US20170320548A1 - Lng ship - Google Patents

Lng ship Download PDF

Info

Publication number
US20170320548A1
US20170320548A1 US14/783,249 US201414783249A US2017320548A1 US 20170320548 A1 US20170320548 A1 US 20170320548A1 US 201414783249 A US201414783249 A US 201414783249A US 2017320548 A1 US2017320548 A1 US 2017320548A1
Authority
US
United States
Prior art keywords
tank
ship
lng
support bodies
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/783,249
Other languages
English (en)
Inventor
Nobuyoshi Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20170320548A1 publication Critical patent/US20170320548A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B2025/087Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid comprising self-contained tanks installed in the ship structure as separate units

Definitions

  • the present invention relates to a liquefied natural gas (LNG) ship.
  • LNG liquefied natural gas
  • the LNG is liquefaction material obtained by cooling a natural gas to about ⁇ 162° C.
  • a tank of a LNG carrier transporting the LNG on the sea has a structure in which a cryogenic material is used so as to withstand a wide temperature change and thermal shrinkage and thermal stress caused by a temperature difference are taken into consideration.
  • the LNG carrier since the LNG carrier is used to transport a large amount of LNG at a high speed, the LNG carrier generally has a speed of about 20 knots, and its capacity exceeding 200,000 m 3 is now planned due to the tendency of an increase in size of a hull.
  • a LNG tank mounted thereon is generally divided into two types.
  • One is a moss spherical tank type and the other is a membrane type (for example, see U.S. Pat. No. 5,697,312 and U.S. Pat. No. 7,137,345).
  • a spherical tank made of aluminum alloy is fixed into a hold through a skirt-shaped support structure extending downward from the equatorial portion thereof.
  • both the weight of the liquid cargo loaded therein and the dynamic force acting on the liquid cargo due to the rolling of ship are directly put on the tank itself, and are transmitted to the hull through the skirt.
  • a heat insulating material of the tank is provided on the outer surface of the tank.
  • a heat insulating material is provided inside a double hull structure of a hull and a top surface thereof is liquid-tightly covered by a membrane.
  • the liquid pressure of LNG is transmitted to the hull structure through the heat insulating material.
  • the membrane stainless steel or nickel alloy (invar) having a small thermal expansion coefficient is used.
  • the hold since the hold is formed in a substantially box shape, a useless space is inevitably formed around the spherical tank when the moss spherical tank is applied in the hold. For this reason, the moss spherical tank has a disadvantage in that the tank volume is small compared with the size of the hull of both types.
  • the membrane type tank can be made in a shape along the hold, a large tank space is obtained, and hence volumetric efficiency is satisfactory.
  • a sloshing phenomenon occurs in which a large pressure is applied (attacked) to the inner wall of the tank due to the harmony of the shaking of the hull and the shaking of the LNG liquid level. That is, the liquid cargo inside the tank is violently ruffled due to the shaking of the hull, and hence the membrane or the heat insulating material is damaged due to the impact.
  • the spherical tank since the tank wall is curved, the impact can be smoothly disappeared.
  • the heat insulating material is provided outside the tank, the sloshing substantially does not cause any problem. Accordingly, in the membrane type tank, there is always a need of full or almost full load condition so that the LNG in the cargo is not ruffled.
  • the moss type and the membrane type are mainly used in the cargo tank of the LNG ship, but these types have merits and demerits as described above.
  • the LNG ship it is important to select the ship type based on the enough consideration of the advantages and disadvantages.
  • an independent prismatic tank is developed as an ideal LNG cargo tank in many ship builders in Japan based on the advantages and disadvantages.
  • a SPB tank manufactured by IHI Corporation is known.
  • Patent Literature 1 U.S. Pat. No. 5,697,312
  • Patent Literature 2 U.S. Pat. No. 7,137,345
  • the independent prismatic tank is of an ideal type without any disadvantage in which the tank volume is small compared with the size of the hull of both types.
  • the material of the used plate is limited to a material in which a strength property is exhibited in a cryogenic region, and stainless steel and aluminum are mainly used as the material.
  • the independent prismatic tank cannot compete with the moss type and the membrane type from the viewpoint of building cost, and hence only several ships are built.
  • the LNG is a liquid, and the behavior of the free surface inside the tank causes a large influence.
  • the membrane type should avoid the sloshing of the liquid level in the tank of the LNG ship caused by waves due to the tank structure.
  • An object of the invention is to obtain an economical hull structure by employing an independent prismatic tank having a large tank volume with respect to a ship size and reducing material cost.
  • Another object of the invention is to obtain a hull structure capable of accurately handling sloshing in a tank liquid level.
  • the invention solves the above-described problems as below.
  • a LNG ship having a structure in which a substantially prismatic tank is installed inside a hold while not being integrated with a hull structure material
  • a tank bottom surface is provided with inclined surfaces formed at the left and right sides of a center line direction of the ship as a boundary so that each angle intersecting a horizontal line becomes equal to or smaller than 4.0°, and
  • support bodies integrated with the hull structure material are arranged so as to correspond to the inclined surfaces and the tank is put on the support bodies.
  • the tank In the structure in which the tank is installed inside the hold while not being integrated with the hull structure (for example, the double hull structure) material (without any welding structure), there is an economical advantage in that a high-cost material is not needed. Further, since the tank has a substantially prismatic shape, the volumetric efficiency of the tank is larger than that of the spherical tank.
  • the tank bottom surface is provided with the inclined surfaces formed at the left and right sides of the center line direction of the ship as the boundary so that each angle intersecting the horizontal line becomes equal to or smaller than about 4.0°, the support bodies integrated with the hull structure material are arranged so as to correspond to at least the inclined surfaces, and the tank is put on the support bodies.
  • the sideslip of the tank may occur with the thermal deformation of the hull caused by a change in LNG amount inside the tank and the like.
  • the thermal deformation sideslip is suppressed or prevented by friction resistance between the tank bottom surface and the support bodies having inclined top surfaces.
  • the LNG ship according to claim 1 wherein a flat surface is formed at a center portion of the tank bottom surface, a receiving body integrated with the hull structure material is provided so as to correspond to the flat surface, and the flat surface is installed on the receiving body.
  • the flat surface may not be provided in the tank bottom surface, if the flat surface of the tank is installed on the receiving body and the main load of the tank is supported by the receiving body, there is an advantage in strength design of the tank.
  • the LNG ship according to claim 1 or 2 wherein the support bodies are arranged at the left and right sides of the center line direction of the ship as the boundary so as to be located at a plurality of positions separated from each other in a ship width direction.
  • the support bodies are arranged at the left and right sides at the plurality of positions separated from each other in the ship width direction, the sideslip of the tank occurs smoothly and the weight decreases.
  • the LNG ship according to claim 1 or 2 wherein the support bodies are arranged at the left and right sides of the center line direction of the ship as the boundary so as to be located at a plurality of positions separated from each other in a ship width direction and are provided along a ship longitudinal direction.
  • the tank When the support bodies are arranged along the ship longitudinal direction, the tank can be stably supported.
  • the LNG ship according to claim 1 or 2 wherein the support bodies are arranged at the left and right sides of the center line direction of the ship as the boundary so as to be located at a plurality of positions in a zigzag pattern.
  • the support bodies can be arranged at the left and right sides of the center line direction of the ship as the boundary so as to be located at the plurality of positions in the zigzag pattern.
  • a key portion is integrally formed with a center upper portion of the tank in a protruding manner and anchor point chocks are provided in the hull structure material so as to be located at front and rear sides in the center line direction of the ship corresponding to the key portion.
  • the anchor point chock having a width in the ship width direction is provided in the hull so as to suppress the movement of the tank for forward and backward direction as small as possible, and this point is set as the thermal deformation center.
  • a material of the prismatic tank is selected from aluminum alloy, 9% nickel steel, and stainless steel.
  • the LNG ship according to claim 1 wherein the LNG ship includes a LNG carrier, FLNG, FSRU, and SRV.
  • LNG ship of the invention is widely used as a ship including a LNG carrier, FLNG, FSRU, and SRV.
  • FIG. 1 is a front view of a LNG ship.
  • FIG. 2 is a plane view of the LNG ship.
  • FIG. 3 is a cross-sectional view of the LNG ship.
  • FIG. 4 is a view taken along the line 4 - 4 .
  • FIG. 5 is a partial plane view of another arrangement example of support bodies.
  • FIG. 6 is a cross-sectional view of another shape example of a tank.
  • FIG. 7 is a cross-sectional view of still another shape example of a tank.
  • a LNG tanker has a structure in which a bow area 10 , a tank space 12 , an engine room 14 , and a stern area 16 are connected in this order from the front side, and an accommodation area 18 and a steering room 20 are provided above the engine room.
  • the tank space 12 is divided into a plurality of sections by transfer bulkheads 22 .
  • Reference sign 23 denotes a bulkhead provided for the bow area 10 .
  • the invention relates to a LNG ship in which each independent tank 30 having a substantially prismatic shape is installed inside a hold while not being integrated with hull (double hull) structure materials 32 and 33 .
  • the bottom surface of the independent prismatic tank 30 is provided with inclined surfaces 30 A provided at the left and right sides of the center line direction of the ship as the boundary so that each angle ⁇ intersecting a horizontal line H becomes equal to or smaller than 4.0°.
  • support bodies 34 , 34 . . . integrated with the hull structure material 33 are arranged so as to correspond to the inclined surfaces 30 A and 30 A, and the tank 30 is put on the support bodies 34 , 34 . . . .
  • a center portion of the bottom surface of the tank 30 is provided with a flat surface 30 B.
  • a receiving body 35 integrated with the hull structure material 33 is provided so as to correspond to the flat surface 30 B, and the flat surface 30 B is installed on the receiving body 35 .
  • the support bodies 34 , 34 . . . are arranged along a ship longitudinal direction.
  • the tank 30 is provided as the independent prismatic tank and is installed inside the hold while not being integrated with the hull structures (for example, the double hull structures) 32 and 33 (without any welding structure), there is an economical advantage in that a high-cost material is not needed. Further, since the tank 30 has the substantially prismatic shape, the volumetric efficiency of the tank 30 is larger than that of the spherical tank.
  • the bottom surface of the prismatic tank 30 is provided with the inclined surfaces 30 A formed at the left and right sides of the center line direction of the ship as the boundary so that each angle ⁇ intersecting the horizontal line H becomes equal to or smaller than 4.0°, the support bodies 34 , 34 . . . integrated with the hull structure material 33 are arranged so as to correspond to the inclined surfaces 30 A and 30 A, and the tank 30 is put on the support bodies 34 , 34 . . . .
  • sideslip of the tank 30 may occur with thermal deformation of the hull caused by a change in LNG amount inside the tank. This thermal deformation sideslip is suppressed or prevented by friction resistance between the bottom surface 30 A of the tank 30 and the support bodies 34 having inclined top surfaces.
  • the inclination angle ⁇ intersecting the horizontal line H of the bottom surface 30 A of the tank 30 is not limited. However, when the inclination angle ⁇ is set to be large, there is a possibility that the liquid cargo amount may decrease and an extreme sideslip may occur. Accordingly, it is desirable that the inclination angle ⁇ be equal to or smaller than 4.0° and be 0.5° to 2.5°.
  • a key portion 40 is integrally formed with a center upper portion of the tank 30 in a protruding manner and anchor point chocks 41 and 41 are provided in the hull structure material so as to be located at the front and rear sides in the center line direction of the ship corresponding to the key portion 40 .
  • anchor point chocks 41 and 41 are provided in the hull structure material so as to be located at the front and rear sides in the center line direction of the ship corresponding to the key portion 40 .
  • a heat insulating material can be provided on the outer surface of the tank 30 .
  • the support bodies 34 , 34 . . . are arranged along the ship longitudinal direction, but can be arranged appropriately.
  • the support bodies can be arranged in a zigzag pattern.
  • the “substantially prismatic independent tank” of the invention may be a prismatic shape in the cross-section as a whole, and does not need to be a precise prismatic shape.
  • a tank 30 C includes chamfered corners 30 a and round corners 30 b and inclined top surfaces 30 c.
  • a tank 30 D includes a small tank 30 d at an upper portion and a main tank 30 e at a lower portion.
  • the tank 30 As a material of the tank 30 , aluminum alloy, 9% nickel steel, stainless steel, or the like can be used.
  • the invention can be applied to a LNG carrier and in addition, the invention can be applied also to a FLNG (LNG-FPSO (Floating Production, Storage and Off-loading system)), FSRU, and SRV, which require handling of sloshing phenomenon in the same manner as the LNG carrier.
  • FLNG LNG-FPSO (Floating Production, Storage and Off-loading system)
  • FSRU Floating Production, Storage and Off-loading system
  • SRV SRV
  • the LNG ship of the present invention includes a re-gasification unit and the examples of the re-gasification unit are an FSRU (Floating Storage and Re-gasification Unit) and SRV (Shuttle and Re-gasification Vessel).
  • the FSRU is mounted with a re-gasification unit and fixes a ship having an LNG storage capacity on the sea and receives LNG from the other LNG ship.
  • the natural gas re-gasified by the FSRU is sent out to a pipeline on the land.
  • the SRV does not transfer LNG from the other LNG ship but transports LNG loaded in at a liquefaction base to a demand area, re-gasifies the LNG on the deck, and sends out the re-gasified natural gas to a pipeline on the land.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
US14/783,249 2013-04-08 2014-04-07 Lng ship Abandoned US20170320548A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-080081 2013-04-08
JP2013080081A JP2014201241A (ja) 2013-04-08 2013-04-08 Lng船
PCT/JP2014/060120 WO2014168124A1 (ja) 2013-04-08 2014-04-07 Lng船

Publications (1)

Publication Number Publication Date
US20170320548A1 true US20170320548A1 (en) 2017-11-09

Family

ID=51689531

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/783,249 Abandoned US20170320548A1 (en) 2013-04-08 2014-04-07 Lng ship

Country Status (10)

Country Link
US (1) US20170320548A1 (ru)
EP (1) EP2985219A4 (ru)
JP (1) JP2014201241A (ru)
KR (1) KR20150139886A (ru)
CN (1) CN105121268A (ru)
AU (1) AU2014251771A1 (ru)
CA (1) CA2909228A1 (ru)
RU (1) RU2015147492A (ru)
SG (1) SG11201508353PA (ru)
WO (1) WO2014168124A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162284A (zh) * 2021-12-17 2022-03-11 上海江南长兴造船有限责任公司 一种船舶建造中独立液舱的定位方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190193817A1 (en) * 2016-01-12 2019-06-27 Excelerate Liquefaction Solutions, Llc Natural gas liquefaction vessel
JP6737431B2 (ja) * 2016-10-11 2020-08-12 三井E&S造船株式会社 液化ガス運搬船
KR102028802B1 (ko) * 2017-09-25 2019-10-04 한국조선해양 주식회사 액화가스 저장탱크 및 이를 구비하는 선박
KR102467833B1 (ko) * 2019-06-25 2022-11-15 삼성중공업 주식회사 액화가스 저장탱크 구조체

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064612A (en) * 1960-10-20 1962-11-20 Maryland Shipbuilding And Dryd Carrier constructions for bulk fluids
DE1506761A1 (de) * 1963-02-14 1970-04-16 Mcmullen John J Tankschiff fuer den Transport verfluessigter tiefsiedender Gase
CN85104342B (zh) * 1984-11-28 1987-09-02 三菱重工业株式会社 运输低温或高温货物用的船舶
CN101668677B (zh) * 2007-04-26 2013-11-06 埃克森美孚上游研究公司 独立的皱褶液化天然气储罐
US8671863B2 (en) * 2008-10-09 2014-03-18 Keppel Offshore & Marine Technology Centre Pte Ltd Hull conversion of existing vessels for tank integration
JP5646913B2 (ja) * 2010-08-24 2014-12-24 ジャパンマリンユナイテッド株式会社 カーゴタンクの支持構造及び浮体構造物
JP5732347B2 (ja) * 2011-08-12 2015-06-10 ジャパンマリンユナイテッド株式会社 タンク支持構造及び浮体構造物
JP5688343B2 (ja) * 2011-08-29 2015-03-25 ジャパンマリンユナイテッド株式会社 燃料タンク支持構造及び浮体構造物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162284A (zh) * 2021-12-17 2022-03-11 上海江南长兴造船有限责任公司 一种船舶建造中独立液舱的定位方法

Also Published As

Publication number Publication date
JP2014201241A (ja) 2014-10-27
WO2014168124A1 (ja) 2014-10-16
CN105121268A (zh) 2015-12-02
RU2015147492A (ru) 2017-05-16
EP2985219A4 (en) 2016-12-07
AU2014251771A1 (en) 2015-11-26
EP2985219A1 (en) 2016-02-17
CA2909228A1 (en) 2014-10-16
KR20150139886A (ko) 2015-12-14
SG11201508353PA (en) 2015-11-27

Similar Documents

Publication Publication Date Title
US20160031531A1 (en) LNG Ship or LPG Ship
US9545980B2 (en) Ultra large marine floating system
US8079321B2 (en) Long tank FSRU/FLSV/LNGC
JP5785118B2 (ja) 船舶、洋上浮体式設備、及び液化天然ガス貯蔵方法
CN101687535A (zh) 液化天然气运输船以及液化天然气的海上输送方法
US7137345B2 (en) High volume liquid containment system for ships
JP2015013494A5 (ru)
US20170320548A1 (en) Lng ship
JP2019523731A (ja) 複数の流体運搬用貯蔵タンクを具備した船舶
KR20100127470A (ko) 저장탱크의 다열 배치 구조를 가지는 부유식 구조물
KR101041781B1 (ko) 반잠수식 해상 구조물
WO2010028240A2 (en) Vaulted liquid containment system for ships
KR20170097916A (ko) 선박
KR101686503B1 (ko) 횡동요 저감구조를 가지는 해상 구조물
EP2985218B1 (en) Lng carrier or lpg carrier
KR102017929B1 (ko) 선박
KR101125107B1 (ko) 저장탱크의 다열 배치 구조를 가지는 부유식 구조물
KR101936909B1 (ko) 해양 구조물의 액화가스 저장탱크
KR20120058485A (ko) 저장탱크의 다열 배치 구조를 가지는 부유식 구조물
KR20210098802A (ko) 해양 구조물의 액화가스 저장탱크
KR20120000143A (ko) 중앙 밸러스트 탱크를 갖는 해양 구조물
KR20110140022A (ko) 중앙 밸러스트 탱크를 갖는 해양 구조물

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION