorone photoinitiators, which are sensitive to visible light. Such fluorone initiator systems also include a co-initiator, which is capable of accepting an electron from the excited fluorone species. Exemplary co-initiators are disclosed, including: onium salts, nitrohalomethanes and diazosulfones. U.S. Pat. No. 5,451,343, which is incorporated herein by reference, discloses fluorone and pyronin-Y derivatives as initiators that absorb light at wavelengths of greater than 350 nm. U.S. Pat. No. 5,545,676, which is incorporated by reference herein, discloses a three-part photoinitiator system, which cures under UV or visible light. The three-part system includes an arylidonium salt, a sensitizing compound and an electron donor. Exemplary iodonium salts include diphenyliodonium salts.
  • 2,4,6 trimethylbenzoyldiphosphine oxide and 1-hydrocyclohexyl-phenyl ketone are two particularly desirable photoinitiators for use in the compositions.
  • The photoinitiator component should be present in an amount of about 1 to about 5 weight percent.
  • The inventive composition may be used as a primer for an article which is to be subjected to an overmolding process in which an injection molding is to be formed about the article. The article may be constructed from a variety of substrates, though glass and aluminium are the preferred choices, with anodized aluminium being a particularly desirable choice.
  • The inventive composition may be applied to the article to be overmolded and then exposed to radiation in the electromagnetic spectrum in order to fix the composition on at least a portion of the surface of the article.
  • The composition may be applied to the article in any of several ways, such as spraying, screen printing, touch transfer and the like. After application it is cured (or B staged) to a dry-to-the-touch (or tack free) surface by exposure to energy in the electromagnetic spectrum, such as UV or UV/visible radiation.
  • This B staging permits the primer coated article to be stored for later use in the overmolding process.
  • Then in the overmolding process, the primer coated article is disposed into an injection molding cavity and the cavity closed in order to receive the thermoplastic resin to be injected therein under elevated temperature and/or pressure conditions.
  • The thermoplastic material e.g. resin is ordinarily chosen from polyolefin materials such as polyethylene and polypropylene.
  • The thermoplastic resin should be injected into the molding cavity at an elevated temperature and pressure; suitable to completely mold the finished assembly in 0.5-5 seconds. The temperature time and pressure will depend on the particular thermoplastic as well as the size, geometry and path length of the mold cavity. Typical temperatures will be in the range of about 180° C. to 300° C., such as 260° C. and pressures of 50 to 5000 psi, such as 500 psi. The flow rate must be suitable to fill the entire mold cavity before the thermoplastic reaches a no-flow state.
  • An example of one or more articles that may be formed by the overmolding process so described may be seen with reference to FIG. 1. There, several articles that are used in the assembly of hand held consumer electronic devices are highlighted as benefiting from the so disclosed overmolding technology. More specifically, four articles may be prepared with the so-disclosed overmolding technology: 1. touch panel window 11 and cover 12; 2. speaker 21 and camera lens 22; 3. cover 31, metal trim 32 and subframe 33; and 4. touch panel 41, plastic bezel 42 and metal trim 43.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will be described, by way of example only, with reference to the accompanying drawings in which:
  • FIG. 1 depicts an exploded view of various component layers of a hand held consumer electronic display device, about which overmolding may be used as the interface therebetween;
  • FIG. 2 is a graph showing the bonding results achieved with Example 4 from Table 1; and
  • FIG. 3 is a graph showing the bonding results achieved with Example 7 from Table 1.
  • DETAILED DESCRIPTION
  • A polyolefin pin of diameter 12.65 to 12.675 mm and a minimum of 37.5 mm length is injection molded onto a metal or glass plate 101.6 mm×25.4 mm and thickness from 1.0 to 5.5 mm. The injection molding machine used was a Travin MINI MOULDER TP1, the barrel temperature used was 220° C., and the mold was unheated. The glass or metal plate has already been provided with a cured coating of the test formulation covering the surface. This coating is a B-staged version of the composition. It has been cured with a first cure mechanism, which is UV light, but can react when subsequently contacted with the melted thermoplastic, e.g. polyolefin. The coating thus has the material from the pin molded thereon.
  • The test plastic used in the results below is polypropylene (sold under the trade name) TATREN IM 25 75, and the solid substrate used in the reported data is an anodised aluminium plate 101.6 mm×25.4 mm and thickness of 1.6 mm.
  • This pin is pulled in a tensile test 24 hours after bonding at a rate of 2.0 mm/min using a Hounsfield tensile testing machine with a calibrated 5 kN load cell attached.
  • Table 1 below is a list of additives that were tested in formulations specified in the Examples below. These compositions were applied to anodised aluminium and cured. Polypropylene was then injected moulded onto the cured films. The bond strengths measured at 24 hours post-bonding are included for each.
  • TABLE 1
    Bond Strength
    Achieved with PP
    Example to Anodised Product % S in Hardness
    Number Aluminium Manufacturer Name Polymer Material Polymer (shore A)
    1 0.0 DuPont VCS5500 VAMAC (Ethylene 0
    Acrylic Elastomer)
    2 0.0 Nippon Paper Auroren maleic anhydride 0
    150S grafted PE
    3 0.0 Mitsubishi Polytail H polyhydroxy 0
    Chemicals Hydrogenated
    Polybutadiene
    4 6.3 Kraton FG1901 maleic anhydride 30 71
    grafted SEBS
    5 3.0 Kraton FG1924 maleic anhydride 13 49
    grafted SEBS
    6 5.7 AKelastomers M1913 maleic anhydride 30 84
    grafted SEBS
    7 7.2 Kraton A1535 S(EBS)S 57 83
    8 5.7 Kraton A1536 S(EBS)S 40 61
    9 0.0 Kraton D1118 SB 33 64
    10 0.0 Kraton D1116 SBS 23 63
    11 0.0 Kraton D1155 SBS 31 87
    12 8.1 AKelastomers H1517 SEBS 43 92
    13 6.6 Kraton G1651 SEBS 31 70
    14 5.7 AKelastomers H1041 SEBS 30 84
    15 5.4 Kraton G1641 SEBS 33 58
    16 5.1 Kuraray V9827 SEBS 30 78
    17 5.0 Kuraray 8004 SEBS 31 80
    18 4.7 AKelastomers H1051 SEBS 42 96
    19 4.6 DzBh 502T SEBS 30 43
    20 2.3 Kraton G1730 SEP 20 61
    21 0.0 Kraton G1701 SEPS 37 64
    22 0.0 Kraton D1170 SIBS 19 46
    23 0.0 Kraton D1114 SIS 19 42
  • In Table 1 the “% S in polymer” is the percentage of polystyrene by weight in the polymer.
  • Example 1 (from Table 1) was the following formulation (the Polymer Material is the VAMAC material):
  • Component %
    Xylene 20.00
    MIBK 9.30
    THFA 7.80
    IBOA 4.00
    VAMAC VCS5500 11.00
    HEMA Phosphate 0.20
    MA 1.50
    BMI 0.10
    BCHTU 0.80
    TPO 0.70
    Irgacure 184 0.40
  • Examples 2 and 5 (from Table 1) were based on the following formulation. Only the Polymer Material differs between these Examples and the Example no.s set out in Table 1 correspond to the following formulations with the Polymer Material being that indicated in Table 1 for the respective Examples.
  • Component %
    MIBK 43.01
    THFA 16.77
    IBOA 8.60
    Polymer Material 23.66
    HEMA Phosphate 0.43
    MA 3.23
    BMI 0.22
    BCHTU 1.72
    TPO 1.51
    Irgacure 184 0.86
  • Example 3 (from Table 1) was the following formulation (the Polymer Material is the Polytail material):
  • Component %
    MMA 51.61
    2-HEMA 16.77
    Polytail H 23.66
    HEMA Phosphate 0.43
    MA 3.23
    BMI 0.22
    BCHTU 1.72
    TPO 1.51
    Irgacure 184 0.86
  • Examples 4 and 6 to 23 were based on the following formulation. Only the Polymer Material differs between these Examples and the Example no.s set out in Table 1 correspond to the following formulations with the Polymer Material being that indicated in Table 1 for the respective Examples.
  • Component %
    Xylene 33.06
    MIBK 23.14
    THFA 12.89
    IBOA 6.61
    Polymer Material 18.18
    HEMA Phosphate 0.33
    MA 2.48
    BMI 0.17
    BCHTU 1.32
    TPO 1.16
    Irgacure 184 0.66
  • A graph showing further bonding results achieved with the composition of Example 4 on various combinations of substrates is shown in FIG. 2. The injection barrel temperature was 220° C.
  • A graph showing further bonding results achieved with the composition of Example 7 on various combinations of substrates is shown in FIG. 3. The injection barrel temperature was 220° C.
  • In the Examples above:
  • THFA=Tetrahydrofurfuryl Acrylate; IBOA=Isobornyl Acrylate;
  • FG1901 is a Maleic Anhydride Modified SEBS resin available from Kraton;
    Polytail H is a polyhydroxy hydrogenated polybutadiene HEMA Phosphate=Bis[2-(methacryloyloxy)ethyl] phosphate;
    MA=methacrylic acid;
    BMI=benzyl methyl imidazole;
    BCHTU=Benzoyl cyclohexyl thiourea;
    TPO=Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide-photoinitiator (as mentioned above) available from BASF;
    Irgacure 184 (as mentioned above) is a photoinitiator available from BASF chemical name 1-Hydroxy-cyclohexyl-phenyl-ketone);
    MIBK=methyl isobutyl ketone; and
    A1535 is a SEBS resin available from Kraton.
  • Examples 1 to 3 are comparative examples. No bond strength is achieved.
  • Examples 9, 10, 11, 22 and 23 are comparative examples. No bond strength is achieved. In this respect it is important to note that the “B” in the acronym for the materials is used in a non-unique manner, for example in SB; SIBS; and SBS the “B” stands for a polymer based on butadiene whereas in SEBS and S(EBS)S the “B” stands for a polymer based on butylene.
  • The words “comprises/comprising” and the words “having/including” when used herein with reference to the present invention are used to specify the presence of stated features, integers, steps or components but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
  • It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.

Claims (26)

1. A curable primer composition comprising:
(a) a curable component;
(b) a cure initiating component; and
(c) a polymer material selected from the group consisting of:
(i) block polymers represented by S-A-S wherein S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene, which are optionally substituted with carboxylic acid or maleic anhydride; provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene, and is optionally substituted with carboxylic acid or maleic anhydride; and
(ii) polystyrene-poly(ethylene-propylene) (“SEP”); and
(iii) any combination of said polymer materials.
2. A curable composition according to claim 1 wherein the polymer material is selected from the group consisting of block polymers represented by S-A-S where S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene which are optionally substituted with carboxylic acid or maleic anhydride;
provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene, and is optionally substituted with carboxylic acid or maleic anhydride;
and any combination of said polymer materials.
3. A curable composition according to claim 1 wherein A is formed from one or more of ethylene, propylene, butylene and styrene, provided that A is not formed from styrene alone.
4. A curable composition according to claim 1 wherein A is formed from at least two of ethylene, propylene, butylene and styrene.
5. A curable composition according to claim 1 wherein A is formed from at least three of ethylene, propylene, butylene and styrene.
6. A curable composition according to claim 1 wherein the material S-A-S is selected from:
(a) polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”);
(b) polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and
(c) polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”).
7. A curable composition according to claim 1 wherein A is substituted with carboxylic acid groups and/or maleic anhydride groups.
8. A curable composition according to claim 1 wherein A is substituted with maleic anhydride groups.
9. A curable composition according to claim 1 wherein the material S-A-S is at least one of
(a) polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and
(b) polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”).
10. A curable composition according to claim 1 wherein the material S-A-S is at least one of
(a) polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and
(b) polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”);
optionally substituted with carboxylic acid or maleic anhydride.
11. A curable composition according to claim 1 wherein the material S-A-S is at least one of
(a) polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and
(b) polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”);
substituted with maleic anhydride.
12. A curable composition according to claim 1 wherein the material S-A-S is at least one of:
(a) polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”);
(b) polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”);
(c) polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”); and
(d) polystyrene-poly(ethylene-ethylene/propylene)-polystyrene (“SEEPS”).
13. A curable composition according to claim 1 wherein the material S-A-S is at least one of:
(a) polystyrene-poly(ethylene-propylene)-polystyrene (“SEPS”);
(b) polystyrene-poly(ethylene-butylene)-polystyrene (“SEBS”); and
(c) polystyrene-poly(ethylene-butylene-styrene)-polystyrene (“S(EBS)S”).
14. A curable composition according to claim 1 wherein the polymer material selected from the group consisting of:
(i) block polymers represented by S-A-S wherein S is polystyrene and A stands for a polymer or copolymer formed from one or more of ethylene, propylene, butylene and styrene, which are optionally substituted with carboxylic acid or maleic anhydride; provided that when A comprises styrene then A is a copolymer of styrene with at least one of ethylene, propylene and butylene, and is optionally substituted with carboxylic acid or maleic anhydride;
(ii) and polystyrene-poly(ethylene-propylene) (“SEP”); and
(iii) any combination of said polymer materials;
comprises from about 10 to about 70 weight percent styrene based on the total weight of polymer material.
15. A curable composition according to claim 1 wherein the curable component is a (meth)acrylate monomer component.
16. A curable composition according to claim 1 wherein the cure initiating component is a photoinitiator component.
17. A curable composition according to claim 1 wherein A is substituted with carboxylic acid groups.
18. A curable composition according to claim 1 wherein, in a B stage cure product of the composition, the material S-A-S is present in an amount from about 5% to about 80% based on the total weight of the composition, for example from about 30% to about 60% by weight based on the total weight of the composition.
19. A curable composition according to claim 1 wherein the material S-A-S has a Shore A hardness of 20 to 100.
20. A combination comprising:
(a) the composition according to claim 1;
(b) a thermoplastic.
21. A combination comprising:
(a) an article having coated as a layer on at least a surface thereof a B-staged version of the composition of claim 1;
(b) a thermoplastic, for example polyolefin, plastic in contact with the B-staged version of the composition.
22. A process for forming an injection molding about an article, comprising the steps of
(a) disposing into an injection molding cavity an article about which a thermoplastic, for example polyolefin, plastic material is to be molded into a shape; and
(a) Injecting, into the injection molding cavity in which is disposed the article, the thermoplastic material at a temperature and pressure to permit the material to flow around and about the article in the mold and maintaining the mold under a temperature and pressure appropriate to permit the thermoplastic material to solidify,
wherein prior to disposition of the article, the article is primed with the composition of claim 1 and exposed to radiation in the electromagnetic spectrum appropriate to cure the composition.
23. An injection molded article formed form the process of claim 22.
24. The process of claim 22, wherein the article is constructed from glass.
25. The process of claim 22, wherein the article is constructed from aluminium.
26. The process of claim 22, wherein the article is constructed from anodized aluminium.
US15/938,547 2015-09-28 2018-03-28 Primer compositions for injection molding Abandoned US20180215929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/922,065 US11697740B2 (en) 2015-09-28 2020-07-07 Primer compositions for injection molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1517106.9A GB2542629B (en) 2015-09-28 2015-09-28 Polystyrene copolymer curable primer compositions for injection molding
GB1517106.9 2015-09-28
PCT/EP2016/071732 WO2017055089A1 (en) 2015-09-28 2016-09-14 Primer compositions for injection molding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/071732 Continuation WO2017055089A1 (en) 2015-09-28 2016-09-14 Primer compositions for injection molding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/922,065 Division US11697740B2 (en) 2015-09-28 2020-07-07 Primer compositions for injection molding

Publications (1)

Publication Number Publication Date
US20180215929A1 true US20180215929A1 (en) 2018-08-02

Family

ID=54544205

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/938,547 Abandoned US20180215929A1 (en) 2015-09-28 2018-03-28 Primer compositions for injection molding
US16/922,065 Active 2036-11-30 US11697740B2 (en) 2015-09-28 2020-07-07 Primer compositions for injection molding

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/922,065 Active 2036-11-30 US11697740B2 (en) 2015-09-28 2020-07-07 Primer compositions for injection molding

Country Status (8)

Country Link
US (2) US20180215929A1 (en)
EP (1) EP3356473A1 (en)
JP (1) JP6821667B2 (en)
KR (1) KR20180063134A (en)
CN (1) CN108350284B (en)
GB (1) GB2542629B (en)
TW (1) TWI784931B (en)
WO (1) WO2017055089A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160075902A1 (en) * 2013-05-30 2016-03-17 Henkel IP & Holding GmbH Primer Compositions for Injection Molding

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074407B (en) 2018-03-27 2022-09-02 莫赛纳涂层公司 Coatings and primers
JP7242984B2 (en) * 2019-06-10 2023-03-22 株式会社レゾナック Portable information terminal housing and manufacturing method thereof
JP2021195410A (en) * 2020-06-10 2021-12-27 日東シンコー株式会社 Curable composition
CN112592445B (en) * 2020-12-16 2023-06-09 珠海冠宇动力电池有限公司 Adhesive, preparation method thereof and application thereof in lithium ion battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040242721A1 (en) * 2001-10-18 2004-12-02 Xavier Muyldermans Solid curable polymeric composition

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053300B2 (en) 1978-08-29 1985-11-25 富士写真フイルム株式会社 Photosensitive resin composition
JPS5815503A (en) 1981-07-20 1983-01-28 Fuji Photo Film Co Ltd Photopolymerizable composition
JPS61192743A (en) * 1985-02-21 1986-08-27 Mitsubishi Petrochem Co Ltd Primer composition for olefin resin
CA1323949C (en) 1987-04-02 1993-11-02 Michael C. Palazzotto Ternary photoinitiator system for addition polymerization
CA2000855A1 (en) 1988-11-17 1990-05-17 Mohammad Z. Ali Triazine photoinitiators in a ternary system for addition polymerization
JP2796976B2 (en) * 1988-11-30 1998-09-10 サンスター技研株式会社 Moisture crosslinkable primer composition
JPH0830131B2 (en) * 1991-01-25 1996-03-27 三菱化学株式会社 Thermoplastic polymer composition
US5451343A (en) 1991-05-20 1995-09-19 Spectra Group Limited, Inc. Fluorone and pyronin y derivatives
RU2091385C1 (en) 1991-09-23 1997-09-27 Циба-Гейги АГ Bisacylphosphine oxides, composition and method of application of coatings
JPH05281728A (en) 1992-04-01 1993-10-29 Fuji Photo Film Co Ltd Photopolymerizable composition
US5395862A (en) 1992-12-09 1995-03-07 Spectra Group Limited, Inc. Photooxidizable initiator composition and photosensitive materials containing the same
US5677376A (en) * 1994-01-14 1997-10-14 Minnesota Mining And Manufacturing Company Acrylate-containing polymer blends
JP3450053B2 (en) * 1994-04-20 2003-09-22 株式会社シード Eraser
US5605999A (en) 1995-06-05 1997-02-25 Loctite Corporation Anaerobically curable silicones
US6086138A (en) * 1998-01-12 2000-07-11 Donnelly Corporation Vehicular window assembly
US6089646A (en) * 1998-01-12 2000-07-18 Donnelly Corporation Vehicular window assembly
US6293609B1 (en) * 1998-01-12 2001-09-25 Donnelly Corporation Vehicular window assembly
CN1204215C (en) 2000-07-04 2005-06-01 三井化学株式会社 Primer composition
JP3658541B2 (en) * 2001-02-05 2005-06-08 ニチバン株式会社 Photocurable oil surface adhesive composition
JP2003012880A (en) * 2001-04-27 2003-01-15 Asahi Glass Co Ltd Curable composition
US20050014901A1 (en) * 2001-07-10 2005-01-20 Ips Corporation Adhesive compositions for bonding and filling large assemblies
US6810187B2 (en) * 2001-07-27 2004-10-26 Corning Incorporated Optical waveguide thermoplastic elastomer coating
US6869981B2 (en) * 2001-09-21 2005-03-22 Corning Incorporated Optical fiber coatings with pressure sensitive adhesive characteristics
JP2003094561A (en) * 2001-09-26 2003-04-03 Bridgestone Corp Composite molded product and manufacturing method therefor
US20030152767A1 (en) * 2001-10-22 2003-08-14 3M Innovative Properties Company Polyolefin pressure sensitive adhesive tape with an improved priming layer
JP4485172B2 (en) 2003-11-18 2010-06-16 三井化学株式会社 Adhesive composition
JP2005146177A (en) 2003-11-18 2005-06-09 Mitsui Chemicals Inc Adhesive composition and container cap
JP4740661B2 (en) * 2005-06-27 2011-08-03 三井化学株式会社 Photo-curing primer for ethylene resin
JP4877468B2 (en) * 2005-08-23 2012-02-15 株式会社スリーボンド Photocurable moisture-proof coating agent composition
JP4628416B2 (en) * 2007-11-30 2011-02-09 日東電工株式会社 Viscoelastic member having an unevenly distributed elastomer layer
JP2010077384A (en) * 2008-03-24 2010-04-08 Aica Kogyo Co Ltd Curable composition, and film laminate
JP2010126697A (en) * 2008-11-28 2010-06-10 Three M Innovative Properties Co Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape
US20160002416A1 (en) * 2013-01-15 2016-01-07 University Of Washington Through Its Center For Commercialization Styrene-ethylene/butylene-styrene block copolymer devices
DE102013201392A1 (en) 2013-01-29 2014-07-31 Evonik Industries Ag Adhesion promoter and primer compositions for hybrid metal-plastic components
CN104968697B (en) * 2013-02-04 2018-03-13 株式会社普利司通 Photo-curable elastic composition, hard disk drive pad and hard disk drive
KR102306373B1 (en) * 2013-05-30 2021-10-01 헨켈 아이피 앤드 홀딩 게엠베하 Primer compositions for injection molding
JP6152319B2 (en) * 2013-08-09 2017-06-21 日東電工株式会社 Adhesive composition, adhesive tape or sheet
JP7006329B2 (en) * 2017-02-09 2022-01-24 Mcppイノベーション合同会社 Thermoplastic resin composition, easy-to-open container lid material and easy-to-open container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040242721A1 (en) * 2001-10-18 2004-12-02 Xavier Muyldermans Solid curable polymeric composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160075902A1 (en) * 2013-05-30 2016-03-17 Henkel IP & Holding GmbH Primer Compositions for Injection Molding
US10815388B2 (en) * 2013-05-30 2020-10-27 Henkel IP & Holding GmbH Primer compositions for injection molding

Also Published As

Publication number Publication date
WO2017055089A1 (en) 2017-04-06
CN108350284A (en) 2018-07-31
CN108350284B (en) 2021-08-24
US20200339823A1 (en) 2020-10-29
JP2018535290A (en) 2018-11-29
GB201517106D0 (en) 2015-11-11
TWI784931B (en) 2022-12-01
US11697740B2 (en) 2023-07-11
EP3356473A1 (en) 2018-08-08
GB2542629A (en) 2017-03-29
JP6821667B2 (en) 2021-01-27
GB2542629B (en) 2020-05-06
KR20180063134A (en) 2018-06-11
TW201726754A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US11697740B2 (en) Primer compositions for injection molding
JP5046721B2 (en) Active energy ray-curable adhesive composition, polarizing plate using the same, and method for producing the same
JP6376872B2 (en) Method for producing laminated optical film
JPWO2017199978A1 (en) Polarizing film and method for producing the same, optical film, image display device, and easy-adhesion-treated polarizer
JP6269839B2 (en) Ultraviolet curable resin composition and laminate using the same
JP5570752B2 (en) Adhesive
US10815388B2 (en) Primer compositions for injection molding
JP2016505412A (en) Laminates made from rigid substrates with thin adhesive strips
JP2019210446A (en) Photocurable pressure-sensitive adhesive sheet laminate, method for manufacturing photocurable pressure-sensitive adhesive sheet laminate, and method for manufacturing image display panel laminate
JP2013234208A (en) Resin composition and adhesive
KR101667000B1 (en) Composition and adhesive
JP2019210445A (en) Photocurable pressure-sensitive adhesive sheet
JP2014206625A (en) Photo-curable adhesive composition and application of the same
CN110268291B (en) Curable resin composition for polarizing film, and method for producing same
JP2010070610A (en) Adhesive tape
JP4438498B2 (en) Protective layer forming sheet and method for forming protective layer of molded product
JP2024045653A (en) Adhesive compositions, adhesives for electronic parts, and adhesives for display elements
CN117715948A (en) Compositions comprising monomers having carboxylic acid groups, monomers having hydroxyl groups, alkyl monomers, and crosslinkers, and related articles and methods
JP2018165840A (en) Method of manufacturing laminated optical film

Legal Events

Date Code Title Description
AS Assignment

Owner name: HENKEL IP & HOLDING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HENKEL IRELAND OPERATIONS AND RESEARCH LIMITED;REEL/FRAME:046947/0606

Effective date: 20160802

Owner name: HENKEL IRELAND OPERATIONS AND RESEARCH LIMITED, IR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOLAN, DARREN;KNEAFSEY, BRENDAN;DEEGAN, BRIAN;AND OTHERS;REEL/FRAME:046947/0583

Effective date: 20160401

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

AS Assignment

Owner name: HENKEL AG & CO. KGAA, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HENKEL IP & HOLDING GMBH;REEL/FRAME:059207/0627

Effective date: 20220218

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION