US3749021A - Metal coated plastic cartridge case and method of manufacture - Google Patents

Metal coated plastic cartridge case and method of manufacture Download PDF

Info

Publication number
US3749021A
US3749021A US00099495A US3749021DA US3749021A US 3749021 A US3749021 A US 3749021A US 00099495 A US00099495 A US 00099495A US 3749021D A US3749021D A US 3749021DA US 3749021 A US3749021 A US 3749021A
Authority
US
United States
Prior art keywords
case
plastic
metal
cartridge case
cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00099495A
Inventor
L Burgess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulf & Western Ind Prod Co
Gulf & Western Ind Prod Co us
Original Assignee
Gulf & Western Ind Prod Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf & Western Ind Prod Co filed Critical Gulf & Western Ind Prod Co
Application granted granted Critical
Publication of US3749021A publication Critical patent/US3749021A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/26Cartridge cases
    • F42B5/30Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics

Definitions

  • a metal-plated plastic cartridge case A film of metal, preferably between 0.05 to 0.1 mils thick is plated onto a plastic cartridge case to increase the strength of the case and to provide it with other favorable characteristics such as abrasion and bum-through resistance and lubricity.
  • the plastic case may comprise a filled or a fiber reinforced plastic.
  • a plated metal skin preferably 5 to 7 mils thick may also be employed in conjunction with non-reinforced plastic cases to increase the strength of the case in critical areas.
  • the invention also concerns a method of manufacturing a metal-plated cartridge case wherein a thermo plastic resin combined with a two-stage thermosetting resin and molded into a cartridge case blank, taking care not to achieve a permanent set.
  • the blank is then molded into a cartridge case, preferably by compressing the extractor area and blow-molding the remainder of the cartridge case.
  • the blank may be formed by extrusion or resin solvent solution impregnation of a sleeve reinforcement. In either case, the finished molded cartridge case is then metal plated to the required thickness of metal.
  • PATENTEDJUL3 1 I975 SHEET 2 0F 3 INVENTOR. LESTE R E. BURGESS W W W ATTORNEYS.
  • METAL tCOATlElD PLASTMI CARTRHDGE CASE AND METHOD F MANUFACTURE This invention pertains to the art of cartridge cases for munitions and particularly to plastic cartridge cases.
  • the invention more particularly pertains to plastic cartridge cases which are metallized, that is, which are coated with a thin layer of metal, and to a method of manufacturing such metallized cartridge cases.
  • Cartridge cases were originally made from various brass compositions which satisfied the requirement of the munitions industry for many years. Brass has excellent characteristics such as strength, formability, good elastic recovery after distortion, heat stability, heat transfer control, corrosion resistance, and lubricity. However, considerations of cost, weight, and other factors such as availability of the raw materiaLhave led to the manufacture of cartridge cases from materials other than brass, notably from plastics. Among the advantages available by producing cartridge cases from plastic are the fact that plastics are made from raw materials which are in plentiful supply, plastics are corrosion resistant and lend themselves to improvements in production efficiency and reduction in cost. Furthermore, a plastic cartridge case is much lighter than a corresponding case made from brass. The weight reduction is particularly important for munitions which are designed to be used or carried aboard aircraft.
  • cartridge cases from plastic has been the low strength of plastic as compared to brass or other metals traditionally used in cartridge cases.
  • the severest test of the strength of a cartridge case occurs during firing of the cartridge.
  • the pressure of the exploding gas imposes severe stresses upon the cartridge case and it is necessary that the case be able to withstand the stresses without rupturing and without being distorted to the extent that extraction of the case from the weapon is impeded.
  • the base of the cartridge case must be particularly rigid and have sufficient strength to protect the primer hole during the loading and firing sequence of the cartridge; the lack of strength of plastics as compared to metals is a particular problem of this regard.
  • a plastic cartridge case In order to be suitable for use, especially in military weapons where high rate of fire and absolute dependability are prime considerations, a plastic cartridge case must overcome the foregoing problems and in addition must be resistant to attack by moisture, sunlight, temperature extremes and other environmental factors over prolonged periods of time while in storage, transportation and use.
  • the present invention contemplates a new and improved plastic cartridge case which has the advantage of light weight and low cost and yet has increased strength to resist firing stresses, is protected against heat degradation even in the hot chamber of the weapon, has good abrasion resistance and lubricity and excellent resistance to environmental attack.
  • a plastic cartridge case with a heavy metal skin at high stress points and a thin metal film elsewhere on the cartridge.
  • a non-reinforced plastic cartridge case is provided with a heavy metal skin at critical stress points to provide the requisite strength.
  • a fiber reinforced plastic cartridge case which is metal-plated to enhance its strength and its heat and environmental resistance.
  • a one piece reinforced plastic cartridge case which has a first metal skin of about 1 to 2 mils thickness over its outer surface, a second metal skin of about 5 to 7 mils thickness: over its outer base area, and a metal film of about .05 to 0.1 mils. thickness over its inside surface.
  • a method of manufacturing a metallized plastic cartridge case by forming a fiberwound cup on the end of a fabric sleeve, inserting the cup-sleeve combination into a mold, expanding said sleeve into said mold by means of an expandable mandrel, molding the cartridge case around said expandable mandrel, and metal-plating the molded cartridge case.
  • a metallized plastic cartridge comprising resin-impregnating a sleeve-cup combination to form a blank which is then molded around an expandable mandrel.
  • the blank is formed by injecu'on molding from a two stage thermosetting resin without imposing a permanent set, and the cartridge is then formed by compressing the extractor area and blow-molding the rest of the case from the blanlr.
  • the principal object of the present invention is to provide a light weight, low cost, high strength, high heat and abrasion resistant plastic cartridge case.
  • F IG. 1 is a schematic, partial section view of a cartrdige case seated in a gun.
  • FIG. 2 is a schematic view of a typical section of a cartridge case showing stresses as force arrows.
  • FIGS. 3 and 3a are schematic drawings representing the sequence of steps of a preferred manufacturing method in accordance with the invention and the reinforced cartridge case obtained thereby.
  • FIG. 4 is a schematic drawing representing the sequence of steps in another preferred manufacturing method.
  • FIG. 5 is a cross section view of a finished cartridge made in accordance with one aspect of the invention.
  • FIG. 5A is an enlarged cross section of the cartridge wall.
  • FIG. I a schematic diagram is shown in partial section, of the base of the cartridge case seated within the firing chamber of a weapon.
  • the chamber may be considered to be formed by the rear most portions of the gun barrel 1 and the gun backstop 2.
  • the cartridge case is shown generally at 3, with the walls of the cartridge case designated 5 and the base portion 7.
  • the cartridge primer charge is shown at 8.
  • a firing pin is shown positioned within the gun backstop and adapted to be forced forward by suitable means (not shown) so as to detonate primer charge 8.
  • firing pin 10 strikes primer charge 8 which detonates and in turn detonates the main powder charge (not shown) contained within cartridge case 3.
  • severe stresses are imposed upon the cartridge case.
  • the stresses imposed upon the cartridge case may be described as axial stresses, radial stresses and circumferential, or hoop stresses. These stresses are shown diagramatically in FIG. 2 wherein 11 represents generally a section of the cartridge case wall.
  • the arrows l2 and 12' represent the radial stresses imposed upon the case, the arrows 13 and 13 represent the axial stresses posed upon the case by firing, and the arrows l4 and 14' represent the circumferential or hoop stresses.
  • plastics to provide additional strength are to provide an aluminum, iron or other metal powder filling.
  • Another well known method of enhancing the strength of plastics is by the addition of fibers or fabrics within the plastic composition to provide reinforcing strength.
  • the plastic arti-. cle may be formed around or have embedded within it fibers of various materials to enhance its strength. Glass filaments, rovings, chopped fibers, filament windings, etc., are well known in such reinforcing applications.
  • the surface relationships between the metal powder or fiber reinforcing means and the plastic may be enhanced by the addition of coupling agents, such as silanes, to improve surface adhesion between the reinforcing material adn the plastic resin.
  • Table I shows the enhanced strength obtainable by the addition of fillers and glass fabric to plastic resins.
  • Table 1 also shows the tensile strength range of brass and aluminum alloys and it is seen that even with powder filling and glass fabric reinforcement the tensile strength of plastics is generally insufficient to meet the requirements of resisting the stresses to which a cartridge case is subjected.
  • any plastic which has the requisite proper ties of moldability, strength and capability of being metal plated may be used in the invention.
  • a combination or alloy of two or more resins is preferred for use in the invention whereby desired characteristics may be obtained.
  • An alloy of therrnosetting and thermoplastic resins has been found to be particularly useful in the process of manufacturing cartridge cases as is described more fully hereinbelow.
  • the cartridge case of the invention may be made from polysulfone, polyethylene, polypropylene, acrylontrile-butadiene-styrene (ABS), polycarbonate, polyester, epoxy, phenolicaldehyde, melamine-formaldehyde, acrylate, polyvinyl, sytrene and polyamid (nylon) resins or combinations thereof.
  • ABS acrylontrile-butadiene-styrene
  • polycarbonate polyester
  • epoxy phenolicaldehyde
  • melamine-formaldehyde acrylate
  • polyvinyl, sytrene and polyamid (nylon) resins or combinations thereof polyamid (nylon) resins or combinations thereof.
  • fillers and fiber or cloth reinforcement may be used to enhance the strength, stability, hardness and elasticity of the metal-plated plastic case.
  • the metal plating of the case is essential to providing a cartridge case with sufficient strength and other satisfactory properties as described above.
  • a satisfactory cartridge case can be made in accordance with the invention wherein the total metal content (plating and fillers) is not more than about 3 percent by weight.
  • Typical plating metals which may be used in the invention are nickel and chrome. Other metals may be used.
  • Table ll shows typical properties of plated and unplated polysolfone. The increases in structural strength amounts to roughly 25 percent whereas the increase in flexural modulus is approximately four-fold.
  • plastic cartridge cases can be manufactured which can withstand firing stresses and have other desirable characteristics such as rapid elastic recovery so that such cases are suitable for use in weapons and particularly in automatic, high rate-of-fire weapons.
  • the improvement in strength can be attributed at least in part to an inter nal effect caused by the metal film which prevents the formation of breach points on the surface of the plastic.
  • the metal film is believed to accomplish this by bridging each point on the surface of the plastic to each other point.
  • An additional contribution to the overall strength is, of course, made by the strength and elasticity of the metal film itself.
  • the elastic recovery rate of plastic is improved by the metal plating which enhances the flexural modulus of the plated composite material. It has been found that a metal film thickness of up to 5 mils, preferably 0.05 to 2 mils, suffices, in conjunction with reinforced plastic cartridge cases, to provide the requisite strength, whereas metal sltin thicknesses up to 20 mils, preferably about 5 to 7 mils thickness, are required at high stress areas, e.g., the base and exh tractor groove area of the cartridge, when a nonreinforced plastic is used.
  • plasticizers and fiber reinforcement materials enhances the flexural modulus and therefore the elastic recovery rate of the plastic. It has'been found that by suitably selecting one or more of these elements, i.e., metal plating, suitable plasticizers, and reinforcing materials, a plastic cartridge case can be made to provide the desired strength and tlexural characteristics.
  • Plastic fiber reinforcement can. be effected in numerous ways. As aforesaid, chopped, random length fibers may be employed, or continuous fiber filaments or woven fabric lay-ups may be employed, or a combination of these. in one preferred embodiment of the invention, wound filaments, that is continuous filaments which are wound in a specific manner within the finished cartridge case, are employed to provide enhanced strength.
  • any type of reinforcing filament is within the scope of this invention, it is particularly pre ferred to employ glass fiber filaments as the reinforcing medium.
  • glass fiber filaments Various types are known. The glass fibers are available in a variety of forms such as copped, strands, yarns, woven fabrics and roving. Rovings are rope-like bundles of continuous untwisted strands and provide great strength reinforcement.
  • Continuous, reinforcing filaments may be wound in place instead of, or in addition to, dispersed fibers so that the density and direction of the filaments can be closely controlled.
  • One advantage of such filament winding is that by properly controlling the angle be tween the wound filaments and the direction in which stresses are imposed, enhanced directional strength may be obtained. By properly selecting a winding angle, the strength of the cartridge in relation to hoop, radial and axial stresses may be tailored to the particular design requirements. Accordingly, in one aspect of the present invention a filament-wound reinforcement is employed to enhance the strength of the plastic cartridge case. In another aspect of the invention filamentwound reinforcement is used to supplement other reinforcing means, as set forth in detaill in connection with the description of MG. 5.
  • a sleeve shaped reinforcing fabric 20 is impregnated with a thermoplastic resin or a thermosetting resin or a combination of the two.
  • a thermoplastic resin or a thermosetting resin or a combination of the two may be used.
  • the sleeve which may be made of nylon, glass fiber or other material, may advantageously then be extruded with the thermoplastic or thermosetting resin, as illustrated in step 11, wherein the extruder is shown generally at 21.
  • the sleeve is cut into tubes 22 the length of which is somewhat in excess of the length of the finished cartridge.
  • step 3! the cut tube 22 is inserted into an open mold designated generally as Ed, and an expandable mandrel 2d, comprising essentially a diagraphm 2d of rubber or other elastic material in a plunger 30, is inserted (in step 43) within the tube 22.
  • the mold sections 243A and Zdh are then closed.
  • Plunger 3ft serves to collect the impregnated fabric sleeve and jam it to the upper portion of the closed mold which, as is seen in the drawing of step d, forms the base of the cartridge case.
  • step 55 the mandrel is inflated by compressed air admitted via line 32 and pressure gauge 33 and controlled by valve 34.
  • the expanded diaphragm 28 forms the interior of the cartridge case.
  • step 6 the mold is cooled, if necessary (generally, cooling is required only for thermoplastics), diaphragm 28 is deflated and the mandrel is removed. The mold is opened and the cartridge ejected.
  • the resultant product is shown in step 7 to comprise a one-piece plastic cartridge case 36 reinforced by the reinforcing sleeve (not shown) which extends throughout the wall section 40 of the finished case in a uniform single layer and which is bunched-up at the base section 42 into multiple layers to provide added strength.
  • the finished cartridge case then proceeds to the metal plating process (not shown) wherein metal is plated on both the inside and outside surfaces of the finished case.
  • step 1 a fabric sleeve 20 is placed upon a winding mandrel 50.
  • filament winding reinforcement of the base area is employed in conjunction with the fabric sleeve reinforcement. Specifically, a filament is wound from spool 52 about one end of the mandrel to form a filament wound cup 54 in combination with the sleeve 20, as is shown in step 2.
  • the winding may be employed underneath the sleeve or both under and over the sleeve, it is preferred that the sleeve be employed over the filament-wound cup to provide greater strength at the ejector groove of the cartridge.
  • a filament or tape may be used as the winding.
  • a resin filament may be wound simultaneously with a glass fiber or other reinforcing filament to obtain more intimate resin impregnation of the winding.
  • the finished combined sleeve and filament-wound cup end may be impregnated with a plastic resin, for example polysulfone, by an injection molding technique or by a solvent resin solution impregnation technique to form impregnated sleeve-cup 56.
  • the fiber sleeve and filament-wound cup combination may be soaked in a resin dissolved in solvent or a resin may be molded around the sleeve-cup combination to form the resin impregnated sleeve-cup molding blank 56 shown in step 3.
  • the remaining steps of the process are silimar to that described with respect to FIG. 3.
  • the molding blank is placed within a mold and an inflatable mandrel inserted therein to mold the cartridge case into its final shape.
  • the molded cartridge case then is metal plated as described with reference to FIG. 3.
  • step 7 of FIG. 3 to represent the molded plastic case obtained by the process of FIG. 4, walls 40 are reinforced by the single layer of the sleeve while base section 42 is additionally reinforced by the wound cup. After molding, polishing and grinding may be accomplished to obtain final specification tolerances and the cartridge then sent to metal plating.
  • the cartridge case may be reinforced by fibers, cloth or wound filaments, or a combination thereof, so that such reinforcement may be tailored to accommodate areas of different stress throughout the case.
  • a high stress area such as the extractor or base area, will suitably be highly reinforced
  • Filament winding may be employed throughout the cartridge case, disposed at selected winding angles, as is known to those skilled in the filament winding art, to accommodate the different stresses throughout the case by enhancing the strength of the case in particular directions.
  • the sleeve reinforcement or sleeve-cup reinforcement may be pre-formed and impregnated with a resin by molding or solvent resin impregnation techniques. More than a single layer of sleeve reinforcement may be used, although generally a single layer is sufficient and preferred in the wall area of the cartridge while it is preferred to bunch-up the sleeve into multiple layers in the base area of the cartridge.
  • the plastic case may be fiber-reinforced, by which is meant that randomly dispersed chopped fiber, fiber rovings, windings cloth, matt, fabric or tape or any combination thereof may be embedded within the plastic case.
  • fillers such as iron, aluminum or other metal powder or the like may be added to the plastic.
  • Coupling agents such as silanes or the like, which are well known to the art may be used in conjunction with the fillers and/or fiber reinforcement.
  • a plastic cartridge case without fiber, filament or fibersleeve reinforcement may be molded and then metal plated. While FIG. 3 shows a single molding step in relation to mold 24, the cartridge base or extractor area may be compression-molded while the remainder of the case is blow-molded.
  • mixtures of resins and plasticizers may be formulated to tailor-make desired strength and flexural modulus characteristics.
  • Metal plating of the plastic cartridge case can be carried out by any known means.
  • the part to be plated is cleaned and its surface is conditioned or etched in an acid bath to promote bonding between the plastic and the subsequent plate. Conditioning is followed by immersion in a sensitizing solution.
  • An activating step, in which the plastic surface is seeded with a catalyst, follows.
  • the catalyzed plastic surface is then immersed in a copper or nickel plating bath, and the plating metal is reduced out of the solution so that it deposits upon the plastic surface. Typically, thicknesses on the order of 10 to 40 millionths of an inch are obtained.
  • This electroless plating step provides the plastic with a metal surface so that it can be electroplated by standard electroplating procedures as with any other article.
  • the strength added by metal plating the one piece plastic cartridge may be such, where relatively thick platings are used, as to eliminate the necessity for fiber or other reinforcing of the plastic.
  • FIG. 5 there is shown a metalized one piece plastic cartridge case formed without fiber reinforcement of the plastic.
  • a first metal skin 60 is plated over the plastic body 62 to a thickness of 1 to 2 mils.
  • An inside metal film 64 is plated on the interior of the cartridge to a thickness of from about 0.05 to about 0.1 mils.
  • a second metal skin 66 is plated on the outside of the base portion 68 of the cartridge to a thickness of from 5 to 7 mils. The thick, second metal skin aids in providing the added strength required at the'base section of the cartridge.
  • a plastic coating 69 may be overlaid on the first metal skin so that a smooth transition surface between second metal skin and the walls of the cartridge is provided. This is more clearly shown in FIG. A.
  • the various thickness of plating may be obtained by plating methods well known to those skilled in the art.
  • a non-fiber reinforced plastic cartridge case with metal skin and film at least of the thickness specified with respect to the embodiment of FIG. 5, has sufficient strength and flexural modulus to serve satisfactorily as a 20 mm cartridge case.
  • the strength of a plastic cartridge case may be enhanced to a level which will permit the case to withstand firing stresses.
  • the metal plating also provides other desirable properties.
  • the added heat resistance provided to the case by its metal plated surface is well protected from powder bum-through upon firing of the cartridge.
  • the outer metal plated sur- -face enhances the strength and hardness of the case whereby the cartridge is able to withstand the mechanical handling of loading, chambering and extraction carried out by the firing mechanism of the weapon.
  • a one piece cartridge case made of plastic, the surfaces of which are metal plated to the extent that the weight of metal in said case is not more than about 3 percent of the total weight of plastic and metal in said case, said plastic is fiber-reinforced by a cloth sleeve disposed in a single layer, substantially tubular configuration embedded within the substantially cylindrical walls of said case, and by a wound filament cup embedded in the base area of said case.

Abstract

A metal-plated plastic cartridge case. A film of metal, preferably between 0.05 to 0.1 mils thick is plated onto a plastic cartridge case to increase the strength of the case and to provide it with other favorable characteristics such as abrasion and burn-through resistance and lubricity. The plastic case may comprise a filled or a fiber reinforced plastic. A plated metal skin preferably 5 to 7 mils thick may also be employed in conjunction with non-reinforced plastic cases to increase the strength of the case in critical areas. The invention also concerns a method of manufacturing a metal-plated cartridge case wherein a thermo plastic resin combined with a two-stage thermosetting resin and molded into a cartridge case blank, taking care not to achieve a permanent set. The blank is then molded into a cartridge case, preferably by compressing the extractor area and blow-molding the remainder of the cartridge case. Alternatively, the blank may be formed by extrusion or resin solvent solution impregnation of a sleeve reinforcement. In either case, the finished molded cartridge case is then metal plated to the required thickness of metal.

Description

Burgess METAL CUATED PLAS'HC CARTRIDGE CASE AND METHOD OF MANUFACTURE [75] Inventor: Lester l5. Burgess, Swarthmore, Pa.
[73] Assignee: Gulf & Western Industrial Products Company, Grand Rapids, Mich.
[221 Filed: Dec. 18, 1970 [2]] Appl. No.: 99,495
[52] US. Cl. 102/43 P [51] lint. Cl. F42b 5/30 [58] Field of Search 102/43, 43 D, 38, 102/28, 42
[56] Relerences Cited UNITED STATES PATENTS 3,351,014 11/1967 Metcalf et a1. 102/43 1? 2,564,695 7/1951 Johnson Jr. et a] 102/43 1 144,011 10/1873 Wood 102/43 R 2,748,701 6/1956 Barrows... 102/43 P 2,837,456 6/1958 Parilla 102/43 P 2,953,990 9/1960 Miller.... 102/43 1P 3,429,260 2/1969 Corren 102/28 3,426,682 2/1969 Corren et a1 102/28 I, III,
Primary Examiner-Robert F. Stahl AnomeyMeyer, Tilberry & Body [5 7 ABSTRACT A metal-plated plastic cartridge case. A film of metal, preferably between 0.05 to 0.1 mils thick is plated onto a plastic cartridge case to increase the strength of the case and to provide it with other favorable characteristics such as abrasion and bum-through resistance and lubricity. The plastic case may comprise a filled or a fiber reinforced plastic. A plated metal skin preferably 5 to 7 mils thick may also be employed in conjunction with non-reinforced plastic cases to increase the strength of the case in critical areas. The invention also concerns a method of manufacturing a metal-plated cartridge case wherein a thermo plastic resin combined with a two-stage thermosetting resin and molded into a cartridge case blank, taking care not to achieve a permanent set. The blank is then molded into a cartridge case, preferably by compressing the extractor area and blow-molding the remainder of the cartridge case. All tematively, the blank may be formed by extrusion or resin solvent solution impregnation of a sleeve reinforcement. In either case, the finished molded cartridge case is then metal plated to the required thickness of metal.
5 Claims, 7 Drawing Figures II II II II II PAIENIE JUm 191a STRESS 70,00 STRESS 60,000
SHEETl 0F STEP4 mvsm-on LESTER E. BURGESS BY ATTORNEYS.
PATENTEDJUL3 1 I975 SHEET 2 0F 3 INVENTOR. LESTE R E. BURGESS W W W ATTORNEYS.
METAL tCOATlElD PLASTMI CARTRHDGE CASE AND METHOD F MANUFACTURE This invention pertains to the art of cartridge cases for munitions and particularly to plastic cartridge cases.
The invention more particularly pertains to plastic cartridge cases which are metallized, that is, which are coated with a thin layer of metal, and to a method of manufacturing such metallized cartridge cases.
Cartridge cases were originally made from various brass compositions which satisfied the requirement of the munitions industry for many years. Brass has excellent characteristics such as strength, formability, good elastic recovery after distortion, heat stability, heat transfer control, corrosion resistance, and lubricity. However, considerations of cost, weight, and other factors such as availability of the raw materiaLhave led to the manufacture of cartridge cases from materials other than brass, notably from plastics. Among the advantages available by producing cartridge cases from plastic are the fact that plastics are made from raw materials which are in plentiful supply, plastics are corrosion resistant and lend themselves to improvements in production efficiency and reduction in cost. Furthermore, a plastic cartridge case is much lighter than a corresponding case made from brass. The weight reduction is particularly important for munitions which are designed to be used or carried aboard aircraft.
The principal disadvantage of manufacturing cartridge cases from plastic has been the low strength of plastic as compared to brass or other metals traditionally used in cartridge cases. The severest test of the strength of a cartridge case occurs during firing of the cartridge. The pressure of the exploding gas imposes severe stresses upon the cartridge case and it is necessary that the case be able to withstand the stresses without rupturing and without being distorted to the extent that extraction of the case from the weapon is impeded.
Another important factor in extraction, particularly in high rate of fire automatic weapons, is elastic recovery of the cartridge case after firing. That is, the case may be distorted for a brief instant of time, measured in small fractions of a second, at the moment of explosion of the charge. it is important that the case recover from distortion to its original dimension very rapidly so that the case may be readily extracted from the chamber as soon as the cartridge is fired.
Another problem arising in the use of plastic cartridge cases has been the heat degradation of plastic when the cartridge enters the hot chamber or remains in the hot chamber after firing. This problem is particularly acute in automatic weapons where the rate of fire is high and there is not opportunity for the chamber to cool off between rounds.
Yet another problem encountered by the use of plastic cartridge cases has been the susceptibility of the case to abrasion. The cartridge case must be able to withstand handling without the formation of burrs during the loading process, in being assembled into belts for automatic-fire weapons by metal linkages, and in being manipulated by the chambering and extraction mechanism of the weapon. Abrasion or deformation of the case would tend to cause it to jam in the weapon, causing a malfunction of the weapon.
Another problem area associated with plastic cartridge cases is burn-through of the fired powder. That is, the case must not be susceptible to the exploded powder burning a small hole through the case upon firing. Such bum-through is, of course, highly undesirable in causing a leakage of powder and an eruption or distortion in the surface of the case.
Yet another problem encountered in the use of plastic cartridge cases is the lack of lubricity of most plastics as compared to brass, whereby extraction of the round from the hot chamber is hampered.
Finally, the base of the cartridge case must be particularly rigid and have sufficient strength to protect the primer hole during the loading and firing sequence of the cartridge; the lack of strength of plastics as compared to metals is a particular problem of this regard.
In order to be suitable for use, especially in military weapons where high rate of fire and absolute dependability are prime considerations, a plastic cartridge case must overcome the foregoing problems and in addition must be resistant to attack by moisture, sunlight, temperature extremes and other environmental factors over prolonged periods of time while in storage, transportation and use.
The present invention contemplates a new and improved plastic cartridge case which has the advantage of light weight and low cost and yet has increased strength to resist firing stresses, is protected against heat degradation even in the hot chamber of the weapon, has good abrasion resistance and lubricity and excellent resistance to environmental attack.
In accordance with one aspect of the invention there is provided a plastic cartridge case with a heavy metal skin at high stress points and a thin metal film elsewhere on the cartridge.
In accordance with another aspect of the invention, a non-reinforced plastic cartridge case is provided with a heavy metal skin at critical stress points to provide the requisite strength.
In accordance with another aspect of the invention, there is provided a fiber reinforced plastic cartridge case which is metal-plated to enhance its strength and its heat and environmental resistance.
In accordance with still another aspect of the inven tion, there is provided a one piece reinforced plastic cartridge case which has a first metal skin of about 1 to 2 mils thickness over its outer surface, a second metal skin of about 5 to 7 mils thickness: over its outer base area, and a metal film of about .05 to 0.1 mils. thickness over its inside surface.
In accordance with yet another aspect of the invention, there is provided a method of manufacturing a metallized plastic cartridge case by forming a fiberwound cup on the end of a fabric sleeve, inserting the cup-sleeve combination into a mold, expanding said sleeve into said mold by means of an expandable mandrel, molding the cartridge case around said expandable mandrel, and metal-plating the molded cartridge case.
in yet another aspect of the invention, there is provided another method of manufacturing a metallized plastic cartridge comprising resin-impregnating a sleeve-cup combination to form a blank which is then molded around an expandable mandrel. In yet another aspect, the blank is formed by injecu'on molding from a two stage thermosetting resin without imposing a permanent set, and the cartridge is then formed by compressing the extractor area and blow-molding the rest of the case from the blanlr.
The principal object of the present invention is to provide a light weight, low cost, high strength, high heat and abrasion resistant plastic cartridge case.
It is yet another object of the invention to provide a one piece plastic cartridge case plated with a thin layer of metal to enhance the strength, lubricity, and heat and environmental resistance of the case.
It is yet another object of the invention to provide a fiber-reinforced metallized plasticcartridge case.
It is yet another object of the invention to provide an efficient method of manufacturing such cartridge cases.
The invention may take physical form in certain parts and arrangements of parts, preferred embodiments of which will be described in detail in the specification and illustrated in the accompanying drawings which form a part hereof and wherein F IG. 1 is a schematic, partial section view of a cartrdige case seated in a gun.
FIG. 2 is a schematic view of a typical section of a cartridge case showing stresses as force arrows.
FIGS. 3 and 3a are schematic drawings representing the sequence of steps of a preferred manufacturing method in accordance with the invention and the reinforced cartridge case obtained thereby.
FIG. 4 is a schematic drawing representing the sequence of steps in another preferred manufacturing method.
FIG. 5 is a cross section view of a finished cartridge made in accordance with one aspect of the invention.
FIG. 5A is an enlarged cross section of the cartridge wall.
Referring to FIG. I, a schematic diagram is shown in partial section, of the base of the cartridge case seated within the firing chamber of a weapon. The chamber may be considered to be formed by the rear most portions of the gun barrel 1 and the gun backstop 2. The cartridge case is shown generally at 3, with the walls of the cartridge case designated 5 and the base portion 7. The cartridge primer charge is shown at 8. A firing pin is shown positioned within the gun backstop and adapted to be forced forward by suitable means (not shown) so as to detonate primer charge 8. Upon firing, firing pin 10 strikes primer charge 8 which detonates and in turn detonates the main powder charge (not shown) contained within cartridge case 3. Upon detonation, severe stresses are imposed upon the cartridge case. Internal pressure stresses (which reach typical values of about 50,000 to 70,000 PSI or higher during firing) are imposed upon the case. The stresses imposed upon the cartridge case may be described as axial stresses, radial stresses and circumferential, or hoop stresses. These stresses are shown diagramatically in FIG. 2 wherein 11 represents generally a section of the cartridge case wall. The arrows l2 and 12' represent the radial stresses imposed upon the case, the arrows 13 and 13 represent the axial stresses posed upon the case by firing, and the arrows l4 and 14' represent the circumferential or hoop stresses.
Where there are abrupt changes in shape or thickness of the case such as at the extractor groove shown as 9 in FIG. I, the stresses are intensified. Typical stress distribution lines at the base and lower wall portion of the cartridge case during firing with values in pound per square inch are shown in FIG. 1. Stresses of between 50,000 to 70,000 PSI are shown to be incurred by the cartridge case which stresses are far in excess of the maximum strength of plastics. In order to withstand the stresses of firing, a cartridge case made of plastic will require reinforcement.
One method of reinforcing plastics to provide additional strength is to provide an aluminum, iron or other metal powder filling. Another well known method of enhancing the strength of plastics is by the addition of fibers or fabrics within the plastic composition to provide reinforcing strength. For example, the plastic arti-. cle may be formed around or have embedded within it fibers of various materials to enhance its strength. Glass filaments, rovings, chopped fibers, filament windings, etc., are well known in such reinforcing applications.
The surface relationships between the metal powder or fiber reinforcing means and the plastic may be enhanced by the addition of coupling agents, such as silanes, to improve surface adhesion between the reinforcing material adn the plastic resin.
Finally, mixtures of various plastic resins may be employed to obtain desired characteristics including enhanced strength. 1
Table I below, shows the enhanced strength obtainable by the addition of fillers and glass fabric to plastic resins. Table 1 also shows the tensile strength range of brass and aluminum alloys and it is seen that even with powder filling and glass fabric reinforcement the tensile strength of plastics is generally insufficient to meet the requirements of resisting the stresses to which a cartridge case is subjected.
TABLE I COMPARISON OF TENSILE STRENGTH FOR SELECTED PLASTICS AND METALS Material Tensile Strength (1,000 Psi) Unfilled Plastics:
Nylon (type 6 molded) 7 to 12 Polycarbonate 8 to 9 Polysulfone [0 to II Filled and Fiber Reinforced Plastics:
Epoxy (glass filled) 10 to 30 Nylon 6/10 (20 to 40% glass filled) 13 to 35 Polyester (premix chopped glass filled) 4 to 10 Polycarbonate 12 to 20 Polyester (glass fabric reinforced webb) 30 to 50 Metals:
Brass Alloy 35 to 120 Steel Alloy to 290 Aluminum Alloy l3 to 83 It has been discovered that a plastic cartridge case of sufficient strength and with other desirable characteristics can be obtained by plating a plastic case with a thin film of metal, which provides not only the requisite strength but other additional beneficial characteristics. Metal plating of the plastic increases the tensile strength of the plastic by an appreciable amount, while the flexural modulus is increased by even greater ratio. The fiexural modulus (or Young's modulus) of a material generally reflects the resistance to deformation of the material under stress. For a given applied stress in pounds per square inch, a material with a high fiexural modulus will deform less than a material with a lower fiexural modulus. Material with a higher fiexural modulus has the better characteristics for instant elastic recovery from the stresses imposed by firing.
Generally, any plastic which has the requisite proper ties of moldability, strength and capability of being metal plated may be used in the invention. A combination or alloy of two or more resins is preferred for use in the invention whereby desired characteristics may be obtained. An alloy of therrnosetting and thermoplastic resins has been found to be particularly useful in the process of manufacturing cartridge cases as is described more fully hereinbelow. By way of example and not by way of limitation, the cartridge case of the invention may be made from polysulfone, polyethylene, polypropylene, acrylontrile-butadiene-styrene (ABS), polycarbonate, polyester, epoxy, phenolicaldehyde, melamine-formaldehyde, acrylate, polyvinyl, sytrene and polyamid (nylon) resins or combinations thereof. In addition, as described more fully hereinbelow, fillers and fiber or cloth reinforcement may be used to enhance the strength, stability, hardness and elasticity of the metal-plated plastic case.
The metal plating of the case is essential to providing a cartridge case with sufficient strength and other satisfactory properties as described above. However, it has been found that a satisfactory cartridge case can be made in accordance with the invention wherein the total metal content (plating and fillers) is not more than about 3 percent by weight. Typical plating metals which may be used in the invention are nickel and chrome. Other metals may be used.
Table ll shows typical properties of plated and unplated polysolfone. The increases in structural strength amounts to roughly 25 percent whereas the increase in flexural modulus is approximately four-fold.
TABLE ll TYPlCAL PROPERTIES OF PLATED (a) AND UN PLATED POLYSULFONE chrome b. No failure, even at melting point of resin It has been found that by using suitable thicknesses of metal plating, either alone or in combination with other reinforcing means, plastic cartridge cases can be manufactured which can withstand firing stresses and have other desirable characteristics such as rapid elastic recovery so that such cases are suitable for use in weapons and particularly in automatic, high rate-of-fire weapons. Without wishing to be bound by the correctness of the theory, it is believed that the improvement in strength can be attributed at least in part to an inter nal effect caused by the metal film which prevents the formation of breach points on the surface of the plastic. The metal film is believed to accomplish this by bridging each point on the surface of the plastic to each other point. An additional contribution to the overall strength is, of course, made by the strength and elasticity of the metal film itself. The elastic recovery rate of plastic is improved by the metal plating which enhances the flexural modulus of the plated composite material. it has been found that a metal film thickness of up to 5 mils, preferably 0.05 to 2 mils, suffices, in conjunction with reinforced plastic cartridge cases, to provide the requisite strength, whereas metal sltin thicknesses up to 20 mils, preferably about 5 to 7 mils thickness, are required at high stress areas, e.g., the base and exh tractor groove area of the cartridge, when a nonreinforced plastic is used.
The addition of plasticizers and fiber reinforcement materials enhances the flexural modulus and therefore the elastic recovery rate of the plastic. It has'been found that by suitably selecting one or more of these elements, i.e., metal plating, suitable plasticizers, and reinforcing materials, a plastic cartridge case can be made to provide the desired strength and tlexural characteristics.
Plastic fiber reinforcement can. be effected in numerous ways. As aforesaid, chopped, random length fibers may be employed, or continuous fiber filaments or woven fabric lay-ups may be employed, or a combination of these. in one preferred embodiment of the invention, wound filaments, that is continuous filaments which are wound in a specific manner within the finished cartridge case, are employed to provide enhanced strength.
While the use of any type of reinforcing filament is within the scope of this invention, it is particularly pre ferred to employ glass fiber filaments as the reinforcing medium. Various types of glass fibers are known. The glass fibers are available in a variety of forms such as copped, strands, yarns, woven fabrics and roving. Rovings are rope-like bundles of continuous untwisted strands and provide great strength reinforcement.
Continuous, reinforcing filaments may be wound in place instead of, or in addition to, dispersed fibers so that the density and direction of the filaments can be closely controlled. One advantage of such filament winding is that by properly controlling the angle be tween the wound filaments and the direction in which stresses are imposed, enhanced directional strength may be obtained. By properly selecting a winding angle, the strength of the cartridge in relation to hoop, radial and axial stresses may be tailored to the particular design requirements. Accordingly, in one aspect of the present invention a filament-wound reinforcement is employed to enhance the strength of the plastic cartridge case. In another aspect of the invention filamentwound reinforcement is used to supplement other reinforcing means, as set forth in detaill in connection with the description of MG. 5.
Referring now to FIG. 33, there is schematically depicted a sequence for manufacturing a reinforced onepiece metalized plastic cartridge case. in step 11 a sleeve shaped reinforcing fabric 20 is impregnated with a thermoplastic resin or a thermosetting resin or a combination of the two. For example, polysulfone plastic resins may be used. The sleeve, which may be made of nylon, glass fiber or other material, may advantageously then be extruded with the thermoplastic or thermosetting resin, as illustrated in step 11, wherein the extruder is shown generally at 21. in step 2, the sleeve is cut into tubes 22 the length of which is somewhat in excess of the length of the finished cartridge. in step 3!, the cut tube 22 is inserted into an open mold designated generally as Ed, and an expandable mandrel 2d, comprising essentially a diagraphm 2d of rubber or other elastic material in a plunger 30, is inserted (in step 43) within the tube 22. The mold sections 243A and Zdh are then closed. Plunger 3ft serves to collect the impregnated fabric sleeve and jam it to the upper portion of the closed mold which, as is seen in the drawing of step d, forms the base of the cartridge case. in step 55, the mandrel is inflated by compressed air admitted via line 32 and pressure gauge 33 and controlled by valve 34. The expanded diaphragm 28 forms the interior of the cartridge case. In step 6, the mold is cooled, if necessary (generally, cooling is required only for thermoplastics), diaphragm 28 is deflated and the mandrel is removed. The mold is opened and the cartridge ejected.
The resultant product is shown in step 7 to comprise a one-piece plastic cartridge case 36 reinforced by the reinforcing sleeve (not shown) which extends throughout the wall section 40 of the finished case in a uniform single layer and which is bunched-up at the base section 42 into multiple layers to provide added strength. The finished cartridge case then proceeds to the metal plating process (not shown) wherein metal is plated on both the inside and outside surfaces of the finished case.
Referring now to FIG. 4, which shows a modified process of preparing the cartridge case, in step 1 a fabric sleeve 20 is placed upon a winding mandrel 50.
As hereinabove stated, particularly high stresses are encountered at the base of the cartridge where abrupt changes in cross-sectional area occur. Accordingly, filament winding reinforcement of the base area is employed in conjunction with the fabric sleeve reinforcement. Specifically, a filament is wound from spool 52 about one end of the mandrel to form a filament wound cup 54 in combination with the sleeve 20, as is shown in step 2.
While the winding may be employed underneath the sleeve or both under and over the sleeve, it is preferred that the sleeve be employed over the filament-wound cup to provide greater strength at the ejector groove of the cartridge. A filament or tape may be used as the winding. A resin filament may be wound simultaneously with a glass fiber or other reinforcing filament to obtain more intimate resin impregnation of the winding. The finished combined sleeve and filament-wound cup end may be impregnated with a plastic resin, for example polysulfone, by an injection molding technique or by a solvent resin solution impregnation technique to form impregnated sleeve-cup 56. That is, the fiber sleeve and filament-wound cup combination may be soaked in a resin dissolved in solvent or a resin may be molded around the sleeve-cup combination to form the resin impregnated sleeve-cup molding blank 56 shown in step 3. The remaining steps of the process are silimar to that described with respect to FIG. 3. The molding blank is placed within a mold and an inflatable mandrel inserted therein to mold the cartridge case into its final shape. The molded cartridge case then is metal plated as described with reference to FIG. 3. When preliminary molding or extruding with thermosetting resins is utilized to impregnate the sleeve-cup combination to form the molding blank, care is taken to preclude a permanent set of the resin so that it may be remolded in mold 24 to the finished shape. Considering step 7 of FIG. 3 to represent the molded plastic case obtained by the process of FIG. 4, walls 40 are reinforced by the single layer of the sleeve while base section 42 is additionally reinforced by the wound cup. After molding, polishing and grinding may be accomplished to obtain final specification tolerances and the cartridge then sent to metal plating.
In general, it is seen that the cartridge case may be reinforced by fibers, cloth or wound filaments, or a combination thereof, so that such reinforcement may be tailored to accommodate areas of different stress throughout the case. A high stress area, such as the extractor or base area, will suitably be highly reinforced Filament winding may be employed throughout the cartridge case, disposed at selected winding angles, as is known to those skilled in the filament winding art, to accommodate the different stresses throughout the case by enhancing the strength of the case in particular directions.
The sleeve reinforcement or sleeve-cup reinforcement may be pre-formed and impregnated with a resin by molding or solvent resin impregnation techniques. More than a single layer of sleeve reinforcement may be used, although generally a single layer is sufficient and preferred in the wall area of the cartridge while it is preferred to bunch-up the sleeve into multiple layers in the base area of the cartridge.
The plastic case may be fiber-reinforced, by which is meant that randomly dispersed chopped fiber, fiber rovings, windings cloth, matt, fabric or tape or any combination thereof may be embedded within the plastic case.
In addition or in lieu of fiber reinforcement, fillers such as iron, aluminum or other metal powder or the like may be added to the plastic.
Coupling agents, such as silanes or the like, which are well known to the art may be used in conjunction with the fillers and/or fiber reinforcement.
A plastic cartridge case without fiber, filament or fibersleeve reinforcement may be molded and then metal plated. While FIG. 3 shows a single molding step in relation to mold 24, the cartridge base or extractor area may be compression-molded while the remainder of the case is blow-molded.
Finally, mixtures of resins and plasticizers may be formulated to tailor-make desired strength and flexural modulus characteristics.
Metal plating of the plastic cartridge case can be carried out by any known means. Typically, the part to be plated is cleaned and its surface is conditioned or etched in an acid bath to promote bonding between the plastic and the subsequent plate. Conditioning is followed by immersion in a sensitizing solution. An activating step, in which the plastic surface is seeded with a catalyst, follows.
The catalyzed plastic surface is then immersed in a copper or nickel plating bath, and the plating metal is reduced out of the solution so that it deposits upon the plastic surface. Typically, thicknesses on the order of 10 to 40 millionths of an inch are obtained. This electroless plating step provides the plastic with a metal surface so that it can be electroplated by standard electroplating procedures as with any other article.
The strength added by metal plating the one piece plastic cartridge may be such, where relatively thick platings are used, as to eliminate the necessity for fiber or other reinforcing of the plastic. Referring now to FIG. 5, there is shown a metalized one piece plastic cartridge case formed without fiber reinforcement of the plastic. A first metal skin 60 is plated over the plastic body 62 to a thickness of 1 to 2 mils. An inside metal film 64 is plated on the interior of the cartridge to a thickness of from about 0.05 to about 0.1 mils. A second metal skin 66 is plated on the outside of the base portion 68 of the cartridge to a thickness of from 5 to 7 mils. The thick, second metal skin aids in providing the added strength required at the'base section of the cartridge. A plastic coating 69 may be overlaid on the first metal skin so that a smooth transition surface between second metal skin and the walls of the cartridge is provided. This is more clearly shown in FIG. A.
The various thickness of plating may be obtained by plating methods well known to those skilled in the art.
While the thick metal coating is desirable in order to obtain sufficient strength for non-reinforced cartridges, it will be appreciated that even in the case of fiberreinforced cartridges, variations in coating thickness from one point on the cartridge to another may be desired in order to enhance the strength of certain area of the case.
A non-fiber reinforced plastic cartridge case with metal skin and film at least of the thickness specified with respect to the embodiment of FIG. 5, has sufficient strength and flexural modulus to serve satisfactorily as a 20 mm cartridge case.
It is thus seen that by using one or more of the techniques of fiber reinforcement, powder additive, blending of plastic resins and addition of coupling agents, in combination with the essential step of metal-plating, the strength of a plastic cartridge case may be enhanced to a level which will permit the case to withstand firing stresses. The metal plating also provides other desirable properties.
Among these other desirable properties are the added heat resistance provided to the case by its metal plated surface. The plated interior surface of the cartridge is well protected from powder bum-through upon firing of the cartridge. The outer metal plated sur- -face enhances the strength and hardness of the case whereby the cartridge is able to withstand the mechanical handling of loading, chambering and extraction carried out by the firing mechanism of the weapon.
It will further be apparent that many modifications of the above-described specific embodiments will occur to those skilled in the art upon the reading and understanding of the within description and that it is intended to include all such modifications within the described invention insofar as they fall within the scope of the appended claims or the equivalent thereof.
What is claimed is:
1. A one piece cartridge case made of plastic, the surfaces of which are metal plated to the extent that the weight of metal in said case is not more than about 3 percent of the total weight of plastic and metal in said case, the outside of said case is metal plated to a metal thickness of between about 1 to about 2 mils, the inside of said case is metal plated to a metal thickness of between about 0.05 to about 0.0l mils, and the outside of the base area of said case is metal plated to a metal thickness of about 5 to about 7 mils.
2. A one piece cartridge case made of plastic, the surfaces of which are metal plated to the extent that the weight of metal in said case is not more than about 3 percent of the total weight of plastic and metal in said case, said plastic is fiber-reinforced by a cloth sleeve disposed in a single layer, substantially tubular configuration embedded within the substantially cylindrical walls of said case, and by a wound filament cup embedded in the base area of said case.
3. The cartridge case of claim 2 wherein said plastic contains a particulate filler selected from the class consisting of aluminum, iron and mixtures thereof, and a coupling agent.
4. The cartridge case of claim 2 wherein said wound filament cup is disposed inside of said sleeve.
5. The cartridge case of claim 2 wherein said metal plating is nowhere thicker than about 5 mils.
1 I! i l t

Claims (4)

  1. 2. A one piece cartridge case made of plastic, the surfaces of which are metal plated to the extent that the weight of metal in said case is not more than about 3 percent of the total weight of plastic and metal in said case, said plastic is fiber-reinforced by a cloth sleeve disposed in a single layer, substantially tubular configuration embedded within the substantially cylindrical walls of said case, and by a wound filament cup embedded in the base area of said case.
  2. 3. The cartridge case of claim 2 wherein said plastic contains a particulate filler selected from the class consisting of aluminum, iron and mixtures thereof, and a coupling agent.
  3. 4. The cartridge case of claim 2 wherein said wound filament cup is disposed inside of said sleeve.
  4. 5. The cartridge case of claim 2 wherein said metal plating is nowhere thicker than about 5 mils.
US00099495A 1970-12-18 1970-12-18 Metal coated plastic cartridge case and method of manufacture Expired - Lifetime US3749021A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9949570A 1970-12-18 1970-12-18

Publications (1)

Publication Number Publication Date
US3749021A true US3749021A (en) 1973-07-31

Family

ID=22275290

Family Applications (1)

Application Number Title Priority Date Filing Date
US00099495A Expired - Lifetime US3749021A (en) 1970-12-18 1970-12-18 Metal coated plastic cartridge case and method of manufacture

Country Status (1)

Country Link
US (1) US3749021A (en)

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228736A1 (en) * 1982-07-31 1984-02-02 Dynamit Nobel Ag, 5210 Troisdorf Ammunition, especially rockets, with a plastic outer casing
US4796535A (en) * 1986-06-20 1989-01-10 Mauser-Werke Oberndorf Gmbh Adapter cartridge for insertion tube systems
US5165040A (en) * 1991-12-23 1992-11-17 General Dynamics Corp., Air Defense Systems Division Pre-stressed cartridge case
US6038978A (en) * 1998-02-11 2000-03-21 Olin Corporation Shotshell having a protective barrier layer
US6189454B1 (en) 1998-12-30 2001-02-20 Gary D. Hunt Inert practice round with solid body
US6591859B2 (en) * 2001-12-14 2003-07-15 Ming-Hsiu Shih Ball valve
US6694886B1 (en) * 1999-08-31 2004-02-24 The Ensign-Bickford Company Rigid reactive cord and methods of use and manufacture
US20060096489A1 (en) * 2002-08-08 2006-05-11 Ola Stark Insulated cartridge case and ammunition, method for manufacturing such cases and ammunition, and use of such cases and ammunition in various different weapon systems
US20060135282A1 (en) * 2004-12-17 2006-06-22 Integran Technologies, Inc. Article comprising a fine-grained metallic material and a polymeric material
WO2006083309A2 (en) * 2004-06-25 2006-08-10 Thomas Steel Strip Corporations Polymer-coated metal substrate
US20060254450A1 (en) * 2002-07-10 2006-11-16 Applied Research Associates, Inc. Enhancement of solid expolsive munitions using reflective casings
US20060260500A1 (en) * 2004-02-06 2006-11-23 Engel John W High-pressure fixed munition for low-pressure launching system
US20060288897A1 (en) * 2005-06-03 2006-12-28 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metasable interstitial composite material
US20070281176A1 (en) * 2004-12-17 2007-12-06 Integtan Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
WO2008051256A2 (en) * 2005-12-27 2008-05-02 Sengshin Chung Lightweight polymer cased ammunition
US20090018233A1 (en) * 2007-07-10 2009-01-15 Nunez Ivan M Crosslink Agents and Dual Radical Cure Polymer
US20090057338A1 (en) * 2003-06-18 2009-03-05 3M Innovative Properties Company Dispensing cartridge
US20100083728A1 (en) * 2008-10-06 2010-04-08 Gm Global Technology Operations, Inc. Die for use in sheet metal forming processes
US7798177B1 (en) * 2006-09-07 2010-09-21 Superior Tire & Rubber Corporation Removable transition sleeve for a transition tube of a vacuum sweeper
US20150241183A1 (en) * 2011-01-14 2015-08-27 Pcp Tactical, Llc Overmolded high strength polymer-based cartridge casing for blank and subsonic ammunition
US20160332349A1 (en) * 2014-01-14 2016-11-17 Polycase Ammunition, Llc Methods and apparatus for making molded objects, and molded objects made therefrom
US9599443B2 (en) 2010-07-30 2017-03-21 Pcp Tactical, Llc Base insert for polymer ammunition cartridges
US20170089673A1 (en) * 2010-11-10 2017-03-30 True Velocity, Inc. Polymer ammunition having a projectile made by metal injection molding
US9631907B2 (en) 2010-11-10 2017-04-25 True Velocity, Inc. Polymer ammunition cartridge having a wicking texturing
US9835423B2 (en) 2010-11-10 2017-12-05 True Velocity, Inc. Polymer ammunition having a wicking texturing
USD813975S1 (en) * 2015-08-05 2018-03-27 Mark White Low volume subsonic bullet cartridge case
US10041777B1 (en) 2016-03-09 2018-08-07 True Velocity, Inc. Three-piece primer insert having an internal diffuser for polymer ammunition
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US10048052B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Method of making a polymeric subsonic ammunition cartridge
US10048049B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Lightweight polymer ammunition cartridge having a primer diffuser
US10081057B2 (en) 2010-11-10 2018-09-25 True Velocity, Inc. Method of making a projectile by metal injection molding
US20190003792A1 (en) * 2016-01-11 2019-01-03 Martin Grier Firearm system and method
US10190857B2 (en) 2010-11-10 2019-01-29 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US10365074B2 (en) 2017-11-09 2019-07-30 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10408592B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
USD861118S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Primer insert
US10429156B2 (en) 2010-11-10 2019-10-01 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
USD881327S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881326S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881328S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881323S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881325S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881324S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882028S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882021S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882029S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882024S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882019S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882025S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882022S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882030S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882032S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882020S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882031S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882023S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882033S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882027S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882026S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882721S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882722S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882720S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882724S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882723S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD884115S1 (en) 2018-04-20 2020-05-12 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886231S1 (en) 2017-12-19 2020-06-02 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886937S1 (en) 2017-12-19 2020-06-09 True Velocity Ip Holdings, Llc Ammunition cartridge
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704877B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704876B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US10794671B2 (en) 2011-01-14 2020-10-06 Pcp Tactical, Llc Polymer-based cartridge casing for subsonic ammunition
USD903038S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903039S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
US10914558B2 (en) 2010-11-10 2021-02-09 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD913403S1 (en) 2018-04-20 2021-03-16 True Velocity Ip Holdings, Llc Ammunition cartridge
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11047663B1 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US11118875B1 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Color coded polymer ammunition cartridge
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11215430B2 (en) 2010-11-10 2022-01-04 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11248885B2 (en) 2010-11-10 2022-02-15 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US11340053B2 (en) 2019-03-19 2022-05-24 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
US20220196365A1 (en) * 2017-07-14 2022-06-23 Bushnell Inc. Storage case with pull handle for gun cleaning tool
US11435171B2 (en) 2018-02-14 2022-09-06 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
US11448491B2 (en) 2018-07-30 2022-09-20 Pcp Tactical, Llc Polymer cartridge with enhanced snapfit metal insert and thickness ratios
US11543218B2 (en) 2019-07-16 2023-01-03 True Velocity Ip Holdings, Llc Polymer ammunition having an alignment aid, cartridge and method of making the same
US20230051965A1 (en) * 2021-06-02 2023-02-16 Lyndon Smith Ammunition component and method of forming same
US11614314B2 (en) 2018-07-06 2023-03-28 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
US11733015B2 (en) 2018-07-06 2023-08-22 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
US11744058B2 (en) 2019-11-22 2023-08-29 Microsoft Technology Licensing, Llc Systems and methods for manufacturing electronic device housings

Cited By (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228736A1 (en) * 1982-07-31 1984-02-02 Dynamit Nobel Ag, 5210 Troisdorf Ammunition, especially rockets, with a plastic outer casing
US4796535A (en) * 1986-06-20 1989-01-10 Mauser-Werke Oberndorf Gmbh Adapter cartridge for insertion tube systems
US5165040A (en) * 1991-12-23 1992-11-17 General Dynamics Corp., Air Defense Systems Division Pre-stressed cartridge case
US6038978A (en) * 1998-02-11 2000-03-21 Olin Corporation Shotshell having a protective barrier layer
US6189454B1 (en) 1998-12-30 2001-02-20 Gary D. Hunt Inert practice round with solid body
US6694886B1 (en) * 1999-08-31 2004-02-24 The Ensign-Bickford Company Rigid reactive cord and methods of use and manufacture
US6591859B2 (en) * 2001-12-14 2003-07-15 Ming-Hsiu Shih Ball valve
US20060254450A1 (en) * 2002-07-10 2006-11-16 Applied Research Associates, Inc. Enhancement of solid expolsive munitions using reflective casings
US20060096489A1 (en) * 2002-08-08 2006-05-11 Ola Stark Insulated cartridge case and ammunition, method for manufacturing such cases and ammunition, and use of such cases and ammunition in various different weapon systems
US7581499B2 (en) * 2002-08-08 2009-09-01 Bofors Defence Ab Insulated cartridge case and ammunition, method for manufacturing such cases and ammunition, and use of such cases and ammunition in various different weapon systems
US20090057338A1 (en) * 2003-06-18 2009-03-05 3M Innovative Properties Company Dispensing cartridge
US9005178B2 (en) * 2003-06-18 2015-04-14 3M Innovative Properties Company Dispensing cartridge
US7481167B2 (en) * 2004-02-06 2009-01-27 John Whitworth Engel High-pressure fixed munition for low-pressure launching system
US20060260500A1 (en) * 2004-02-06 2006-11-23 Engel John W High-pressure fixed munition for low-pressure launching system
WO2006083309A2 (en) * 2004-06-25 2006-08-10 Thomas Steel Strip Corporations Polymer-coated metal substrate
WO2006083309A3 (en) * 2004-06-25 2007-07-12 Thomas Steel Strip Corporation Polymer-coated metal substrate
US20080090066A1 (en) * 2004-12-17 2008-04-17 Integran Technologies, Inc. Article comprising a fine-grained metallic material and a polymeric material
US7910224B2 (en) 2004-12-17 2011-03-22 Integran Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US20060135282A1 (en) * 2004-12-17 2006-06-22 Integran Technologies, Inc. Article comprising a fine-grained metallic material and a polymeric material
US7354354B2 (en) 2004-12-17 2008-04-08 Integran Technologies Inc. Article comprising a fine-grained metallic material and a polymeric material
US20080254310A1 (en) * 2004-12-17 2008-10-16 Integran Technologies, Inc. Article comprising a fine-Grained metallic material and a polymeric material
US8129034B2 (en) 2004-12-17 2012-03-06 Integran Technologies, Inc. Fine-grained metallic coatings having the coeficient of thermal expansion matched to one of the substrate
US20110143159A1 (en) * 2004-12-17 2011-06-16 Integran Technologies, Inc. Fine-Grained Metallic Coatings Having The Coeficient Of Thermal Expansion Matched To One Of The Substrate
EP2261028A2 (en) 2004-12-17 2010-12-15 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US7553553B2 (en) 2004-12-17 2009-06-30 Integran Technologies, Inc. Article comprising a fine-grained metallic material and a polymeric material
US7320832B2 (en) 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US20100028714A1 (en) * 2004-12-17 2010-02-04 Integran Technologies, Inc. Fine-Grained Metallic Coatings Having the Coefficient of Thermal Expansion Matched to the One of the Substrate
US20070281176A1 (en) * 2004-12-17 2007-12-06 Integtan Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US20110014488A1 (en) * 2004-12-17 2011-01-20 Integran Technologies, Inc. Fine-Grained Metallic Coatings Having the Coeficient of Thermal Expansion Matched to the One of the Substrate
EP2261027A2 (en) 2004-12-17 2010-12-15 Integran Technologies Inc. Article comprising a fine-grained metallic material and a polymeric material
US7824774B2 (en) 2004-12-17 2010-11-02 Integran Technologies, Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US7886666B2 (en) 2005-06-03 2011-02-15 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US7770521B2 (en) * 2005-06-03 2010-08-10 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US20060288897A1 (en) * 2005-06-03 2006-12-28 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metasable interstitial composite material
US20110100245A1 (en) * 2005-06-03 2011-05-05 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US8001879B2 (en) 2005-06-03 2011-08-23 Newtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
US8230789B1 (en) 2005-06-03 2012-07-31 Nowtec Services Group, Inc. Method and apparatus for a projectile incorporating a metastable interstitial composite material
WO2008051256A3 (en) * 2005-12-27 2008-08-28 Sengshin Chung Lightweight polymer cased ammunition
WO2008051256A2 (en) * 2005-12-27 2008-05-02 Sengshin Chung Lightweight polymer cased ammunition
US7798177B1 (en) * 2006-09-07 2010-09-21 Superior Tire & Rubber Corporation Removable transition sleeve for a transition tube of a vacuum sweeper
US20090018233A1 (en) * 2007-07-10 2009-01-15 Nunez Ivan M Crosslink Agents and Dual Radical Cure Polymer
US20100083728A1 (en) * 2008-10-06 2010-04-08 Gm Global Technology Operations, Inc. Die for use in sheet metal forming processes
US8567226B2 (en) 2008-10-06 2013-10-29 GM Global Technology Operations LLC Die for use in sheet metal forming processes
US9599443B2 (en) 2010-07-30 2017-03-21 Pcp Tactical, Llc Base insert for polymer ammunition cartridges
US10345088B2 (en) 2010-11-10 2019-07-09 True Velocity Ip Holdings, Llc Method of making a primer insert for use in polymer ammunition
US11118875B1 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Color coded polymer ammunition cartridge
US20170089673A1 (en) * 2010-11-10 2017-03-30 True Velocity, Inc. Polymer ammunition having a projectile made by metal injection molding
US9631907B2 (en) 2010-11-10 2017-04-25 True Velocity, Inc. Polymer ammunition cartridge having a wicking texturing
US9835423B2 (en) 2010-11-10 2017-12-05 True Velocity, Inc. Polymer ammunition having a wicking texturing
US10845169B2 (en) 2010-11-10 2020-11-24 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US9927219B2 (en) 2010-11-10 2018-03-27 True Velocity, Inc. Primer insert for a polymer ammunition cartridge casing
US9933241B2 (en) 2010-11-10 2018-04-03 True Velocity, Inc. Method of making a primer insert for use in polymer ammunition
US11953303B2 (en) 2010-11-10 2024-04-09 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US10041770B2 (en) 2010-11-10 2018-08-07 True Velocity, Inc. Metal injection molded ammunition cartridge
US10048052B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Method of making a polymeric subsonic ammunition cartridge
US10048049B2 (en) 2010-11-10 2018-08-14 True Velocity, Inc. Lightweight polymer ammunition cartridge having a primer diffuser
US11828580B2 (en) 2010-11-10 2023-11-28 True Velocity Ip Holdings, Llc Diffuser for polymer ammunition cartridges
US11821722B2 (en) 2010-11-10 2023-11-21 True Velocity Ip Holdings, Llc Diffuser for polymer ammunition cartridges
US10753713B2 (en) 2010-11-10 2020-08-25 True Velocity Ip Holdings, Llc Method of stamping a primer insert for use in polymer ammunition
US10859352B2 (en) 2010-11-10 2020-12-08 True Velocity Ip Holdings, Llc Polymer ammunition having a primer insert with a primer pocket groove
US10081057B2 (en) 2010-11-10 2018-09-25 True Velocity, Inc. Method of making a projectile by metal injection molding
US11733010B2 (en) 2010-11-10 2023-08-22 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11719519B2 (en) 2010-11-10 2023-08-08 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10145662B2 (en) 2010-11-10 2018-12-04 True Velocity Ip Holdings, Llc Method of making polymer ammunition having a metal injection molded primer insert
US10900760B2 (en) 2010-11-10 2021-01-26 True Velocity Ip Holdings, Llc Method of making a polymer ammunition cartridge
US10907944B2 (en) 2010-11-10 2021-02-02 True Velocity Ip Holdings, Llc Method of making a polymer ammunition cartridge
US10190857B2 (en) 2010-11-10 2019-01-29 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US10234249B2 (en) 2010-11-10 2019-03-19 True Velocity Ip Holdings, Llc Polymer ammunition having a primer insert with a primer pocket groove
US10234253B2 (en) 2010-11-10 2019-03-19 True Velocity, Inc. Method of making a polymer ammunition cartridge having a metal injection molded primer insert
US10240905B2 (en) 2010-11-10 2019-03-26 True Velocity Ip Holdings, Llc Polymer ammunition having a primer insert with a primer pocket groove
US10254096B2 (en) 2010-11-10 2019-04-09 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US10274293B2 (en) 2010-11-10 2019-04-30 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US10914558B2 (en) 2010-11-10 2021-02-09 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10731956B2 (en) 2010-11-10 2020-08-04 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US11614310B2 (en) 2010-11-10 2023-03-28 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US11592270B2 (en) 2010-11-10 2023-02-28 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US10962338B2 (en) 2010-11-10 2021-03-30 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US10352670B2 (en) 2010-11-10 2019-07-16 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US10352664B2 (en) 2010-11-10 2019-07-16 True Velocity Ip Holdings, Llc Method of making a primer insert for use in polymer ammunition
US11486680B2 (en) 2010-11-10 2022-11-01 True Velocity Ip Holdings, Llc Method of making a primer insert for use in polymer ammunition
US10408582B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US10408592B2 (en) 2010-11-10 2019-09-10 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11454479B2 (en) 2010-11-10 2022-09-27 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition
US10996030B2 (en) 2010-11-10 2021-05-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10996029B2 (en) 2010-11-10 2021-05-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10429156B2 (en) 2010-11-10 2019-10-01 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11047654B1 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10458762B2 (en) 2010-11-10 2019-10-29 True Velocity Ip Holdings, Llc Polymer ammunition having a primer insert with a primer pocket groove
US10466020B2 (en) 2010-11-10 2019-11-05 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US10466021B2 (en) 2010-11-10 2019-11-05 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US10480915B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US10480912B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US10480911B2 (en) 2010-11-10 2019-11-19 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US10488165B2 (en) 2010-11-10 2019-11-26 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11441881B2 (en) 2010-11-10 2022-09-13 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US10571228B2 (en) 2010-11-10 2020-02-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10571230B2 (en) 2010-11-10 2020-02-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10571229B2 (en) 2010-11-10 2020-02-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10571231B2 (en) 2010-11-10 2020-02-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10578409B2 (en) 2010-11-10 2020-03-03 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US10591260B2 (en) * 2010-11-10 2020-03-17 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US10612896B2 (en) 2010-11-10 2020-04-07 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11408714B2 (en) 2010-11-10 2022-08-09 True Velocity Ip Holdings, Llc Polymer ammunition having an overmolded primer insert
US11047664B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Lightweight polymer ammunition cartridge casings
US11340050B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11340049B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Method of making a metal primer insert by injection molding
US11340048B2 (en) 2010-11-10 2022-05-24 True Velocity Ip Holdings, Llc Method of making a primer insert for use in polymer ammunition
US11333470B2 (en) 2010-11-10 2022-05-17 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11333469B2 (en) 2010-11-10 2022-05-17 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11313654B2 (en) 2010-11-10 2022-04-26 True Velocity Ip Holdings, Llc Polymer ammunition having a projectile made by metal injection molding
US11300393B2 (en) 2010-11-10 2022-04-12 True Velocity Ip Holdings, Llc Polymer ammunition having a MIM primer insert
US11293727B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11293732B2 (en) 2010-11-10 2022-04-05 True Velocity Ip Holdings, Llc Method of making polymeric subsonic ammunition
US11280596B2 (en) 2010-11-10 2022-03-22 True Velocity Ip Holdings, Llc Polymer cartridge having a primer insert with a primer pocket groove
US11255647B2 (en) 2010-11-10 2022-02-22 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11255649B2 (en) 2010-11-10 2022-02-22 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11248885B2 (en) 2010-11-10 2022-02-15 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition cartridge
US11243059B2 (en) 2010-11-10 2022-02-08 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11243060B2 (en) 2010-11-10 2022-02-08 True Velocity Ip Holdings, Llc Primer insert having a primer pocket groove
US11231258B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11231257B2 (en) 2010-11-10 2022-01-25 True Velocity Ip Holdings, Llc Method of making a metal injection molded ammunition cartridge
US11226179B2 (en) 2010-11-10 2022-01-18 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge primer insert
US11215430B2 (en) 2010-11-10 2022-01-04 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11209252B2 (en) 2010-11-10 2021-12-28 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11118876B2 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11118882B2 (en) 2010-11-10 2021-09-14 True Velocity Ip Holdings, Llc Method of making a polymeric subsonic ammunition cartridge
US11047661B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of making a metal primer insert by injection molding
US11112225B2 (en) 2010-11-10 2021-09-07 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11112224B2 (en) 2010-11-10 2021-09-07 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11047662B2 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of making a polymer ammunition cartridge having a wicking texturing
US11092413B2 (en) 2010-11-10 2021-08-17 True Velocity Ip Holdings, Llc Metal injection molded primer insert for polymer ammunition
US11085739B2 (en) 2010-11-10 2021-08-10 True Velocity Ip Holdings, Llc Stamped primer insert for use in polymer ammunition
US11085740B2 (en) 2010-11-10 2021-08-10 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11085742B2 (en) 2010-11-10 2021-08-10 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US10704877B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11085741B2 (en) 2010-11-10 2021-08-10 True Velocity Ip Holdings, Llc Subsonic polymeric ammunition with diffuser
US11079209B2 (en) 2010-11-10 2021-08-03 True Velocity Ip Holdings, Llc Method of making polymer ammunition having a wicking texturing
US11047663B1 (en) 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US10704878B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and method of making the same
US10704876B2 (en) 2010-11-10 2020-07-07 True Velocity Ip Holdings, Llc One piece polymer ammunition cartridge having a primer insert and methods of making the same
US11353299B2 (en) 2011-01-14 2022-06-07 Pcp Tactical, Llc Polymer-based cartridge casing for subsonic ammunition
US20150241183A1 (en) * 2011-01-14 2015-08-27 Pcp Tactical, Llc Overmolded high strength polymer-based cartridge casing for blank and subsonic ammunition
US10794671B2 (en) 2011-01-14 2020-10-06 Pcp Tactical, Llc Polymer-based cartridge casing for subsonic ammunition
USD836180S1 (en) 2011-11-09 2018-12-18 True Velocity Ip Holdings, Llc Ammunition cartridge with primer insert
USD828483S1 (en) 2011-11-09 2018-09-11 True Velocity Ip Holdings, Llc Cartridge base insert
USD861119S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD861118S1 (en) 2011-11-09 2019-09-24 True Velocity Ip Holdings, Llc Primer insert
USD849181S1 (en) 2011-11-09 2019-05-21 True Velocity Ip Holdings, Llc Cartridge primer insert
EP3094465B1 (en) * 2014-01-14 2019-10-09 Quantum Ammunition, LLC Method and apparatus for making a composite ammunition casing, and composite ammunition casing
AU2015206473B2 (en) * 2014-01-14 2019-05-02 Paul LEMKE Methods and apparatus for making molded objects, and molded objects made therefrom
US10072916B2 (en) * 2014-01-14 2018-09-11 Quantum Ammunition, Llc Methods and apparatus for making molded objects, and molded objects made therefrom
US20160332349A1 (en) * 2014-01-14 2016-11-17 Polycase Ammunition, Llc Methods and apparatus for making molded objects, and molded objects made therefrom
USD813975S1 (en) * 2015-08-05 2018-03-27 Mark White Low volume subsonic bullet cartridge case
US20190003792A1 (en) * 2016-01-11 2019-01-03 Martin Grier Firearm system and method
US10921073B2 (en) * 2016-01-11 2021-02-16 Forward Defense Munitions, Co. Firearm system and method
US11098992B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US10415943B2 (en) 2016-03-09 2019-09-17 True Velocity Ip Holdings, Llc Polymer ammunition cartridge having a three-piece primer insert
US10041777B1 (en) 2016-03-09 2018-08-07 True Velocity, Inc. Three-piece primer insert having an internal diffuser for polymer ammunition
US10048050B1 (en) 2016-03-09 2018-08-14 True Velocity, Inc. Polymer ammunition cartridge having a three-piece primer insert
US10054413B1 (en) 2016-03-09 2018-08-21 True Velocity, Inc. Polymer ammunition having a three-piece primer insert
US11098993B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US11098990B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US11098991B2 (en) 2016-03-09 2021-08-24 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US11448489B2 (en) 2016-03-09 2022-09-20 True Velocity Ip Holdings, Llc Two-piece primer insert for polymer ammunition
US10101136B2 (en) 2016-03-09 2018-10-16 True Velocity Ip Holdings, Llc Polymer ammunition cartridge having a three-piece primer insert
US10101140B2 (en) 2016-03-09 2018-10-16 True Velocity Ip Holdings, Llc Polymer ammunition having a three-piece primer insert
US11448490B2 (en) 2016-03-09 2022-09-20 True Velocity Ip Holdings, Llc Two-piece primer insert for polymer ammunition
US10302404B2 (en) 2016-03-09 2019-05-28 True Vilocity IP Holdings, LLC Method of making polymer ammunition cartridge having a two-piece primer insert
US10302403B2 (en) 2016-03-09 2019-05-28 True Velocity Ip Holdings, Llc Method of making polymer ammunition cartridge having a two-piece primer insert
US10948275B2 (en) 2016-03-09 2021-03-16 True Velocity Ip Holdings, Llc Polymer ammunition cartridge having a three-piece primer insert
US20220196365A1 (en) * 2017-07-14 2022-06-23 Bushnell Inc. Storage case with pull handle for gun cleaning tool
US11761730B2 (en) * 2017-07-14 2023-09-19 Bushnell Inc. Storage case with pull handle for gun cleaning tool
US11448488B2 (en) 2017-08-08 2022-09-20 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US10760882B1 (en) 2017-08-08 2020-09-01 True Velocity Ip Holdings, Llc Metal injection molded ammunition cartridge
US10704870B2 (en) 2017-11-09 2020-07-07 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10612897B2 (en) 2017-11-09 2020-04-07 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US11118877B2 (en) 2017-11-09 2021-09-14 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US10365074B2 (en) 2017-11-09 2019-07-30 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11047655B2 (en) 2017-11-09 2021-06-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10704871B2 (en) 2017-11-09 2020-07-07 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10533830B2 (en) 2017-11-09 2020-01-14 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US11209251B2 (en) 2017-11-09 2021-12-28 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10921100B2 (en) 2017-11-09 2021-02-16 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11079205B2 (en) 2017-11-09 2021-08-03 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US10704869B2 (en) 2017-11-09 2020-07-07 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US10921101B2 (en) 2017-11-09 2021-02-16 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10677573B2 (en) 2017-11-09 2020-06-09 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US10948273B2 (en) 2017-11-09 2021-03-16 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition, cartridge and components
US10852108B2 (en) 2017-11-09 2020-12-01 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11506471B2 (en) 2017-11-09 2022-11-22 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge nose
US10876822B2 (en) 2017-11-09 2020-12-29 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition cartridge
US11768059B2 (en) 2017-11-09 2023-09-26 True Velocity Ip Holdings, Llc Multi-piece polymer ammunition, cartridge and components
USD886231S1 (en) 2017-12-19 2020-06-02 True Velocity Ip Holdings, Llc Ammunition cartridge
USD886937S1 (en) 2017-12-19 2020-06-09 True Velocity Ip Holdings, Llc Ammunition cartridge
US11435171B2 (en) 2018-02-14 2022-09-06 True Velocity Ip Holdings, Llc Device and method of determining the force required to remove a projectile from an ammunition cartridge
USD882023S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD884115S1 (en) 2018-04-20 2020-05-12 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882721S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882720S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903038S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882724S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882026S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882027S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882033S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882723S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882031S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882020S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882032S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882030S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD903039S1 (en) 2018-04-20 2020-11-24 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882022S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882025S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882019S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882024S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882029S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882021S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882028S1 (en) 2018-04-20 2020-04-21 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881324S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881325S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881323S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881328S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881326S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD913403S1 (en) 2018-04-20 2021-03-16 True Velocity Ip Holdings, Llc Ammunition cartridge
USD881327S1 (en) 2018-04-20 2020-04-14 True Velocity Ip Holdings, Llc Ammunition cartridge
USD882722S1 (en) 2018-04-20 2020-04-28 True Velocity Ip Holdings, Llc Ammunition cartridge
US11733015B2 (en) 2018-07-06 2023-08-22 True Velocity Ip Holdings, Llc Multi-piece primer insert for polymer ammunition
US11614314B2 (en) 2018-07-06 2023-03-28 True Velocity Ip Holdings, Llc Three-piece primer insert for polymer ammunition
US11448491B2 (en) 2018-07-30 2022-09-20 Pcp Tactical, Llc Polymer cartridge with enhanced snapfit metal insert and thickness ratios
US10704879B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US11248886B2 (en) 2019-02-14 2022-02-15 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US11209256B2 (en) 2019-02-14 2021-12-28 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704872B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US11788825B1 (en) 2019-02-14 2023-10-17 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10731957B1 (en) 2019-02-14 2020-08-04 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10704880B1 (en) 2019-02-14 2020-07-07 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
US10921106B2 (en) 2019-02-14 2021-02-16 True Velocity Ip Holdings, Llc Polymer ammunition and cartridge having a convex primer insert
USD893666S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893667S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893665S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD893668S1 (en) 2019-03-11 2020-08-18 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891567S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD892258S1 (en) 2019-03-12 2020-08-04 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891568S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
USD891570S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose
USD891569S1 (en) 2019-03-12 2020-07-28 True Velocity Ip Holdings, Llc Ammunition cartridge nose having an angled shoulder
US11512936B2 (en) 2019-03-19 2022-11-29 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
US11340053B2 (en) 2019-03-19 2022-05-24 True Velocity Ip Holdings, Llc Methods and devices metering and compacting explosive powders
USD894320S1 (en) 2019-03-21 2020-08-25 True Velocity Ip Holdings, Llc Ammunition Cartridge
US11543218B2 (en) 2019-07-16 2023-01-03 True Velocity Ip Holdings, Llc Polymer ammunition having an alignment aid, cartridge and method of making the same
US11744058B2 (en) 2019-11-22 2023-08-29 Microsoft Technology Licensing, Llc Systems and methods for manufacturing electronic device housings
US20230051965A1 (en) * 2021-06-02 2023-02-16 Lyndon Smith Ammunition component and method of forming same
US11821721B2 (en) * 2021-06-02 2023-11-21 Lyndon Smith Ammunition component and method of forming same

Similar Documents

Publication Publication Date Title
US3749021A (en) Metal coated plastic cartridge case and method of manufacture
US4614157A (en) Plastic cartridge case
US2847786A (en) Composite firearm barrel comprising glass fibers
CN101218481A (en) Impact resistant composite material
US9453714B2 (en) Method for producing subsonic ammunition casing
US10001337B2 (en) Composite multi-lobe projectile barrel
US2845741A (en) Composite firearm barrel
US4380483A (en) Process for forming improved carbon fiber reinforced composite coil spring
US20200363172A1 (en) Lightweight cartridge case
EP1872009B1 (en) Fuel rail
KR100831311B1 (en) Method for reinforcement manufacturing a composite sabot as using the resin-injection vartm after stitching
MXPA06002261A (en) Modular barrel assembly.
US3848350A (en) Dry fire cartridge or shot shell
EP0188859B1 (en) All-plastic shotgun cartridge cases and method for the manufacture thereof
US3513776A (en) Consumable cartridge case
KR101923381B1 (en) Composite material for reinforcement and articles comprising the same
US7523741B2 (en) Fuel rail
US3163002A (en) Plastic rocket tube
US3351014A (en) Biaxially oriented plastic shot shell
JP6642716B2 (en) Pressure vessel
CN107110628A (en) Ballistic panel
US20020155232A1 (en) Multilayer composite pressure vessel
JP2017007289A (en) Pipe molding and method for manufacturing the same
KR102389454B1 (en) Manufacturing method and apparatus for intergrated liner of hydrogen storage tank
CN116428915A (en) High-performance composite material shell, processing method and bullet using shell