US20180202787A1 - Three-Piece Primer Insert Having An Internal Diffuser For Polymer Ammunition - Google Patents

Three-Piece Primer Insert Having An Internal Diffuser For Polymer Ammunition Download PDF

Info

Publication number
US20180202787A1
US20180202787A1 US15/922,032 US201815922032A US2018202787A1 US 20180202787 A1 US20180202787 A1 US 20180202787A1 US 201815922032 A US201815922032 A US 201815922032A US 2018202787 A1 US2018202787 A1 US 2018202787A1
Authority
US
United States
Prior art keywords
primer
primer insert
insert portion
aperture
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/922,032
Other versions
US10041776B1 (en
Inventor
Lonnie Burrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
True Velocity IP Holdings LLC
Original Assignee
True Velocity Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by True Velocity Inc filed Critical True Velocity Inc
Priority to US15/922,032 priority Critical patent/US10041776B1/en
Assigned to True Velocity, Inc. reassignment True Velocity, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURROW, LONNIE
Assigned to TRUE VELOCITY IP HOLDINGS, LLC reassignment TRUE VELOCITY IP HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: True Velocity, Inc.
Publication of US20180202787A1 publication Critical patent/US20180202787A1/en
Assigned to TRUE VELOCITY IP HOLDINGS, LLC reassignment TRUE VELOCITY IP HOLDINGS, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER PREVIOUSLY RECORDED ON REEL 046361 FRAME 0414. ASSIGNOR(S) HEREBY CONFIRMS THE 15922032. Assignors: True Velocity, Inc.
Application granted granted Critical
Publication of US10041776B1 publication Critical patent/US10041776B1/en
Assigned to SILVERPEAK CREDIT PARTNERS, LP reassignment SILVERPEAK CREDIT PARTNERS, LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRUE VELOCITY IP HOLDINGS, LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • F42B5/307Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0823Primers or igniters for the initiation or the propellant charge in a cartridged ammunition
    • F42C19/083Primers or igniters for the initiation or the propellant charge in a cartridged ammunition characterised by the shape and configuration of the base element embedded in the cartridge bottom, e.g. the housing for the squib or percussion cap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
    • F42B5/307Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements
    • F42B5/313Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements all elements made of plastics

Definitions

  • the present invention relates in general to the field of ammunition, specifically to compositions and methods of making primer inserts made by joining 3 or more primer insert portions.
  • Plastic cartridge casings have been known for many years but have failed to provide satisfactory ammunition that could be produced in commercial quantities with sufficient safety, ballistic, handling characteristics, and survive physical and natural conditions to which it will be exposed during the ammunition's intended life cycle; however, these characteristics have not been achieved.
  • U.S. patent application Ser. No. 11/160,682 discloses a base for a cartridge casing body for an ammunition article, the base having an ignition device; an attachment device at one end thereof, the attachment device being adapted to the base to a cartridge casing body; wherein the base is made from plastic, ceramic, or a composite material.
  • U.S. Pat. No. 7,610,858 discloses an ammunition cartridge assembled from a substantially cylindrical polymeric cartridge casing body; and a cylindrical polymeric middle body component with opposing first and second ends, wherein the first end has a coupling element that is a mate for the projectile-end coupling element and joins the first end of the middle body component to the second end of the bullet-end component, and the second end is the end of the casing body opposite the projectile end and has a male or female coupling element; and a cylindrical cartridge casing head-end component with an essentially closed base end with a primer hole opposite an open end with a coupling element that is a mate for the coupling element on the second end of the middle body and joins the second end of the middle body component to the open end of the head-end component.
  • Shortcomings of the known methods of producing plastic or substantially plastic ammunition include the possibility of the projectile being pushed into the cartridge casing, the bullet pull being too light such that the bullet can fall out, the bullet pull being too insufficient to create sufficient chamber pressure, the bullet pull not being uniform from round to round, and portions of the cartridge casing breaking off upon firing causing the weapon to jam or damage or danger when subsequent rounds are fired or when the casing portions themselves become projectiles.
  • improvements in cartridge case design and performance polymer materials are needed.
  • the present invention provides a three piece primer insert for use in polymer ammunition comprising: an upper primer insert portion comprising an upper primer bottom surface, an upper primer aperture through the upper primer bottom surface, a groove positioned around the upper primer aperture, wherein the groove is adapted to receive a polymer overmolding and a substantially cylindrical coupling element extending away from the upper primer bottom surface; a middle primer insert portion comprising a middle aperture and positioned in contact with the upper primer bottom surface and adjacent to the groove, wherein the middle aperture is smaller than the upper primer aperture; and a lower primer insert portion in contact with the middle primer insert portion comprising a lower primer bottom surface in contact with the middle primer insert portion and opposite a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower aperture through the lower primer bottom surface, wherein the lower aperture is larger than the upper primer aperture.
  • the present invention provides a three piece primer insert for ammunition comprising: an upper primer insert portion comprising an upper primer bottom surface, a coupling element extending substantially cylindrical from the upper primer bottom surface, and an upper primer aperture through the upper primer bottom surface; a lower primer insert portion comprising a lower primer bottom surface that extends to a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower primer aperture through the lower primer bottom surface, and an extraction flange that extends circumferentially about an outer edge of the lower primer top surface, wherein the extraction flange is adapted to extract the three piece primer insert; an insert spacer positioned between the upper primer insert portion and the lower primer insert portion, wherein the insert spacer comprises an insert spacer aperture that is larger than the upper primer aperture and smaller than the primer recess, wherein the upper primer aperture and the lower primer aperture at least partially aligns with the insert spacer aperture; an upper insert joint that connects the upper primer insert portion and the insert spacer to
  • the primer insert may have various configurations, e.g., the upper primer aperture may be smaller than the insert spacer aperture to form a groove between an upper primer aperture edge and an insert spacer aperture edge; the lower primer aperture may be coextensive with the primer recess; the lower primer aperture may be larger than the insert spacer aperture; the lower primer aperture may be smaller than the insert spacer aperture; the lower primer aperture may be coextensive with the upper primer aperture edge to form a groove with the insert spacer aperture edge and the lower primer aperture may be smaller than the upper primer aperture.
  • the upper insert joint, the lower insert joint or both may be threaded, riveted, locked, friction fitted, coined, snap fitted, chemical bonded, chemical welded, soldered, smelted, sintered, adhesive bonded, laser welded, ultrasonic welded, friction spot welded, or friction stir welded.
  • the upper primer insert portion, insert spacer, and/or the lower primer insert portion may be formed independently by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert.
  • the upper primer insert portion, insert spacer, and the lower primer insert portion independently comprises a polymer, a metal, an alloy, or a ceramic alloy.
  • the upper primer insert portion, insert spacer, and/or the lower primer insert portion may be of the same material or different materials.
  • the upper primer insert portion, insert spacer, and/or the lower primer insert portion independently may be 102, 174, 201, 202, 300, 302, 303, 304, 308, 309, 316, 316L, 316Ti, 321, 405, 408, 409, 410, 415, 416, 416R, 420, 430, 439, 440, 446 or 601-665 grade stainless steel or Ti 6 Al 4 V.
  • the primer insert of claim 1 wherein the upper primer insert portion, insert spacer, and/or the lower primer insert portion independently may be (a) 2-16% Ni; 10-20% Cr; 0-5% Mo; 0-0.6% C; 0-6.0% Cu; 0-0.5% Nb+Ta; 0-4.0% Mn; 0-2.0% Si and the balance Fe; (b) 2-6% Ni; 13.5-19.5% Cr; 0-0.10% C; 1-7.0% Cu; 0.05-0.65% Nb+Ta; 0-3.0% Mn; 0-3.0% Si and the balance Fe; (c) 3-5% Ni; 15.5-17.5% Cr; 0-0.07% C; 3-5.0% Cu; 0.15-0.45% Nb+Ta; 0-1.0% Mn; 0-1.0% Si and the balance Fe; (d) 10-14% Ni; 16-18% Cr; 2-3% Mo; 0-0.03% C; 0-2% Mn; 0-1% Si and the balance Fe; (e) 12-14% Cr; 0.15-0.4% C; 0-1% Mn;
  • the present invention provides a three piece primer insert with an internal diffuser for ammunition comprising: an upper primer insert portion comprising an upper primer first surface, a coupling element extending substantially cylindrical from the upper primer bottom surface, an upper primer second surface opposite the upper primer first surface, an upper primer aperture through the upper primer first surface and the upper primer second surface, and a groove in the upper primer second surface around the upper primer aperture; a lower primer insert portion comprising a lower primer bottom surface that extends to a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower primer aperture through the lower primer bottom surface, and an extraction flange that extends circumferentially about an outer edge of the lower primer top surface, wherein the extraction flange is adapted to extract the three piece primer insert; an insert spacer positioned between the upper primer insert portion and the lower primer insert portion, wherein the internal diffuser portion comprises an insert spacer aperture that is larger than the upper primer aperture and smaller than the primer recess, wherein
  • the insert joint may be threaded, riveted, locked, friction fitted, coined, snap fitted, chemical bonded, chemical welded, soldered, smelted, sintered, adhesive bonded, laser welded, ultrasonic welded, friction spot welded, or friction stir welded.
  • the upper primer insert portion, insert spacer, and/or the lower primer insert portion may be formed independently by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert.
  • the upper primer insert portion, insert spacer, and the lower primer insert portion independently comprises a polymer, a metal, an alloy, or a ceramic alloy.
  • the upper primer insert portion, insert spacer, and/or the lower primer insert portion comprise of the same material or different materials.
  • the upper primer insert portion, insert spacer, and/or the lower primer insert portion independently comprise steel, nickel, chromium, copper, carbon, iron, stainless steel or brass.
  • FIG. 1 depicts a side, cross-sectional view of a polymeric cartridge case according to one embodiment of the present invention
  • FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case according to one embodiment of the present invention
  • FIGS. 3A-3C depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case.
  • FIGS. 4A-4B depict a side, cross-sectional view of a stamped three piece primer insert used in a polymeric cartridge case.
  • FIG. 5 depicts a side, cross-sectional view of a three piece primer insert having a tab and groove configuration used in a polymeric cartridge case.
  • Reliable cartridge manufacture requires uniformity from one cartridge to the next in order to obtain consistent ballistic performance.
  • proper bullet seating and bullet-to-casing fit is required.
  • a desired pressure develops within the casing during firing prior to bullet and casing separation.
  • bullets employ a cannelure, which is a slight annular depression formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet.
  • a visual inspection of a cartridge could determine whether or not the bullet is seated at the proper depth.
  • One of two standard procedures is incorporated to lock the bullet in its proper location.
  • One method is the crimping of the entire end of the casing into the cannelure.
  • a second method does not crimp the casing end; rather the bullet is pressure fitted into the casing.
  • the polymeric ammunition cartridges of the present invention are of a caliber typically carried by soldiers in combat for use in their combat weapons.
  • the present invention is not limited to the described caliber and is believed to be applicable to other calibers as well.
  • the projectile and the corresponding cartridge may be of any desired size, e.g., 0.223, 0.243, 0.25-06, 0.270, 0.300, 0.308, 0.338, 0.30-30, 0.30-06, 0.45-70 or 0.50-90, 50 caliber, 45 caliber, 380 caliber or 38 caliber, 5.56 mm, 6 mm, 7 mm, 7.62 mm, 8 mm, 9 mm, 10 mm, 12.7 mm, 14.5 mm, 14.7 mm, 20 mm, 25 mm, 30 mm, 40 mm, 57 mm, 60 mm, 75 mm, 76 mm, 81 mm, 90 mm, 100 mm, 105 mm, 106 mm, 115 mm, 120 mm, 122 mm, 125 mm, 130 mm, 152 mm, 155 mm, 165 mm, 175 mm, 203 mm or 460 mm, 4.2 inch or 8 inch.
  • the cartridges therefore, are of a
  • the present invention includes primer inserts that are made as a multi-piece insert.
  • the multi-piece insert is a 3 piece insert but may be a 4, 5, or 6 piece insert. Regardless of the number of pieces the multi-piece insert each piece may be of similar or dissimilar materials that are connected to form a unitary primer insert.
  • the portions of the primer insert may be constructed from dissimilar materials including metal-to-metal, polymer-to-polymer and metal-to-polymer joints.
  • the individual pieces may be joined using various methods including smelting, sintering, adhesive bonding, welding techniques that joining dissimilar materials, including laser welding, ultrasonic welding, friction spot welding, and friction stir welding.
  • the method of connecting the individual pieces to form a unitary insert will depend on the materials being joined. For example, a metal insert may is constructed from 2 or more metal pieces with similar melting points are joined together to form a unitary insert through sintering.
  • the substantially cylindrical primer insert includes at least an upper primer insert portion and a lower primer insert portion separated by an insert joint.
  • An insert spacer may be positioned in the insert joint and sandwiched between the upper primer insert portion and the lower primer insert portion. Although it is discussed a s a single piece or layer the insert spacer may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more individual or combined/fused pieces or layers.
  • the upper primer insert portion includes an upper aperture that passes through the bottom of the upper primer insert portion.
  • the diameter of the upper aperture may be of any convenient diameter that meets the specific requirements.
  • the lower primer insert portion includes a lower aperture that passes through the top of the bottom primer insert portion from a primer chamber. In some embodiments the lower aperture may have the same diameter as the primer chamber. Generally, the diameter of the upper aperture and/or the lower aperture may be of any convenient diameter that meets the specific requirements.
  • An insert spacer is positioned in the insert joint separating the upper primer insert portion and the lower primer insert portion.
  • the insert spacer includes a spacer aperture that penetrates the insert spacer. In some embodiments the insert spacer is larger than the upper aperture but smaller than the lower aperture.
  • each portion may individually be made from a single material that is milled, stamped, forged, machined, molded, metal injection molded, cast or other methods.
  • the method or construction of one portion has no bearing on the method or construction of any other portions, e.g., one may be MIM the other milled or stamped; or all may be milled, or all may be MIM, etc.
  • FIG. 1 depicts a side, cross-sectional view of a portion of a polymeric cartridge case having a three piece primer insert.
  • a cartridge 10 is shown manufactured with a polymer casing 12 showing a propellant chamber 14 with projectile aperture at the forward projectile aperture 16 .
  • the polymer casing 12 has a nose 18 extending from the projectile aperture 16 rearward to connection end 20 .
  • the nose 18 may be formed with the coupling end 22 formed on the connection end 20 .
  • the connection end 20 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention.
  • the nose 18 has a shoulder 24 positioned between the connection end 20 and the projectile aperture 16 , with a chamber neck 26 located from the projectile aperture 16 to the shoulder 24 .
  • the nose 18 typically has a wall thickness between about 0.003 and about 0.200 inches; more preferably between about 0.005 and about 0.150; and more preferably between about 0.010 and about 0.050 inches.
  • An optional first and second annular groove (cannelures) may be provided in the nose 18 in the interlock surface of the male coupling element to provide a snap-fit between the two components.
  • the cannelures formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet.
  • the bullet is inserted into the casing to the depth to lock the bullet in its proper location.
  • One method is to bond the entire end of the casing into the cannelures.
  • the nose 18 and middle body component 28 can then be welded, melted or bonded together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques.
  • the middle body component 28 extends from a nose connection 21 to an over molded primer insert 32 to form a propellant chamber 14 .
  • the middle body component 28 is overmolded over a coupling element 30 of the primer insert 32 .
  • the coupling element 30 as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for the coupling elements 30 and the overmolded coupling end 22 in alternate embodiments of the invention.
  • the overmolded coupling end 22 interlocks with the coupling element 30 that extends with a taper to a smaller diameter at the tip 34 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28 and into the flash hole aperture 36 and into groove 60 .
  • the middle body component extends from a projectile aperture 16 to the overmolded coupling end 22 .
  • the middle body component 28 typically has a wall thickness between about 0.003 and about 0.200 inches; and more preferably between about 0.005 and about 0.150 inches; and more preferably between about 0.010 and about 0.050 inches.
  • the projectile aperture 16 , middle body component 28 and overmolded primer insert 32 define the interior of propellant chamber 14 in which the powder charge (not shown) is contained.
  • the interior volume of the propellant chamber 14 may be varied to provide the volume necessary for complete filling of the chamber 14 by the propellant chosen so that a simplified volumetric measure of propellant can be utilized when loading the cartridge. Either a particulate or consolidated propellant can be used.
  • the upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38 .
  • the insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48 .
  • the insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48 .
  • the lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber 14 .
  • the lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50 .
  • the diameter of the upper flash aperture 48 , the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design.
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52 .
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter.
  • the lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42 .
  • the lower flash aperture 52 has a diameter that is the same as the primer recess 54 ; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54 .
  • the outer of the insert spacer 42 is about the size of the primer recess 54 ; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48 .
  • the upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength.
  • the lower primer insert portion 58 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly.
  • the primer (not shown) 36 communicates through the flash hole aperture 36 into the propellant chamber 14 to ignite the propellant/powder (not shown) in propellant chamber 14 .
  • the projectile (not shown) is held in place within chamber case neck 26 at projectile aperture 16 by an interference fit.
  • the projectile (not shown) may be inserted into place following the completion of the filling of propellant chamber 14 .
  • Mechanical means e.g., welding, melting, bonding, bonding together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques
  • can be used to hold the projectile (not shown) in the projectile aperture 16 can also be applied to increase the projectile pull force holding the projectile (not shown) in place.
  • the projectile (not shown) can also be injection molded directly onto the projectile aperture 16 of the nose 18 prior to welding or bonding together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques.
  • the welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
  • the nose 18 can be connected to the middle body component 28 at the nose connection 21 which can be welding, melting, bonding, bonding together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques.
  • the welding or bonding increases the joint strength at the cook-off temperature so the casing can be extracted from the hot gun casing after firing.
  • FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case having a three piece primer insert.
  • the three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40 .
  • the upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38 .
  • the insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48 .
  • the insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48 .
  • the lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber 14 .
  • the lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50 .
  • the diameter of the upper flash aperture 48 , the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design.
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52 .
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter.
  • the lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42 .
  • the lower flash aperture 52 has a diameter that is the same as the primer recess 54 ; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54 .
  • the outer of the insert spacer 42 is about the size of the primer recess 54 ; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48 .
  • the upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength.
  • the lower primer insert portion 58 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly.
  • the primer (not shown) 36 communicates through the flash hole aperture 36 into the propellant chamber 14 to ignite the propellant/powder (not shown) in propellant chamber 14 .
  • the coupling end 22 interlocks with the substantially cylindrical coupling element 30 .
  • the coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component 28 .
  • the coupling end 22 extends the polymer through the upper flash aperture 48 and into groove 60 to form a flash hole aperture 36 while retaining a passage from the primer recess 54 into the propellant chamber 14 . When contacted the coupling end 22 interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component 28 .
  • FIG. 3A depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case.
  • the three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40 .
  • the upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38 .
  • the insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48 .
  • the insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48 .
  • the lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber (not shown).
  • the lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50 .
  • the diameter of the upper flash aperture 48 , the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design.
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52 .
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter.
  • the lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42 .
  • the lower flash aperture 52 has a diameter that is the same as the primer recess 54 ; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54 .
  • the outer of the insert spacer 42 is about the size of the primer recess 54 ; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48 .
  • the upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength.
  • the lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 .
  • the coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown).
  • the coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown).
  • the 3 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 to form the groove 60 to accommodate the overmolding but does not function as a diffuser.
  • FIG. 3B depict a side, cross-sectional view of a four piece primer insert used in a polymeric cartridge case.
  • the four piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by a pair of insert spacers 42 a and 42 b to form an upper insert joint 44 between the upper primer insert portion 38 and the pair of insert spacers 42 a and 42 b and a lower insert joint 46 and the lower primer insert portion 40 .
  • the upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38 .
  • the pair of insert spacers 42 a and 42 b each include an insert spacer apertures 50 a and 50 b that passes through the pair of insert spacers 42 a and 42 b and at least partially aligns with the upper flash aperture 48 .
  • the insert spacer apertures 50 a and 50 b have a diameter may be larger or smaller than the upper flash aperture 48 .
  • the lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer apertures 50 a and 50 b and the upper flash aperture 48 to connect to the propellant chamber (not shown).
  • the lower flash aperture 52 diameter may be larger or smaller than the insert spacer apertures 50 a and 50 b .
  • the diameter of the upper flash aperture 48 , the insert spacer apertures 50 a and 50 b and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design.
  • the insert spacer apertures 50 a and 50 b diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52 .
  • the insert spacer apertures 50 a and 50 b diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer apertures 50 a and 50 b diameter and the upper flash aperture 48 diameter.
  • the lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42 .
  • the lower flash aperture 52 has a diameter that is the same as the primer recess 54 ; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54 .
  • the outer of the insert spacer 42 is about the size of the primer recess 54 ; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer apertures 50 a and 50 b at least partially aligns with the upper flash aperture 48 .
  • the upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength.
  • the lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly.
  • the primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 .
  • the coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown).
  • the coupling end extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown).
  • the coupling end interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown).
  • the 4 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 a forms the groove 60 to accommodate the overmolding but the second insert spacer aperture 50 b forms a diffuser.
  • FIG. 3C depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case.
  • the three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40 .
  • the upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38 .
  • the insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48 .
  • the insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48 .
  • the lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber (not shown).
  • the lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50 .
  • the diameter of the upper flash aperture 48 , the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design.
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52 .
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter.
  • the lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42 .
  • the lower flash aperture 52 has a diameter that is the same as the primer recess 54 ; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54 .
  • the outer of the insert spacer 42 is about the size of the primer recess 54 ; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48 .
  • the upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength.
  • the lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 .
  • the coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown).
  • the coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown).
  • the 3 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 to form the groove 60 to accommodate the overmolding and the lower flash aperture 52 forms the diffuser.
  • FIGS. 4A-4B depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case.
  • the present invention provides a method of making a multi-piece insert that is joined to form a unitary insert that can be overmolded into an ammunition cartridge.
  • the individual components of the insert may be made may any method provided the insert is functional.
  • the individual pieces may be stamped or milled and then connected.
  • the connection can also be of any mechanism that is available currently that produces a viable insert with the desired joint strength.
  • the joint may be welded or soldered as in FIG. 4A or riveted or coined as in FIG. 4B .
  • the three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40 .
  • the upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38 .
  • the insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48 .
  • the insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48 .
  • the lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber (not shown).
  • the lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50 .
  • the diameter of the upper flash aperture 48 , the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design.
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52 .
  • the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter.
  • the lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42 .
  • the lower flash aperture 52 has a diameter that is the same as the primer recess 54 ; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54 .
  • the outer of the insert spacer 42 is about the size of the primer recess 54 ; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48 .
  • the upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength.
  • the lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 .
  • the coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown).
  • the coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown).
  • the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown).
  • the 3 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 to form the groove 60 to accommodate the overmolding but does not function as a diffuser.
  • the insert joints 44 and 46 may connect the insert spacer 42 to the upper primer insert portion 38 and the lower primer insert portion 40 by soldering, welding spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques as in FIG. 4A .
  • FIG. 4B also shows a coined method of joining the upper primer insert portion 38 and the lower primer insert portion 40 .
  • the right side shows the lower primer insert portion 40 has a stud 62 that extends through the insert spacer 42 and upper primer insert portion 38 .
  • the left side shows a stud 62 on the insert spacer 42 that extends through the lower primer insert portion 40 , the upper primer insert portion 38 or both.
  • the stud 62 is coined to secure the upper primer insert portion 38 , the lower primer insert portion 40 and insert spacer 42 .
  • multiple methods may be used to increase the joint strength.
  • FIG. 5 depicts a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case.
  • the three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40 .
  • the insert spacer 42 includes an upper tab 64 a and a lower tab 64 b that mate to a upper groove 66 a and 66 b respectively, the tab ( 64 a and 64 b ) and groove ( 66 a and 66 B) are configured for a square profile.
  • the tab and groove configuration can be any mating profiles; for example, the upper tab 68 a and a lower tab 68 b that mate to a upper groove 70 a and 70 b may be configured as a curved profile.
  • Chemical welding and chemical bonding involves the use of chemical compositions that undergoes a chemical or physical reaction resulting in the joining of the materials and the formation of a unitary primer insert.
  • the chemicals may join the surfaces through the formation of a layer that contacts both surfaces or by melting the surfaces to a single interface between the surfaces.
  • Adhesive bonding involves the use of a polymeric adhesive, which undergoes a chemical or physical reaction, for eventual joint formation.
  • the upper primer insert portion mates to the lower primer insert portion at the insert joint to which an adhesive material has been added to form a unitary primer insert.
  • the adhesive includes high-strength and tough adhesives that can withstand both static and alternating loads.
  • Sintering involves the process of compacting and forming a solid mass of material by heat and/or pressure without melting it to the point of liquefaction.
  • Materials that are identical or similar may be sintered in the temperature range for the specific time, e.g., stainless steel may be heated for 30-60 minutes at a temperature of between 2000-2350° F.
  • materials that are dissimilar may be heated at the within the common temperature range ( ⁇ 400° F.) for the specific time ( ⁇ 0.5-2 hours).
  • the upper primer insert portion may be stainless steel with a temperature range form 2000-2350° F. for 30-60 minutes and the lower primer insert portion may be nickel 1850-2100° F. for 30-45 minutes (and vice versa) to allow the sintering at between 2000-2100° F. for 30-60 minutes.
  • the upper primer insert portion may be stainless steel with a temperature range form 2000-2350° F. for 30-60 minutes and the lower primer insert portion may be tungsten carbide 2600-2700° F. for 20-30 minutes to allow the sintering at between 2300-2600° F. for 30-60 minutes or longer if necessary.
  • the skilled artisan readily understands the parameters associated with sintering materials of similar and different compositions and therefor there is no need in reciting all of the various combinations that can be formed in this application.
  • Welding techniques including laser welding, ultrasonic welding, friction spot welding, and friction stir welding.
  • the welding methods can use the existing materials to fill in the insert joint or an additional material may be used to fill in the insert joint.
  • the dissimilar multi-metal welded unitary primer insert must be examined to determine the crack sensitivity, ductility, susceptibility to corrosion, etc. In some cases, it is necessary to use a third metal that is soluble with each metal in order to produce a successful joint.
  • the two piece primer insert used in polymeric cartridge cases includes an upper primer insert portion and a lower primer insert portion joined at insert joint.
  • the individual upper primer insert portion and lower primer insert portion may be formed in various methods.
  • the individual upper primer insert portion and lower primer insert portion may be formed by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert.
  • the three piece primer insert includes an individual upper primer insert portion, lower primer insert portion and insert spacer formed in various methods.
  • the individual upper primer insert portion and lower primer insert portion may be formed by stamping, milling, or machining and then joined together to form a primer insert.
  • the individual upper primer insert portion, the lower primer insert portion or both may be formed by fineblanking.
  • Fineblanking is a specialty type of metal stamping that can achieve part characteristics such as flatness and a full sheared edge to a degree that is nearly impossible using a conventional metal cutting or punching process and is used to achieve flatness and cut edge characteristics that are unobtainable by conventional stamping and punching methods.
  • the punch makes contact with the sheet, the metal begins to deform and bulge around the point of the punch.
  • the point of the punch begins to penetrate the metal's surface.
  • Both the punch and matrix, or button begin to cut from their respective sides.
  • the metal breaks or fractures from the edge of the punch to the edge of the matrix. This results in a cut edge that appears to be partially cut and partially broken or fractured. This cut edge condition often is referred to as the “cut band.” In most cases, the cut edge has about 10 percent to 30 percent of shear, and the remainder is fractured.
  • the fracture has two primary causes. The distance between the punch and the matrix creates a leverage action and tends to pull the metal apart, causing it to rupture. The deformation that is allowed during the cutting process also allows the metal to fracture prematurely. Allowing the metal to deform severely during the cutting process results in straining of the metal, which in turn causes a stress.
  • Fineblanking requires the use of three very high-pressure pads in a special press. These pads hold the metal flat during the cutting process and keep the metal from plastically deforming during punch entry. Most fineblanking operations incorporate a V-ring into one of the high-pressure pads. This ring also is commonly referred to as a “stinger” or “impingement” ring. Before the punch contacts the part, the ring impales the metal, surrounds the perimeter of the part, and traps the metal from moving outward while pushing it inward toward the punch. This reduces rollover at the cut edge.
  • Fineblanking operations usually require clearances of less than 0.0005 inch per side. This small clearance, combined with high pressure, results in a fully sheared part edge. Fineblanking is much like a cold extruding process. The slug (or part) is pushed or extruded out of the strip while it is held very tightly between the high-pressure holding plates and pads. The tight hold of the high-pressure plates prevents the metal from bulging or plastically deforming during the extrusion process.
  • the raw materials are metal powders and a thermoplastic binder.
  • Binders included in the blend, a primary binder and a secondary binder.
  • This blended powder mix is worked into the plasticized binder at elevated temperature in a kneader or shear roll extruder.
  • the intermediate product is the so-called feedstock. It is usually granulated with granule sizes of several millimeters.
  • metal injection molding only the binders are heated up, and that is how the metal is carried into the mold cavity.
  • 316L is comprised of several elements, such as Fe, Cr, Ni, Cu, Mo, P, Si, S and C.
  • each of these elements must meet a minimum and maximum percentage weight requirement as called out in the relevant specification.
  • Tables I-IV below provide other examples of the elemental compositions of some of the metal powders, feed stocks, metals, alloys and compositions of the present invention. Hence the variation in the chemistry within the specification results in a significant density variation within the acceptable composition range. Depending on the lot received from the powder producer, the density will vary depending on the actual chemistry received.
  • Parts are molded until they feel that the cavity has been filled. Both mold design factors such as runner and gate size, gate placement, venting and molding parameters set on the molding machine affect the molded part.
  • a helium Pycnometer can determine if there are voids trapped inside the parts. During molding, you have a tool that can be used to measure the percent of theoretical density achieved on the “Green” or molded part. By crushing the measured “green” molded part back to powder, you can now confirm the percent of air (or voids) trapped in the molded part. To measure this, the density of the molded part should be measured in the helium Pycnometer and compared to the theoretical density of the feedstock. Then, take the same molded part that was used in the density test and crush it back to powder.
  • the feedstock supplier knows the amount of primary binders that have been added and should be removed before proceeding to the next process step.
  • the feedstock supplier provides a minimum “brown density” that must be achieved before the parts can be moved into a furnace for final debinding and sintering. This minimum brown density will take into account that a small amount of the primary binder remnant may be present and could be removed by a suitable hold during secondary debinding and sintering.
  • the sintering profile should be adjusted to remove the remaining small percent of primary binder before the removal of the secondary binder.
  • Most external feedstock manufacturers provide only a weight loss percent that should be obtained to define suitable debinding.
  • Solvent debound parts must be thoroughly dried, before the helium Pycnometer is used to determine the “brown” density so that the remnant solvent in the part does not affect the measured density value.
  • the feedstock manufacturer gives you the theoretical density of the “brown” or debound part, can validate the percent of debinding that has been achieved.
  • MIM Metal Injection Molding
  • Feedstock in accordance with the present invention may be prepared by blending the powdered metal with the binder and heating the blend to form a slurry. Uniform dispersion of the powdered metal in the slurry may be achieved by employing high shear mixing. The slurry may then be cooled to ambient temperature and then granulated to provide the feedstock for the metal injection molding.
  • One embodiment of the injection molded primer insert may include a composition where Ni may be 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.50, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.50, 6.75, 7.0, 7.25, 7.5, 7.75, 8.0, 8.25, 8.50, 8.75, 9.0, 9.25, 9.5, 9.75, 10.0, 10.25, 10.50, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25, 12.50, 12.75, 13.0, 13.25, 13.5, 13.75, 14.0, 14.25, 14.50, 14.75, 15.0, 15.25, 15.5, 15.75, 16.0, 16.25, 16.50, 16.75, or 17.0%; Cr may be 9.0, 9.25, 9.5, 9.75, 10.0, 10.25, 10.50, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25, 12.50, 12.75, 13.0, 13.25
  • one embodiment of the injection molded primer insert may include any amount in the range of 2-16% Ni; 10-20% Cr; 0-5% Mo; 0-0.6% C; 0-6.0% Cu; 0-0.5% Nb+Ta; 0-4.0% Mn; 0-2.0% Si and the balance Fe.
  • One embodiment of the injection molded primer insert may include any amount in the range of 2-6% Ni; 13.5-19.5% Cr; 0-0.10% C; 1-7.0% Cu; 0.05-0.65% Nb+Ta; 0-3.0% Mn; 0-3.0% Si and the balance Fe.
  • One embodiment of the injection molded primer insert may include any amount in the range of 3-5% Ni; 15.5-17.5% Cr; 0-0.07% C; 3-5.0% Cu; 0.15-0.45% Nb+Ta; 0-1.0% Mn; 0-1.0% Si and the balance Fe.
  • One embodiment of the injection molded primer insert may include any amount in the range of 10-14% Ni; 16-18% Cr; 2-3% Mo; 0-0.03% C; 0-2% Mn; 0-1% Si and the balance Fe.
  • One embodiment of the injection molded primer insert may include any amount in the range of 12-14% Cr; 0.15-0.4% C; 0-1% Mn; 0-1% Si and the balance Fe.
  • One embodiment of the injection molded primer insert may include any amount in the range of 16-18% Cr; 0-0.05% C; 0-1% Mn; 0-1% Si and the balance Fe.
  • Titanium alloys that may be used in this invention include any alloy or modified alloy known to the skilled artisan including titanium grades 5-38 and more specifically titanium grades 5, 9, 18, 19, 20, 21, 23, 24, 25, 28, 29, 35, 36 or 38. Grades 5, 23, 24, 25, 29, 35, or 36 annealed or aged; Grades 9, 18, 28, or 38 cold-worked and stress-relieved or annealed; Grades 9, 18, 23, 28, or 29 transformed-beta condition; and Grades 19, 20, or 21 solution-treated or solution-treated and aged. Grade 5, also known as Ti6Al4V, Ti-6Al-4V or Ti 6-4, is the most commonly used alloy.
  • Grade 11 contains 0.12 to 0.25% palladium
  • Grade 12 contains 0.3% molybdenum and 0.8% nickel
  • Grades 13, 14, and 15 all contain 0.5% nickel and 0.05% ruthenium
  • Grade 16 contains 0.04 to 0.08% palladium
  • Grade 16H contains 0.04 to 0.08% palladium
  • Grade 17 contains 0.04 to 0.08% palladium
  • Grade 18 contains 3% aluminum, 2.5% vanadium and 0.04 to 0.08% palladium
  • Grade 19 contains 3% aluminum, 8% vanadium, 6% chromium, 4% zirconium, and 4% molybdenum
  • Grade 20 contains 3% aluminum, 8% vanadium, 6% chromium, 4% zirconium, 4% molybdenum and 0.04% to 0.08% palladium
  • Grade 21 contains 15% molybdenum, 3% aluminum, 2.7% niobium, and 0.25% silicon
  • Grade 23 contains 6% aluminum
  • Grade 25 contains 6% aluminum, 4% vanadium and 0.3% to 0.8% nickel and 0.04% to 0.08% palladium; Grades 26, 26H, and 27 all contain 0.08 to 0.14% ruthenium; Grade 28 contains 3% aluminum, 2.5% vanadium and 0.08 to 0.14% ruthenium; Grade 29 contains 6% aluminum, 4% vanadium and 0.08 to 0.14% ruthenium; Grades 30 and 31 contain 0.3% cobalt and 0.05% palladium; Grade 32 contains 5% aluminum, 1% tin, 1% zirconium, 1% vanadium, and 0.8% molybdenum; Grades 33 and 34 contain 0.4% nickel, 0.015% palladium, 0.025% ruthenium, and 0.15% chromium; Grade 35 contains 4.5% aluminum, 2% molybdenum, 1.6% vanadium, 0.5% iron, and 0.3% silicon; Grade 36 contains 45% niobium; Grade 37 contains 1.5% aluminum; and Grade 38 contains 4% aluminum, 2.5% vanadium, and 1.5% iron
  • One embodiment includes a Ti6Al4V composition.
  • One embodiment includes a composition having 3-12% aluminum, 2-8% vanadium, 0.1-0.75% iron, 0.1-0.5% oxygen, and the remainder titanium. More specifically, about 6% aluminum, about 4% vanadium, about 0.25% iron, about 0.2% oxygen, and the remainder titanium.
  • one Ti composition may include 10 to 35% Cr, 0.05 to 15% Al, 0.05 to 2% Ti, 0.05 to 2% Y 2 O 5 , with the balance being either Fe, Ni or Co, or an alloy consisting of 20 ⁇ 1.0% Cr, 4.5 ⁇ 0.5% Al, 0.5 ⁇ 0.1% Y 2 O 5 or ThO 2 , with the balance being Fe.
  • one Ti composition may include 15.0-23.0% Cr, 0.5-2.0% Si, 0.0-4.0% Mo, 0.0-1.2% Nb, 0.0-3.0% Fe, 0.0-0.5% Ti, 0.0-0.5% Al, 0.0-0.3% Mn, 0.0-0.1% Zr, 0.0-0.035% Ce, 0.005-0.025% Mg, 0.0005-0.005% B, 0.005-0.3% C, 0.0-20.0% Co, balance Ni.
  • Sample Ti-based feedstock component includes 0-45% metal powder; 15-40% binder; 0-10% Polymer (e.g., thermoplastics and thermosets); surfactant 0-3%; lubricant 0-3%; sintering aid 0-1%.
  • Ti-based feedstock component includes about 62% TiH2 powder as a metal powder; about 29% naphthalene as a binder; about 2.1-2.3% polymer (e.g., EVA/epoxy); about 2.3% SURFONIC N-100® as a Surfactant; lubricant is 1.5% stearic acid as a; about 0.4% silver as a sintering Aid.
  • metal compounds include metal hydrides, such as TiH2, and intermetallics, such as TiAl and TiAl 3 .
  • a specific instance of an alloy includes Ti-6Al, 4V, among others.
  • the metal powder comprises at least approximately 45% of the volume of the feedstock, while in still another, it comprises between approximately 54.6% and 70.0%.
  • Ti—Al alloys may consists essentially of 32-38% of Al and the balance of Ti and contains 0.005-0.20% of B, and the alloy which essentially consists of the above quantities of Al and Ti and contains, in addition to the above quantity of B, up to 0.2% of C, up to 0.3% of O and/or up to 0.3% of N (provided that O+N add up to 0.4%) and c) 0.05-3.0% of Ni and/or 0.05-3.0% of Si, and the balance of Ti.
  • the feedstock used for the metal injection molding portion of the invention may include at least about 40 percent by weight powdered metal, in another about 50 percent by weight powdered metal or more.
  • the feedstock includes at least about 60 percent by weight powdered metal, preferably about 65 percent by weight or more powdered metal.
  • the feedstock includes at least about 75 percent by weight powdered metal.
  • the feedstock includes at least about 80 percent by weight powdered metal.
  • the feedstock includes at least about 85 percent by weight powdered metal.
  • the feedstock includes at least about 90 percent by weight powdered metal.
  • the binding agent may be any suitable binding agent that does not destroy or interfere with the powdered metals.
  • the binder may be present in an amount of about 50 percent or less by weight of the feedstock. In one embodiment, the binder is present in an amount ranging from 10 percent to about 50 percent by weight. In another embodiment, the binder is present in an amount of about 25 percent to about 50 percent by weight of the feedstock. In another embodiment, the binder is present in an amount of about 30 percent to about 40 percent by weight of the feedstock. In one embodiment, the binder is an aqueous binder. In another embodiment, the binder is an organic-based binder. Examples of binders include, but are not limited to, thermoplastic resins, waxes, and combinations thereof.
  • thermoplastic resins include polyolefins such as acrylic polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene carbonate, polyethylene glycol, and mixtures thereof.
  • Suitable waxes include, but are not limited to, microcrystalline wax, bee wax, synthetic wax, and combinations thereof.
  • suitable powdered metals for use in the feedstock include, but are not limited to: stainless steel including martensitic and austenitic stainless steel, steel alloys, tungsten alloys, soft magnetic alloys such as iron, iron-silicon, electrical steel, iron-nickel (50Ni-50F3), low thermal expansion alloys, or combinations thereof.
  • the powdered metal is a mixture of stainless steel, brass and tungsten alloy.
  • the stainless steel used in the present invention may be any 1 series carbon steels, 2 series nickel steels, 3 series nickel-chromium steels, 4 series molybdenum steels, series chromium steels, 6 series chromium-vanadium steels, 7 series tungsten steels, 8 series nickel-chromium-molybdenum steels, or 9 series silicon-manganese steels, e.g., 102, 174, 201, 202, 300, 302, 303, 304, 308, 309, 316, 316L, 316Ti, 321, 405, 408, 409, 410, 416, 420, 430, 439, 440, 446 or 601-665 grade stainless steel.
  • stainless steel is an alloy of iron and at least one other component that imparts corrosion resistance.
  • the stainless steel is an alloy of iron and at least one of chromium, nickel, silicon, molybdenum, or mixtures thereof.
  • Such alloys include, but are not limited to, an alloy containing about 1.5 to about 2.5 percent nickel, no more than about 0.5 percent molybdenum, no more than about 0.15 percent carbon, and the balance iron with a density ranging from about 7 g/cm 3 to about 8 g/cm 3 ; an alloy containing about 6 to about 8 percent nickel, no more than about 0.5 percent molybdenum, no more than about 0.15 percent carbon, and the balance iron with a density ranging from about 7 g/cm 3 to about 8 g/cm 3 ; an alloy containing about 0.5 to about 1 percent chromium, about 0.5 percent to about 1 percent nickel, no more than about 0.5 percent molybdenum, no more than about 0.2 percent carbon, and the balance iron with a density ranging from about 7 g/cm 3 to about 8 g/cm 3 ; an alloy containing about 2 to about 3 percent nickel, no more than about 0.5 percent molybdenum, about 0.3 to about 0.6 percent carbon, and
  • Suitable tungsten alloys include an alloy containing about 2.5 to about 3.5 percent nickel, about 0.5 percent to about 2.5 percent copper or iron, and the balance tungsten with a density ranging from about 17.5 g/cm 3 to about 18.5 g/cm 3 ; about 3 to about 4 percent nickel, about 94 percent tungsten, and the balance copper or iron with a density ranging from about 17.5 g/cm 3 to about 18.5 g/cm 3 ; and mixtures thereof.
  • the binders may contain additives such as antioxidants, coupling agents, surfactants, elasticizing agents, dispersants, and lubricants as disclosed in U.S. Pat. No. 5,950,063, which is hereby incorporated by reference in its entirety. Suitable examples of antioxidants include, but are not limited to thermal stabilizers, metal deactivators, or combinations thereof.
  • the binder includes about 0.1 to about 2.5 percent by weight of the binder of an antioxidant.
  • Coupling agents may include but are not limited to titanate, aluminate, silane, or combinations thereof. Typical levels range between 0.5 and 15% by weight of the binder.
  • the polymeric and composite casing components may be injection molded.
  • Polymeric materials for the bullet-end and middle body components must have propellant compatibility and resistance to gun cleaning solvents and grease, as well as resistance to chemical, biological and radiological agents.
  • the polymeric materials must have a temperature resistance higher than the cook-off temperature of the propellant, typically about 320° F.
  • the polymeric materials must have elongation-to-break values that to resist deformation under interior ballistic pressure as high as 60,000 psi in all environments (temperatures from about ⁇ 65 to about 320° F. and humidity from 0 to 100% relative humidity).
  • the middle body component is either molded onto or snap-fit to the casing head-end component after which the bullet-end component is snap-fit or interference fit to the middle body component.
  • the components may be formed from high-strength polymer, composite or ceramic.
  • suitable high strength polymers include composite polymer material including a tungsten metal powder, nylon 6/6, nylon 6, and glass fibers; and a specific gravity in a range of 3-10.
  • the tungsten metal powder may be 50%-96% of a weight of the bullet body.
  • the polymer material also includes about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6/6, about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6, and about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of glass fibers. It is most suitable that each of these ingredients be included in amounts less than 10% by weight.
  • the cartridge casing body may be made of a modified ZYTEL® resin, available from E.I. DuPont De Nemours Co., a modified 612 nylon resin, modified to increase elastic response.
  • suitable polymers include polyurethane prepolymer, cellulose, fluoro-polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, polyether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile-butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, terephthalates, polyether imides, polyether sulfones, thermoplastic polyimides, thermoplastic polyurethanes, polyphenylene sulfides, polyethylene, polypropylene, polysulfones, poly
  • suitable polymers also include aliphatic or aromatic polyamide, polyeitherimide, polysulfone, polyphenylsulfone, poly-phenylene oxide, liquid crystalline polymer and polyketone.
  • suitable composites include polymers such as polyphenylsulfone reinforced with between about 30 and about 70 weight percent, and preferably up to about 65 weight percent of one or more reinforcing materials selected from glass fiber, ceramic fiber, carbon fiber, mineral fillers, organo nanoclay, or carbon nanotube.
  • Preferred reinforcing materials, such as chopped surface-treated E-glass fibers provide flow characteristics at the above-described loadings comparable to unfilled polymers to provide a desirable combination of strength and flow characteristics that permit the molding of head-end components.
  • Composite components can be formed by machining or injection molding. Finally, the cartridge case must retain sufficient joint strength at cook-off temperatures. More specifically, polymers suitable for molding of the projectile-end component have one or more of the following properties: Yield or tensile strength at ⁇ 65° F.>10,000 psi Elongation-to-break at ⁇ 65° F.>15% Yield or tensile strength at 73° F.>8,000 psi Elongation-to-break at 73° F.>50% Yield or tensile strength at 320° F.>4,000 psi Elongation-to-break at 320° F.>80%.
  • Polymers suitable for molding of the middle-body component have one or more of the following properties: Yield or tensile strength at ⁇ 65° F.>10,000 psi Yield or tensile strength at 73° F.>8,000 psi Yield or tensile strength at 320° F.>4,000 psi.
  • polymers suitable for use in the present invention thus include polyphenylsulfones; copolymers of polyphenylsulfones with polyether-sulfones or polysulfones; copolymers and blends of polyphenylsulfones with polysiloxanes; poly(etherimide-siloxane); copolymers and blends of polyetherimides and polysiloxanes, and blends of polyetherimides and poly(etherimide-siloxane) copolymers; and the like.
  • polyphenylsulfones and their copolymers with poly-sulfones or polysiloxane that have high tensile strength and elongation-to-break to sustain the deformation under high interior ballistic pressure are particularly preferred.
  • Such polymers are commercially available, for example, RADEL® R5800 polyphenylesulfone from Solvay Advanced Polymers.
  • the polymer can be formulated with up to about 10 wt % of one or more additives selected from internal mold release agents, heat stabilizers, anti-static agents, colorants, impact modifiers and UV stabilizers.
  • the polymers of the present invention can also be used for conventional two-piece metal-plastic hybrid cartridge case designs and conventional shotgun shell designs.
  • One example of such a design is an ammunition cartridge with a one-piece substantially cylindrical polymeric cartridge casing body with an open projectile-end and an end opposing the projectile-end with a male or female coupling element; and a cylindrical metal cartridge casing head-end component with an essentially closed base end with a primer hole opposite an open end having a coupling element that is a mate for the coupling element on the opposing end of the polymeric cartridge casing body joining the open end of the head-end component to the opposing end of the polymeric cartridge casing body.
  • the high polymer ductility permits the casing to resist breakage.
  • One embodiment includes a 2 cavity prototype mold having an upper portion and a base portion for a 5.56 case having a metal insert over-molded with a Nylon 6 (polymer) based material.
  • the polymer in the base includes a lip or flange to extract the case from the weapon.
  • One 2-cavity prototype mold to produce the upper portion of the 5.56 case can be made using a stripper plate tool using an Osco hot spur and two subgates per cavity.
  • Another embodiment includes a subsonic version, the difference from the standard and the subsonic version is the walls are thicker thus requiring less powder. This will decrease the velocity of the bullet thus creating a subsonic round.
  • the extracting inserts is used to give the polymer case a tough enough ridge and groove for the weapons extractor to grab and pull the case out the chamber of the gun.
  • the extracting insert is made of 17-4 stainless steel that is hardened to 42-45 rc.
  • the insert may be made of aluminum, brass, cooper, steel or even an engineered resin with enough tensile strength.
  • the insert is over molded in an injection molded process using a nano clay particle filled Nylon material.
  • the inserts can be machined or stamped.
  • an engineered resin able to withstand the demand on the insert allows injection molded and/or even transfer molded.
  • the components may be made of polymeric compositions, metals, ceramics, alloys, or combinations and mixtures thereof.
  • the components may be mixed and matched with one or more components being made of different materials.
  • the middle body component (not shown) may be polymeric; the bullet-end component 18 may be polymeric; and a substantially cylindrical insert (not shown) may be metal.
  • the middle body component (not shown) may be polymeric; the bullet-end component 18 may be metal; and a substantially cylindrical insert (not shown) may be an alloy.
  • the middle body component (not shown) may be polymeric; the bullet-end component 18 may be an alloy; and a substantially cylindrical insert (not shown) may be an alloy.
  • the middle body component (not shown); the bullet-end component 18 ; and/or the substantially cylindrical insert may be made of a metal that is formed by a metal injection molding process.
  • the molded substantially cylindrical insert 32 is then bound to the middle body component 28 .
  • a mold is made in the shape of the substantially cylindrical insert 32 including the desired profile of the primer recess (not shown).
  • the substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface (not shown). Located in the top surface (not shown) is a primer recess (not shown) that extends toward the bottom surface 34 .
  • a primer flash hole (not shown). is located in the substantially cylindrical insert 32 and extends through the bottom surface 34 into the powder chamber 14 .
  • the coupling end extends through the primer flash hole (not shown) to form an aperture coating (not shown) while retaining a passage from the top surface (not shown) through the bottom surface (not shown) and into the powder chamber 14 to provides support and protection about the primer flash hole (not shown).
  • the coupling end interlocks with the substantially cylindrical coupling element 30 , through the coupling element 30 that extends with a taper to a smaller diameter at the tip (not shown) to form a physical interlock between substantially cylindrical insert 32 and middle body component 28 .
  • the metal injection molding process which generally involves mixing fine metal powders with binders to form a feedstock that is injection molded into a closed mold, may be used to form a substantially cylindrical insert.
  • the binders After ejection from the mold, the binders are chemically or thermally removed from the substantially cylindrical insert so that the part can be sintered to high density.
  • the individual metal particles metallurgically bond together as material diffusion occurs to remove most of the porosity left by the removal of the binder.
  • the raw materials for metal injection molding are metal powders and a thermoplastic binder.
  • Binders included in the blend, a primary binder and a secondary binder.
  • This blended powder mix is worked into the plasticized binder at elevated temperature in a kneader or shear roll extruder.
  • the intermediate product is the so-called feedstock. It is usually granulated with granule sizes of several millimeters.
  • metal injection molding only the binders are heated up, and that is how the metal is carried into the mold cavity.
  • the three piece primer insert includes an individual upper primer insert portion, lower primer insert portion and insert spacer formed in various methods.
  • the individual upper primer insert portion, lower primer insert portion and insert spacer may be formed by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method.
  • the portion may be formed from any material, any metal, any alloy, any plastic, any polymer or any composition known to the skilled artisan or listed herein.
  • the individual lower primer insert portion may be formed from any material, any metal, any alloy, any plastic, any polymer or any composition known to the skilled artisan or listed herein.
  • compositions of the invention can be used to achieve methods of the invention.
  • the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
  • “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
  • expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
  • BB BB
  • AAA AAA
  • AB BBC
  • AAABCCCCCC CBBAAA
  • CABABB CABABB
  • compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Abstract

The present invention provides a three piece primer insert for use in polymer ammunition comprising: an upper primer insert portion comprising an upper primer bottom surface, an upper primer aperture through the upper primer bottom surface, a groove positioned around the upper primer aperture, wherein the groove is adapted to receive a polymer overmolding and a substantially cylindrical coupling element extending away from the upper primer bottom surface; a middle primer insert portion comprising a middle aperture and positioned in contact with the upper primer bottom surface and adjacent to the groove, wherein the middle aperture is smaller than the upper primer aperture; and a lower primer insert portion in contact with the middle primer insert portion comprising a lower primer bottom surface in contact with the middle primer insert portion and opposite a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower aperture through the lower primer bottom surface, wherein the lower aperture is larger than the upper primer aperture.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation Application of and claims priority based on U.S. patent application Ser. No. 15/801,837, filed Nov. 2, 2017 which is a Divisional Application of and claims priority based on U.S. patent application Ser. No. 15/064,807, filed Mar. 9, 2016, the contents of which is all incorporated by reference herein in their entirety.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates in general to the field of ammunition, specifically to compositions and methods of making primer inserts made by joining 3 or more primer insert portions.
  • STATEMENT OF FEDERALLY FUNDED RESEARCH
  • None.
  • INCORPORATION-BY-REFERENCE OF MATERIALS FILED ON COMPACT DISC
  • None.
  • BACKGROUND OF THE INVENTION
  • Without limiting the scope of the invention, its background is described in connection with lightweight polymer cartridge casing ammunition. Conventional ammunition cartridge casings for rifles and machine guns, as well as larger caliber weapons, are made from brass, which is heavy, expensive, and potentially hazardous. There exists a need for an affordable lighter weight replacement for brass ammunition cartridge cases that can increase mission performance and operational capabilities. Lightweight polymer cartridge casing ammunition must meet the reliability and performance standards of existing fielded ammunition and be interchangeable with brass cartridge casing ammunition in existing weaponry. Reliable cartridge casings manufacturing requires uniformity (e.g., bullet seating, bullet-to-casing fit, casing strength, etc.) from one cartridge to the next in order to obtain consistent pressures within the casing during firing prior to bullet and casing separation to create uniformed ballistic performance. Plastic cartridge casings have been known for many years but have failed to provide satisfactory ammunition that could be produced in commercial quantities with sufficient safety, ballistic, handling characteristics, and survive physical and natural conditions to which it will be exposed during the ammunition's intended life cycle; however, these characteristics have not been achieved.
  • For example, U.S. patent application Ser. No. 11/160,682 discloses a base for a cartridge casing body for an ammunition article, the base having an ignition device; an attachment device at one end thereof, the attachment device being adapted to the base to a cartridge casing body; wherein the base is made from plastic, ceramic, or a composite material.
  • U.S. Pat. No. 7,610,858 discloses an ammunition cartridge assembled from a substantially cylindrical polymeric cartridge casing body; and a cylindrical polymeric middle body component with opposing first and second ends, wherein the first end has a coupling element that is a mate for the projectile-end coupling element and joins the first end of the middle body component to the second end of the bullet-end component, and the second end is the end of the casing body opposite the projectile end and has a male or female coupling element; and a cylindrical cartridge casing head-end component with an essentially closed base end with a primer hole opposite an open end with a coupling element that is a mate for the coupling element on the second end of the middle body and joins the second end of the middle body component to the open end of the head-end component.
  • Shortcomings of the known methods of producing plastic or substantially plastic ammunition include the possibility of the projectile being pushed into the cartridge casing, the bullet pull being too light such that the bullet can fall out, the bullet pull being too insufficient to create sufficient chamber pressure, the bullet pull not being uniform from round to round, and portions of the cartridge casing breaking off upon firing causing the weapon to jam or damage or danger when subsequent rounds are fired or when the casing portions themselves become projectiles. To overcome the above shortcomings, improvements in cartridge case design and performance polymer materials are needed.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a three piece primer insert for use in polymer ammunition comprising: an upper primer insert portion comprising an upper primer bottom surface, an upper primer aperture through the upper primer bottom surface, a groove positioned around the upper primer aperture, wherein the groove is adapted to receive a polymer overmolding and a substantially cylindrical coupling element extending away from the upper primer bottom surface; a middle primer insert portion comprising a middle aperture and positioned in contact with the upper primer bottom surface and adjacent to the groove, wherein the middle aperture is smaller than the upper primer aperture; and a lower primer insert portion in contact with the middle primer insert portion comprising a lower primer bottom surface in contact with the middle primer insert portion and opposite a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower aperture through the lower primer bottom surface, wherein the lower aperture is larger than the upper primer aperture.
  • The present invention provides a three piece primer insert for ammunition comprising: an upper primer insert portion comprising an upper primer bottom surface, a coupling element extending substantially cylindrical from the upper primer bottom surface, and an upper primer aperture through the upper primer bottom surface; a lower primer insert portion comprising a lower primer bottom surface that extends to a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower primer aperture through the lower primer bottom surface, and an extraction flange that extends circumferentially about an outer edge of the lower primer top surface, wherein the extraction flange is adapted to extract the three piece primer insert; an insert spacer positioned between the upper primer insert portion and the lower primer insert portion, wherein the insert spacer comprises an insert spacer aperture that is larger than the upper primer aperture and smaller than the primer recess, wherein the upper primer aperture and the lower primer aperture at least partially aligns with the insert spacer aperture; an upper insert joint that connects the upper primer insert portion and the insert spacer to align the upper primer aperture and the insert aperture; and a lower insert joint that links the lower primer insert portion and the insert spacer to align the lower primer aperture and the insert aperture, wherein a unitary primer is formed. The primer insert may have various configurations, e.g., the upper primer aperture may be smaller than the insert spacer aperture to form a groove between an upper primer aperture edge and an insert spacer aperture edge; the lower primer aperture may be coextensive with the primer recess; the lower primer aperture may be larger than the insert spacer aperture; the lower primer aperture may be smaller than the insert spacer aperture; the lower primer aperture may be coextensive with the upper primer aperture edge to form a groove with the insert spacer aperture edge and the lower primer aperture may be smaller than the upper primer aperture.
  • The upper insert joint, the lower insert joint or both may be threaded, riveted, locked, friction fitted, coined, snap fitted, chemical bonded, chemical welded, soldered, smelted, sintered, adhesive bonded, laser welded, ultrasonic welded, friction spot welded, or friction stir welded. The upper primer insert portion, insert spacer, and/or the lower primer insert portion may be formed independently by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert. The upper primer insert portion, insert spacer, and the lower primer insert portion independently comprises a polymer, a metal, an alloy, or a ceramic alloy. The upper primer insert portion, insert spacer, and/or the lower primer insert portion may be of the same material or different materials. The upper primer insert portion, insert spacer, and/or the lower primer insert portion independently may be 102, 174, 201, 202, 300, 302, 303, 304, 308, 309, 316, 316L, 316Ti, 321, 405, 408, 409, 410, 415, 416, 416R, 420, 430, 439, 440, 446 or 601-665 grade stainless steel or Ti6Al4V. The primer insert of claim 1, wherein the upper primer insert portion, insert spacer, and/or the lower primer insert portion independently may be (a) 2-16% Ni; 10-20% Cr; 0-5% Mo; 0-0.6% C; 0-6.0% Cu; 0-0.5% Nb+Ta; 0-4.0% Mn; 0-2.0% Si and the balance Fe; (b) 2-6% Ni; 13.5-19.5% Cr; 0-0.10% C; 1-7.0% Cu; 0.05-0.65% Nb+Ta; 0-3.0% Mn; 0-3.0% Si and the balance Fe; (c) 3-5% Ni; 15.5-17.5% Cr; 0-0.07% C; 3-5.0% Cu; 0.15-0.45% Nb+Ta; 0-1.0% Mn; 0-1.0% Si and the balance Fe; (d) 10-14% Ni; 16-18% Cr; 2-3% Mo; 0-0.03% C; 0-2% Mn; 0-1% Si and the balance Fe; (e) 12-14% Cr; 0.15-0.4% C; 0-1% Mn; 0-1% Si and the balance Fe; (f) 16-18% Cr; 0-0.05% C; 0-1% Mn; 0-1% Si and the balance Fe; (g) 3-12% aluminum, 2-8% vanadium, 0.1-0.75% iron, 0.1-0.5% oxygen, and the remainder titanium; or (h) 6% aluminum, about 4% vanadium, about 0.25% iron, about 0.2% oxygen, and the remainder titanium.
  • The present invention provides a three piece primer insert with an internal diffuser for ammunition comprising: an upper primer insert portion comprising an upper primer first surface, a coupling element extending substantially cylindrical from the upper primer bottom surface, an upper primer second surface opposite the upper primer first surface, an upper primer aperture through the upper primer first surface and the upper primer second surface, and a groove in the upper primer second surface around the upper primer aperture; a lower primer insert portion comprising a lower primer bottom surface that extends to a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower primer aperture through the lower primer bottom surface, and an extraction flange that extends circumferentially about an outer edge of the lower primer top surface, wherein the extraction flange is adapted to extract the three piece primer insert; an insert spacer positioned between the upper primer insert portion and the lower primer insert portion, wherein the internal diffuser portion comprises an insert spacer aperture that is larger than the upper primer aperture and smaller than the primer recess, wherein the upper primer aperture and the lower primer aperture at least partially aligns with the insert spacer aperture; an upper insert joint that connects the upper primer insert portion and the insert spacer to align the upper primer aperture and the insert aperture; and a lower insert joint that links the lower primer insert portion and the insert spacer to align the lower primer aperture and the insert aperture, wherein a unitary primer is formed. The insert spacer aperture may be coextensive with the upper primer aperture to form a channel with the groove. The lower primer aperture may be coextensive with the primer recess.
  • The insert joint may be threaded, riveted, locked, friction fitted, coined, snap fitted, chemical bonded, chemical welded, soldered, smelted, sintered, adhesive bonded, laser welded, ultrasonic welded, friction spot welded, or friction stir welded. The upper primer insert portion, insert spacer, and/or the lower primer insert portion may be formed independently by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert. The upper primer insert portion, insert spacer, and the lower primer insert portion independently comprises a polymer, a metal, an alloy, or a ceramic alloy. The upper primer insert portion, insert spacer, and/or the lower primer insert portion comprise of the same material or different materials. The upper primer insert portion, insert spacer, and/or the lower primer insert portion independently comprise steel, nickel, chromium, copper, carbon, iron, stainless steel or brass.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
  • FIG. 1 depicts a side, cross-sectional view of a polymeric cartridge case according to one embodiment of the present invention;
  • FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case according to one embodiment of the present invention;
  • FIGS. 3A-3C depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case.
  • FIGS. 4A-4B depict a side, cross-sectional view of a stamped three piece primer insert used in a polymeric cartridge case.
  • FIG. 5 depicts a side, cross-sectional view of a three piece primer insert having a tab and groove configuration used in a polymeric cartridge case.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
  • Reliable cartridge manufacture requires uniformity from one cartridge to the next in order to obtain consistent ballistic performance. Among other considerations, proper bullet seating and bullet-to-casing fit is required. In this manner, a desired pressure develops within the casing during firing prior to bullet and casing separation. Historically, bullets employ a cannelure, which is a slight annular depression formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet. In this manner, a visual inspection of a cartridge could determine whether or not the bullet is seated at the proper depth. Once the bullet is inserted into the casing to the proper depth, one of two standard procedures is incorporated to lock the bullet in its proper location. One method is the crimping of the entire end of the casing into the cannelure. A second method does not crimp the casing end; rather the bullet is pressure fitted into the casing.
  • The polymeric ammunition cartridges of the present invention are of a caliber typically carried by soldiers in combat for use in their combat weapons. The present invention is not limited to the described caliber and is believed to be applicable to other calibers as well. This includes various small and medium caliber munitions, including 5.56 mm, 7.62 mm, 308, 338, 3030, 3006, and .50 caliber ammunition cartridges, as well as medium/small caliber ammunition such as 380 caliber, 38 caliber, 9 mm, 10 mm, 20 mm, 25 mm, 30 mm, 40 mm, 45 caliber and the like. The projectile and the corresponding cartridge may be of any desired size, e.g., 0.223, 0.243, 0.25-06, 0.270, 0.300, 0.308, 0.338, 0.30-30, 0.30-06, 0.45-70 or 0.50-90, 50 caliber, 45 caliber, 380 caliber or 38 caliber, 5.56 mm, 6 mm, 7 mm, 7.62 mm, 8 mm, 9 mm, 10 mm, 12.7 mm, 14.5 mm, 14.7 mm, 20 mm, 25 mm, 30 mm, 40 mm, 57 mm, 60 mm, 75 mm, 76 mm, 81 mm, 90 mm, 100 mm, 105 mm, 106 mm, 115 mm, 120 mm, 122 mm, 125 mm, 130 mm, 152 mm, 155 mm, 165 mm, 175 mm, 203 mm or 460 mm, 4.2 inch or 8 inch. The cartridges, therefore, are of a caliber between about .05 and about 5 inches. Thus, the present invention is also applicable to the sporting goods industry for use by hunters and target shooters.
  • The present invention includes primer inserts that are made as a multi-piece insert. In one embodiment the multi-piece insert is a 3 piece insert but may be a 4, 5, or 6 piece insert. Regardless of the number of pieces the multi-piece insert each piece may be of similar or dissimilar materials that are connected to form a unitary primer insert. The portions of the primer insert may be constructed from dissimilar materials including metal-to-metal, polymer-to-polymer and metal-to-polymer joints. The individual pieces may be joined using various methods including smelting, sintering, adhesive bonding, welding techniques that joining dissimilar materials, including laser welding, ultrasonic welding, friction spot welding, and friction stir welding. The method of connecting the individual pieces to form a unitary insert will depend on the materials being joined. For example, a metal insert may is constructed from 2 or more metal pieces with similar melting points are joined together to form a unitary insert through sintering.
  • The substantially cylindrical primer insert includes at least an upper primer insert portion and a lower primer insert portion separated by an insert joint. An insert spacer may be positioned in the insert joint and sandwiched between the upper primer insert portion and the lower primer insert portion. Although it is discussed a s a single piece or layer the insert spacer may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more individual or combined/fused pieces or layers.
  • The upper primer insert portion includes an upper aperture that passes through the bottom of the upper primer insert portion. The diameter of the upper aperture may be of any convenient diameter that meets the specific requirements. The lower primer insert portion includes a lower aperture that passes through the top of the bottom primer insert portion from a primer chamber. In some embodiments the lower aperture may have the same diameter as the primer chamber. Generally, the diameter of the upper aperture and/or the lower aperture may be of any convenient diameter that meets the specific requirements. An insert spacer is positioned in the insert joint separating the upper primer insert portion and the lower primer insert portion. The insert spacer includes a spacer aperture that penetrates the insert spacer. In some embodiments the insert spacer is larger than the upper aperture but smaller than the lower aperture. Although, the embodiments are discussed in terms of a multi-piece design, it is understood that the three (3) piece design may include 4, 5 6 or more pieces. Regardless of the number of section each portion may individually be made from a single material that is milled, stamped, forged, machined, molded, metal injection molded, cast or other methods. The method or construction of one portion has no bearing on the method or construction of any other portions, e.g., one may be MIM the other milled or stamped; or all may be milled, or all may be MIM, etc.
  • FIG. 1 depicts a side, cross-sectional view of a portion of a polymeric cartridge case having a three piece primer insert. A cartridge 10 is shown manufactured with a polymer casing 12 showing a propellant chamber 14 with projectile aperture at the forward projectile aperture 16. The polymer casing 12 has a nose 18 extending from the projectile aperture 16 rearward to connection end 20. The nose 18 may be formed with the coupling end 22 formed on the connection end 20. The connection end 20 is shown as a female element, but may also be configured as a male element in alternate embodiments of the invention. The nose 18 has a shoulder 24 positioned between the connection end 20 and the projectile aperture 16, with a chamber neck 26 located from the projectile aperture 16 to the shoulder 24. The nose 18 typically has a wall thickness between about 0.003 and about 0.200 inches; more preferably between about 0.005 and about 0.150; and more preferably between about 0.010 and about 0.050 inches. An optional first and second annular groove (cannelures) may be provided in the nose 18 in the interlock surface of the male coupling element to provide a snap-fit between the two components. The cannelures formed in a surface of the bullet at a location determined to be the optimal seating depth for the bullet. The bullet is inserted into the casing to the depth to lock the bullet in its proper location. One method is to bond the entire end of the casing into the cannelures. The nose 18 and middle body component 28 can then be welded, melted or bonded together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques.
  • The middle body component 28 extends from a nose connection 21 to an over molded primer insert 32 to form a propellant chamber 14. The middle body component 28 is overmolded over a coupling element 30 of the primer insert 32. The coupling element 30, as shown may be configured as a male element, however, all combinations of male and female configurations is acceptable for the coupling elements 30 and the overmolded coupling end 22 in alternate embodiments of the invention. The overmolded coupling end 22 interlocks with the coupling element 30 that extends with a taper to a smaller diameter at the tip 34 to form a physical interlock between substantially cylindrical insert 32 and middle body component 28 and into the flash hole aperture 36 and into groove 60. The middle body component extends from a projectile aperture 16 to the overmolded coupling end 22. The middle body component 28 typically has a wall thickness between about 0.003 and about 0.200 inches; and more preferably between about 0.005 and about 0.150 inches; and more preferably between about 0.010 and about 0.050 inches. The projectile aperture 16, middle body component 28 and overmolded primer insert 32 define the interior of propellant chamber 14 in which the powder charge (not shown) is contained. The interior volume of the propellant chamber 14 may be varied to provide the volume necessary for complete filling of the chamber 14 by the propellant chosen so that a simplified volumetric measure of propellant can be utilized when loading the cartridge. Either a particulate or consolidated propellant can be used.
  • The upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38. The insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48. The insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48. The lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber 14. The lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50. The diameter of the upper flash aperture 48, the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design. For example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52. In another example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter. The lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42. In one embodiment, the lower flash aperture 52 has a diameter that is the same as the primer recess 54; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54. The outer of the insert spacer 42 is about the size of the primer recess 54; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48. The upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength. The lower primer insert portion 58 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) 36 communicates through the flash hole aperture 36 into the propellant chamber 14 to ignite the propellant/powder (not shown) in propellant chamber 14.
  • The projectile (not shown) is held in place within chamber case neck 26 at projectile aperture 16 by an interference fit. The projectile (not shown) may be inserted into place following the completion of the filling of propellant chamber 14. Mechanical means (e.g., welding, melting, bonding, bonding together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques) can be used to hold the projectile (not shown) in the projectile aperture 16 can also be applied to increase the projectile pull force holding the projectile (not shown) in place. The projectile (not shown) can also be injection molded directly onto the projectile aperture 16 of the nose 18 prior to welding or bonding together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. The welding or bonding increases the joint strength so the casing can be extracted from the hot gun casing after firing at the cook-off temperature.
  • The nose 18 can be connected to the middle body component 28 at the nose connection 21 which can be welding, melting, bonding, bonding together using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. The welding or bonding increases the joint strength at the cook-off temperature so the casing can be extracted from the hot gun casing after firing.
  • FIG. 2 depicts a side, cross-sectional view of a portion of the polymeric cartridge case having a three piece primer insert. The three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40. The upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38. The insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48. The insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48. The lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber 14. The lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50. The diameter of the upper flash aperture 48, the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design. For example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52. In another example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter. The lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42. In one embodiment, the lower flash aperture 52 has a diameter that is the same as the primer recess 54; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54. The outer of the insert spacer 42 is about the size of the primer recess 54; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48. The upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength. The lower primer insert portion 58 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) 36 communicates through the flash hole aperture 36 into the propellant chamber 14 to ignite the propellant/powder (not shown) in propellant chamber 14. When over-molded the coupling end 22 interlocks with the substantially cylindrical coupling element 30. The coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component 28. The coupling end 22 extends the polymer through the upper flash aperture 48 and into groove 60 to form a flash hole aperture 36 while retaining a passage from the primer recess 54 into the propellant chamber 14. When contacted the coupling end 22 interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component 28.
  • FIG. 3A depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case. The three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40. The upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38. The insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48. The insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48. The lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber (not shown). The lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50. The diameter of the upper flash aperture 48, the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design. For example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52. In another example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter. The lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42. In one embodiment, the lower flash aperture 52 has a diameter that is the same as the primer recess 54; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54. The outer of the insert spacer 42 is about the size of the primer recess 54; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48. The upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength. The lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown). When over-molded the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30. The coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown). The coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown). When contacted the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown). In this embodiment, the 3 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 to form the groove 60 to accommodate the overmolding but does not function as a diffuser.
  • FIG. 3B depict a side, cross-sectional view of a four piece primer insert used in a polymeric cartridge case. The four piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by a pair of insert spacers 42 a and 42 b to form an upper insert joint 44 between the upper primer insert portion 38 and the pair of insert spacers 42 a and 42 b and a lower insert joint 46 and the lower primer insert portion 40. The upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38. The pair of insert spacers 42 a and 42 b each include an insert spacer apertures 50 a and 50 b that passes through the pair of insert spacers 42 a and 42 b and at least partially aligns with the upper flash aperture 48. The insert spacer apertures 50 a and 50 b have a diameter may be larger or smaller than the upper flash aperture 48. The lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer apertures 50 a and 50 b and the upper flash aperture 48 to connect to the propellant chamber (not shown). The lower flash aperture 52 diameter may be larger or smaller than the insert spacer apertures 50 a and 50 b. The diameter of the upper flash aperture 48, the insert spacer apertures 50 a and 50 b and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design. For example, the insert spacer apertures 50 a and 50 b diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52. In another example, the insert spacer apertures 50 a and 50 b diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer apertures 50 a and 50 b diameter and the upper flash aperture 48 diameter. The lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42. In one embodiment, the lower flash aperture 52 has a diameter that is the same as the primer recess 54; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54. The outer of the insert spacer 42 is about the size of the primer recess 54; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer apertures 50 a and 50 b at least partially aligns with the upper flash aperture 48. The upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength. The lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown). When over-molded the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30. The coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown). The coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown). When contacted the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown). In this embodiment, the 4 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 a forms the groove 60 to accommodate the overmolding but the second insert spacer aperture 50 b forms a diffuser.
  • FIG. 3C depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case. The three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40. The upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38. The insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48. The insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48. The lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber (not shown). The lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50. The diameter of the upper flash aperture 48, the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design. For example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52. In another example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter. The lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42. In one embodiment, the lower flash aperture 52 has a diameter that is the same as the primer recess 54; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54. The outer of the insert spacer 42 is about the size of the primer recess 54; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48. The upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength. The lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown). When over-molded the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30. The coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown). The coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown). When contacted the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown). In this embodiment, the 3 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 to form the groove 60 to accommodate the overmolding and the lower flash aperture 52 forms the diffuser.
  • FIGS. 4A-4B depict a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case. The present invention provides a method of making a multi-piece insert that is joined to form a unitary insert that can be overmolded into an ammunition cartridge. The individual components of the insert may be made may any method provided the insert is functional. For example, the individual pieces may be stamped or milled and then connected. The connection can also be of any mechanism that is available currently that produces a viable insert with the desired joint strength. For example, the joint may be welded or soldered as in FIG. 4A or riveted or coined as in FIG. 4B.
  • The three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40. The upper primer insert portion 38 includes an upper flash aperture 48 that passes through the upper primer insert portion 38. The insert spacer 42 includes an insert spacer aperture 50 that passes through the insert spacer 42 and at least partially aligns with the upper flash aperture 48. The insert spacer aperture 50 diameter may be larger or smaller than the upper flash aperture 48. The lower primer insert portion 40 includes a lower flash aperture 52 that passes through the lower primer insert portion 40 and at least partially aligns with the insert spacer aperture 50 and the upper flash aperture 48 to connect to the propellant chamber (not shown). The lower flash aperture 52 diameter may be larger or smaller than the insert spacer aperture 50. The diameter of the upper flash aperture 48, the insert spacer aperture 50 and the lower flash aperture 52 may be smaller, larger or generally the same size depending on the specific application and design. For example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 and the lower flash aperture 52. In another example, the insert spacer aperture 50 diameter may be smaller than the diameter of the upper flash aperture 48 but the lower flash aperture 52 diameter is larger than the insert spacer aperture 50 diameter and the upper flash aperture 48 diameter. The lower primer insert portion 40 includes a primer recess 54 that is sized to fit a primer (not shown) and extends from a bottom surface 56 toward the insert spacer 42. In one embodiment, the lower flash aperture 52 has a diameter that is the same as the primer recess 54; however, in other embodiments the lower flash aperture 52 has a diameter that is the smaller than the primer recess 54. The outer of the insert spacer 42 is about the size of the primer recess 54; however, in some embodiments the insert spacer 42 is smaller than the primer recess 54 provided the insert spacer aperture 50 at least partially aligns with the upper flash aperture 48. The upper insert joint 44 and the lower insert joint 46 may be independently joined by welding, melting, bonding, using solvent, adhesive, spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques. In addition, multiple methods may be used to increases the joint strength. The lower primer insert portion 40 also has an extraction flange 58 and a primer recess 54 sized so as to receive the primer (not shown) in an interference fit during assembly. The primer (not shown) communicates through the flash hole aperture (not shown since it is formed when the insert is overmolded) into the propellant chamber (not shown) to ignite the propellant/powder (not shown) in propellant chamber (not shown). When over-molded the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30. The coupling element 30 extends with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 to the middle body component (not shown). The coupling end (not shown) extends the polymer through the upper flash aperture 48 and into the groove 60 to form a flash hole aperture (not shown) while retaining a passage from the primer recess 54 into the propellant chamber (not shown). When contacted the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30 to extend with a taper to a smaller diameter at the tip 44 to physical interlock the substantially cylindrical insert 32 and the middle body component (not shown). In this embodiment, the 3 piece insert uses the diameter of the upper flash aperture 48 being smaller than the insert spacer aperture 50 to form the groove 60 to accommodate the overmolding but does not function as a diffuser. The insert joints 44 and 46 may connect the insert spacer 42 to the upper primer insert portion 38 and the lower primer insert portion 40 by soldering, welding spin-welding, vibration-welding, ultrasonic-welding or laser-welding techniques as in FIG. 4A.
  • FIG. 4B also shows a coined method of joining the upper primer insert portion 38 and the lower primer insert portion 40. The right side shows the lower primer insert portion 40 has a stud 62 that extends through the insert spacer 42 and upper primer insert portion 38. The left side shows a stud 62 on the insert spacer 42 that extends through the lower primer insert portion 40, the upper primer insert portion 38 or both. The stud 62 is coined to secure the upper primer insert portion 38, the lower primer insert portion 40 and insert spacer 42. In addition, multiple methods may be used to increase the joint strength.
  • FIG. 5 depicts a side, cross-sectional view of a three piece primer insert used in a polymeric cartridge case. The three piece primer insert 32 has an upper primer insert portion 38 and a lower primer insert portion 40 are separated by an insert spacer 42 to form an upper insert joint 44 between the upper primer insert portion 38 and the insert spacer 42 and a lower insert joint 46 and the lower primer insert portion 40.
  • The insert spacer 42 includes an upper tab 64 a and a lower tab 64 b that mate to a upper groove 66 a and 66 b respectively, the tab (64 a and 64 b) and groove (66 a and 66B) are configured for a square profile. The tab and groove configuration can be any mating profiles; for example, the upper tab 68 a and a lower tab 68 b that mate to a upper groove 70 a and 70 b may be configured as a curved profile.
  • Chemical welding and chemical bonding involves the use of chemical compositions that undergoes a chemical or physical reaction resulting in the joining of the materials and the formation of a unitary primer insert. The chemicals may join the surfaces through the formation of a layer that contacts both surfaces or by melting the surfaces to a single interface between the surfaces.
  • Adhesive bonding involves the use of a polymeric adhesive, which undergoes a chemical or physical reaction, for eventual joint formation. The upper primer insert portion mates to the lower primer insert portion at the insert joint to which an adhesive material has been added to form a unitary primer insert. The adhesive includes high-strength and tough adhesives that can withstand both static and alternating loads.
  • Sintering involves the process of compacting and forming a solid mass of material by heat and/or pressure without melting it to the point of liquefaction. Materials that are identical or similar may be sintered in the temperature range for the specific time, e.g., stainless steel may be heated for 30-60 minutes at a temperature of between 2000-2350° F. However, materials that are dissimilar may be heated at the within the common temperature range (±400° F.) for the specific time (±0.5-2 hours). For example, the upper primer insert portion may be stainless steel with a temperature range form 2000-2350° F. for 30-60 minutes and the lower primer insert portion may be nickel 1850-2100° F. for 30-45 minutes (and vice versa) to allow the sintering at between 2000-2100° F. for 30-60 minutes. Similarly, the upper primer insert portion may be stainless steel with a temperature range form 2000-2350° F. for 30-60 minutes and the lower primer insert portion may be tungsten carbide 2600-2700° F. for 20-30 minutes to allow the sintering at between 2300-2600° F. for 30-60 minutes or longer if necessary. The skilled artisan readily understands the parameters associated with sintering materials of similar and different compositions and therefor there is no need in reciting all of the various combinations that can be formed in this application.
  • Welding techniques including laser welding, ultrasonic welding, friction spot welding, and friction stir welding. The welding methods can use the existing materials to fill in the insert joint or an additional material may be used to fill in the insert joint. The dissimilar multi-metal welded unitary primer insert must be examined to determine the crack sensitivity, ductility, susceptibility to corrosion, etc. In some cases, it is necessary to use a third metal that is soluble with each metal in order to produce a successful joint.
  • The two piece primer insert used in polymeric cartridge cases includes an upper primer insert portion and a lower primer insert portion joined at insert joint. The individual upper primer insert portion and lower primer insert portion may be formed in various methods. For example the individual upper primer insert portion and lower primer insert portion may be formed by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert.
  • The three piece primer insert includes an individual upper primer insert portion, lower primer insert portion and insert spacer formed in various methods. For example, the individual upper primer insert portion and lower primer insert portion may be formed by stamping, milling, or machining and then joined together to form a primer insert.
  • For example, the individual upper primer insert portion, the lower primer insert portion or both may be formed by fineblanking. Fineblanking is a specialty type of metal stamping that can achieve part characteristics such as flatness and a full sheared edge to a degree that is nearly impossible using a conventional metal cutting or punching process and is used to achieve flatness and cut edge characteristics that are unobtainable by conventional stamping and punching methods. When the punch makes contact with the sheet, the metal begins to deform and bulge around the point of the punch. As the yield strength of the part material is exceeded by the downward force of the press, the point of the punch begins to penetrate the metal's surface. Both the punch and matrix, or button, begin to cut from their respective sides. When the ultimate tensile strength has been reached, the metal breaks or fractures from the edge of the punch to the edge of the matrix. This results in a cut edge that appears to be partially cut and partially broken or fractured. This cut edge condition often is referred to as the “cut band.” In most cases, the cut edge has about 10 percent to 30 percent of shear, and the remainder is fractured. The fracture has two primary causes. The distance between the punch and the matrix creates a leverage action and tends to pull the metal apart, causing it to rupture. The deformation that is allowed during the cutting process also allows the metal to fracture prematurely. Allowing the metal to deform severely during the cutting process results in straining of the metal, which in turn causes a stress. Trapped stresses in a product cause it to lose its flatness, which is why it is very difficult to maintain a critical flatness characteristic using conventional methods. Fineblanking requires the use of three very high-pressure pads in a special press. These pads hold the metal flat during the cutting process and keep the metal from plastically deforming during punch entry. Most fineblanking operations incorporate a V-ring into one of the high-pressure pads. This ring also is commonly referred to as a “stinger” or “impingement” ring. Before the punch contacts the part, the ring impales the metal, surrounds the perimeter of the part, and traps the metal from moving outward while pushing it inward toward the punch. This reduces rollover at the cut edge. Fineblanking operations usually require clearances of less than 0.0005 inch per side. This small clearance, combined with high pressure, results in a fully sheared part edge. Fineblanking is much like a cold extruding process. The slug (or part) is pushed or extruded out of the strip while it is held very tightly between the high-pressure holding plates and pads. The tight hold of the high-pressure plates prevents the metal from bulging or plastically deforming during the extrusion process.
  • For example, when the individual upper primer insert portion and lower primer insert portion or both are metal injection molded, the raw materials are metal powders and a thermoplastic binder. There are at least two Binders included in the blend, a primary binder and a secondary binder. This blended powder mix is worked into the plasticized binder at elevated temperature in a kneader or shear roll extruder. The intermediate product is the so-called feedstock. It is usually granulated with granule sizes of several millimeters. In metal injection molding, only the binders are heated up, and that is how the metal is carried into the mold cavity.
  • In preparing a feedstock, it is important first to measure the actual density of each lot of both the metal powders and binders. This is extremely important especially for the metal powders in that each lot will be different based on the actual chemistry of that grade of powder. For example, 316L is comprised of several elements, such as Fe, Cr, Ni, Cu, Mo, P, Si, S and C. In order to be rightfully called a 316L, each of these elements must meet a minimum and maximum percentage weight requirement as called out in the relevant specification. Tables I-IV below provide other examples of the elemental compositions of some of the metal powders, feed stocks, metals, alloys and compositions of the present invention. Hence the variation in the chemistry within the specification results in a significant density variation within the acceptable composition range. Depending on the lot received from the powder producer, the density will vary depending on the actual chemistry received.
  • TABLE I
    Material
    Designation Chemical Composition, % - Low-Alloy Steels
    Code Fe Ni Mo C Si (max)
    MIM-2200(1) Bal. 1.5-2.5 0.5 max 0.1 max 1.0
    MIM-2700 Bal. 6.5-8.5 0.5 max 0.1 max 1.0
    MIM-4605(2) Bal. 1.5-2.5 0.2-0.5 0.4-0.6 1.0
  • TABLE II
    Material
    Designation Chemical Composition, %—Stainless Steels
    Code Fe Ni Cr Mo C Cu Nb + Ta Mn (max) Si (max)
    MIM-316L Bal. 10-14   16-18   2-3 0.03 max 2.0 1.0
    MIM-420 Bal.   12-14   0.15-0.4 1.0 1.0
    MIM-430L Bal.   16-18   0.05 max 1.0 1.0
    MIM-17-4 PH Bal.  3-5  15.5-17.5 0.07 max 3-5 0.15-0.45 1.0 1.0
  • TABLE III
    Material
    Designation Chemical Composition, %—Soft-Magnetic Alloys
    Code Fe Ni Cr Co Si C (max) Mn V
    MIM-2200 Bal. 1.5-2.5 1.0 max 0.1
    MIM-Fe-3%Si Bal. 2.5-3.5 0.05
    MIM-Fe50%Ni Bal.  49-51  1.0 max 0.05
    MIM-Fe50%Co Bal. 48-50 1.0 max 0.05 2.5 max
    MIM-430L Bal. 16-18 1.0 max 0.05 1.0 max
  • TABLE IV
    Nominal Chemical Composition, %—Controlled-Expansion Alloys
    Material Mn Si C Al Mg Zr Ti Cu Cr Mo
    Designation Fe Ni Co max max max max max max max max max max
    MIM-F15 Bal. 29 17 0.50 0.20 0.04 0.10 0.10 0.10 0.10 0.20 0.20 0.20
  • In addition to the specific compositions listed herein, the skill artisan recognizes the elemental composition of common commercial designations used by feedstock manufacturers and processors, e.g., C-0000 Copper and Copper Alloys; CFTG-3806-K Diluted Bronze Bearings; CNZ-1818 Copper and Copper Alloys; CNZP-1816 Copper and Copper Alloys; CT-1000 Copper and Copper Alloys; CT-1000-K Bronze Bearings; CTG-1001-K Bronze Bearings; CTG-1004-K Bronze Bearings; CZ-1000 Copper and Copper Alloys; CZ-2000 Copper and Copper Alloys; CZ-3000 Copper and Copper Alloys; CZP-1002 Copper and Copper Alloys; CZP-2002 Copper and Copper Alloys; CZP-3002 Copper and Copper Alloys; F-0000 Iron and Carbon Steel; F-0000-K Iron and Iron-Carbon Bearings; F-0005 Iron and Carbon Steel; F-0005-K Iron and Iron-Carbon Bearings; F-0008 Iron and Carbon Steel; F-0008-K Iron and Iron-Carbon Bearings; FC-0200 Iron-Copper and Copper Steel; FC-0200-K Iron-Copper Bearings; FC-0205 Iron-Copper and Copper Steel; FC-0205-K Iron-Copper-Carbon Bearings; FC-0208 Iron-Copper and Copper Steel; FC-0208-K Iron-Copper-Carbon Bearings; FC-0505 Iron-Copper and Copper Steel; FC-0508 Iron-Copper and Copper Steel; FC-0508-K Iron-Copper-Carbon Bearings; FC-0808 Iron-Copper and Copper Steel; FC-1000 Iron-Copper and Copper Steel; FC-1000-K Iron-Copper Bearings; FC-2000-K Iron-Copper Bearings; FC-2008-K Iron-Copper-Carbon Bearings; FCTG-3604-K Diluted Bronze Bearings; FD-0200 Diffusion-Alloyed Steel; FD-0205 Diffusion-Alloyed Steel; FD-0208 Diffusion-Alloyed Steel; FD-0400 Diffusion-Alloyed Steel; FD-0405 Diffusion-Alloyed Steel; FD-0408 Diffusion-Alloyed Steel; FF-0000 Soft-Magnetic Alloys; FG-0303-K Iron-Graphite Bearings; FG-0308-K Iron-Graphite Bearings; FL-4005 Prealloyed Steel; FL-4205 Prealloyed Steel; FL-4400 Prealloyed Steel; FL-4405 Prealloyed Steel; FL-4605 Prealloyed Steel; FL-4805 Prealloyed Steel; FL-48105 Prealloyed Steel; FL-4905 Prealloyed Steel; FL-5208 Prealloyed Steel; FL-5305 Prealloyed Steel; FLC-4608 Sinter-Hardened Steel; FLC-4805 Sinter-Hardened Steel; FLC-48108 Sinter-Hardened Steel; FLC-4908 Sinter-Hardened Steel; FLC2-4808 Sinter-Hardened Steel; FLDN2-4908 Diffusion-Alloyed Steel; FLDN4C2-4905 Diffusion-Alloyed Steel; FLN-4205 Hybrid Low-Alloy Steel; FLN-48108 Sinter-Hardened Steel; FLN2-4400 Hybrid Low-Alloy Steel; FLN2-4405 Hybrid Low-Alloy Steel; FLN2-4408 Sinter-Hardened Steel; FLN2C-4005 Hybrid Low-Alloy Steel; FLN4-4400 Hybrid Low-Alloy Steel; FLN4-4405 Hybrid Low-Alloy Steel; FLN4-4408 Sinter Hardened Steel; FLN4C-4005 Hybrid Low-Alloy Steel; FLN6-4405 Hybrid Low-Alloy Steel; FLN6-4408 Sinter-Hardened Steel; FLNC-4405 Hybrid Low-Alloy Steel; FLNC-4408 Sinter-Hardened Steel; FN-0200 Iron-Nickel and Nickel Steel; FN-0205 Iron-Nickel and Nickel Steel; FN-0208 Iron-Nickel and Nickel Steel; FN-0405 Iron-Nickel and Nickel Steel; FN-0408 Iron-Nickel and Nickel Steel; FN-5000 Soft-Magnetic Alloys; FS-0300 Soft-Magnetic Alloys; FX-1000 Copper-Infiltrated Iron and Steel; FX-1005 Copper-Infiltrated Iron and Steel; FX-1008 Copper-Infiltrated Iron and Steel; FX-2000 Copper-Infiltrated Iron and Steel; FX-2005 Copper-Infiltrated Iron and Steel; FX-2008 Copper-Infiltrated Iron and Steel; FY-4500 Soft-Magnetic Alloys; FY-8000 Soft-Magnetic Alloys; P/F-1020 Carbon Steel PF; P/F-1040 Carbon Steel PF; P/F-1060 Carbon Steel PF; P/F-10C40 Copper Steel PF; P/F-10050 Copper Steel PF; P/F-10060 Copper Steel PF; P/F-1140 Carbon Steel PF; P/F-1160 Carbon Steel PF; P/F-11C40 Copper Steel PF; P/F-11050 Copper Steel PF; P/F-11060 Copper Steel PF; P/F-4220 Low-Alloy P/F-42XX Steel PF; P/F-4240 Low-Alloy P/F-42XX Steel PF; P/F-4260 Low-Alloy P/F-42XX Steel PF; P/F-4620 Low-Alloy P/F-46XX Steel PF; P/F-4640 Low-Alloy P/F-46XX Steel PF; P/F-4660 Low-Alloy P/F-46XX Steel PF; P/F-4680 Low-Alloy P/F-46XX Steel PF; SS-303L Stainless Steel—300 Series Alloy; SS-303N1 Stainless Steel—300 Series Alloy; SS-303N2 Stainless Steel—300 Series Alloy; SS-304H Stainless Steel—300 Series Alloy; SS-304L Stainless Steel—300 Series Alloy; SS-304N1 Stainless Steel—300 Series Alloy; SS-304N2 Stainless Steel—300 Series Alloy; SS-316H Stainless Steel—300 Series Alloy; SS-316L Stainless Steel—300 Series Alloy; SS-316N1 Stainless Steel—300 Series Alloy; SS-316N2 Stainless Steel—300 Series Alloy; SS-409L Stainless Steel—400 Series Alloy; SS-409LE Stainless Steel—400 Series Alloy; SS-410 Stainless Steel—400 Series Alloy; SS-410L Stainless Steel—400 Series Alloy; SS-430L Stainless Steel—400 Series Alloy; SS-430N2 Stainless Steel—400 Series Alloy; SS-434L Stainless Steel—400 Series Alloy; SS-434LCb Stainless Steel—400 Series Alloy; and SS-434N2 Stainless Steel—400 Series Alloy.
  • Parts are molded until they feel that the cavity has been filled. Both mold design factors such as runner and gate size, gate placement, venting and molding parameters set on the molding machine affect the molded part. A helium Pycnometer can determine if there are voids trapped inside the parts. During molding, you have a tool that can be used to measure the percent of theoretical density achieved on the “Green” or molded part. By crushing the measured “green” molded part back to powder, you can now confirm the percent of air (or voids) trapped in the molded part. To measure this, the density of the molded part should be measured in the helium Pycnometer and compared to the theoretical density of the feedstock. Then, take the same molded part that was used in the density test and crush it back to powder. If this granulate shows a density of more than 100% of that of the feedstock, then some of the primary binders have been lost during the molding process. The molding process needs to be corrected because using this process with a degraded feedstock will result in a larger shrinkage and result in a part smaller than that desired. It is vital to be sure that your molded parts are completely filled before continuing the manufacturing process for debinding and sintering. The helium Pycnometer provides this assurance. Primary debinding properly debound parts are extremely important to establish the correct sintering profile. The primary binder must be completely removed before attempting to start to remove the secondary binder as the secondary binder will travel through the pores created by the extraction of the primary binder. Primary debinding techniques depend on the feedstock type used to make the parts. However the feedstock supplier knows the amount of primary binders that have been added and should be removed before proceeding to the next process step. The feedstock supplier provides a minimum “brown density” that must be achieved before the parts can be moved into a furnace for final debinding and sintering. This minimum brown density will take into account that a small amount of the primary binder remnant may be present and could be removed by a suitable hold during secondary debinding and sintering. The sintering profile should be adjusted to remove the remaining small percent of primary binder before the removal of the secondary binder. Most external feedstock manufacturers provide only a weight loss percent that should be obtained to define suitable debinding. Solvent debound parts must be thoroughly dried, before the helium Pycnometer is used to determine the “brown” density so that the remnant solvent in the part does not affect the measured density value. When the feedstock manufacturer gives you the theoretical density of the “brown” or debound part, can validate the percent of debinding that has been achieved. Most Metal Injection Molding (MIM) operations today perform the secondary debinding and sintering in the same operation. Every MIM molder has gates and runners left over from molding their parts. So, you will be able to now re-use your gates and runners with confidence that they will shrink correctly after sintering. If the feedstock producers have given you the actual and theoretical densities of their feedstock, you can easily measure the densities of the gates and runners and compare the results to the values supplied. Once the regrind densities are higher than that required to maintain the part dimensions, the regrinds are no longer reusable.
  • Feedstock in accordance with the present invention may be prepared by blending the powdered metal with the binder and heating the blend to form a slurry. Uniform dispersion of the powdered metal in the slurry may be achieved by employing high shear mixing. The slurry may then be cooled to ambient temperature and then granulated to provide the feedstock for the metal injection molding.
  • One embodiment of the injection molded primer insert may include a composition where Ni may be 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.50, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.50, 6.75, 7.0, 7.25, 7.5, 7.75, 8.0, 8.25, 8.50, 8.75, 9.0, 9.25, 9.5, 9.75, 10.0, 10.25, 10.50, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25, 12.50, 12.75, 13.0, 13.25, 13.5, 13.75, 14.0, 14.25, 14.50, 14.75, 15.0, 15.25, 15.5, 15.75, 16.0, 16.25, 16.50, 16.75, or 17.0%; Cr may be 9.0, 9.25, 9.5, 9.75, 10.0, 10.25, 10.50, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25, 12.50, 12.75, 13.0, 13.25, 13.5, 13.75, 14.0, 14.25, 14.50, 14.75, 15.0, 15.25, 15.5, 15.75, 16.0, 16.25, 16.50, 16.75, 17.0, 17.25, 17.5, 17.75, 18.0, 18.25, 18.50, 18.75, 19.0, 19.25, 19.5, 19.75, or 20.0%; Mo may be 0.00, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, 0.225, 0.250, 0.275, 0.30, 0.325, 0.350, 0.375, 0.40, 0.425, 0.450, 0.475, 0.50, 0.525, 0.550, 0.575, 0.60, 0.625, 0.650, 0.675, 0.70, 0.725, 0.750, 0.775, 0.80, 0.825, 0.850, 0.875, 0.90, 0.925, 0.950, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.50, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.50, 6.75, or 7.0%; C may be 0.00, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, 0.225, 0.250, 0.275, 0.30, 0.325, 0.350, 0.375, 0.40, 0.425, 0.450, 0.475, 0.50, 0.525, 0.550, 0.575, 0.60, 0.625, 0.650, 0.675, 0.70, 0.725, 0.750, 0.775, 0.80, 0.825, 0.850, 0.875, 0.90, 0.925, 0.950, or 1.00%; Cu may be 0.00, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, 0.225, 0.250, 0.275, 0.30, 0.325, 0.350, 0.375, 0.40, 0.425, 0.450, 0.475, 0.50, 0.525, 0.550, 0.575, 0.60, 0.625, 0.650, 0.675, 0.70, 0.725, 0.750, 0.775, 0.80, 0.825, 0.850, 0.875, 0.90, 0.925, 0.950, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.50, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.50, 6.75, 7.0, 7.25, 7.5, 7.75, or 8.0%; Nb+Ta may be 0.00, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, 0.225, 0.250, 0.275, 0.30, 0.325, 0.350, 0.375, 0.40, 0.425, 0.450, 0.475, 0.50, 0.525, 0.550, 0.575, 0.60, 0.625, 0.650, 0.675, 0.70, 0.725, 0.750, 0.775, or 0.80%; Mn may be 0.00, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, 0.225, 0.250, 0.275, 0.30, 0.325, 0.350, 0.375, 0.40, 0.425, 0.450, 0.475, 0.50, 0.525, 0.550, 0.575, 0.60, 0.625, 0.650, 0.675, 0.70, 0.725, 0.750, 0.775, 0.80, 0.825, 0.850, 0.875, 0.90, 0.925, 0.950, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.50, 4.75, 5.0, 5.25, 5.5, 5.75, or 6.0%; Si may be 0.00, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, 0.225, 0.250, 0.275, 0.30, 0.325, 0.350, 0.375, 0.40, 0.425, 0.450, 0.475, 0.50, 0.525, 0.550, 0.575, 0.60, 0.625, 0.650, 0.675, 0.70, 0.725, 0.750, 0.775, 0.80, 0.825, 0.850, 0.875, 0.90, 0.925, 0.950, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.5, 3.75, or 4.0%; and the balance Fe. For example, one embodiment of the injection molded primer insert may include any amount in the range of 2-16% Ni; 10-20% Cr; 0-5% Mo; 0-0.6% C; 0-6.0% Cu; 0-0.5% Nb+Ta; 0-4.0% Mn; 0-2.0% Si and the balance Fe. One embodiment of the injection molded primer insert may include any amount in the range of 2-6% Ni; 13.5-19.5% Cr; 0-0.10% C; 1-7.0% Cu; 0.05-0.65% Nb+Ta; 0-3.0% Mn; 0-3.0% Si and the balance Fe. One embodiment of the injection molded primer insert may include any amount in the range of 3-5% Ni; 15.5-17.5% Cr; 0-0.07% C; 3-5.0% Cu; 0.15-0.45% Nb+Ta; 0-1.0% Mn; 0-1.0% Si and the balance Fe. One embodiment of the injection molded primer insert may include any amount in the range of 10-14% Ni; 16-18% Cr; 2-3% Mo; 0-0.03% C; 0-2% Mn; 0-1% Si and the balance Fe. One embodiment of the injection molded primer insert may include any amount in the range of 12-14% Cr; 0.15-0.4% C; 0-1% Mn; 0-1% Si and the balance Fe. One embodiment of the injection molded primer insert may include any amount in the range of 16-18% Cr; 0-0.05% C; 0-1% Mn; 0-1% Si and the balance Fe.
  • Titanium alloys that may be used in this invention include any alloy or modified alloy known to the skilled artisan including titanium grades 5-38 and more specifically titanium grades 5, 9, 18, 19, 20, 21, 23, 24, 25, 28, 29, 35, 36 or 38. Grades 5, 23, 24, 25, 29, 35, or 36 annealed or aged; Grades 9, 18, 28, or 38 cold-worked and stress-relieved or annealed; Grades 9, 18, 23, 28, or 29 transformed-beta condition; and Grades 19, 20, or 21 solution-treated or solution-treated and aged. Grade 5, also known as Ti6Al4V, Ti-6Al-4V or Ti 6-4, is the most commonly used alloy. It has a chemical composition of 6% aluminum, 4% vanadium, 0.25% (maximum) iron, 0.2% (maximum) oxygen, and the remainder titanium. It is significantly stronger than commercially pure titanium while having the same stiffness and thermal properties (excluding thermal conductivity, which is about 60% lower in Grade 5 Ti than in CP Ti); Grade 6 contains 5% aluminum and 2.5% tin. It is also known as Ti-5Al-2.5Sn. This alloy has good weldability, stability and strength at elevated temperatures; Grade 7 and 7H contains 0.12 to 0.25% palladium. This grade is similar to Grade 2. The small quantity of palladium added gives it enhanced crevice corrosion resistance at low temperatures and high pH; Grade 9 contains 3.0% aluminum and 2.5% vanadium. This grade is a compromise between the ease of welding and manufacturing of the “pure” grades and the high strength of Grade 5; Grade 11 contains 0.12 to 0.25% palladium; Grade 12 contains 0.3% molybdenum and 0.8% nickel; Grades 13, 14, and 15 all contain 0.5% nickel and 0.05% ruthenium; Grade 16 contains 0.04 to 0.08% palladium; Grade 16H contains 0.04 to 0.08% palladium; Grade 17 contains 0.04 to 0.08% palladium; Grade 18 contains 3% aluminum, 2.5% vanadium and 0.04 to 0.08% palladium; Grade 19 contains 3% aluminum, 8% vanadium, 6% chromium, 4% zirconium, and 4% molybdenum; Grade 20 contains 3% aluminum, 8% vanadium, 6% chromium, 4% zirconium, 4% molybdenum and 0.04% to 0.08% palladium; Grade 21 contains 15% molybdenum, 3% aluminum, 2.7% niobium, and 0.25% silicon; Grade 23 contains 6% aluminum, 4% vanadium, 0.13% (maximum) Oxygen; Grade 24 contains 6% aluminum, 4% vanadium and 0.04% to 0.08% palladium. Grade 25 contains 6% aluminum, 4% vanadium and 0.3% to 0.8% nickel and 0.04% to 0.08% palladium; Grades 26, 26H, and 27 all contain 0.08 to 0.14% ruthenium; Grade 28 contains 3% aluminum, 2.5% vanadium and 0.08 to 0.14% ruthenium; Grade 29 contains 6% aluminum, 4% vanadium and 0.08 to 0.14% ruthenium; Grades 30 and 31 contain 0.3% cobalt and 0.05% palladium; Grade 32 contains 5% aluminum, 1% tin, 1% zirconium, 1% vanadium, and 0.8% molybdenum; Grades 33 and 34 contain 0.4% nickel, 0.015% palladium, 0.025% ruthenium, and 0.15% chromium; Grade 35 contains 4.5% aluminum, 2% molybdenum, 1.6% vanadium, 0.5% iron, and 0.3% silicon; Grade 36 contains 45% niobium; Grade 37 contains 1.5% aluminum; and Grade 38 contains 4% aluminum, 2.5% vanadium, and 1.5% iron. Its mechanical properties are very similar to Grade 5, but has good cold workability similar to grade 9. One embodiment includes a Ti6Al4V composition. One embodiment includes a composition having 3-12% aluminum, 2-8% vanadium, 0.1-0.75% iron, 0.1-0.5% oxygen, and the remainder titanium. More specifically, about 6% aluminum, about 4% vanadium, about 0.25% iron, about 0.2% oxygen, and the remainder titanium. For example, one Ti composition may include 10 to 35% Cr, 0.05 to 15% Al, 0.05 to 2% Ti, 0.05 to 2% Y2O5, with the balance being either Fe, Ni or Co, or an alloy consisting of 20±1.0% Cr, 4.5±0.5% Al, 0.5±0.1% Y2O5 or ThO2, with the balance being Fe. For example, one Ti composition may include 15.0-23.0% Cr, 0.5-2.0% Si, 0.0-4.0% Mo, 0.0-1.2% Nb, 0.0-3.0% Fe, 0.0-0.5% Ti, 0.0-0.5% Al, 0.0-0.3% Mn, 0.0-0.1% Zr, 0.0-0.035% Ce, 0.005-0.025% Mg, 0.0005-0.005% B, 0.005-0.3% C, 0.0-20.0% Co, balance Ni. Sample Ti-based feedstock component includes 0-45% metal powder; 15-40% binder; 0-10% Polymer (e.g., thermoplastics and thermosets); surfactant 0-3%; lubricant 0-3%; sintering aid 0-1%. Another sample Ti-based feedstock component includes about 62% TiH2 powder as a metal powder; about 29% naphthalene as a binder; about 2.1-2.3% polymer (e.g., EVA/epoxy); about 2.3% SURFONIC N-100® as a Surfactant; lubricant is 1.5% stearic acid as a; about 0.4% silver as a sintering Aid. Examples of metal compounds include metal hydrides, such as TiH2, and intermetallics, such as TiAl and TiAl3. A specific instance of an alloy includes Ti-6Al, 4V, among others. In another embodiment, the metal powder comprises at least approximately 45% of the volume of the feedstock, while in still another, it comprises between approximately 54.6% and 70.0%. In addition, Ti—Al alloys may consists essentially of 32-38% of Al and the balance of Ti and contains 0.005-0.20% of B, and the alloy which essentially consists of the above quantities of Al and Ti and contains, in addition to the above quantity of B, up to 0.2% of C, up to 0.3% of O and/or up to 0.3% of N (provided that O+N add up to 0.4%) and c) 0.05-3.0% of Ni and/or 0.05-3.0% of Si, and the balance of Ti.
  • The amount of powdered metal and binder in the feedstock may be selected to optimize moldability while insuring acceptable green densities. In one embodiment, the feedstock used for the metal injection molding portion of the invention may include at least about 40 percent by weight powdered metal, in another about 50 percent by weight powdered metal or more. In one embodiment, the feedstock includes at least about 60 percent by weight powdered metal, preferably about 65 percent by weight or more powdered metal. In yet another embodiment, the feedstock includes at least about 75 percent by weight powdered metal. In yet another embodiment, the feedstock includes at least about 80 percent by weight powdered metal. In yet another embodiment, the feedstock includes at least about 85 percent by weight powdered metal. In yet another embodiment, the feedstock includes at least about 90 percent by weight powdered metal.
  • The binding agent may be any suitable binding agent that does not destroy or interfere with the powdered metals. The binder may be present in an amount of about 50 percent or less by weight of the feedstock. In one embodiment, the binder is present in an amount ranging from 10 percent to about 50 percent by weight. In another embodiment, the binder is present in an amount of about 25 percent to about 50 percent by weight of the feedstock. In another embodiment, the binder is present in an amount of about 30 percent to about 40 percent by weight of the feedstock. In one embodiment, the binder is an aqueous binder. In another embodiment, the binder is an organic-based binder. Examples of binders include, but are not limited to, thermoplastic resins, waxes, and combinations thereof. Non-limiting examples of thermoplastic resins include polyolefins such as acrylic polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene carbonate, polyethylene glycol, and mixtures thereof. Suitable waxes include, but are not limited to, microcrystalline wax, bee wax, synthetic wax, and combinations thereof.
  • Examples of suitable powdered metals for use in the feedstock include, but are not limited to: stainless steel including martensitic and austenitic stainless steel, steel alloys, tungsten alloys, soft magnetic alloys such as iron, iron-silicon, electrical steel, iron-nickel (50Ni-50F3), low thermal expansion alloys, or combinations thereof. In one embodiment, the powdered metal is a mixture of stainless steel, brass and tungsten alloy. The stainless steel used in the present invention may be any 1 series carbon steels, 2 series nickel steels, 3 series nickel-chromium steels, 4 series molybdenum steels, series chromium steels, 6 series chromium-vanadium steels, 7 series tungsten steels, 8 series nickel-chromium-molybdenum steels, or 9 series silicon-manganese steels, e.g., 102, 174, 201, 202, 300, 302, 303, 304, 308, 309, 316, 316L, 316Ti, 321, 405, 408, 409, 410, 416, 420, 430, 439, 440, 446 or 601-665 grade stainless steel.
  • As known to those of ordinary skill in the art, stainless steel is an alloy of iron and at least one other component that imparts corrosion resistance. As such, in one embodiment, the stainless steel is an alloy of iron and at least one of chromium, nickel, silicon, molybdenum, or mixtures thereof. Examples of such alloys include, but are not limited to, an alloy containing about 1.5 to about 2.5 percent nickel, no more than about 0.5 percent molybdenum, no more than about 0.15 percent carbon, and the balance iron with a density ranging from about 7 g/cm3 to about 8 g/cm3; an alloy containing about 6 to about 8 percent nickel, no more than about 0.5 percent molybdenum, no more than about 0.15 percent carbon, and the balance iron with a density ranging from about 7 g/cm3 to about 8 g/cm3; an alloy containing about 0.5 to about 1 percent chromium, about 0.5 percent to about 1 percent nickel, no more than about 0.5 percent molybdenum, no more than about 0.2 percent carbon, and the balance iron with a density ranging from about 7 g/cm3 to about 8 g/cm3; an alloy containing about 2 to about 3 percent nickel, no more than about 0.5 percent molybdenum, about 0.3 to about 0.6 percent carbon, and the balance iron with a density ranging from about 7 g/cm3 to about 8 g/cm3; an alloy containing about 6 to about 8 percent nickel, no more than about 0.5 percent molybdenum, about 0.2 to about 0.5 percent carbon, and the balance iron with a density ranging from about 7 g/cm3 to about 8 g/cm3; an alloy containing about 1 to about 1.6 percent chromium, about 0.5 percent or less nickel, no more than about 0.5 percent molybdenum, about 0.9 to about 1.2 percent carbon, and the balance iron with a density ranging from about 7 g/cm3 to about 8 g/cm3; and combinations thereof.
  • Suitable tungsten alloys include an alloy containing about 2.5 to about 3.5 percent nickel, about 0.5 percent to about 2.5 percent copper or iron, and the balance tungsten with a density ranging from about 17.5 g/cm3 to about 18.5 g/cm3; about 3 to about 4 percent nickel, about 94 percent tungsten, and the balance copper or iron with a density ranging from about 17.5 g/cm3 to about 18.5 g/cm3; and mixtures thereof.
  • In addition, the binders may contain additives such as antioxidants, coupling agents, surfactants, elasticizing agents, dispersants, and lubricants as disclosed in U.S. Pat. No. 5,950,063, which is hereby incorporated by reference in its entirety. Suitable examples of antioxidants include, but are not limited to thermal stabilizers, metal deactivators, or combinations thereof. In one embodiment, the binder includes about 0.1 to about 2.5 percent by weight of the binder of an antioxidant. Coupling agents may include but are not limited to titanate, aluminate, silane, or combinations thereof. Typical levels range between 0.5 and 15% by weight of the binder.
  • The polymeric and composite casing components may be injection molded. Polymeric materials for the bullet-end and middle body components must have propellant compatibility and resistance to gun cleaning solvents and grease, as well as resistance to chemical, biological and radiological agents. The polymeric materials must have a temperature resistance higher than the cook-off temperature of the propellant, typically about 320° F. The polymeric materials must have elongation-to-break values that to resist deformation under interior ballistic pressure as high as 60,000 psi in all environments (temperatures from about −65 to about 320° F. and humidity from 0 to 100% relative humidity). According to one embodiment, the middle body component is either molded onto or snap-fit to the casing head-end component after which the bullet-end component is snap-fit or interference fit to the middle body component. The components may be formed from high-strength polymer, composite or ceramic.
  • Examples of suitable high strength polymers include composite polymer material including a tungsten metal powder, nylon 6/6, nylon 6, and glass fibers; and a specific gravity in a range of 3-10. The tungsten metal powder may be 50%-96% of a weight of the bullet body. The polymer material also includes about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6/6, about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of nylon 6, and about 0.5-15%, preferably about 1-12%, and most preferably about 2-9% by weight, of glass fibers. It is most suitable that each of these ingredients be included in amounts less than 10% by weight. The cartridge casing body may be made of a modified ZYTEL® resin, available from E.I. DuPont De Nemours Co., a modified 612 nylon resin, modified to increase elastic response.
  • Examples of suitable polymers include polyurethane prepolymer, cellulose, fluoro-polymer, ethylene inter-polymer alloy elastomer, ethylene vinyl acetate, nylon, polyether imide, polyester elastomer, polyester sulfone, polyphenyl amide, polypropylene, polyvinylidene fluoride or thermoset polyurea elastomer, acrylics, homopolymers, acetates, copolymers, acrylonitrile-butadinen-styrene, thermoplastic fluoro polymers, inomers, polyamides, polyamide-imides, polyacrylates, polyatherketones, polyaryl-sulfones, polybenzimidazoles, polycarbonates, polybutylene, terephthalates, polyether imides, polyether sulfones, thermoplastic polyimides, thermoplastic polyurethanes, polyphenylene sulfides, polyethylene, polypropylene, polysulfones, polyvinylchlorides, styrene acrylonitriles, polystyrenes, polyphenylene, ether blends, styrene maleic anhydrides, polycarbonates, allyls, aminos, cyanates, epoxies, phenolics, unsaturated polyesters, bismaleimides, polyurethanes, silicones, vinylesters, or urethane hybrids. Examples of suitable polymers also include aliphatic or aromatic polyamide, polyeitherimide, polysulfone, polyphenylsulfone, poly-phenylene oxide, liquid crystalline polymer and polyketone. Examples of suitable composites include polymers such as polyphenylsulfone reinforced with between about 30 and about 70 weight percent, and preferably up to about 65 weight percent of one or more reinforcing materials selected from glass fiber, ceramic fiber, carbon fiber, mineral fillers, organo nanoclay, or carbon nanotube. Preferred reinforcing materials, such as chopped surface-treated E-glass fibers provide flow characteristics at the above-described loadings comparable to unfilled polymers to provide a desirable combination of strength and flow characteristics that permit the molding of head-end components. Composite components can be formed by machining or injection molding. Finally, the cartridge case must retain sufficient joint strength at cook-off temperatures. More specifically, polymers suitable for molding of the projectile-end component have one or more of the following properties: Yield or tensile strength at −65° F.>10,000 psi Elongation-to-break at −65° F.>15% Yield or tensile strength at 73° F.>8,000 psi Elongation-to-break at 73° F.>50% Yield or tensile strength at 320° F.>4,000 psi Elongation-to-break at 320° F.>80%. Polymers suitable for molding of the middle-body component have one or more of the following properties: Yield or tensile strength at −65° F.>10,000 psi Yield or tensile strength at 73° F.>8,000 psi Yield or tensile strength at 320° F.>4,000 psi.
  • Commercially available polymers suitable for use in the present invention thus include polyphenylsulfones; copolymers of polyphenylsulfones with polyether-sulfones or polysulfones; copolymers and blends of polyphenylsulfones with polysiloxanes; poly(etherimide-siloxane); copolymers and blends of polyetherimides and polysiloxanes, and blends of polyetherimides and poly(etherimide-siloxane) copolymers; and the like. Particularly preferred are polyphenylsulfones and their copolymers with poly-sulfones or polysiloxane that have high tensile strength and elongation-to-break to sustain the deformation under high interior ballistic pressure. Such polymers are commercially available, for example, RADEL® R5800 polyphenylesulfone from Solvay Advanced Polymers. The polymer can be formulated with up to about 10 wt % of one or more additives selected from internal mold release agents, heat stabilizers, anti-static agents, colorants, impact modifiers and UV stabilizers.
  • The polymers of the present invention can also be used for conventional two-piece metal-plastic hybrid cartridge case designs and conventional shotgun shell designs. One example of such a design is an ammunition cartridge with a one-piece substantially cylindrical polymeric cartridge casing body with an open projectile-end and an end opposing the projectile-end with a male or female coupling element; and a cylindrical metal cartridge casing head-end component with an essentially closed base end with a primer hole opposite an open end having a coupling element that is a mate for the coupling element on the opposing end of the polymeric cartridge casing body joining the open end of the head-end component to the opposing end of the polymeric cartridge casing body. The high polymer ductility permits the casing to resist breakage.
  • One embodiment includes a 2 cavity prototype mold having an upper portion and a base portion for a 5.56 case having a metal insert over-molded with a Nylon 6 (polymer) based material. In this embodiment the polymer in the base includes a lip or flange to extract the case from the weapon. One 2-cavity prototype mold to produce the upper portion of the 5.56 case can be made using a stripper plate tool using an Osco hot spur and two subgates per cavity. Another embodiment includes a subsonic version, the difference from the standard and the subsonic version is the walls are thicker thus requiring less powder. This will decrease the velocity of the bullet thus creating a subsonic round.
  • The extracting inserts is used to give the polymer case a tough enough ridge and groove for the weapons extractor to grab and pull the case out the chamber of the gun. The extracting insert is made of 17-4 stainless steel that is hardened to 42-45 rc. The insert may be made of aluminum, brass, cooper, steel or even an engineered resin with enough tensile strength.
  • The insert is over molded in an injection molded process using a nano clay particle filled Nylon material. The inserts can be machined or stamped. In addition, an engineered resin able to withstand the demand on the insert allows injection molded and/or even transfer molded.
  • One of ordinary skill in the art will know that many propellant types and weights can be used to prepare workable ammunition and that such loads may be determined by a careful trial including initial low quantity loading of a given propellant and the well known stepwise increasing of a given propellant loading until a maximum acceptable load is achieved. Extreme care and caution is advised in evaluating new loads. The propellants available have various burn rates and must be carefully chosen so that a safe load is devised.
  • The components may be made of polymeric compositions, metals, ceramics, alloys, or combinations and mixtures thereof. In addition, the components may be mixed and matched with one or more components being made of different materials. For example, the middle body component (not shown) may be polymeric; the bullet-end component 18 may be polymeric; and a substantially cylindrical insert (not shown) may be metal. Similarly, the middle body component (not shown) may be polymeric; the bullet-end component 18 may be metal; and a substantially cylindrical insert (not shown) may be an alloy. The middle body component (not shown) may be polymeric; the bullet-end component 18 may be an alloy; and a substantially cylindrical insert (not shown) may be an alloy. The middle body component (not shown); the bullet-end component 18; and/or the substantially cylindrical insert may be made of a metal that is formed by a metal injection molding process.
  • The molded substantially cylindrical insert 32 is then bound to the middle body component 28. In the metal injection molding process of making the substantially cylindrical insert 32 a mold is made in the shape of the substantially cylindrical insert 32 including the desired profile of the primer recess (not shown). The substantially cylindrical insert 32 includes a substantially cylindrical coupling element 30 extending from a bottom surface 34 that is opposite a top surface (not shown). Located in the top surface (not shown) is a primer recess (not shown) that extends toward the bottom surface 34. A primer flash hole (not shown). is located in the substantially cylindrical insert 32 and extends through the bottom surface 34 into the powder chamber 14. The coupling end (not shown) extends through the primer flash hole (not shown) to form an aperture coating (not shown) while retaining a passage from the top surface (not shown) through the bottom surface (not shown) and into the powder chamber 14 to provides support and protection about the primer flash hole (not shown). When contacted the coupling end (not shown) interlocks with the substantially cylindrical coupling element 30, through the coupling element 30 that extends with a taper to a smaller diameter at the tip (not shown) to form a physical interlock between substantially cylindrical insert 32 and middle body component 28.
  • For example, the metal injection molding process, which generally involves mixing fine metal powders with binders to form a feedstock that is injection molded into a closed mold, may be used to form a substantially cylindrical insert. After ejection from the mold, the binders are chemically or thermally removed from the substantially cylindrical insert so that the part can be sintered to high density. During the sintering process, the individual metal particles metallurgically bond together as material diffusion occurs to remove most of the porosity left by the removal of the binder.
  • The raw materials for metal injection molding are metal powders and a thermoplastic binder. There are at least two Binders included in the blend, a primary binder and a secondary binder. This blended powder mix is worked into the plasticized binder at elevated temperature in a kneader or shear roll extruder. The intermediate product is the so-called feedstock. It is usually granulated with granule sizes of several millimeters. In metal injection molding, only the binders are heated up, and that is how the metal is carried into the mold cavity.
  • The three piece primer insert includes an individual upper primer insert portion, lower primer insert portion and insert spacer formed in various methods. For example, the individual upper primer insert portion, lower primer insert portion and insert spacer may be formed by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method. The portion may be formed from any material, any metal, any alloy, any plastic, any polymer or any composition known to the skilled artisan or listed herein. The individual lower primer insert portion may be formed from any material, any metal, any alloy, any plastic, any polymer or any composition known to the skilled artisan or listed herein.
  • The description of the preferred embodiments should be taken as illustrating, rather than as limiting, the present invention as defined by the claims. As will be readily appreciated, numerous combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the spirit and scope of the invention, and all such modifications are intended to be included within the scope of the following claims.
  • It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.
  • It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
  • All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
  • As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
  • All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Claims (13)

What is claimed is:
1. A three piece primer insert for use in polymer ammunition comprising:
an upper primer insert portion comprising an upper primer bottom surface, an upper primer aperture through the upper primer bottom surface, a groove positioned around the upper primer aperture, wherein the groove is adapted to receive a polymer overmolding and a substantially cylindrical coupling element extending away from the upper primer bottom surface;
a middle primer insert portion comprising a middle aperture and positioned in contact with the upper primer bottom surface and adjacent to the groove, wherein the middle aperture is smaller than the upper primer aperture; and
a lower primer insert portion in contact with the middle primer insert portion comprising a lower primer bottom surface in contact with the middle primer insert portion and opposite a lower primer top surface, a primer recess in the lower primer top surface that extends toward the lower primer bottom surface and adapted to fit a primer, a lower aperture through the lower primer bottom surface, wherein the lower aperture is larger than the upper primer aperture.
2. The three piece primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof are formed independently by metal injection molding, polymer injection molding, stamping, milling, molding, machining, punching, fine blanking, smelting, or any other method that will form insert portions that may be joined together to form a primer insert.
3. The primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion are riveted, locked, friction fitted, coined, snap fitted, chemical bonded, adhesive bonded, chemical welded, soldered, smelted, fused, melted, sintered, laser welded, ultrasonic welded, friction spot welded, or friction stir welded.
4. The three piece primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof independently comprises a polymer, a metal, an alloy, or a ceramic alloy.
5. The three piece primer insert of claim 4, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof comprise the same material or different materials.
6. The three piece primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof comprise different polymers, different metals, different alloys, or different ceramic compositions.
7. The three piece primer insert of claim 1, wherein the upper primer insert portion comprises a polymer, a metal, an alloy, or a ceramic alloy.
8. The three piece primer insert of claim 1, wherein the middle primer insert portion comprises a polymer, a metal, an alloy, or a ceramic alloy.
9. The three piece primer insert of claim 1, wherein the lower primer insert portion comprises a polymer, a metal, an alloy, or a ceramic alloy.
10. The three piece primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof are independently comprise steel, nickel, chromium, copper, carbon, iron, stainless steel or brass.
11. The three piece primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof comprise 102, 174, 201, 202, 300, 302, 303, 304, 308, 309, 316, 316L, 316Ti, 321, 405, 408, 409, 410, 415, 416, 416R, 420, 430, 439, 440, 446 or 601-665 grade stainless steel or Ti6Al4V.
12. The three piece primer insert of claim 1, wherein the upper primer insert portion, the middle primer insert portion, the lower primer insert portion or a combination thereof are independently comprises:
(a) 2-16% Ni; 10-20% Cr; 0-5% Mo; 0-0.6% C; 0-6.0% Cu; 0-0.5% Nb+Ta; 0-4.0% Mn; 0-2.0% Si and the balance Fe;
(b) 2-6% Ni; 13.5-19.5% Cr; 0-0.10% C; 1-7.0% Cu; 0.05-0.65% Nb+Ta; 0-3.0% Mn; 0-3.0% Si and the balance Fe;
(c) 3-5% Ni; 15.5-17.5% Cr; 0-0.07% C; 3-5.0% Cu; 0.15-0.45% Nb+Ta; 0-1.0% Mn; 0-1.0% Si and the balance Fe;
(d) 10-14% Ni; 16-18% Cr; 2-3% Mo; 0-0.03% C; 0-2% Mn; 0-1% Si and the balance Fe;
(e) 12-14% Cr; 0.15-0.4% C; 0-1% Mn; 0-1% Si and the balance Fe;
(f) 16-18% Cr; 0-0.05% C; 0-1% Mn; 0-1% Si and the balance Fe;
(g) 3-12% aluminum, 2-8% vanadium, 0.1-0.75% iron, 0.1-0.5% oxygen, and the remainder titanium; or
(h) 6% aluminum, about 4% vanadium, about 0.25% iron, about 0.2% oxygen, and the remainder titanium.
13. The three piece primer insert of claim 1, further comprising an extraction flange that extends circumferentially about the lower primer top surface.
US15/922,032 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition Active US10041776B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/922,032 US10041776B1 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/064,807 US9835427B2 (en) 2016-03-09 2016-03-09 Two-piece primer insert for polymer ammunition
US15/801,837 US9976840B1 (en) 2016-03-09 2017-11-02 Two-piece primer insert for polymer ammunition
US15/922,032 US10041776B1 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/801,837 Continuation US9976840B1 (en) 2016-03-09 2017-11-02 Two-piece primer insert for polymer ammunition

Publications (2)

Publication Number Publication Date
US20180202787A1 true US20180202787A1 (en) 2018-07-19
US10041776B1 US10041776B1 (en) 2018-08-07

Family

ID=59787878

Family Applications (27)

Application Number Title Priority Date Filing Date
US15/064,807 Active US9835427B2 (en) 2016-03-09 2016-03-09 Two-piece primer insert for polymer ammunition
US15/801,837 Active US9976840B1 (en) 2016-03-09 2017-11-02 Two-piece primer insert for polymer ammunition
US15/801,856 Active US9964388B1 (en) 2016-03-09 2017-11-02 Polymer ammunition cartridge having a two-piece primer insert
US15/922,089 Active US10041771B1 (en) 2016-03-09 2018-03-15 Polymer Ammunition having a three-piece primer insert
US15/922,111 Active US10054413B1 (en) 2016-03-09 2018-03-15 Polymer ammunition having a three-piece primer insert
US15/922,046 Active 2036-03-19 US10330451B2 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition
US15/922,080 Active US10101140B2 (en) 2016-03-09 2018-03-15 Polymer ammunition having a three-piece primer insert
US15/922,066 Active US10048050B1 (en) 2016-03-09 2018-03-15 Polymer ammunition cartridge having a three-piece primer insert
US15/922,032 Active US10041776B1 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition
US15/922,061 Active US10101136B2 (en) 2016-03-09 2018-03-15 Polymer ammunition cartridge having a three-piece primer insert
US15/922,101 Active US10041777B1 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition
US15/959,657 Active US10302403B2 (en) 2016-03-09 2018-04-23 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/123,242 Active US10302404B2 (en) 2016-03-09 2018-09-06 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/123,259 Expired - Fee Related US10415943B2 (en) 2016-03-09 2018-09-06 Polymer ammunition cartridge having a three-piece primer insert
US16/278,504 Active US11098991B2 (en) 2016-03-09 2019-02-18 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/278,499 Active US11098990B2 (en) 2016-03-09 2019-02-18 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/377,777 Active US11098992B2 (en) 2016-03-09 2019-04-08 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/377,799 Active US11098993B2 (en) 2016-03-09 2019-04-08 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/519,645 Active US10948275B2 (en) 2016-03-09 2019-07-23 Polymer ammunition cartridge having a three-piece primer insert
US16/715,534 Active US11448489B2 (en) 2016-03-09 2019-12-16 Two-piece primer insert for polymer ammunition
US16/715,557 Active US11448490B2 (en) 2016-03-09 2019-12-16 Two-piece primer insert for polymer ammunition
US16/715,578 Abandoned US20200249000A1 (en) 2016-03-09 2019-12-16 Two-piece primer insert for polymer ammunition
US17/198,960 Abandoned US20220018641A1 (en) 2016-03-09 2021-03-11 Polymer Ammunition Cartridge Having a Three-Piece Primer Insert
US17/379,018 Abandoned US20210341271A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert
US17/379,022 Abandoned US20210341272A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert
US17/379,013 Abandoned US20210341270A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert
US17/379,030 Abandoned US20210341273A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US15/064,807 Active US9835427B2 (en) 2016-03-09 2016-03-09 Two-piece primer insert for polymer ammunition
US15/801,837 Active US9976840B1 (en) 2016-03-09 2017-11-02 Two-piece primer insert for polymer ammunition
US15/801,856 Active US9964388B1 (en) 2016-03-09 2017-11-02 Polymer ammunition cartridge having a two-piece primer insert
US15/922,089 Active US10041771B1 (en) 2016-03-09 2018-03-15 Polymer Ammunition having a three-piece primer insert
US15/922,111 Active US10054413B1 (en) 2016-03-09 2018-03-15 Polymer ammunition having a three-piece primer insert
US15/922,046 Active 2036-03-19 US10330451B2 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition
US15/922,080 Active US10101140B2 (en) 2016-03-09 2018-03-15 Polymer ammunition having a three-piece primer insert
US15/922,066 Active US10048050B1 (en) 2016-03-09 2018-03-15 Polymer ammunition cartridge having a three-piece primer insert

Family Applications After (18)

Application Number Title Priority Date Filing Date
US15/922,061 Active US10101136B2 (en) 2016-03-09 2018-03-15 Polymer ammunition cartridge having a three-piece primer insert
US15/922,101 Active US10041777B1 (en) 2016-03-09 2018-03-15 Three-piece primer insert having an internal diffuser for polymer ammunition
US15/959,657 Active US10302403B2 (en) 2016-03-09 2018-04-23 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/123,242 Active US10302404B2 (en) 2016-03-09 2018-09-06 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/123,259 Expired - Fee Related US10415943B2 (en) 2016-03-09 2018-09-06 Polymer ammunition cartridge having a three-piece primer insert
US16/278,504 Active US11098991B2 (en) 2016-03-09 2019-02-18 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/278,499 Active US11098990B2 (en) 2016-03-09 2019-02-18 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/377,777 Active US11098992B2 (en) 2016-03-09 2019-04-08 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/377,799 Active US11098993B2 (en) 2016-03-09 2019-04-08 Method of making polymer ammunition cartridge having a two-piece primer insert
US16/519,645 Active US10948275B2 (en) 2016-03-09 2019-07-23 Polymer ammunition cartridge having a three-piece primer insert
US16/715,534 Active US11448489B2 (en) 2016-03-09 2019-12-16 Two-piece primer insert for polymer ammunition
US16/715,557 Active US11448490B2 (en) 2016-03-09 2019-12-16 Two-piece primer insert for polymer ammunition
US16/715,578 Abandoned US20200249000A1 (en) 2016-03-09 2019-12-16 Two-piece primer insert for polymer ammunition
US17/198,960 Abandoned US20220018641A1 (en) 2016-03-09 2021-03-11 Polymer Ammunition Cartridge Having a Three-Piece Primer Insert
US17/379,018 Abandoned US20210341271A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert
US17/379,022 Abandoned US20210341272A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert
US17/379,013 Abandoned US20210341270A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert
US17/379,030 Abandoned US20210341273A1 (en) 2016-03-09 2021-07-19 Method of Making Polymer Ammunition Cartridge Having a Two-Piece Primer Insert

Country Status (1)

Country Link
US (27) US9835427B2 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8561543B2 (en) * 2010-11-10 2013-10-22 True Velocity, Inc. Lightweight polymer ammunition cartridge casings
US10352670B2 (en) 2010-11-10 2019-07-16 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US11215430B2 (en) 2010-11-10 2022-01-04 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US10704876B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10408592B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US11340050B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US9885551B2 (en) 2010-11-10 2018-02-06 True Velocity, Inc. Subsonic polymeric ammunition
US11047663B1 (en) * 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US10704877B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10876822B2 (en) 2017-11-09 2020-12-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
USD813975S1 (en) * 2015-08-05 2018-03-27 Mark White Low volume subsonic bullet cartridge case
US9835427B2 (en) * 2016-03-09 2017-12-05 True Velocity, Inc. Two-piece primer insert for polymer ammunition
CA3137323A1 (en) 2016-03-25 2017-10-05 Vista Outdoor Operations Llc Reduced energy msr system
US11118851B2 (en) 2016-03-25 2021-09-14 Vista Outdoor Operations Llc Reduced energy MSR system
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US20190128656A1 (en) * 2017-10-30 2019-05-02 Spectre Enterprises, Inc. Primer Cup for a Primer Having Deposited Ignitable Material
USD882032S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882721S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881323S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882020S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903039S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882024S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882723S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882021S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881328S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882722S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD884115S1 (en) 2018-04-20 2020-05-12 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903038S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882724S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882023S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD913403S1 (en) 2018-04-20 2021-03-16 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882026S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881326S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882029S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882033S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882720S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882019S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881325S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882027S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882025S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882028S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882022S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881324S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882030S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881327S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882031S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886937S1 (en) 2017-12-19 2020-06-09 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886231S1 (en) 2017-12-19 2020-06-02 True Velocity Ip Holdings, Llc Ammunition cartridge
WO2019151954A1 (en) * 2018-02-04 2019-08-08 Advanced Material Engineering Pte Ltd Lightweight cartridge case
WO2019160742A2 (en) 2018-02-14 2019-08-22 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
AU2019299431B2 (en) * 2018-07-06 2023-06-15 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
AU2019299428A1 (en) 2018-07-06 2021-01-28 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
WO2020028163A1 (en) * 2018-07-30 2020-02-06 Sabic Global Technologies B.V. Lightweight ammunition articles comprising a polymer cartridge case
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
WO2020197868A2 (en) 2019-03-19 2020-10-01 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
USD868931S1 (en) * 2019-05-20 2019-12-03 Mark White Low volume subsonic bullet cartridge case
BR112022000786A2 (en) 2019-07-16 2022-07-05 True Velocity Ip Holdings Llc POLYMER AMMUNITION WITH ALIGNMENT AID, CARTRIDGE AND METHOD TO DO THE SAME
US11821721B2 (en) * 2021-06-02 2023-11-21 Lyndon Smith Ammunition component and method of forming same

Family Cites Families (463)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US498857A (en) * 1893-06-06 Cartridge
US130679A (en) * 1872-08-20 Signor to himself and alfred a
US475008A (en) 1892-05-17 Cartridge
US172382A (en) * 1876-01-18 Improvement in cartridges
US113634A (en) * 1871-04-11 Improvement in metallic cartridges
US498856A (en) * 1893-06-06 Cartridge-shell
US1196200A (en) * 1916-08-29 Cartkxdge
US169807A (en) * 1875-11-09 N cartridges
US333955A (en) * 1886-01-05 William kennish
US207248A (en) 1878-08-20 Improvement in cartridges for fire-arms
US62283A (en) * 1867-02-19 Improvement in priming metallic cartridges
US462611A (en) * 1891-11-03 Pijskre ambjorx comte de sparre
US159665A (en) * 1875-02-09 Improvement in metallic cartridges
US99528A (en) * 1870-02-08 Francis b
DE16742C (en) 1881-06-15 1882-01-11 E. RlVE, Premier-Lieut. a. d. in Porta bei Minden Devices on projectiles in order to set them in rotation through the opposing air resistance
US640856A (en) * 1899-07-03 1900-01-09 Charles A Bailey Cartridge.
US676000A (en) * 1899-07-18 1901-06-11 Hermann Henneberg Cartridge.
US662137A (en) * 1900-03-10 1900-11-20 Winfred Castor Combination gun-cartridge.
US743242A (en) 1903-04-29 1903-11-03 William C Bush Gun-cartridge.
US905358A (en) 1906-11-23 1908-12-01 Peters Cartridge Company Shell.
US865853A (en) * 1907-04-02 1907-09-10 Charles A Bailey Cartridge.
US865979A (en) * 1907-05-24 1907-09-10 Best Ammunition Company Cartridge.
US869046A (en) * 1907-08-06 1907-10-22 Charles A Bailey Cartridge.
US933030A (en) * 1908-06-15 1909-08-31 Liberty Cartridge Company Inc Shell-primer for breech-loading guns.
US957171A (en) * 1908-12-14 1910-05-03 Adam Loeb Shell for cartridges.
US953850A (en) * 1909-04-07 1910-04-05 Gottlob E Loeble Cartridge.
US963911A (en) * 1909-10-27 1910-07-12 Gottlob E Loeble Cartridge.
US980351A (en) * 1910-04-04 1911-01-03 Louie A Sherman Cartridge-shell.
US1002038A (en) * 1911-01-03 1911-08-29 Western Cartridge Co Cartridge.
US1020142A (en) * 1911-10-10 1912-03-12 Union Metallic Cartridge Co Paper shot-shell.
US1040250A (en) * 1912-01-16 1912-10-01 Liberty Cartridge Co Primer for cartridges.
US1060817A (en) * 1912-11-25 1913-05-06 Western Cartridge Co Cartridge.
US1060818A (en) 1912-11-25 1913-05-06 Western Cartridge Co Cartridge.
US1064907A (en) * 1913-04-04 1913-06-17 Union Metallic Cartridge Co Paper-tube shot-shell.
US1171313A (en) * 1914-11-11 1916-02-08 William Ola Bonham Shotgun cartridge-case.
US1187464A (en) * 1915-08-14 1916-06-13 John W Offutt Cartridge-case.
US1541765A (en) * 1919-11-12 1925-06-09 George Ramsey Cartridge shell
US1429646A (en) * 1921-05-02 1922-09-19 Harry E Sherman Shotgun shell
US1438788A (en) * 1922-05-06 1922-12-12 Western Cartridge Co Base wad
US1936905A (en) 1931-10-12 1933-11-28 Alonzo F Gaidos Refillable shell for firearms
BE400999A (en) 1933-01-28
US2113634A (en) 1935-04-30 1938-04-12 Ibm Tabulating machine
US2294822A (en) * 1939-03-01 1942-09-01 Albree George Norman Cartridge
US2465962A (en) 1945-04-28 1949-03-29 Henry B Allen Protection of bore surfaces of guns
US2654319A (en) 1950-12-26 1953-10-06 Jack W Roske Sectional cartridge
US2798431A (en) * 1951-01-25 1957-07-09 Howard W Semon Fragmentation warhead
US2823611A (en) * 1952-07-02 1958-02-18 Richard P Thayer Base for shell case
US2936709A (en) * 1952-12-16 1960-05-17 Olin Mathieson Ammunition
US2818021A (en) * 1953-11-02 1957-12-31 Boehm Pressed Steel Company Cartridge case base
US2953990A (en) * 1953-12-11 1960-09-27 Olin Mathieson Ammunition
BE540698A (en) 1954-09-04
US2972947A (en) 1954-09-30 1961-02-28 Vincent G Fitzsimmons Ammunition cartridge cases
BE546573A (en) 1955-04-30
US2862446A (en) 1955-08-15 1958-12-02 Kupag Kumststoff Patent Verwal Cartridge
NL101706C (en) * 1958-11-03
BE635416A (en) * 1960-01-12
US4173186A (en) 1960-07-07 1979-11-06 The United States Of America As Represented By The Secretary Of The Army Ammunition
US3159701A (en) 1960-12-12 1964-12-01 George L Herter Injection molding of plastic ammunition case
US3171350A (en) 1964-04-27 1965-03-02 Olin Mathieson Biaxially oriented plastic shotshell
US3156188A (en) * 1962-03-01 1964-11-10 Aerojet General Co Fragmentation weapon
BE631022A (en) 1962-04-02
US3170401A (en) * 1962-09-11 1965-02-23 Walter T Johnson Cartridge case
US3157121A (en) * 1963-04-05 1964-11-17 Remington Arms Co Inc Shotshell
DE1278289B (en) * 1963-12-13 1968-09-19 Dynamit Nobel Ag Cartridge for commercial or military use
US3229634A (en) * 1964-01-30 1966-01-18 Olin Mathieson Shotshell
US3288066A (en) * 1964-03-10 1966-11-29 Dynamit Nobel Ag Cartridge case
FR1412414A (en) 1964-03-27 1965-10-01 Gevelot Sa Shooting cartridge
NL6502373A (en) 1964-04-18 1965-10-19
US3256815A (en) * 1964-08-19 1966-06-21 John K Davidson Shotgun shells
US3332352A (en) 1965-11-24 1967-07-25 Remington Arms Co Inc Coating for plastic shotshells
DE1453837B2 (en) * 1965-12-28 1976-04-22 Dynamit Nobel Ag, 5210 Troisdorf ARTILLERY CARTRIDGE
US3425350A (en) * 1966-04-09 1969-02-04 Bombrini Parodi Delfino Spa Pre-established splintering shell
US3444777A (en) * 1967-03-20 1969-05-20 Frederick A Lage Method for loading a shot shell
US3485170A (en) 1967-11-29 1969-12-23 Remington Arms Co Inc Expendable case ammunition
US3485173A (en) 1968-02-06 1969-12-23 Us Army Variable centroid projectile
US3491691A (en) * 1968-03-07 1970-01-27 Vawter Ammunition Inc Shell casing and its method of manufacture
US3577924A (en) * 1968-03-26 1971-05-11 Canadian Ind Shotshells
US3565008A (en) * 1968-06-26 1971-02-23 Olin Mathieson Plastic shotshell and method
US3590740A (en) * 1968-11-12 1971-07-06 Herter Inc S Plastic shot shell and base wad
DE1905103A1 (en) * 1969-02-01 1970-08-06 Dynamit Nobel Ag Tube, sleeve or the like with a shaped piece arranged at one end
US3614929A (en) * 1969-04-21 1971-10-26 Herter Inc S Plastic shotgun shell
US3609904A (en) 1969-05-07 1971-10-05 Remington Arms Co Inc Extractable plastic cartridge
US3673965A (en) * 1969-09-08 1972-07-04 Herter Inc S Over-shot wad for shotshells
GB1271469A (en) * 1969-12-02 1972-04-19 Dynamit Nobel Ag Improvements in or relating to base plugs for ammunition cartridge cases
US3659528A (en) * 1969-12-24 1972-05-02 Texas Instruments Inc Composite metal cartridge case
US3688699A (en) * 1970-01-12 1972-09-05 Federal Cartridge Corp Self-retaining reload capsule for shotgun shells
US3745924A (en) 1970-03-30 1973-07-17 Remington Arms Co Inc Plastic cartridge case
US3866536A (en) 1970-11-12 1975-02-18 Albert J Greenberg Controlled expansion projectile
US3749021A (en) 1970-12-18 1973-07-31 Gulf & Western Ind Prod Co Metal coated plastic cartridge case and method of manufacture
US3726221A (en) * 1971-06-02 1973-04-10 Us Army Percussion primer anvil
US3768413A (en) 1972-03-10 1973-10-30 Olin Corp Electric and impact primer
US3797396A (en) 1972-03-15 1974-03-19 Us Army Reinforced lightweight cartridge
US3765297A (en) * 1972-06-06 1973-10-16 Us Army Non-eroding, lightweight cartridge cases
US3874294A (en) * 1973-01-02 1975-04-01 Remington Arms Co Inc Plastic cartridge case for high pressure center fire ammunition having multi-component stamped metal head
DE2303790C3 (en) 1973-01-26 1981-08-20 Rheinmetall GmbH, 4000 Düsseldorf Propellant case
US3842739A (en) * 1973-05-31 1974-10-22 Remington Arms Co Inc Metallic mouth for a plastic cartridge case
FR2266868B1 (en) * 1974-04-08 1978-03-24 Hugonet Rene
DE2504907A1 (en) * 1975-02-06 1976-08-19 Dynamit Nobel Ag DRIVING CHARGE LIGHTER WITH STRIKING PIECE
US3977326A (en) * 1975-02-06 1976-08-31 Remington Arms Company, Inc. Composite cartridge casing and method of assembly
US3990366A (en) * 1975-02-06 1976-11-09 Remington Arms Company, Inc. Composite ammunition casing with forward metallic portion
US4005630A (en) 1975-02-25 1977-02-01 Nathan A. Adler Apparatus for separating a bullet from a cartridge case
ES211994Y (en) * 1975-04-29 1976-11-01 IMPROVED CARTRIDGE.
US4157684A (en) 1975-09-23 1979-06-12 Clausser Karl C Safety filler for underloaded firearm cartridge
US4147107A (en) * 1976-02-17 1979-04-03 Kupag Kunststoff-Patent-Verwaltungs Ag Ammunition cartridge
ES220820Y (en) * 1976-05-08 1977-03-01 Zigor, S. A. SHEATH FOR CARTRIDGES.
US4187271A (en) * 1977-04-18 1980-02-05 Owens-Corning Fiberglas Corporation Method of making same
US4179992A (en) * 1978-04-04 1979-12-25 The United States Of America As Represented By The Secretary Of The Army Primer-igniter for gun propellants
DE2832879A1 (en) * 1978-07-27 1980-02-14 Dynamit Nobel Ag DRIVE CHARGE LIGHT
DE2902145A1 (en) 1979-01-16 1980-08-07 Ultrafin S A CARTRIDGE SLEEVE
US4228724A (en) 1979-05-29 1980-10-21 Leich Robert A Ammunition loader
US4483251A (en) 1981-11-05 1984-11-20 Don Spalding Cartridge for small arms
DE3238270A1 (en) 1982-10-15 1984-04-26 Dynamit Nobel Ag, 5210 Troisdorf MANOEVER CARTRIDGE
US4475435A (en) 1983-02-25 1984-10-09 Mantel Machine Products, Inc. In line bullet feeder
US5157225A (en) * 1983-04-19 1992-10-20 The United States Of America As Represented By The Secretary Of The Navy Controlled fragmentation warhead
US4614157A (en) * 1983-07-05 1986-09-30 Olin Corporation Plastic cartridge case
SE441784B (en) * 1984-04-02 1985-11-04 Bofors Ab SPLIT PICTURING EXPLOSIVE GRANDE WAVE, AS WELL AS ASTADCOMMETE THIS BY A POWDER METALLURGICAL PROCEDURE
US4679505A (en) * 1984-11-30 1987-07-14 Federal Cartridge Corporation 00 buckshot shotshell
US4598445A (en) 1985-01-02 1986-07-08 Johnel M. O'Connor Two component cartridge case and method of assembly
US4763576A (en) 1985-03-08 1988-08-16 Angus Chemical Company Detonating energy transmittal device
US4726296A (en) * 1985-04-22 1988-02-23 Action Manufacturing Company Stress modulator ring and microgrooved base for an ammunition cartridge having a plastic case
US4718348A (en) 1986-05-16 1988-01-12 Ferrigno John E Grooved projectiles
DE3731569A1 (en) 1987-09-19 1989-04-06 Rheinmetall Gmbh MANOEVER CARTRIDGE
US5259288A (en) * 1988-02-09 1993-11-09 Vatsvog Marlo K Pressure regulating composite cartridge
US5151555A (en) 1988-02-09 1992-09-29 Vatsvog Marlo K Composite cartridge for high velocity rifles and the like
US5033386A (en) 1988-02-09 1991-07-23 Vatsvog Marlo K Composite cartridge for high velocity rifles and the like
US5021206A (en) * 1988-12-12 1991-06-04 Olin Corporation Method of molding a dual plastic shotshell casing
US4970959A (en) 1989-08-15 1990-11-20 Olin Corporation Collapsible basewad
US4958568A (en) * 1989-08-28 1990-09-25 Olin Corporation Maximum volume Reifenhauser shotshell
AT396303B (en) * 1990-02-27 1993-08-25 Steyr Daimler Puch Ag CARTRIDGE
AT393163B (en) * 1990-02-27 1991-08-26 Steyr Daimler Puch Ag CARTRIDGE SLEEVE
FR2663730B1 (en) * 1990-06-25 1992-09-11 Poudres & Explosifs Ste Nale SOCKET ELEMENT WITH FUEL TUBE, SEMI-FUEL SOCKET AMMUNITION INCORPORATING THE SAME, AND METHOD FOR LOADING SAME.
US5127331A (en) 1991-03-25 1992-07-07 Olin Corporation Reduced recoil compression formed shotshell casing
US5166471A (en) * 1991-05-08 1992-11-24 Industrial Materials Technology, Inc. Warhead incorporating high-density particles
US5265540A (en) * 1991-07-31 1993-11-30 Giat Industries Ammunition, in particular of the telescoped type
US6004682A (en) 1991-09-09 1999-12-21 Avery Dennison Corporation In-mold label film and method
US5165040A (en) 1991-12-23 1992-11-17 General Dynamics Corp., Air Defense Systems Division Pre-stressed cartridge case
US5237930A (en) 1992-02-07 1993-08-24 Snc Industrial Technologies, Inc. Frangible practice ammunition
USD345676S (en) 1992-07-06 1994-04-05 Biffle John M Cup holder
US6581522B1 (en) * 1993-02-18 2003-06-24 Gerald J. Julien Projectile
FR2702555B1 (en) * 1993-03-12 1995-04-28 Giat Ind Sa Case for a telescoped type ammunition.
US5563365A (en) 1993-08-09 1996-10-08 The United States Of America As Represented By The Secretary Of The Army Case base/combustible cartridge case joint
US5535495A (en) 1994-11-03 1996-07-16 Gutowski; Donald A. Die cast bullet manufacturing process
DK10495A (en) 1995-01-30 1996-07-31 Mogens Friis Lighting system, especially for use in conjunction with a CD cassette rack or similar cassette rack
US5616642A (en) 1995-04-14 1997-04-01 West; Harley L. Lead-free frangible ammunition
DE19527621A1 (en) * 1995-07-28 1997-01-30 Nico Pyrotechnik Cartridge ammunition
US5679920A (en) 1995-08-03 1997-10-21 Federal Hoffman, Inc. Non-toxic frangible bullet
US5770815A (en) 1995-08-14 1998-06-23 The United States Of America As Represented By The Secretary Of The Navy Ammunition cartridge with reduced propellant charge
US5641920A (en) 1995-09-07 1997-06-24 Thermat Precision Technology, Inc. Powder and binder systems for use in powder molding
USD380650S (en) 1996-03-06 1997-07-08 Norris Daniel A Carrier for supporting a large drink cup in an automotive cup holder
GB9607022D0 (en) 1996-04-03 1996-06-05 Cesaroni Tech Inc Bullet
EP0907680B1 (en) 1996-06-28 2006-11-22 Ideas to Market, L.P. High density composite material
US5768815A (en) * 1996-07-16 1998-06-23 Casull; Richard J. Extractor and system for extracting a cartridge from a firearm
US5758445A (en) * 1996-07-16 1998-06-02 Casull; Richard J. Chamber for a firearm
US5979331A (en) * 1996-07-16 1999-11-09 Casull; Richard J. Cartridge for a firearm
FI108965B (en) * 1997-01-24 2002-04-30 Patria Vammas Oy Arrangement to support a grenade in the barrel of a rear loading weapon
US5798478A (en) 1997-04-16 1998-08-25 Cove Corporation Ammunition projectile having enhanced flight characteristics
US5969288A (en) * 1997-05-07 1999-10-19 Cheddite France Cartridge case, especially for a smooth bore gun
DE19751933B4 (en) * 1997-11-22 2005-05-12 Rheinmetall W & M Gmbh Cartridge case
US6131515A (en) 1997-12-11 2000-10-17 Remington Arms Company, Inc. Electric primer
US6070532A (en) 1998-04-28 2000-06-06 Olin Corporation High accuracy projectile
DE19849824A1 (en) 1998-10-29 2000-05-04 Dynamit Nobel Ag Ammunition with a sleeve, the wall of which consists of a combustible or consumable package
GB2367349A (en) 1998-12-08 2002-04-03 Kay Clough Mark Hamilton Ammunition
US6357357B1 (en) 1999-01-05 2002-03-19 Alliant Techsystems Inc. Propulsion system
US20050257711A1 (en) 1999-01-15 2005-11-24 Natec, Inc. A Cartridge Casing Body And An Ammunition Article Having A Cartridge Casing Body Wherein The Cartridge Casing Body Is Plastic, Ceramic, Or A Composite Material
US6752084B1 (en) 1999-01-15 2004-06-22 Amtech, Inc. Ammunition articles with plastic components and method of making ammunition articles with plastic components
US7441504B2 (en) 1999-01-15 2008-10-28 Development Capital Management Company Base for a cartridge casing body for an ammunition article, a cartridge casing body and an ammunition article having such base, wherein the base is made from plastic, ceramic, or a composite material
US6460464B1 (en) 1999-07-19 2002-10-08 Henkel Loctite Corporation Adhesive for ring seal in center fire ammunition
US6640724B1 (en) * 1999-08-04 2003-11-04 Olin Corporation Slug for industrial ballistic tool
DE19944375A1 (en) * 1999-09-16 2001-03-22 Rheinmetall W & M Gmbh Casing base for large-caliber ammunition
FR2799832B1 (en) * 1999-10-13 2002-08-30 Giat Ind Sa IGNITION DEVICE FOR PROPULSIVE CHARGING
FR2799831B1 (en) * 1999-10-13 2001-11-30 Giat Ind Sa DEVICE FOR FIXING A SHUTTERING BASE ON AN AMMUNITION CASE AND BASE SUITABLE FOR SUCH A DEVICE
US6959647B2 (en) 1999-10-25 2005-11-01 Mark A. Wistrom Cartridge for a firearm
USD435626S (en) 2000-02-08 2000-12-26 Benini Joseph C Bullet
US8122833B2 (en) 2005-10-04 2012-02-28 Alliant Techsystems Inc. Reactive material enhanced projectiles and related methods
US6283035B1 (en) 2000-04-06 2001-09-04 Knight Armamant Company Reduced propellant ammunition cartridges
US6375971B1 (en) 2000-04-28 2002-04-23 Ballistic Technologies, Inc. Medicament dosing ballistic implant of improved accuracy
US6810816B2 (en) 2000-06-07 2004-11-02 Carl J. Rennard Ammunition tracking system
RU2172467C1 (en) 2000-07-05 2001-08-20 61 Научно-исследовательский испытательный институт железнодорожных войск Press for unloading of cartridges
CA2427832C (en) 2000-11-06 2008-01-08 Frederick J. Buja Method and apparatus for controlling a mold melt-flow process using temperature sensors
USD447209S1 (en) 2001-01-10 2001-08-28 Sinterfire Inc. Cartridge
USD455052S1 (en) 2001-02-15 2002-04-02 The Thermos Company Can holder
USD455320S1 (en) 2001-04-18 2002-04-09 Ceramic Development International Can holder
WO2003104742A2 (en) 2001-05-15 2003-12-18 Beal Harold F In-situ formation of cap for ammunition projectile
FR2824898B1 (en) * 2001-05-18 2003-09-12 Giat Ind Sa POCKET FOR AMMUNITION FOR RECEIVING AN ELECTRIC IGNITER
US7231519B2 (en) 2001-06-06 2007-06-12 International Business Machines Corporation Secure inter-node communication
EP1436436B1 (en) 2001-10-16 2005-04-20 International Non-Toxic Composites Corp. Composite material containing tungsten and bronze
US20030101891A1 (en) 2001-12-05 2003-06-05 Amick Darryl D. Jacketed bullet and methods of making the same
US7243879B2 (en) * 2001-12-06 2007-07-17 Kazak Composites, Incorporated Lattice fin for missiles or other fluid-born bodies and method for producing same
AU2003201825A1 (en) 2002-01-04 2003-07-24 Tti Armory, L.L.C. Low observable ammunition casing
WO2003060418A2 (en) 2002-01-11 2003-07-24 Tti Armory, L.L.C. Subsonic and reduced velocity ammunition cartridges
DE10213465A1 (en) * 2002-03-26 2003-10-16 Rheinmetall W & M Gmbh cartridge
US7353756B2 (en) 2002-04-10 2008-04-08 Accutec Usa Lead free reduced ricochet limited penetration projectile
EP1502074B1 (en) 2002-04-30 2009-11-18 RUAG Ammotec GmbH Partial fragmentation and deformation bullets having an identical point of impact and proces for the manufacture of such a bullet
US20040074412A1 (en) 2002-10-21 2004-04-22 Kightlinger Paul E. Cartridge and chamber for firearm
US7908972B2 (en) * 2002-10-21 2011-03-22 Michael Brunn Flare-bang projectile
US20050005807A1 (en) 2002-10-29 2005-01-13 Polytech Ammunition Company Lead free, composite polymer based bullet and cartridge case, and method of manufacturing
US7213519B2 (en) * 2002-10-29 2007-05-08 Polytech Ammunition Company Composite polymer based cartridge case having an overmolded metal cup, polymer plug base assembly
US7000547B2 (en) 2002-10-31 2006-02-21 Amick Darryl D Tungsten-containing firearm slug
US7014284B2 (en) 2003-01-16 2006-03-21 Morton William Bill Ammunition having surface indicia and method of manufacture
US7451704B1 (en) * 2003-03-20 2008-11-18 The United States Of America As Represented By The Secretary Of The Army Multifunctional explosive fragmentation airburst munition
US7056091B2 (en) 2003-04-09 2006-06-06 Powers Charles S Propeller hub assembly having overlap zone with optional removable exhaust ring and sized ventilation plugs
WO2004092427A2 (en) 2003-04-11 2004-10-28 Amick Darryl D System and method for processing ferrotungsten and other tungsten alloys articles formed therefrom and methods for detecting the same
US7059234B2 (en) * 2003-05-29 2006-06-13 Natec, Inc. Ammunition articles and method of making ammunition articles
US7104406B2 (en) * 2003-08-18 2006-09-12 Industrial Technology Research Institute Micro-filter for filtering blood cells
US7032492B2 (en) * 2003-09-11 2006-04-25 Milton S. Meshirer Ammunition articles comprising light-curable moisture-preventative sealant and method of manufacturing same
ITMI20031885A1 (en) 2003-10-01 2005-04-02 Giobbe Srl MOLD, MACHINE AND PROCEDURE FOR FORMING PRINTED CARTRIDGE WOODS.
DE10347372A1 (en) * 2003-10-11 2005-06-09 Rheinmetall Waffe Munition Gmbh gun ammunition
SE0302916D0 (en) * 2003-11-04 2003-11-04 Comtri Teknik Ab Replaceable drive cartridge
US7165496B2 (en) 2003-11-06 2007-01-23 Reynolds S Paul Piston head cartridge for a firearm
US7481167B2 (en) 2004-02-06 2009-01-27 John Whitworth Engel High-pressure fixed munition for low-pressure launching system
US8323349B2 (en) * 2004-02-17 2012-12-04 The University Of Notre Dame Du Lac Textured surfaces for orthopedic implants
US7461597B2 (en) 2004-04-28 2008-12-09 Combined Systems Inc. Waterproof cartridge seal
USD540710S1 (en) 2004-07-28 2007-04-17 Philippe Charrin Flower arrangement holder
US7426888B2 (en) 2004-09-02 2008-09-23 T&P Game Recovery, Llc Firearm ammunition for tracking wounded prey
US8240252B2 (en) 2005-03-07 2012-08-14 Nikica Maljkovic Ammunition casing
US7585166B2 (en) 2005-05-02 2009-09-08 Buja Frederick J System for monitoring temperature and pressure during a molding process
US8161885B1 (en) 2005-05-16 2012-04-24 Hornady Manufacturing Company Cartridge and bullet with controlled expansion
US7631601B2 (en) 2005-06-16 2009-12-15 Feldman Paul H Surveillance projectile
US20070214992A1 (en) * 2005-07-22 2007-09-20 Snc Technologies Corp. Thin walled, two component cartridge casing
WO2007014024A2 (en) 2005-07-22 2007-02-01 Snc Technologies Corp. Thin walled and two component cartridge case
US20070214993A1 (en) 2005-09-13 2007-09-20 Milan Cerovic Systems and methods for deploying electrodes for electronic weaponry
US7610858B2 (en) * 2005-12-27 2009-11-03 Chung Sengshiu Lightweight polymer cased ammunition
US8191480B2 (en) 2006-02-08 2012-06-05 Gunsandmore.Info Llc Method and apparatus for propelling a pellet or BB using a shock-sensitive explosive cap
US8540828B2 (en) 2008-08-19 2013-09-24 Alliant Techsystems Inc. Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same
US8641842B2 (en) 2011-08-31 2014-02-04 Alliant Techsystems Inc. Propellant compositions including stabilized red phosphorus, a method of forming same, and an ordnance element including the same
US20070267587A1 (en) 2006-05-18 2007-11-22 Paul Russell Dalluge Method and rotary valve actuator to apply increased torque proximate the open or closed position of a valve
US7841279B2 (en) * 2006-05-24 2010-11-30 Reynolds George L Delayed extraction and a firearm cartridge case
US7380505B1 (en) 2006-06-29 2008-06-03 Shiery Jeffrey C Muzzleloading firearm projectile
US7392746B2 (en) 2006-06-29 2008-07-01 Hansen Richard D Bullet composition
US9200157B2 (en) 2006-09-06 2015-12-01 Solvay Advanced Polymers, L.L.C. Aromatic polycarbonate composition
USD583927S1 (en) 2006-12-14 2008-12-30 Mckeon Products, Inc. Ear plug
US8443729B2 (en) 2007-02-22 2013-05-21 Hornady Manufacturing Company Cartridge for a firearm
US7930977B2 (en) 2007-02-26 2011-04-26 Klein John M Non-lethal projectile ammunition
US7938067B2 (en) * 2007-07-20 2011-05-10 Frank J Dindl Reduced firing signature weapon cartridge
US7543383B2 (en) 2007-07-24 2009-06-09 Pratt & Whitney Canada Corp. Method for manufacturing of fuel nozzle floating collar
US20090042057A1 (en) 2007-08-10 2009-02-12 Springfield Munitions Company, Llc Metal composite article and method of manufacturing
US20120199033A1 (en) 2007-09-17 2012-08-09 George Evan Bybee Coated ammunition and methods of making
AU2008340941B2 (en) 2007-12-24 2012-07-26 General Dynamics Ordnance And Tactical Systems - Canada Inc. Low toxicity primer compositions for reduced energy ammunition
US20090183850A1 (en) 2008-01-23 2009-07-23 Siemens Power Generation, Inc. Method of Making a Combustion Turbine Component from Metallic Combustion Turbine Subcomponent Greenbodies
CN101247416A (en) 2008-03-25 2008-08-20 中兴通讯股份有限公司 Firmware downloading method, preprocessing method and integrality verification method based on OTA
AU322748S (en) 2008-05-22 2008-12-09 A projectile
SE533168C2 (en) 2008-06-11 2010-07-13 Norma Prec Ab Firearm projectile
US8156870B2 (en) 2008-06-12 2012-04-17 The United States Of America As Represented By The Secretary Of The Army Lightweight cartridge case
US7568417B1 (en) 2008-06-23 2009-08-04 Lee Richard J Device and method for pulling bullets from cartridges
JP5774989B2 (en) * 2008-08-13 2015-09-09 スメド−ティーエイ/ティーディー・エルエルシー Orthopedic screw
US9700431B2 (en) * 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US20120000072A9 (en) 2008-09-26 2012-01-05 Morrison Jay A Method of Making a Combustion Turbine Component Having a Plurality of Surface Cooling Features and Associated Components
US7886667B1 (en) * 2008-10-15 2011-02-15 The United States Of America As Represented By The Secretary Of The Army More safe insensitive munition for producing a controlled fragmentation pattern
US8800449B2 (en) 2008-10-27 2014-08-12 Ra Brands, L.L.C. Wad with ignition chamber
AU2009320150B2 (en) * 2008-10-27 2014-09-25 Ra Brands, L.L.C Wad with ignition chamber
US8393273B2 (en) 2009-01-14 2013-03-12 Nosler, Inc. Bullets, including lead-free bullets, and associated methods
US8201867B2 (en) 2009-02-16 2012-06-19 Mjt Holdings Llc Threaded hoist ring screw retainer
US8007370B2 (en) 2009-03-10 2011-08-30 Cobra Golf, Inc. Metal injection molded putter
US8186273B2 (en) 2009-05-04 2012-05-29 Roger Blaine Trivette Plastic ammunition casing and method
WO2010129781A1 (en) * 2009-05-06 2010-11-11 Vin Battaglia Spiral case ammunition
US8925463B1 (en) * 2009-09-03 2015-01-06 Kms Consulting, Llc Pressure relief system for gun fired cannon cartridges
US20110179965A1 (en) * 2009-11-02 2011-07-28 Mark Mason Ammunition assembly
USD631699S1 (en) 2009-11-19 2011-02-01 Moreau Glen W Cup
USD633166S1 (en) 2010-01-15 2011-02-22 Olin Corporation Disc-shaped projectile for a shot shell
US8522685B1 (en) * 2010-02-22 2013-09-03 The United States Of America As Represented By The Secretary Of The Army Multiple size fragment warhead
US8206522B2 (en) 2010-03-31 2012-06-26 Alliant Techsystems Inc. Non-toxic, heavy-metal free sensitized explosive percussion primers and methods of preparing the same
KR101210582B1 (en) 2010-05-26 2012-12-11 한국씨앤오테크 주식회사 40mm training shot
JP5612916B2 (en) 2010-06-18 2014-10-22 キヤノン株式会社 Position / orientation measuring apparatus, processing method thereof, program, robot system
US8573126B2 (en) * 2010-07-30 2013-11-05 Pcp Tactical, Llc Cartridge base and plastic cartridge case assembly for ammunition cartridge
US20180292186A1 (en) * 2017-04-07 2018-10-11 Pcp Tactical, Llc Two-piece insert and/or flash tube for polymer ammunition cartridges
US8807008B2 (en) 2011-01-14 2014-08-19 Pcp Tactical, Llc Polymer-based machine gun belt links and cartridge casings and manufacturing method
US8763535B2 (en) 2011-01-14 2014-07-01 Pcp Tactical, Llc Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition
USD652472S1 (en) 2010-08-14 2012-01-17 Daniel Klement Shotgun shell casing
US8522684B2 (en) 2010-09-10 2013-09-03 Nylon Corporation Of America, Inc. Cartridge cases and base inserts therefor
WO2012047615A1 (en) 2010-10-07 2012-04-12 Nylon Corporation Of America, Inc. Ammunition cartridge case bodies made with polymeric nanocomposite material
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US10876822B2 (en) 2017-11-09 2020-12-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US8561543B2 (en) 2010-11-10 2013-10-22 True Velocity, Inc. Lightweight polymer ammunition cartridge casings
US10704876B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10704877B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10048052B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Method of making a polymeric subsonic ammunition cartridge
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US10352670B2 (en) 2010-11-10 2019-07-16 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11340050B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11047663B1 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US10190857B2 (en) 2010-11-10 2019-01-29 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US20170191813A9 (en) 2010-11-10 2017-07-06 True Velocity, Inc. Primer diffuser for polymer ammunition cartridges
US9644930B1 (en) * 2010-11-10 2017-05-09 True Velocity, Inc. Method of making polymer ammunition having a primer diffuser
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US11215430B2 (en) 2010-11-10 2022-01-04 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10081057B2 (en) 2010-11-10 2018-09-25 True Velocity, Inc. Method of making a projectile by metal injection molding
US10048049B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Lightweight polymer ammunition cartridge having a primer diffuser
US10408592B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US9885551B2 (en) 2010-11-10 2018-02-06 True Velocity, Inc. Subsonic polymeric ammunition
US10591260B2 (en) 2010-11-10 2020-03-17 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US20170184382A9 (en) 2010-11-10 2017-06-29 True Velocity, Inc. Metal injection molded projectile
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US10429156B2 (en) 2010-11-10 2019-10-01 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
EP2908087B1 (en) 2011-01-14 2017-08-30 PCP Tactical, LLC High strength polymer-based cartridge casing and manufacturing method
US10197366B2 (en) 2011-01-14 2019-02-05 Pcp Tactical, Llc Polymer-based cartridge casing for blank and subsonic ammunition
US20150241183A1 (en) * 2011-01-14 2015-08-27 Pcp Tactical, Llc Overmolded high strength polymer-based cartridge casing for blank and subsonic ammunition
US8869702B2 (en) 2011-01-14 2014-10-28 Pcp Tactical, Llc Variable inside shoulder polymer cartridge
IL310594A (en) * 2011-01-14 2024-04-01 Pcp Tactical Llc High strength polymer-based cartridge casing for blank and subsonic ammunition
US8790455B2 (en) 2011-01-19 2014-07-29 Anatoli Borissov Supersonic swirling separator 2 (Sustor2)
US8915191B2 (en) 2011-03-29 2014-12-23 Kenneth R. Jones Spin stabilized and/ or drag stabilized, blunt impact non-lethal projectile
EP2543954A1 (en) * 2011-07-06 2013-01-09 Neugebauer, Hans-Jürgen Cartridge casing and method of manufacturing a cartridge casing
US8807040B2 (en) * 2011-07-07 2014-08-19 James Y. Menefee, III Cartridge for multiplex load
US8938903B2 (en) 2011-07-11 2015-01-27 Mark C. LaRue Firearm barrel having cartridge chamber preparation facilitating efficient cartridge case extraction and protection against premature bolt failure
USD733836S1 (en) 2011-07-26 2015-07-07 Ra Brands, L.L.C. Firearm bullet
US8950333B2 (en) 2011-07-26 2015-02-10 Ra Brands, L.L.C. Multi-component bullet with core retention feature and method of manufacturing the bullet
USD733252S1 (en) 2011-07-26 2015-06-30 Ra Brands, L.L.C. Firearm bullet and portion of firearm cartridge
USD734419S1 (en) 2011-07-26 2015-07-14 Ra Brands, L.L.C. Firearm bullet
WO2013016730A1 (en) 2011-07-28 2013-01-31 Mac, Llc Polymeric ammunition casing geometry
US8272329B1 (en) * 2011-07-28 2012-09-25 The United States Of America As Represented By The Secretary Of The Army Selectable lethality warhead patterned hole fragmentation insert sleeves
US9182204B2 (en) 2011-07-28 2015-11-10 Mac, Llc Subsonic ammunition casing
US9109850B2 (en) * 2011-08-26 2015-08-18 Intrepid Tactical Solutions, LLC Shotshell type ammunition, firearms for firing such shotshell type ammunition, and methods of manufacturing such shotshell type ammunition
US8881654B2 (en) 2011-10-14 2014-11-11 Lws Ammunition Llc Bullets with lateral damage stopping power
US9213175B2 (en) 2011-10-28 2015-12-15 Craig B. Arnold Microscope with tunable acoustic gradient index of refraction lens enabling multiple focal plan imaging
USD861118S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Primer insert
DE102011086460A1 (en) 2011-11-16 2013-05-16 Robert Bosch Gmbh Liquid pump with axial thrust washer
US9157709B2 (en) 2011-12-08 2015-10-13 Setpoint Systems, Inc. Apparatus, system, and method for manufacturing ammunition cartridge cases
BR112014015317B1 (en) 2011-12-22 2020-06-02 Quantum Ammunition, Llc COMPOSITE CARTRIDGES BASED ON POLYMER AND AMMUNITION CONTAINING THE SAME
USD715888S1 (en) 2012-01-13 2014-10-21 Pcp Tactical, Llc Radiused insert
USD689975S1 (en) 2012-01-16 2013-09-17 Alliant Techsystems Inc. Practice projectile
US9032855B1 (en) 2012-03-09 2015-05-19 Carolina PCA, LLC Ammunition articles and methods for making the same
US9200880B1 (en) * 2012-03-09 2015-12-01 Carolina PCA, LLC Subsonic ammunication articles having a rigid outer casing or rigid inner core and methods for making the same
USD683419S1 (en) 2012-04-12 2013-05-28 Peter D. Rebar Lead-free airgun pellet
US9377278B2 (en) 2012-05-02 2016-06-28 Darren Rubin Biological active bullets, systems, and methods
US8985023B2 (en) 2012-05-03 2015-03-24 Halliburton Energy Services, Inc. Explosive device booster assembly and method of use
US9921040B2 (en) 2012-05-22 2018-03-20 Darren Rubin Longitudinally sectioned firearms projectiles
US9255775B1 (en) 2012-05-22 2016-02-09 Darren Rubin Longitudinally sectioned firearms projectiles
US9212879B2 (en) 2012-05-25 2015-12-15 James Curtis Whitworth Firearm cleaning shell
US8857343B2 (en) 2012-05-29 2014-10-14 Liberty Ammunition, Llc High volume multiple component projectile assembly
USD675882S1 (en) 2012-06-12 2013-02-12 Irving R. Crockett French fry carton holder and adaptor for use with vehicle cup holder
US9267772B2 (en) * 2012-06-27 2016-02-23 Aai Corporation Ballistic sealing, component retention, and projectile launch control for an ammunition cartridge assembly
WO2014062256A2 (en) 2012-07-13 2014-04-24 Pcp Tactical, Llc Narrowing high strength polymer-based cartridge casing for blank and subsonic ammunition
CN102901403B (en) 2012-09-07 2014-06-25 中北大学 Bullet puller of large-caliber machine gun bullet
USD707785S1 (en) 2012-09-28 2014-06-24 Lws Ammunition Llc Pistol cartridge
US8689696B1 (en) 2013-02-21 2014-04-08 Caneel Associates, Inc. Composite projectile and cartridge with composite projectile
US10907943B2 (en) * 2013-03-15 2021-02-02 Cybernet Systems Corp. Integrated polymer and metal case ammunition manufacturing system and method
WO2014144104A2 (en) 2013-03-15 2014-09-18 Alliant Techsystems Inc. Combination gas operated rifle and subsonic cartridge
US10132601B2 (en) * 2013-03-15 2018-11-20 William Joseph Nemec Advanced modular ammunition cartridges and systems
WO2014150007A1 (en) 2013-03-15 2014-09-25 Alliant Techsystems Inc. Reloading kit with lead free bullet composition
USD717909S1 (en) 2013-06-21 2014-11-18 Roger Dale Thrift Jeweled ammunition
US20150033970A1 (en) 2013-07-31 2015-02-05 Mac, Llc Engineered neck angle ammunition casing
US9759554B2 (en) 2013-08-02 2017-09-12 Omnivision Technologies, Inc. Application specific, dual mode projection system and method
US9212876B1 (en) 2013-08-30 2015-12-15 The United States Of America As Represented By The Secretary Of The Army Large caliber frangible projectile
US9389052B2 (en) 2013-09-18 2016-07-12 The United States Of America As Represented By The Secretary Of The Army Jacketed bullet
US9121677B2 (en) 2013-09-23 2015-09-01 Hornady Manufacturing Company Bullet with controlled fragmentation
US9857151B2 (en) 2013-10-21 2018-01-02 General Dynamics Ordnance and Tactical Systems—Canada, Inc. Ring fire primer
US8893621B1 (en) 2013-12-07 2014-11-25 Rolando Escobar Projectile
WO2015130409A2 (en) 2014-01-13 2015-09-03 Mac Llc Neck polymeric ammuniti0n casing geometry
BR112016016265B1 (en) * 2014-01-14 2021-06-22 Quantum Ammunition, Llc METHOD FOR MANUFACTURING A COMPOSITE AMMUNITION CAPSULE, APPARATUS FOR PERFORMING THE METHOD AND COMPOUND AMMUNITION CAPSULE
US20150217414A1 (en) * 2014-02-04 2015-08-06 Caterpillar Inc. Method of remanufacturing a component
US9784667B2 (en) 2014-02-06 2017-10-10 Ofi Testing Equipment, Inc. High temperature fluid sample aging cell
ES2676315T3 (en) 2014-02-10 2018-07-18 Ruag Ammotec Gmbh Fragmentation projectile with Pb projectile cores or Pb-free materials with gradual fragmentation
US20150226220A1 (en) 2014-02-13 2015-08-13 Pentair Flow Technologies, Llc Pump and Electric Insulating Oil for Use Therein
AT515209B1 (en) * 2014-03-14 2015-07-15 Hirtenberger Defence Systems Gmbh & Co Kg bullet
US20160265886A1 (en) * 2014-03-18 2016-09-15 Lonnie Aldrich Reusable Plastic Ammunition Casing
WO2015154079A1 (en) 2014-04-04 2015-10-08 Mac, Llc Method for producing subsonic ammunition casing
WO2016007212A2 (en) 2014-04-10 2016-01-14 Mahnke Joshua Projectile with enhanced ballistics
US10648300B2 (en) * 2014-04-15 2020-05-12 Hunting Titan, Inc. Venting system for a shaped charge in the event of deflagration
US9329004B2 (en) * 2014-05-08 2016-05-03 Scot M Pace Munition having a reusable housing assembly and a removable powder chamber
US9254503B2 (en) 2014-05-13 2016-02-09 Tyler Ward Enamel coated bullet, method of making an enamel coated bullet
USD754223S1 (en) 2014-06-26 2016-04-19 Sipdark Llc Whiskey bullet
US10323918B2 (en) 2014-07-29 2019-06-18 Polywad, Inc. Auto-segmenting spherical projectile
USD752397S1 (en) 2014-08-29 2016-03-29 Yeti Coolers, Llc Beverage holder
US10882799B2 (en) 2014-09-10 2021-01-05 Spectre Materials Sciences, Inc. Primer for firearms and other munitions
TWI564079B (en) 2014-09-26 2017-01-01 昆陞機械有限公司 Cutting machine and cutting tool assembly thereof and cutting tool thereof
GB201417311D0 (en) * 2014-10-01 2014-11-12 Bae Systems Plc Improved cartridge casing
GB201417312D0 (en) * 2014-10-01 2014-11-12 Bae Systems Plc Cartridge casing
USD764624S1 (en) 2014-10-13 2016-08-23 Olin Corporation Shouldered round nose bullet
US20160245626A1 (en) * 2014-11-14 2016-08-25 Alcoa Inc. Aluminum shotgun shell case, methods of making, and using the same
EP3234498A1 (en) * 2014-12-18 2017-10-25 Raytheon Company Explosive device with casing having voids therein
US9879954B2 (en) 2015-01-16 2018-01-30 Snake River Machine, Inc. Less-lethal munition and mechanical firing device
USD773009S1 (en) 2015-02-04 2016-11-29 William R. Bowers Case for an ammunition cartridge
US9337278B1 (en) 2015-02-25 2016-05-10 Triquint Semiconductor, Inc. Gallium nitride on high thermal conductivity material device and method
USD774824S1 (en) 2015-04-15 2016-12-27 Kenneth John Gallagher Inverted bottle dispenser base
USD781393S1 (en) * 2015-04-28 2017-03-14 True Velocity, Inc. Notched cartridge base insert
USD779021S1 (en) 2015-04-28 2017-02-14 True Velocity, Inc. Cylindrically square cartridge base insert
USD778391S1 (en) 2015-04-28 2017-02-07 True Velocity, Inc. Notched cartridge base insert
USD780283S1 (en) 2015-06-05 2017-02-28 True Velocity, Inc. Primer diverter cup used in polymer ammunition
US20160363165A1 (en) * 2015-06-09 2016-12-15 Hiwin Mikrosystem Corp. Air bearing structure
US10260847B2 (en) * 2015-07-27 2019-04-16 Shell Shock Technologies LLC Fire arm casing and cartridge
USD813975S1 (en) 2015-08-05 2018-03-27 Mark White Low volume subsonic bullet cartridge case
USD778393S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD779024S1 (en) 2015-08-07 2017-02-14 True Velocity, Inc. Projectile aperture wicking pattern
USD778394S1 (en) 2015-08-07 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
USD778395S1 (en) 2015-08-11 2017-02-07 True Velocity, Inc. Projectile aperture wicking pattern
US20170082409A1 (en) 2015-09-18 2017-03-23 True Velocity, Inc. Subsonic polymeric ammunition
US9587918B1 (en) 2015-09-24 2017-03-07 True Velocity, Inc. Ammunition having a projectile made by metal injection molding
USD792200S1 (en) 2015-11-19 2017-07-18 Esr Performance Corp Bullet lug nut cap
WO2017156309A1 (en) 2016-03-09 2017-09-14 Msato, Llc Pellet shaped marking round for air rifles and pistols
US9506735B1 (en) 2016-03-09 2016-11-29 True Velocity, Inc. Method of making polymer ammunition cartridges having a two-piece primer insert
US9523563B1 (en) * 2016-03-09 2016-12-20 True Velocity, Inc. Method of making ammunition having a two-piece primer insert
US9551557B1 (en) 2016-03-09 2017-01-24 True Velocity, Inc. Polymer ammunition having a two-piece primer insert
US9869536B2 (en) * 2016-03-09 2018-01-16 True Velocity, Inc. Method of making a two-piece primer insert
US9518810B1 (en) 2016-03-09 2016-12-13 True Velocity, Inc. Polymer ammunition cartridge having a two-piece primer insert
US9835427B2 (en) 2016-03-09 2017-12-05 True Velocity, Inc. Two-piece primer insert for polymer ammunition
US20190106364A1 (en) 2016-03-28 2019-04-11 Adler Capital Llc Gas propelled munitions anti-fouling system
US20170328690A1 (en) 2016-05-11 2017-11-16 U.S. Government As Represented By The Secretary Of The Army Lightweight Cartridge Case and Weapon System
USD832037S1 (en) 2016-07-18 2018-10-30 Kenneth John Gallagher Bottle dispenser base
US10697743B2 (en) 2016-07-27 2020-06-30 Shell Shock Technologies LLC Fire arm casing for resisting high deflagration pressure
US10948272B1 (en) * 2016-07-27 2021-03-16 Shell Shock Tecnologies Llc Firearm casing with shroud
US9784541B1 (en) * 2016-08-15 2017-10-10 The United States Of America As Represented By The Secretary Of The Navy Increased lethality warhead for high acceleration environments
USD821536S1 (en) 2016-08-24 2018-06-26 Silencerco, Llc Projectile
US10871361B2 (en) 2016-09-07 2020-12-22 Concurrent Technologies Corporation Metal injection molded cased telescoped ammunition
US10663271B2 (en) 2016-10-13 2020-05-26 G2 Research Inc. Predictably fragmenting projectiles having internally-arranged geometric features
US10809043B2 (en) 2017-04-19 2020-10-20 Pcp Tactical, Llc Cartridge case having a neck with increased thickness
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
WO2019094544A1 (en) 2017-11-09 2019-05-16 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition, cartridge and components
USD882723S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882032S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882027S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882026S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882030S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882028S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903038S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903039S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882025S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882031S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882023S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882724S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882021S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882722S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882033S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882022S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882024S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882721S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882720S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882019S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD913403S1 (en) 2018-04-20 2021-03-16 True Velocity Ip Holdings, Llc Ammunition cartridge
USD884115S1 (en) 2018-04-20 2020-05-12 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882029S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882020S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886231S1 (en) 2017-12-19 2020-06-02 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886937S1 (en) 2017-12-19 2020-06-09 True Velocity Ip Holdings, Llc Ammunition cartridge
EP3732433A4 (en) 2018-01-19 2021-12-29 PCP Tactical LLC Polymer cartridge with snapfit metal insert
US10866072B2 (en) * 2018-01-21 2020-12-15 Sig Sauer, Inc. Multi-piece cartridge casing and method of making
US11067370B2 (en) * 2018-01-21 2021-07-20 Sig Sauer, Inc. Multi-piece cartridge casing and method of making
WO2019151954A1 (en) 2018-02-04 2019-08-08 Advanced Material Engineering Pte Ltd Lightweight cartridge case
WO2019160742A2 (en) 2018-02-14 2019-08-22 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
US10976144B1 (en) 2018-03-05 2021-04-13 Vista Outdoor Operations Llc High pressure rifle cartridge with primer
CA3092806A1 (en) * 2018-03-13 2019-09-19 Bae Systems Plc Improved pressed head
US20190368845A1 (en) * 2018-06-01 2019-12-05 The United States Of America, As Represented By The Secretary Of The Navy Polymer Flash Corridor Ammunition
AU2019299428A1 (en) 2018-07-06 2021-01-28 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
AU2019299431B2 (en) 2018-07-06 2023-06-15 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
WO2020197868A2 (en) 2019-03-19 2020-10-01 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
BR112022000786A2 (en) 2019-07-16 2022-07-05 True Velocity Ip Holdings Llc POLYMER AMMUNITION WITH ALIGNMENT AID, CARTRIDGE AND METHOD TO DO THE SAME

Also Published As

Publication number Publication date
US20180224254A1 (en) 2018-08-09
US20190204056A1 (en) 2019-07-04
US10302403B2 (en) 2019-05-28
US20200109932A1 (en) 2020-04-09
US10302404B2 (en) 2019-05-28
US20200248998A1 (en) 2020-08-06
US20180202788A1 (en) 2018-07-19
US20210341272A1 (en) 2021-11-04
US20190242683A1 (en) 2019-08-08
US20190242682A1 (en) 2019-08-08
US20180142998A1 (en) 2018-05-24
US20190212117A1 (en) 2019-07-11
US11098992B2 (en) 2021-08-24
US20190025035A1 (en) 2019-01-24
US11448490B2 (en) 2022-09-20
US20170261299A1 (en) 2017-09-14
US9964388B1 (en) 2018-05-08
US20210341271A1 (en) 2021-11-04
US10948275B2 (en) 2021-03-16
US20210341270A1 (en) 2021-11-04
US10048050B1 (en) 2018-08-14
US10101136B2 (en) 2018-10-16
US20220018641A1 (en) 2022-01-20
US10041771B1 (en) 2018-08-07
US20200248999A1 (en) 2020-08-06
US20210341273A1 (en) 2021-11-04
US20180245901A1 (en) 2018-08-30
US20180224255A1 (en) 2018-08-09
US20180224256A1 (en) 2018-08-09
US10054413B1 (en) 2018-08-21
US20180128587A1 (en) 2018-05-10
US10101140B2 (en) 2018-10-16
US10330451B2 (en) 2019-06-25
US20180224258A1 (en) 2018-08-09
US20180224259A1 (en) 2018-08-09
US10415943B2 (en) 2019-09-17
US20200249000A1 (en) 2020-08-06
US9835427B2 (en) 2017-12-05
US10041777B1 (en) 2018-08-07
US11098990B2 (en) 2021-08-24
US9976840B1 (en) 2018-05-22
US20180224257A1 (en) 2018-08-09
US20190025036A1 (en) 2019-01-24
US10041776B1 (en) 2018-08-07
US11098993B2 (en) 2021-08-24
US11098991B2 (en) 2021-08-24
US11448489B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
US10948275B2 (en) Polymer ammunition cartridge having a three-piece primer insert
US9506735B1 (en) Method of making polymer ammunition cartridges having a two-piece primer insert
US9869536B2 (en) Method of making a two-piece primer insert
US9551557B1 (en) Polymer ammunition having a two-piece primer insert
US9518810B1 (en) Polymer ammunition cartridge having a two-piece primer insert
US9523563B1 (en) Method of making ammunition having a two-piece primer insert

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: TRUE VELOCITY, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURROW, LONNIE;REEL/FRAME:045376/0206

Effective date: 20180319

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: TRUE VELOCITY IP HOLDINGS, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRUE VELOCITY, INC.;REEL/FRAME:046361/0414

Effective date: 20180705

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TRUE VELOCITY IP HOLDINGS, LLC, TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NUMBER PREVIOUSLY RECORDED ON REEL 046361 FRAME 0414. ASSIGNOR(S) HEREBY CONFIRMS THE 15922032;ASSIGNOR:TRUE VELOCITY, INC.;REEL/FRAME:046590/0790

Effective date: 20180705

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: SILVERPEAK CREDIT PARTNERS, LP, FLORIDA

Free format text: SECURITY INTEREST;ASSIGNOR:TRUE VELOCITY IP HOLDINGS, LLC;REEL/FRAME:059110/0730

Effective date: 20210812