US20170349758A1 - Plasma reactor - Google Patents

Plasma reactor Download PDF

Info

Publication number
US20170349758A1
US20170349758A1 US15/410,283 US201715410283A US2017349758A1 US 20170349758 A1 US20170349758 A1 US 20170349758A1 US 201715410283 A US201715410283 A US 201715410283A US 2017349758 A1 US2017349758 A1 US 2017349758A1
Authority
US
United States
Prior art keywords
carbon black
product
feedstock
plasma
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/410,283
Inventor
Peter L. Johnson
Robert J. Hanson
Roscoe W. Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monolith Materials Inc
Original Assignee
Monolith Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monolith Materials Inc filed Critical Monolith Materials Inc
Priority to US15/410,283 priority Critical patent/US20170349758A1/en
Publication of US20170349758A1 publication Critical patent/US20170349758A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/485Preparation involving the use of a plasma or of an electric arc

Definitions

  • a method of making carbon black including generating a plasma by subjecting a plasma gas to a plasma arc, mixing a feedstock material with the plasma gas and combining the mixture in a reactor at a given reactor temperature to produce carbon black, wherein the feedstock is mixed with the plasma gas outside of the area occupied by the plasma arc.
  • Additional embodiments include: the method described above where the feedstock is natural gas; the method described above where the natural gas and plasma are mixed at a high intensity; the method described above where the mixing is turbulent; the method described above resulting in substantial elimination of torch fouling; the method described above resulting in the production of high quality carbon black, having more uniform time temperature carbon black production history, higher surface area per degree of reactor temperature, higher surface area per specific energy input, higher product structure, higher tinting strength, reduced product grit, and reduced product extract; the method described above where the feedstock is injected so as to fully form the carbon black product prior to contact with any solid surface present in the reactor; the method described above where increasing the reactor temperature reduces the required time for the carbon black product to fully form; the method described above where the carbon black product produced is quenched after sufficient residence time in the reactor so as to reduce product extract levels; the carbon black product produced by the processes described above.
  • FIG. 1 shows a schematic representation of a system as described herein.
  • FIGS. 2 and 3 show schematic representations of gas non-recirculation and recirculation as described herein.
  • controlling the design parameters of a plasma reactor as described below results in the production of high quality carbon blacks having the properties described herein.
  • Prevention of feedstock or formed product entering the plasma arc prevents fouling of the torch and enables a more uniform time temperature history of the feedstock/product.
  • Intense mixing of, for example, natural gas feedstock and plasma gases can maximize surface area, tint and structure as well as minimizing extract for a given reactor temperature and reduce the temperature variation the product forms in.
  • Sufficient time of flight from feedstock injection to solid surface contact so as to fully form the product prior to contact with the solid surface results in the improved properties described herein. This will require longer times when operating at lower temperatures and/or less intense mixing. And sufficient residence time prior to quenching reduces product extract levels to those required by the market.
  • the processes as described herein also overcome generated products that suffered from one or more of the following: low surface area vs reactor temperature, and hence low surface area for a specific energy input; low product structure even when not using any structure control additives, high product grit, and high product extract.
  • the plasma torch ( 11 ) is shown generating an arc ( 12 ) in the plasma torch chamber ( 15 ).
  • the use of a restriction ( 17 ) between the plasma torch chamber and the reactor chamber ( 16 ) helps prevent any feedstock or carbon black getting back to the plasma arc where it could decompose, crack and/or and foul the torch.
  • the recirculation ( 13 ) helps keep the forming carbon black particles ( 14 ) more towards the middle of the chamber away from the walls.
  • the restriction also accelerates the fluid to create turbulent mixing conditions, which reduces the time taken to heat the feedstock, resulting in a more uniform time temperature history.
  • This faster mixing also increases the surface area, structure, and tint, and reduces the time to form the black and so reduces the grit and extract as well as coke deposits and other fouling on the reactor walls.
  • By producing higher surface area at the same reactor temperature the energy required per amount of product for a given surface area is minimized.
  • the expansion from the restriction creates recirculation, keeping the forming product away from the walls of the reactor while also minimizing the reactor's surface area for a given volume/residence time, which minimizes heat losses as well.
  • insufficient recirculation occurs.
  • the bulk of the flow of plasma gases ( 22 ) remains attached to the wall ( 20 ), i.e. follows the wall.
  • the injection of feedstock such as natural gas, oil, etc. ( 21 ) results in a wake ( 23 ) that sucks a portion of the feedstock onto the wall where it will form coke ( 24 ) that may plug the restriction and/or increase the grit level in the product (most grit being coke).
  • the larger angle of expansion in the wall ( 30 ) results in the flow of plasma gasses ( 32 ) detaching from the wall ( 30 ) creating recirculation ( 34 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

A method of making carbon black. Such method is described including generating a plasma by subjecting a plasma gas to a plasma arc, mixing a feedstock material with the plasma gas and combining the mixture in a reactor at a given reactor temperature to produce carbon black, wherein the feedstock is mixed with the plasma gas outside of the area occupied by the plasma arc. The carbon black produced by such process is also described.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 14/601,793 filed Jan. 21, 2105, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/934,207 filed Jan. 31, 2014, the disclosures of which are expressly incorporated by reference herein in their entireties.
  • TECHNICAL FIELD
  • The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to effect chemical changes.
  • BACKGROUND
  • There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. As in all manufacturing, there is a constant search for more efficient and effective ways to produce such products. Varying flow rates and other conditions of energy sources, varying flow rates and other conditions of raw materials, increasing speed of production, increasing yields, reducing manufacturing equipment wear characteristics, etc. have all been, and continue to be, part of this search over the years.
  • The systems described herein meet the challenges described above, and additionally attain more efficient and effective manufacturing process.
  • BRIEF SUMMARY
  • A method of making carbon black is described including generating a plasma by subjecting a plasma gas to a plasma arc, mixing a feedstock material with the plasma gas and combining the mixture in a reactor at a given reactor temperature to produce carbon black, wherein the feedstock is mixed with the plasma gas outside of the area occupied by the plasma arc.
  • Additional embodiments include: the method described above where the feedstock is natural gas; the method described above where the natural gas and plasma are mixed at a high intensity; the method described above where the mixing is turbulent; the method described above resulting in substantial elimination of torch fouling; the method described above resulting in the production of high quality carbon black, having more uniform time temperature carbon black production history, higher surface area per degree of reactor temperature, higher surface area per specific energy input, higher product structure, higher tinting strength, reduced product grit, and reduced product extract; the method described above where the feedstock is injected so as to fully form the carbon black product prior to contact with any solid surface present in the reactor; the method described above where increasing the reactor temperature reduces the required time for the carbon black product to fully form; the method described above where the carbon black product produced is quenched after sufficient residence time in the reactor so as to reduce product extract levels; the carbon black product produced by the processes described above.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic representation of a system as described herein.
  • FIGS. 2 and 3 show schematic representations of gas non-recirculation and recirculation as described herein.
  • DETAILED DESCRIPTION
  • The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
  • The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
  • Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
  • As described herein, controlling the design parameters of a plasma reactor as described below results in the production of high quality carbon blacks having the properties described herein. Prevention of feedstock or formed product entering the plasma arc prevents fouling of the torch and enables a more uniform time temperature history of the feedstock/product. Intense mixing of, for example, natural gas feedstock and plasma gases can maximize surface area, tint and structure as well as minimizing extract for a given reactor temperature and reduce the temperature variation the product forms in. Sufficient time of flight from feedstock injection to solid surface contact so as to fully form the product prior to contact with the solid surface results in the improved properties described herein. This will require longer times when operating at lower temperatures and/or less intense mixing. And sufficient residence time prior to quenching reduces product extract levels to those required by the market.
  • There are clearly benefits of separating the plasma arc from the feedstock. Previous methods of using a plasma to make carbon black products have not recognized the link intense mixing has to the product quality recognized herein and especially the benefits of turbulent mixing rather than laminar or transitional mixing. Mixing will definitely impact surface area, but will also impact the structure, tinting strength, and extract levels, among other things. Similarly, linking time of flight from feedstock injection to the wall has a significant impact on product grit and reactor fouling. Other significant benefits include, reducing the time of flight required by improving the mixing, how increased reactor temperature reduces the required time of flight, linking residence time at temperature with product extract levels, and reducing the extract level by improving the mixing.
  • The processes as described herein also overcome generated products that suffered from one or more of the following: low surface area vs reactor temperature, and hence low surface area for a specific energy input; low product structure even when not using any structure control additives, high product grit, and high product extract.
  • EXAMPLE 1
  • In FIG. 1, the plasma torch (11) is shown generating an arc (12) in the plasma torch chamber (15). The use of a restriction (17) between the plasma torch chamber and the reactor chamber (16) helps prevent any feedstock or carbon black getting back to the plasma arc where it could decompose, crack and/or and foul the torch. The recirculation (13) helps keep the forming carbon black particles (14) more towards the middle of the chamber away from the walls. The restriction also accelerates the fluid to create turbulent mixing conditions, which reduces the time taken to heat the feedstock, resulting in a more uniform time temperature history. This faster mixing also increases the surface area, structure, and tint, and reduces the time to form the black and so reduces the grit and extract as well as coke deposits and other fouling on the reactor walls. By producing higher surface area at the same reactor temperature, the energy required per amount of product for a given surface area is minimized. The expansion from the restriction creates recirculation, keeping the forming product away from the walls of the reactor while also minimizing the reactor's surface area for a given volume/residence time, which minimizes heat losses as well.
  • EXAMPLE 2
  • In FIG. 2, insufficient recirculation occurs. The bulk of the flow of plasma gases (22) remains attached to the wall (20), i.e. follows the wall. The injection of feedstock such as natural gas, oil, etc. (21) results in a wake (23) that sucks a portion of the feedstock onto the wall where it will form coke (24) that may plug the restriction and/or increase the grit level in the product (most grit being coke). Conversely, in FIG. 3 the larger angle of expansion in the wall (30) results in the flow of plasma gasses (32) detaching from the wall (30) creating recirculation (34). The recirculated gases (34) from the reactor, that contain fully formed product, then counter the tendency of the wake (33) of the injected natural gas or oil (31) to suck some of the natural gas/oil towards the wall (33). This would also favor placing the feedstock injection point somewhat close to the end of the restriction between the plasma chamber and the reactor so that the recirculated gasses and fully formed black (34) essentially fill the wake of the injected feedstock (33).
  • Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (12)

What is claimed is:
1. A method of making carbon black comprising generating a torch plasma by subjecting a plasma gas to a plasma arc, mixing a feedstock material with the plasma gas and combining the mixture in a reactor at a given reactor temperature to produce carbon black, wherein the feedstock is mixed with the plasma gas outside of the area occupied by the plasma arc.
2. The method of claim 1, wherein the feedstock is natural gas.
3. The method of claim 2 wherein the natural gas and plasma are mixed at a high intensity.
4. The method of claim 3 wherein the mixing is turbulent.
5. The method of claim 1 resulting in substantial elimination of torch fouling.
6. The method of claim 1 resulting in the production of high quality carbon black, having more uniform time temperature carbon black production history, higher surface area per degree of reactor temperature, higher surface area per specific energy input, higher product structure, higher tinting strength, reduced product grit, and reduced product extract.
7. The method of claim 1 wherein the feedstock is injected so as to fully form the carbon black product prior to contact with any solid surface present in the reactor.
8. The method of claims 3 wherein the high intensity mixing region is expanded after feedstock injection to detatch flow from the wall so as to create recirculation of fully formed carbon black product and keep the forming product off the wall of the reactor.
9. The method of claim 8 wherein the recirculation counteracts the wake generated by injecting the feedstock to prevent the wake from causing the feedstock to contact the wall prior to fully forming the product.
10. The method of claim 9 wherein increasing the reactor temperature reduces the required time for the carbon black product to fully form.
11. The method of claim 1 wherein the carbon black product produced is quenched after sufficient residence time in the reactor so as to reduce product extract levels.
12. The carbon black product produced by the process of claim 1.
US15/410,283 2014-01-31 2017-01-19 Plasma reactor Abandoned US20170349758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/410,283 US20170349758A1 (en) 2014-01-31 2017-01-19 Plasma reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461934207P 2014-01-31 2014-01-31
US14/601,793 US9574086B2 (en) 2014-01-31 2015-01-21 Plasma reactor
US15/410,283 US20170349758A1 (en) 2014-01-31 2017-01-19 Plasma reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/601,793 Continuation US9574086B2 (en) 2014-01-31 2015-01-21 Plasma reactor

Publications (1)

Publication Number Publication Date
US20170349758A1 true US20170349758A1 (en) 2017-12-07

Family

ID=53754277

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/601,793 Active 2035-02-13 US9574086B2 (en) 2014-01-31 2015-01-21 Plasma reactor
US15/410,283 Abandoned US20170349758A1 (en) 2014-01-31 2017-01-19 Plasma reactor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/601,793 Active 2035-02-13 US9574086B2 (en) 2014-01-31 2015-01-21 Plasma reactor

Country Status (4)

Country Link
US (2) US9574086B2 (en)
CA (1) CA2937870C (en)
MX (1) MX2016009779A (en)
WO (1) WO2015116811A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10618026B2 (en) 2015-02-03 2020-04-14 Monolith Materials, Inc. Regenerative cooling method and apparatus
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US11304288B2 (en) 2014-01-31 2022-04-12 Monolith Materials, Inc. Plasma torch design
US11453784B2 (en) 2017-10-24 2022-09-27 Monolith Materials, Inc. Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
US11665808B2 (en) 2015-07-29 2023-05-30 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US11760884B2 (en) 2017-04-20 2023-09-19 Monolith Materials, Inc. Carbon particles having high purities and methods for making same
US11926743B2 (en) 2017-03-08 2024-03-12 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US12030776B2 (en) 2020-02-26 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574086B2 (en) * 2014-01-31 2017-02-21 Monolith Materials, Inc. Plasma reactor
US11633710B2 (en) 2018-08-23 2023-04-25 Transform Materials Llc Systems and methods for processing gases
JP2022508353A (en) 2018-08-23 2022-01-19 トランスフォーム マテリアルズ エルエルシー Systems and methods for treating gases
EP3894068B1 (en) 2018-12-10 2023-09-13 Ekona Power Inc. Method and reactor for producing one or more products
EP4237372A1 (en) * 2020-10-30 2023-09-06 Pyrogenesis Canada Inc. Hydrogen production from hydrocarbons by plasma pyrolysis
WO2023147235A1 (en) 2022-01-28 2023-08-03 Cabot Corporation Methods of producing carbon blacks from low-yielding feedstocks and products made from same utilizing plasma or electrically heated processes
WO2023174949A1 (en) * 2022-03-15 2023-09-21 Orion Engineered Carbons Gmbh Plasma assisted production of carbon black
WO2023235486A1 (en) * 2022-06-01 2023-12-07 Monolith Materials, Inc. Recycled feedstocks for carbon and hydrogen production
CA3210231C (en) 2022-12-19 2024-03-12 Ekona Power Inc. Methods and systems for adjusting inputs to a pyrolysis reactor to improve performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400266A (en) * 1972-10-19 1975-07-16 G N I Energet I Im G M Krzhizh Method of producing carbon black by pyrolysis of hydrocarbon stock materials in plasma
US9574086B2 (en) * 2014-01-31 2017-02-21 Monolith Materials, Inc. Plasma reactor

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA830378A (en) 1969-12-23 E. Jordan Merrill Plasma process for upgrading carbon
US1339225A (en) 1918-04-25 1920-05-04 James R Rose Process of manufacturing gaseous fuel
US1597277A (en) 1922-11-10 1926-08-24 Jay J Jakowsky Process and apparatus for manufacture of carbon-black unsaturated gases and hydrogen
US1536612A (en) 1923-02-15 1925-05-05 Goodyear Tire & Rubber Method of producing carbon black
US2002003A (en) 1930-09-20 1935-05-21 Ig Farbenindustrie Ag Production of acetylene and carbon black
US2572851A (en) 1947-01-06 1951-10-30 James E Hughes Production of carbon by electrical discharge
US2616842A (en) 1951-01-13 1952-11-04 Sheer Charles Arc process for the production of fume
US3009783A (en) 1959-12-04 1961-11-21 Sheer Korman Associates Production of carbon black
US3073769A (en) 1960-07-07 1963-01-15 Du Pont Process for making acetylene
US3288696A (en) 1963-03-12 1966-11-29 Ashland Oil Inc Production of carbon black
US3409403A (en) 1964-10-05 1968-11-05 Phillips Petroleum Co Plasma preparation of carbon black
US3344051A (en) 1964-12-07 1967-09-26 Continental Carbon Co Method for the production of carbon black in a high intensity arc
US3308164A (en) * 1966-02-23 1967-03-07 Hooker Chemical Corp 1, 3, 5-tricyclohexylbenzene monohydroperoxide
US3408164A (en) 1966-07-08 1968-10-29 Phillips Petroleum Co Plasma treatment of carbon blacks
US3431074A (en) 1966-11-15 1969-03-04 Cabot Corp Process for the production of highly amorphous carbon black
US3420632A (en) 1966-11-18 1969-01-07 Phillips Petroleum Co Production of carbon black using plasma-heated nitrogen
US3464793A (en) 1966-12-27 1969-09-02 Cabot Corp Process for making carbon black from co
US3619140A (en) 1967-01-03 1971-11-09 Cabot Corp Process for making carbon black
DE2122800A1 (en) 1970-08-03 1971-12-02 Cabot Corp., Boston, Mass. (V.St.A.) Process for the production of carbon black
IL38825A (en) 1971-03-10 1975-02-10 Cabot Corp Carbon black pigments and rubber compositions
US3725103A (en) 1971-03-10 1973-04-03 Cabot Corp Carbon black pigments
US3922335A (en) 1974-02-25 1975-11-25 Cabot Corp Process for producing carbon black
US4035336A (en) 1974-08-08 1977-07-12 Cabot Corporation Carbon black pigments and rubber compositions containing the same
IN143377B (en) 1975-06-30 1977-11-12 Vnii Tekhn
DE2846352A1 (en) 1978-10-25 1980-05-08 Hoechst Ag METHOD AND DEVICE FOR INCREASING THE GRADE GRADE OF RUSSIANS AND THE USE OF THESE RUSSIANS
US4472172A (en) 1979-12-03 1984-09-18 Charles Sheer Arc gasification of coal
NO174180C (en) 1991-12-12 1994-03-23 Kvaerner Eng Burner insertion tubes for chemical processes
US5725616A (en) 1991-12-12 1998-03-10 Kvaerner Engineering A.S. Method for combustion of hydrocarbons
NO176300C (en) 1991-12-12 1995-03-08 Kvaerner Eng Plasma burner device for chemical processes
NO175718C (en) 1991-12-12 1994-11-23 Kvaerner Eng Process for cleavage of hydrocarbons and apparatus for use in the process
NO174471C (en) 1991-12-12 1994-05-11 Kvaerner Eng Method of preventing and removing fouling by pyrolytic cleavage of hydrocarbons
NO174450C (en) 1991-12-12 1994-05-04 Kvaerner Eng Plasma burner device for chemical processes
NO175904C (en) 1992-04-07 1994-12-28 Kvaerner Eng Method of Reducing Electrode Consumption in Plasma Burners
NO176968C (en) * 1992-04-07 1995-06-28 Kvaerner Eng Carbon production plant
NO176885C (en) 1992-04-07 1995-06-14 Kvaerner Eng Use of pure carbon in the form of carbon particles as anode material for aluminum production
NO176522C (en) 1992-04-07 1995-04-19 Kvaerner Eng Process for the production of carbon with defined physical properties and apparatus for carrying out the process
NO176969C (en) 1992-12-23 1995-06-28 Kvaerner Eng Process for controlling the production of carbon and hydrogen by pyrolysis of hydrocarbons, and apparatus for use in the process
FR2701267B1 (en) 1993-02-05 1995-04-07 Schwob Yvan Process for the production of carbonaceous soot with defined microstructures.
JP2526782B2 (en) 1993-05-14 1996-08-21 日本電気株式会社 Carbon fiber and its manufacturing method
US5951960A (en) 1994-11-07 1999-09-14 Kvaerner Engineering, As Electrode consumption in plasma torches
NO302242B1 (en) 1995-07-07 1998-02-09 Kvaerner Eng Process for achieving an increased arrangement of the nanostructure in a carbon material
US7462343B2 (en) 1997-03-25 2008-12-09 Kvafrner Technology And Research Ltd. Micro-domain graphitic materials and method for producing the same
FR2764280B1 (en) 1997-06-06 1999-07-16 Yvan Alfred Schwob PROCESS FOR THE MANUFACTURE OF CARBON 60
NO311622B1 (en) 1998-09-25 2001-12-17 Kvaerner Technology & Res Ltd Use of carbon medium for hydrogen storage
US7431909B1 (en) 1998-12-04 2008-10-07 Cabot Corporation Process for production of carbon black
US6395197B1 (en) 1999-12-21 2002-05-28 Bechtel Bwxt Idaho Llc Hydrogen and elemental carbon production from natural gas and other hydrocarbons
EP1188801B1 (en) 2000-09-19 2005-11-16 Timcal S.A. Device and method for converting carbon containing feedstock into carbon containing materials, having a defined structure
CA2353752A1 (en) 2001-07-25 2003-01-25 Precisionh2 Inc. Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma
DE10312494A1 (en) 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Carbon nanostructures and methods of making nanotubes, nanofibers, and carbon-based nanostructures
JP2004300334A (en) 2003-03-31 2004-10-28 Osaka Gas Co Ltd Method for producing carbon black
US7534276B2 (en) 2003-11-18 2009-05-19 National Institute For Strategic Technology Acquisition And Commercialization In-situ gasification of soot contained in exothermically generated syngas stream
CN1262624C (en) 2004-12-16 2006-07-05 太原理工大学 Combined process for dry distillation of coal and production of carbon black by plasma cracking
DE102005019301A1 (en) 2005-04-26 2006-11-02 Timcal Sa Processing of carbon-containing hydrogenated residue obtained during production of fullerene and carbon nanostructures, comprises functionalizing the residue by introducing chemical substituents during or following the production
NO326571B1 (en) 2005-06-16 2009-01-12 Sinvent As Process and reactor for producing carbon nanotubes
CA2516499A1 (en) 2005-08-19 2007-02-19 Atlantic Hydrogen Inc. Decomposition of natural gas or methane using cold arc discharge
FR2891434A1 (en) 2005-09-23 2007-03-30 Renault Sas Slipping plasma arc generator comprises a reactor internally delimits a closed enclosure having reactive gas and two removable electrodes that are connected to a source of voltage to start and maintain the reactive gas discharge
US7588746B1 (en) 2006-05-10 2009-09-15 University Of Central Florida Research Foundation, Inc. Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
US8911596B2 (en) 2007-05-18 2014-12-16 Hope Cell Technologies Pty Ltd Method and apparatus for plasma decomposition of methane and other hydrocarbons
KR20080105344A (en) 2007-05-30 2008-12-04 주식회사 에이피시스 Apparatus for manufacturing hydrogen and carbon black using plasma
CA2621749A1 (en) 2008-02-19 2009-08-19 Atlantic Hydrogen Inc. Decomposition of natural gas or methane using cold arc discharge
CA2739381A1 (en) 2008-10-03 2010-04-08 Atlantic Hydrogen Inc. Apparatus and method for effecting plasma-based reactions
FR2937029A1 (en) 2008-10-09 2010-04-16 Renault Sas Device for generating hydrogen by fuel reforming using electric discharge generating plasma, comprises first cylindrical element within which reactive mixture flows, second element forming electrode tip, and continuous current generator
EP2528681A1 (en) 2010-01-29 2012-12-05 Evoenergy LLC Plasma reactor for gas to liquid fuel conversion
EP2598602A1 (en) 2010-07-26 2013-06-05 Agroplas AS Soil conditioner, system and method for the manufacturing of a soil conditioner
CN102108216A (en) 2010-12-03 2011-06-29 苏州纳康纳米材料有限公司 Method for preparing conductive carbon black and hydrogen by plasma technology
WO2012094743A1 (en) 2011-01-14 2012-07-19 Atlantic Hydrogen Inc. Plasma reactor and method of operation thereof
FI20115147L (en) 2011-02-16 2012-08-17 Upm Kymmene Corp Process and apparatus for producing black color pigment
US20140190179A1 (en) 2011-04-26 2014-07-10 Atlantic Hydrogen Inc. Method of producing carbon black and generating energy
US8486363B2 (en) 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
SG195420A1 (en) 2012-06-07 2013-12-30 Ael Enviro Asia Pte Ltd High energy gas flow tyre pyrolysis using rf inductive plasma in combination with lf induction heating.
WO2013185219A1 (en) 2012-06-14 2013-12-19 Atlantic Hydrogen Inc. Processes for producing carbon black
EP2874739B1 (en) 2012-07-18 2018-12-26 Atlantic Hydrogen Inc. Electromagnetic energy-initiated plasma reactor systems and methods
CN102993788A (en) 2012-12-10 2013-03-27 张邦稳 Device and method for producing high-purity carbon black by adopting plasmas
CN103160149A (en) 2013-03-28 2013-06-19 无锡双诚炭黑有限公司 Carbon black reaction furnace and carbon black production method
CN203269847U (en) 2013-03-28 2013-11-06 无锡双诚炭黑有限公司 Carbon black reaction furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400266A (en) * 1972-10-19 1975-07-16 G N I Energet I Im G M Krzhizh Method of producing carbon black by pyrolysis of hydrocarbon stock materials in plasma
US9574086B2 (en) * 2014-01-31 2017-02-21 Monolith Materials, Inc. Plasma reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ryan 3420632 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US11866589B2 (en) 2014-01-30 2024-01-09 Monolith Materials, Inc. System for high temperature chemical processing
US11203692B2 (en) 2014-01-30 2021-12-21 Monolith Materials, Inc. Plasma gas throat assembly and method
US11591477B2 (en) 2014-01-30 2023-02-28 Monolith Materials, Inc. System for high temperature chemical processing
US11304288B2 (en) 2014-01-31 2022-04-12 Monolith Materials, Inc. Plasma torch design
US11998886B2 (en) 2015-02-03 2024-06-04 Monolith Materials, Inc. Regenerative cooling method and apparatus
US10618026B2 (en) 2015-02-03 2020-04-14 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
US11665808B2 (en) 2015-07-29 2023-05-30 Monolith Materials, Inc. DC plasma torch electrical power design method and apparatus
US10808097B2 (en) 2015-09-14 2020-10-20 Monolith Materials, Inc. Carbon black from natural gas
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
US11492496B2 (en) 2016-04-29 2022-11-08 Monolith Materials, Inc. Torch stinger method and apparatus
US12012515B2 (en) 2016-04-29 2024-06-18 Monolith Materials, Inc. Torch stinger method and apparatus
US11926743B2 (en) 2017-03-08 2024-03-12 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
US11760884B2 (en) 2017-04-20 2023-09-19 Monolith Materials, Inc. Carbon particles having high purities and methods for making same
US11453784B2 (en) 2017-10-24 2022-09-27 Monolith Materials, Inc. Carbon particles having specific contents of polycylic aromatic hydrocarbon and benzo[a]pyrene
US12030776B2 (en) 2020-02-26 2024-07-09 Monolith Materials, Inc. Systems and methods for particle generation

Also Published As

Publication number Publication date
US9574086B2 (en) 2017-02-21
MX2016009779A (en) 2016-11-14
CA2937870A1 (en) 2015-08-06
WO2015116811A1 (en) 2015-08-06
CA2937870C (en) 2022-06-14
US20150218383A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
US9574086B2 (en) Plasma reactor
US11203692B2 (en) Plasma gas throat assembly and method
US3010794A (en) Carbon black process
CA2975730C (en) Carbon black combustable gas separation
US3922335A (en) Process for producing carbon black
MX2017009981A (en) Carbon black generating system.
EP1765934B1 (en) Carbon black and multi-stage process for making same
EP1489145B1 (en) Process for producing Furnace Black
US2375796A (en) Process of making carbon black
Baron et al. Coal tar pitch-past, present, and future
US3010795A (en) Carbon black process
US9718963B2 (en) Carbon black reactor
CN105419406B (en) A kind of method of modifying for improving flyash whiteness
EP1783178A1 (en) Carbon black and multi-stage process for making same
CN1282728C (en) Process for producing coke
US3130146A (en) Production of coke
EP2578666B1 (en) Method for producing a coking additive by delayed coking
JPH03115365A (en) Reactor and method for manufacturing carbon black having wide particle size distribution range
US2789085A (en) Preparation and desulfurization of petroleum coke
US3051556A (en) Carbon black apparatus
US2861028A (en) Production of coke
CN108690653A (en) A kind of method of the method for lighting coking raw material, lightweight coking raw material and its application and delayed coking
US5256388A (en) Method for consistently producing carbon black having a high tint
RU2131766C1 (en) Reactor for production of carbon black
RU2184761C1 (en) Method of processing heavy petroleum residues

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION