US20170268077A1 - High-strength high-ductility steel sheet - Google Patents

High-strength high-ductility steel sheet Download PDF

Info

Publication number
US20170268077A1
US20170268077A1 US15/528,675 US201515528675A US2017268077A1 US 20170268077 A1 US20170268077 A1 US 20170268077A1 US 201515528675 A US201515528675 A US 201515528675A US 2017268077 A1 US2017268077 A1 US 2017268077A1
Authority
US
United States
Prior art keywords
carbon concentration
steel sheet
retained
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/528,675
Inventor
Toshio Murakami
Shigeo OTANI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Assigned to KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) reassignment KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURAKAMI, TOSHIO, OTANI, SHIGEO
Publication of US20170268077A1 publication Critical patent/US20170268077A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling

Definitions

  • the present invention relates to a high-strength high-ductility steel sheet useful, for example, as a thin steel sheet for automobiles. More specifically, the present invention relates to a technique for enhancing the strength-ductility balance of a steel sheet.
  • a steel sheet used, for example, for automotive skeleton parts is required not only to have higher strength with the purpose of, e.g., collision safety and reducing fuel consumption by weight saving of vehicle body but also to have excellent formability for forming into skeleton parts having a complicated shape as well as weldability in joining parts with each other to assemble ASSY. Accordingly, development of a steel sheet, as specifically required mechanical properties (hereinafter, sometimes simply referred to as “properties”), capable of ensuring a yield ratio (YR) of 0.7 or more and a tensile strength (TS) ⁇ elongation (EL) ⁇ stretch flangeability ( ⁇ ) of 1,000,000 MPa ⁇ % ⁇ % or more while keeping the carbon amount 0.3 mass % or less is demanded.
  • YR yield ratio
  • TS tensile strength
  • EL tenstretch flangeability
  • Patent Document 1 has proposed a high-strength thin steel sheet excellent in the elongation and press forming stability, in which the form of retained austenite in steel microstructure is classified into lath form and island form and the proportion of retained austenite with island morphology is controlled to a certain range.
  • good elongation at a temperature of 100 to 200° C. is realized, in addition to good elongation at room temperature, but it is assumed that YR and strength-ductility balance, which are effective material factors as collision properties, cannot be sufficiently ensured. Thus, it seems unlikely that the required level is satisfied.
  • Patent Document 2 has proposed a high-strength cold-rolled steel sheet, in which the integration degree of crystal orientation of austenite phase in a steel microstructure is increased and uniform elongation in a 45° direction relative to the rolling direction is thereby remarkably improved.
  • the properties in the rolling direction and a direction at a right angle to the rolling direction which are general directions for ductility evaluation, are not particularly notable, and it seems unlikely that the required level is satisfied.
  • Patent Document 3 has proposed a high-strength thin steel sheet, in which a C concentration difference is provided between the surface and the inside of a retained austenite grain in a steel microstructure and the bake hardenability and strength-ductility balance are thereby improved.
  • the providing of a C concentration difference in a retained austenite grain is only with a main aim to improve the bake hardenability, and unlike the present invention, it is not intended to impart a required carbon concentration distribution to retained austenite so as to improve the stability of retained austenite and thereby enhance the ductility.
  • the technical idea thereof is utterly different from that of the present invention.
  • Patent Document 1 JP-A-2012-41573
  • Patent Document 2 JP-A-2012-21225
  • Patent Document 3 JP-A-2012-31505
  • An object of the present invention is to provide a high-strength high-ductility steel sheet excellent in the strength-ductility balance and capable of ensuring a yield ratio (YR) of 0.7 or more and a tensile strength (TS) ⁇ elongation (EL) ⁇ stretch flangeability ( ⁇ ) of 1,000,000 MPa ⁇ % ⁇ % or more.
  • the high-strength high-ductility steel sheet according to a first aspect of the present invention has a component composition containing, in mass %,
  • Si+Al from 0.5 to 2.0%
  • an average carbon concentration is from 0.9 to 1.2 mass %
  • a standard deviation of a carbon concentration distribution is 0.35 mass % or more
  • an area ratio of a region having the carbon concentration of 1.5 mass % or more, relative to the entire microstructure, is 1.0% or more.
  • the high-strength high-ductility steel sheet according to a second aspect of the present invention is the one in the first aspect, in which the component composition further contains, in mass %,
  • the high-strength high-ductility steel sheet according to a third aspect of the present invention is one in the first or second aspect, in which the component composition further contains, in mass %,
  • the high-strength high-ductility steel sheet according to a fourth aspect of the present invention is the one in any one invention of the first to third aspects, in which the component composition further contains, in mass %,
  • the present invention not only the amount (area ratio) and average carbon concentration of retained austenite are specified but also the carbon concentration distribution is controlled, and a TRIP phenomenon is thereby expressed from the early stage to the later stage of deformation to realize a high work hardening rate, so that a high-strength high-ductility steel sheet excellent in the strength-ductility balance and capable of ensuring a yield ratio (YR) of 0.7 or more and a tensile strength (TS) ⁇ elongation (EL) ⁇ stretch flangeability ( ⁇ ) of 1,000,000 MPa ⁇ % ⁇ % or more can be provided.
  • YR yield ratio
  • TS tensile strength
  • EL tenstretch flangeability
  • FIG. 1 is a view schematically illustrating the diffraction peak of retained ⁇ as measured by X-ray diffractometry.
  • FIG. 2 is a view schematically illustrating the heat treatment conditions for manufacturing the high-strength high-ductility steel sheet according to the present invention.
  • retained austenite hereinafter, sometimes referred to as “retained ⁇ ” promoting the TRIP phenomenon must be more effectively utilized.
  • retained ⁇ there is a restriction on the upper limit of the C content in the steel sheet from the viewpoint of ensuring weldability of the steel sheet, and this imposes a limit in increasing the amount of retained ⁇ and the average carbon concentration in retained ⁇ .
  • the present inventors focused attention on the carbon concentration distribution in retained ⁇ . More specifically, in order to achieve high strength and high ductility by the TRIP phenomenon, it is important to realize a high work hardening rate from the early stage to the middle stage of deformation, and for this purpose, unstable retained ⁇ with a low carbon concentration must be present in part. On the other hand, in order to maintain a high work hardening rate upon increase in the deformation amount, i.e., in the later stage of deformation, stable retained ⁇ with a high carbon concentration must also be produced.
  • the present inventors have further advanced studies based on the knowledge above and accomplished the present invention.
  • microstructure characterizing the high-strength high-ductility steel sheet according to the present invention (hereinafter, sometimes referred to as “steel sheet of the present invention”) is described below.
  • the steel sheet of the present invention is based on a TBF steel microstructure but differs from those conventional techniques particularly in that it contains a predetermined amount of retained ⁇ having a predetermined carbon concentration and the carbon concentration distribution in the retained ⁇ is controlled.
  • Retained ⁇ is useful for enhancing the ductility, and in order to effectively bring out such an action, must be present in a ratio of, in terms of area ratio relative to the entire microstructure, 8% or more, preferably 9% or more, more preferably 10% or more.
  • the area ratio of retained ⁇ is preferably 20% or less, more preferably 18% or less, especially preferably 16% or less.
  • the production of ferrite is prevented, and the matrix is constructed by bainite, martensite, which are a fine and uniform microstructure, and/or a tempered microstructure thereof, so that refinement of the matrix microstructure can prevent deformation in low loading, leading to an increase in the yield strength YS.
  • the %C ⁇ R is an index affecting the stability of transformation of retained ⁇ to martensite in deformation. If %C ⁇ R is too low, retained ⁇ is unstable, allowing occurrence of work-induced martensite transformation after stress application but before plastic deformation, and predetermined elongation is not obtained. On the other hand, if %C ⁇ R is too high, retained ⁇ is excessively stable, resulting in no occurrence of work-induced martensite transformation even when worked, and predetermined stretch flangeability is not obtained as well. In order to obtain predetermined elongation, the %C ⁇ R must be from 0.9 to 1.2 mass %. The lower limit of %C ⁇ R is 1.0 mass %.
  • the standard deviation of the carbon concentration distribution in retained ⁇ must be 0.35 mass % or more, preferably 0.40 mass % or more, more preferably 0.45 mass % or more.
  • the standard deviation of the carbon concentration distribution in retained ⁇ has an upper limit of about 0.70 mass % in practice and is preferably 0.65 mass % or less.
  • the stability of retained ⁇ upon increase in the distortion amount is high, and for this purpose, it is not sufficient only that the carbon concentration is averagely high, but retained ⁇ having high stability, i.e., a high carbon concentration, must be present in a certain amount or more.
  • a region having the carbon concentration of 1.5 mass % or more in retained ⁇ must be present in a ratio of, in terms of area ratio relative to the entire microstructure, 1.0% or more, preferably 1.5% or more, more preferably 2.0% or more.
  • the area ratio of a region having the carbon concentration of 1.5 mass % or more in retained ⁇ , relative to the entire microstructure has an upper limit of about 1 ⁇ 2 of the total retained ⁇ area and is preferably 2 ⁇ 5 or less, more preferably 1 ⁇ 3 or less.
  • the steel sheet was ground to 1 ⁇ 4 thickness, then chemically polished and measured by X-ray diffraction method (ISIJ Int., Vol. 33 (1933), No. 7, page 776).
  • X-ray diffraction method ISIJ Int., Vol. 33 (1933), No. 7, page 776.
  • a two-dimensional X-ray microdiffractometer RINT-RAPID II manufactured by Rigaku Corporation was used as the X-ray diffraction apparatus, and a Co-K ⁇ ray was used as the X-ray.
  • the steel sheet was subjected to Nital etching and observed by an optical microscope (magnification: 400 times) to identify microstructures other than retained ⁇ .
  • the carbon concentration distribution in retained ⁇ was determined as follows by using three diffraction peaks of (200) ⁇ , (220) ⁇ and (311) ⁇ measured by the X-ray diffraction apparatus above.
  • the crystal lattice constant a 0 (hkl) was then determined according to the following formula (3), and these three crystal lattice constants a 0 (hkl) were arithmetically averaged to determine the crystal lattice constant a 0 .
  • the carbon concentration %C avg (unit: mass %) was then determined by using the Dyson equation (Dyson D. J., Holmes B. (1970), “Effect of alloying additions on the lattice parameter austenite”, J. Iron Steel Inst., 208:469-474) represented by the following formula (3) (note here that this carbon concentration %C avg is used only as an index for specifying the carbon concentration distribution and to be exact, does not necessarily correspond to the separately measured average carbon concentration %C ⁇ R ).
  • % Mn, % Si and % Al are respectively contents (mass %) of Mn, Si and Al in the steel sheet.
  • the diffraction angles at upper and lower limits of the half value width ⁇ 2 ⁇ (hkl) of the diffraction angle 2 ⁇ (hkl) of each peak were determined by the following formulae (4) and (5) (see, FIG. 1 ).
  • the upper and lower limit values %C L and %C H of the half value width of the carbon concentration distribution were determined by using 2 ⁇ L (hkl) and 2 ⁇ H (hkl) above, respectively, by the same procedure as above by using the Bragg condition and formulae (1) to (3).
  • the half value width ⁇ %C of the carbon concentration distribution was determined according to the following formula (6).
  • the standard deviation ⁇ %C was calculated from the half value width ⁇ %C as follows.
  • the probability density function f(x) of the normal distribution is represented by the following formula (7) using the average value u and the standard deviation ⁇ .
  • formula (10) is derived as a formula to determine the standard deviation ⁇ %C from the half value width ⁇ %C, and the standard deviation ⁇ %C was calculated by substituting the half value width ⁇ %C into formula (10)
  • the following formula (12) was derived as a formula to determine the area ratio V ⁇ R (C ⁇ 1.3%) of a region having the carbon concentration of 1.3 mass % or more, relative to the entire microstructure, from the cumulative density function g(x) represented by the following formula (11) by using the average value %C avg and ⁇ %C of the carbon concentration distribution in retained ⁇ determined as above, and V ⁇ R (C ⁇ 1.3%) was calculated by using formula (12)
  • V ⁇ R is the area ratio of all retained ⁇ .
  • the component composition constituting the steel sheet of the present invention is described below.
  • all of the units of chemical components are mass %.
  • the “content” of each component is sometimes simply referred to as “amount”.
  • C is an indispensable element to ensure the strength and ductility by contributing to ensuring of the amount (area ratio) of retained austenite.
  • C In order to effectively bring out such an action, C must be contained in an amount of 0.10% or more, preferably 0.12% or more, more preferably 0.14% or more. However, if the C amount is excessively large, weldability deteriorates. Accordingly, the C amount is less than 0.35%, preferably 0.32% or less, more preferably 0.30% or less, further preferably 0.28% or less.
  • Si+Al from 0.5 to 2.0%
  • Si and Al are elements capable of effectively preventing retained austenite from decomposing to produce a carbide.
  • Si and Al In order to effectively bring out such an action, Si and Al must be contained in a total amount of 0.5% or more, preferably 0.7% or more, more preferably 0.9% or more.
  • the total amount of Si and Al is 2.0% or less, preferably 1.9% or less, more preferably 1.8% or less.
  • Mn is an element necessary to stabilize austenite and obtain desired retained austenite. In order to effectively bring out such an action, Mn must be contained in an amount of 1.0% or more, preferably 1.3% or more, more preferably 1.6% or more. However, if the Mn amount is excessively large, an adverse effect such as occurrence of slab cracking is produced. Accordingly, the Mn amount is 4.0% or less, preferably 3.5% or less, more preferably 3.0% or less.
  • P is unavoidably present as an impurity element but is an element that may be contained so as to ensure desired retained ⁇ . However, if P is contained excessively, secondary workability deteriorates. Accordingly, the P amount is 0.05% or less, preferably 0.03% or less, more preferably 0.02% or less.
  • S is also unavoidably present as an impurity element and is an element that forms a sulfide-based inclusion such as MnS to provide a starting point for cracking and deteriorates the workability. Accordingly, the S amount is 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less.
  • the steel of the present invention contains the above-described elements as indispensable components, with the remainder being iron and an unavoidable impurity, but in addition, the following allowable components may be contained to an extent not impairing the action of the present invention.
  • these elements are useful as a steel strengthening element and are an effective element to stabilize retained ⁇ or ensure its predetermined amount.
  • these elements are recommendably contained in a total amount of 0.001% or more, furthermore 0.01% or more.
  • the total amount of these elements is preferably 1.0% or less, furthermore 0.5% or less.
  • these elements have effects of precipitation strengthening and microstructure refinement and are an element useful for providing higher strength.
  • these elements are recommendably contained in a total amount of 0.01% or more, furthermore 0.02% or more.
  • the total amount of these elements is preferably 0.2% or less, furthermore 0.1% or less.
  • REM rare earth element
  • REM rare earth element
  • the total amount of these elements is preferably 0.01% or less, furthermore 0.005% or less.
  • the steel sheet of the present invention can be manufactured by subjecting a steel material satisfying the above-described component composition to hot rolling, then cold rolling and thereafter, heat treatment under the conditions of, for example, the following steps (1) to (4) (see, FIG. 2 ).
  • a cold-rolled sheet is heated to a second heating temperature T2: from [0.7 ⁇ Ac1+0.3 ⁇ Ac3] to [0.2 ⁇ Ac1+0.8 ⁇ Ac3], and held at that temperature for a second holding time t2: 5 s or more, or is heated at an average heating rate of 4° C./s or less in the same temperature range,
  • the sheet is further heated to a third heating temperature T3: from [Ac3+10° C.] to 950° C., and held at that time for a third holding time t3: 180 s or less,
  • the sheet is thereafter held at an austempering temperature T4: from 350 to 480° C., for an austempering holding time t4: 10 s or more, and then cooled to room temperature.
  • the holding time t2 in the temperature range above is more preferably 10 s or more, still more preferably 20 s or more, and in view of productivity, is recommendably 200 s or less.
  • Ac1 and Ac3 can be determined from the component composition of the steel sheet by using the formula described in Leslie, “The Physical Metallurgy of Steels”, translated by Koda Shigeyasu, page 273, 1985, Maruzen Co., Ltd.
  • the third heating time T3 is less than [Ac3+10° C.], ferrite remains, and growth of ferrite cannot be suppressed in the cooling process in the subsequent step (3), and as a result, ferrite is formed excessively.
  • the third heating temperature T3 exceeds 950° C. or the third holding time t3 exceeds 180 s, Mn distributed during two-phase region heating in the step (1) is uniformized, and the carbon concentration distribution in retained ⁇ cannot be broadened.
  • the average cooling rate HR3 in the temperature range above is more preferably 25° C./s or more, still more preferably 30° C./s or more.
  • the step (1) may be configured as in the following step (1a).
  • the cold-rolled sheet is heated to a first heating temperature T1: from [Ac1 ⁇ 100° C.] to [Ac1 ⁇ 30° C.], and held at that temperature for a first holding time: 10 s or more, or is heated at an average heating rate of 2° C./s or less in the same temperature range and then held at the second heating temperature T2: from [0.7 ⁇ Ac1+0.3 ⁇ Ac3] to [0.2 ⁇ Ac1+0.8 ⁇ Ac3] for the second holding time t2: 5 s or more.
  • Mn is enriched in cementite and thereby the Mn concentration distribution between ferrite/austenite during subsequent heating in the ferrite/austenite two-phase region is promoted, and as a result, the local speed difference of bainite transformation during austempering treatment in the step (4) is increased, making it possible to more broaden the carbon concentration distribution in retained ⁇ .
  • the step (4) may be configured as in the following step (4a).
  • the sheet is held at an austempering temperature T4: from 350 to 480° C., for an austempering holding time t4: 10 s or more, then reheated to a reheating temperature T5: from 500 to 600° C., held at that temperature for a reheating holding time t5: 30 s or less, and thereafter cooled to room temperature.
  • the steel sheet of the present invention may be reheated in a temperature range in which retained ⁇ does not decomposes to cause alloying of a plating layer and thereby fabricated as a plated steel sheet.
  • a steel having the components shown in Table 1 below was manufactured by vacuum melting, then made into a steel sheet having a sheet thickness of 30 mm by hot forging, and subjected to hot rolling.
  • the hot rolling conditions have substantially no effect on the final microstructure and properties of the steel sheet of the present invention, but in this Example, heating at 1,200° C. was performed, followed by multi-stage rolling under the condition of an end temperature of hot rolling of 880° C., thereby obtaining a sheet thickness of 2.5 mm. Then, cooling to 500° C. was performed at a cooling rate of 30° C./s and the cooling was stopped, followed by inserting into a furnace heated at 500° C., holding for 30 min, and furnace-cooling to obtain a hot-rolled sheet. This hot-rolled sheet was subjected to pickling to remove surface scales and then cold rolled to 1.4 mm to produce a cold-rolled sheet.
  • the cold-rolled sheet was used as a starting material and heat-treated under the conditions shown in Table 2 below.
  • the average heating rate from room temperature to the first heating temperature (holding temperature) was set to a constant rate of 10° C./s
  • the average heating rate to the next heating temperature was set to a constant rate of 20° C./s
  • the average heating rate further to the next heating temperature was set to a constant rate of 10° C./s.
  • the average heating rate from the austempering temperature T4 to the reheating temperature T5 was set to a constant rate of 10° C./s
  • the average cooling rate from the austempering temperature T4 or reheating temperature T5 to room temperature was set to a constant rate of 10° C./s.
  • the remainder other than retained austenite and ferrite was composed of one member or two or more members of bainite, martensite, tempered bainite and tempered martensite and therefore, in Table 3 below, only the area ratios of retained austenite and ferrite are shown.
  • the yield strength YS, tensile strength TS and elongation (total elongation) EL were measured by a tensile test.
  • the tensile test was conducted in accordance with JIS Z 2241 by preparing a JIS No. 5 specimen.
  • the hole expansion ratio was measured in conformity with The Japan Iron and Steel Federation Standard JFST 1001.
  • each of Steel Nos. 1, 2, 5 to 8, and 12 uses a steel species satisfying the requirements specifying the components of the present invention but is manufactured under the conditions deviating in part from the recommended manufacturing conditions and therefore does not fulfill the requirements specifying the microstructure, leading to poor properties.
  • each of Steel Nos. 13 and 15 to 17 is manufactured under the recommended manufacturing conditions but uses a steel species deviating in part from the requirements specifying the components of the present invention and therefore does not fulfill the requirements specifying the microstructure, leading to poor properties.
  • the steel sheet of the present invention is excellent in strength and ductility balance and is useful, e.g., as a thin steel sheet for automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A high-strength high-ductility steel sheet has a specific component composition and a steel microstructure containing, in terms of an area ratio relative to the entire microstructure, 8% or more of a retained austenite, with the remainder being at least one of bainite, martensite, tempered bainite, and tempered martensite. With respect to the carbon concentration in the retained austenite, an average carbon concentration is from 0.9 to 1.2 mass %, a standard deviation of the carbon concentration distribution is 0.35 mass % or more, and an area ratio of a region having the carbon concentration of 1.5 mass % or more, relative to the entire microstructure, is 1.0% or more.

Description

    TECHNICAL FIELD
  • The present invention relates to a high-strength high-ductility steel sheet useful, for example, as a thin steel sheet for automobiles. More specifically, the present invention relates to a technique for enhancing the strength-ductility balance of a steel sheet.
  • BACKGROUND ART
  • A steel sheet used, for example, for automotive skeleton parts is required not only to have higher strength with the purpose of, e.g., collision safety and reducing fuel consumption by weight saving of vehicle body but also to have excellent formability for forming into skeleton parts having a complicated shape as well as weldability in joining parts with each other to assemble ASSY. Accordingly, development of a steel sheet, as specifically required mechanical properties (hereinafter, sometimes simply referred to as “properties”), capable of ensuring a yield ratio (YR) of 0.7 or more and a tensile strength (TS)×elongation (EL)×stretch flangeability (λ) of 1,000,000 MPa·%·% or more while keeping the carbon amount 0.3 mass % or less is demanded.
  • In a high-strength steel sheet of 980 MPa class or more, for both achieving high strength and ensuring high ductility, it is effective to use a TRIP steel, a TBF steel, etc. each utilizing a TRIP effect of retained austenite. With an attempt to more enhance the strength-ductility balance of these steels, various studies are being made on the amount, average carbon concentration and form of retained austenite, and steel sheets having better properties have been proposed (see, for example, Patent Documents 1 to 3).
  • For example, Patent Document 1 has proposed a high-strength thin steel sheet excellent in the elongation and press forming stability, in which the form of retained austenite in steel microstructure is classified into lath form and island form and the proportion of retained austenite with island morphology is controlled to a certain range. In this technique, good elongation at a temperature of 100 to 200° C. is realized, in addition to good elongation at room temperature, but it is assumed that YR and strength-ductility balance, which are effective material factors as collision properties, cannot be sufficiently ensured. Thus, it seems unlikely that the required level is satisfied.
  • Patent Document 2 has proposed a high-strength cold-rolled steel sheet, in which the integration degree of crystal orientation of austenite phase in a steel microstructure is increased and uniform elongation in a 45° direction relative to the rolling direction is thereby remarkably improved. However, the properties in the rolling direction and a direction at a right angle to the rolling direction, which are general directions for ductility evaluation, are not particularly notable, and it seems unlikely that the required level is satisfied.
  • Patent Document 3 has proposed a high-strength thin steel sheet, in which a C concentration difference is provided between the surface and the inside of a retained austenite grain in a steel microstructure and the bake hardenability and strength-ductility balance are thereby improved. However, in this technique, the providing of a C concentration difference in a retained austenite grain is only with a main aim to improve the bake hardenability, and unlike the present invention, it is not intended to impart a required carbon concentration distribution to retained austenite so as to improve the stability of retained austenite and thereby enhance the ductility. Thus, the technical idea thereof is utterly different from that of the present invention.
  • PRIOR ART LITERATURE Patent Document
  • Patent Document 1: JP-A-2012-41573
  • Patent Document 2: JP-A-2012-21225
  • Patent Document 3: JP-A-2012-31505
  • SUMMARY OF THE INVENTION Problems that the Invention is to Solve
  • An object of the present invention is to provide a high-strength high-ductility steel sheet excellent in the strength-ductility balance and capable of ensuring a yield ratio (YR) of 0.7 or more and a tensile strength (TS)×elongation (EL)×stretch flangeability (λ) of 1,000,000 MPa·%·% or more.
  • Means for Solving the Problems
  • The high-strength high-ductility steel sheet according to a first aspect of the present invention has a component composition containing, in mass %,
  • C: 0.10% or more and less than 0.35%,
  • Si+Al: from 0.5 to 2.0%,
  • Mn: from 1.0 to 4.0%,
  • P: from 0 to 0.05%, and
  • S: from 0 to 0.01%,
  • with the remainder being iron and an unavoidable impurity,
  • in which a steel microstructure contains,
  • in terms of an area ratio relative to the entire microstructure, 8% or more of a retained austenite, with the remainder being one member or two or more members of bainite, martensite, tempered bainite, and tempered martensite, and
  • with respect to a carbon concentration in the retained austenite,
  • an average carbon concentration is from 0.9 to 1.2 mass %,
  • a standard deviation of a carbon concentration distribution is 0.35 mass % or more, and
  • an area ratio of a region having the carbon concentration of 1.5 mass % or more, relative to the entire microstructure, is 1.0% or more.
  • The high-strength high-ductility steel sheet according to a second aspect of the present invention is the one in the first aspect, in which the component composition further contains, in mass %,
  • a total of 1.0% or less of one member or two or more members of Cu, Ni, Mo, Cr, and B.
  • The high-strength high-ductility steel sheet according to a third aspect of the present invention is one in the first or second aspect, in which the component composition further contains, in mass %,
  • a total of 0.2% or less of one member or two or more members of V, Nb, Ti, Zr, and Hf.
  • The high-strength high-ductility steel sheet according to a fourth aspect of the present invention is the one in any one invention of the first to third aspects, in which the component composition further contains, in mass %,
  • a total of 0.01% or less of one member or two or more members of Ca, Mg and REM.
  • Advantage of the Invention
  • According to the present invention, not only the amount (area ratio) and average carbon concentration of retained austenite are specified but also the carbon concentration distribution is controlled, and a TRIP phenomenon is thereby expressed from the early stage to the later stage of deformation to realize a high work hardening rate, so that a high-strength high-ductility steel sheet excellent in the strength-ductility balance and capable of ensuring a yield ratio (YR) of 0.7 or more and a tensile strength (TS)×elongation (EL)×stretch flangeability (λ) of 1,000,000 MPa·%·% or more can be provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view schematically illustrating the diffraction peak of retained γ as measured by X-ray diffractometry.
  • FIG. 2 is a view schematically illustrating the heat treatment conditions for manufacturing the high-strength high-ductility steel sheet according to the present invention.
  • MODES FOR CARRYING OUT THE INVENTION
  • In order to solve the above-described problem, the present inventors have made a variety of studies on measures capable of ensuring, in a steel sheet composed of TBF steel, as the mechanical properties thereof, a yield ratio (YR) of 0.7 or more and a tensile strength (TS)×elongation (EL)×stretch flangeability (λ) of 1,000,000 MPa·%·% or more. As a result, it has been conceived that the above-described desired properties can be ensured based on the following thoughts and investigations.
  • That is, in order to more enhance the strength-ductility balance than in conventional techniques, retained austenite (hereinafter, sometimes referred to as “retained γ”) promoting the TRIP phenomenon must be more effectively utilized. However, there is a restriction on the upper limit of the C content in the steel sheet from the viewpoint of ensuring weldability of the steel sheet, and this imposes a limit in increasing the amount of retained γ and the average carbon concentration in retained γ.
  • Accordingly, the present inventors focused attention on the carbon concentration distribution in retained γ. More specifically, in order to achieve high strength and high ductility by the TRIP phenomenon, it is important to realize a high work hardening rate from the early stage to the middle stage of deformation, and for this purpose, unstable retained γ with a low carbon concentration must be present in part. On the other hand, in order to maintain a high work hardening rate upon increase in the deformation amount, i.e., in the later stage of deformation, stable retained γ with a high carbon concentration must also be produced.
  • In other words, it is not enough for retained γ that only ones having high stability are present or that only ones having low stability are present, and what is important is that a broad range of stability, i.e., carbon concentration distribution, is present.
  • The present inventors have further advanced studies based on the knowledge above and accomplished the present invention.
  • First, the steel microstructure (hereinafter, sometimes simply referred to as “microstructure”) characterizing the high-strength high-ductility steel sheet according to the present invention (hereinafter, sometimes referred to as “steel sheet of the present invention”) is described below.
  • [Steel Microstructure of Steel Sheet of the Present Invention]
  • As described above, the steel sheet of the present invention is based on a TBF steel microstructure but differs from those conventional techniques particularly in that it contains a predetermined amount of retained γ having a predetermined carbon concentration and the carbon concentration distribution in the retained γ is controlled.
  • <Retained Austenite: 8% or More in Terms of Area Ratio Relative to the Entire Microstructure>
  • Retained γ is useful for enhancing the ductility, and in order to effectively bring out such an action, must be present in a ratio of, in terms of area ratio relative to the entire microstructure, 8% or more, preferably 9% or more, more preferably 10% or more. The area ratio of retained γ is preferably 20% or less, more preferably 18% or less, especially preferably 16% or less.
  • <Remainder: One Member or Two or More Members of Bainite, Martensite, Tempered Bainite, and Tempered Martensite>
  • The production of ferrite is prevented, and the matrix is constructed by bainite, martensite, which are a fine and uniform microstructure, and/or a tempered microstructure thereof, so that refinement of the matrix microstructure can prevent deformation in low loading, leading to an increase in the yield strength YS.
  • <Average Carbon Concentration (%CγR) in Retained γ: From 0.9 to 1.2 Mass %>
  • The %CγR is an index affecting the stability of transformation of retained γ to martensite in deformation. If %CγR is too low, retained γ is unstable, allowing occurrence of work-induced martensite transformation after stress application but before plastic deformation, and predetermined elongation is not obtained. On the other hand, if %CγR is too high, retained γ is excessively stable, resulting in no occurrence of work-induced martensite transformation even when worked, and predetermined stretch flangeability is not obtained as well. In order to obtain predetermined elongation, the %CγR must be from 0.9 to 1.2 mass %. The lower limit of %CγR is 1.0 mass %.
  • <Standard Deviation of Carbon Concentration Distribution in Retained γ: 0.35 Mass % or More>
  • This is because the carbon concentration distribution in retained γ is broadened so as to produce retained γ differing in the stability in order to increase and maintain the work hardening rate from the early stage to the later stage of deformation. In order to effectively bring out such an action, the standard deviation of the carbon concentration distribution in retained γ must be 0.35 mass % or more, preferably 0.40 mass % or more, more preferably 0.45 mass % or more. In the high-strength high-ductility steel sheet according to the present invention, the standard deviation of the carbon concentration distribution in retained γ has an upper limit of about 0.70 mass % in practice and is preferably 0.65 mass % or less.
  • <Region Having Carbon Concentration of 1.5 Mass % or More in Retained γ: 1.0% or More in Terms of Area Ratio Relative to the Entire Microstructure>
  • In order to increase the elongation, the important thing is that the stability of retained γ upon increase in the distortion amount is high, and for this purpose, it is not sufficient only that the carbon concentration is averagely high, but retained γ having high stability, i.e., a high carbon concentration, must be present in a certain amount or more. Specifically, a region having the carbon concentration of 1.5 mass % or more in retained γ must be present in a ratio of, in terms of area ratio relative to the entire microstructure, 1.0% or more, preferably 1.5% or more, more preferably 2.0% or more. In the high-strength high-ductility steel sheet according to the present invention, the area ratio of a region having the carbon concentration of 1.5 mass % or more in retained γ, relative to the entire microstructure, has an upper limit of about ½ of the total retained γ area and is preferably ⅖ or less, more preferably ⅓ or less.
  • [Method for Measuring Each of Area Ratio of Retained γ, Average Carbon Concentration (%CγR) in Retained γ, and Carbon Concentration Distribution Thereof]
  • Here, the method for measuring each of the area ratio, the average carbon concentration (%CγR) and carbon concentration distribution of retained γ is described.
  • As to the area ratio (VγR) and the average carbon concentration (%CγR) of retained γ, the steel sheet was ground to ¼ thickness, then chemically polished and measured by X-ray diffraction method (ISIJ Int., Vol. 33 (1933), No. 7, page 776). In the present invention, a two-dimensional X-ray microdiffractometer (RINT-RAPID II) manufactured by Rigaku Corporation was used as the X-ray diffraction apparatus, and a Co-Kα ray was used as the X-ray.
  • As to the microstructure other than retained γ, the steel sheet was subjected to Nital etching and observed by an optical microscope (magnification: 400 times) to identify microstructures other than retained γ.
  • The carbon concentration distribution in retained γ was determined as follows by using three diffraction peaks of (200)γ, (220)γ and (311)γ measured by the X-ray diffraction apparatus above.
  • First, as illustrated in the pattern diagram of FIG. 1, 2θ (2θavg(hkl)) showing a maximum diffraction intensity and a half value width Δ2θ(hkl) thereof were determined for each of three diffraction peaks of (200)γ, (220)γ and (311)γ. Here, (hkl) means (200), (220) or (311) (hereinafter the same).
  • Subsequently, d(hkl) was determined from 2θavg(hkl) according to the following formula (1) by using the Bragg condition of λ=2d sin θ (d: diffraction grating constant, λ: wavelength of Co-Kα ray).

  • d(hkl)=λ/{2 sin(2θavg(hkl)/2)}  formula (1)
  • The crystal lattice constant a0(hkl) was then determined according to the following formula (3), and these three crystal lattice constants a0(hkl) were arithmetically averaged to determine the crystal lattice constant a0.

  • a 0(hkl)=d(hkl)√(h 2 +k 2 +l 2)  formula (2)
  • The carbon concentration %Cavg (unit: mass %) was then determined by using the Dyson equation (Dyson D. J., Holmes B. (1970), “Effect of alloying additions on the lattice parameter austenite”, J. Iron Steel Inst., 208:469-474) represented by the following formula (3) (note here that this carbon concentration %Cavg is used only as an index for specifying the carbon concentration distribution and to be exact, does not necessarily correspond to the separately measured average carbon concentration %CγR).

  • %C avg=(1/0.033)·(a 0−0.0012·% Mn+0.00157·% Si−0.0056·% Al)  formula (3)
  • Here, % Mn, % Si and % Al are respectively contents (mass %) of Mn, Si and Al in the steel sheet.
  • Next, the half value width Δ%C of the carbon concentration distribution in retained γ was determined by the following procedure.
  • First, the diffraction angles at upper and lower limits of the half value width Δ2θ(hkl) of the diffraction angle 2θ(hkl) of each peak were determined by the following formulae (4) and (5) (see, FIG. 1).

  • L(hkl)=2θavg(hkl)−Δ2θ(hkl)/2  formula (4)

  • H(hkl)=2θavg(hkl)+Δ2θ(hkl)/2  formula (5)
  • The upper and lower limit values %CL and %CH of the half value width of the carbon concentration distribution were determined by using 2θL(hkl) and 2θH(hkl) above, respectively, by the same procedure as above by using the Bragg condition and formulae (1) to (3). The half value width Δ%C of the carbon concentration distribution was determined according to the following formula (6).

  • Δ%C=%C H−%C L  formula (6)
  • Assuming that the carbon concentration distribution is a normal distribution, the standard deviation σ%C was calculated from the half value width Δ%C as follows.
  • That is, the probability density function f(x) of the normal distribution is represented by the following formula (7) using the average value u and the standard deviation σ.

  • f(x)={1/√(2πσ)}·exp{−(x−u)2/(2σ2)}  formula (7)
  • The probability f(u) in the average value is determined according to the following formula (8) by substituting x=u into formula (7).

  • f(u)=1/√(2πσ)  formula (8)
  • Since the probability density f(%Cavg±Δ%C/2) at a value (%Cavg±Δ%C/2) moved up or down by ½ of the half value width Δ%C from the average value u=%Cavg is ½ of the probability density f(u)=f(%Cavg) at an average value u=%Cavg, the relationship of the following formula (9) is obtained from formulae (7) and (8)

  • {1/√(2πσ%C)}·exp{−(Δ%C/2)2/(2σ%C 2)}=1/{2√(2πσ%C)}  formula (9)
  • By modifying formula (9), the following formula (10) is derived as a formula to determine the standard deviation σ%C from the half value width Δ%C, and the standard deviation σ%C was calculated by substituting the half value width Δ%C into formula (10)

  • σ%C=√{(Δ%C/2)2/(2 ln 2)}  formula (10)
  • The following formula (12) was derived as a formula to determine the area ratio VγR(C≧1.3%) of a region having the carbon concentration of 1.3 mass % or more, relative to the entire microstructure, from the cumulative density function g(x) represented by the following formula (11) by using the average value %Cavg and σ%C of the carbon concentration distribution in retained γ determined as above, and VγR(C≧1.3%) was calculated by using formula (12)

  • g(x)=(½)·[1+erf{(x−u)/√(2σ2)}]  formula (11)

  • V γR(C≧1.3%)=V γR{1−g(1.3)}=V γR[0.5−erf{(1.3−%C avg)/√(2σ%C 2)}]  formula (12)
  • Here, VγR is the area ratio of all retained γ.
  • Next, the component composition constituting the steel sheet of the present invention is described below. In the following, all of the units of chemical components are mass %. In addition, the “content” of each component is sometimes simply referred to as “amount”.
  • [Component Composition of Steel Sheet of the Present Invention]
  • C: 0.10% or more and less than 0.35%
  • C is an indispensable element to ensure the strength and ductility by contributing to ensuring of the amount (area ratio) of retained austenite. In order to effectively bring out such an action, C must be contained in an amount of 0.10% or more, preferably 0.12% or more, more preferably 0.14% or more. However, if the C amount is excessively large, weldability deteriorates. Accordingly, the C amount is less than 0.35%, preferably 0.32% or less, more preferably 0.30% or less, further preferably 0.28% or less.
  • Si+Al: from 0.5 to 2.0%
  • Si and Al are elements capable of effectively preventing retained austenite from decomposing to produce a carbide. In order to effectively bring out such an action, Si and Al must be contained in a total amount of 0.5% or more, preferably 0.7% or more, more preferably 0.9% or more. However, even when Si and Al are contained excessively, the effect above is saturated and this is not only economically wasteful but also causes hot brittleness. Accordingly, the total amount of Si and Al is 2.0% or less, preferably 1.9% or less, more preferably 1.8% or less.
  • Mn: from 1.0 to 4.0%
  • Mn is an element necessary to stabilize austenite and obtain desired retained austenite. In order to effectively bring out such an action, Mn must be contained in an amount of 1.0% or more, preferably 1.3% or more, more preferably 1.6% or more. However, if the Mn amount is excessively large, an adverse effect such as occurrence of slab cracking is produced. Accordingly, the Mn amount is 4.0% or less, preferably 3.5% or less, more preferably 3.0% or less.
  • P: from 0 to 0.05%
  • P is unavoidably present as an impurity element but is an element that may be contained so as to ensure desired retained γ. However, if P is contained excessively, secondary workability deteriorates. Accordingly, the P amount is 0.05% or less, preferably 0.03% or less, more preferably 0.02% or less.
  • S: from 0 to 0.01%
  • S is also unavoidably present as an impurity element and is an element that forms a sulfide-based inclusion such as MnS to provide a starting point for cracking and deteriorates the workability. Accordingly, the S amount is 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less.
  • The steel of the present invention contains the above-described elements as indispensable components, with the remainder being iron and an unavoidable impurity, but in addition, the following allowable components may be contained to an extent not impairing the action of the present invention.
  • One Member or Two or More Members of Cu, Ni, Mo, Cr, and B: 1.0% or Less in Total
  • These elements are useful as a steel strengthening element and are an effective element to stabilize retained γ or ensure its predetermined amount. In order to effectively bring out such an action, these elements are recommendably contained in a total amount of 0.001% or more, furthermore 0.01% or more. However, even when these elements are contained excessively, the effects above are saturated, and this is economically wasteful. Accordingly, the total amount of these elements is preferably 1.0% or less, furthermore 0.5% or less.
  • One Member or Two or More Members of V, Nb, Ti, Zr, and Hf: 0.2% or Less in Total
  • These elements have effects of precipitation strengthening and microstructure refinement and are an element useful for providing higher strength. In order to effectively bring out such an action, these elements are recommendably contained in a total amount of 0.01% or more, furthermore 0.02% or more. However, even when these elements are contained excessively, the effects above are saturated, and this is economically wasteful. Accordingly, the total amount of these elements is preferably 0.2% or less, furthermore 0.1% or less.
  • One Member or Two or More Members of Ca, Mg and REM: 0.01% or Less in Total
  • These elements control the form of sulfide in the steel and are an element effective in enhancing workability. Here, REM (rare earth element) for use in the present invention includes Sc, Y, lanthanoid, etc. In order to effectively bring out the action above, these elements are recommendably contained in a total amount of 0.001% or more, furthermore 0.002% or more. However, even when these elements are contained excessively, the effects above are saturated, and this is economically wasteful. Accordingly, the total amount of these elements is preferably 0.01% or less, furthermore 0.005% or less.
  • Preferable manufacturing conditions for obtaining the steel sheet of the present invention are described below.
  • [Preferable Method for Manufacturing Steel Sheet of the Present Invention]
  • The steel sheet of the present invention can be manufactured by subjecting a steel material satisfying the above-described component composition to hot rolling, then cold rolling and thereafter, heat treatment under the conditions of, for example, the following steps (1) to (4) (see, FIG. 2).
  • [Heat Treatment Conditions]
  • (1) A cold-rolled sheet is heated to a second heating temperature T2: from [0.7×Ac1+0.3×Ac3] to [0.2×Ac1+0.8×Ac3], and held at that temperature for a second holding time t2: 5 s or more, or is heated at an average heating rate of 4° C./s or less in the same temperature range,
  • (2) the sheet is further heated to a third heating temperature T3: from [Ac3+10° C.] to 950° C., and held at that time for a third holding time t3: 180 s or less,
  • (3) the sheet is then cooled from the third heating temperature T3 to 500° C. at an average cooling rate CR1: 20° C./s or more, and
  • (4) the sheet is thereafter held at an austempering temperature T4: from 350 to 480° C., for an austempering holding time t4: 10 s or more, and then cooled to room temperature.
  • The reasons for recommending the above-described heat treatment conditions are described below.
  • <(1) Held at a second heating temperature T2: from [0.7×Ac1+0.3×Ac3] to [0.2×Ac1+0.8×Ac3], for a second holding time t2: 5 s or more or heated at an average heating rate of 4° C./s or less in the same temperature range>
  • This is because, by holding in the temperature range of a ferrite/austenite two-phase region for a predetermined time or gradually heating, an Mn concentration distribution is developed during reverse transformation in the temperature range of the two-phase region, and thus the local speed difference of bainite transformation during austempering treatment in the step (4) is increased, thereby broadening the carbon concentration distribution in retained γ.
  • The holding time t2 in the temperature range above is more preferably 10 s or more, still more preferably 20 s or more, and in view of productivity, is recommendably 200 s or less.
  • Here, Ac1 and Ac3 can be determined from the component composition of the steel sheet by using the formula described in Leslie, “The Physical Metallurgy of Steels”, translated by Koda Shigeyasu, page 273, 1985, Maruzen Co., Ltd.
  • <(2) Further held at a third heating holding temperature T3: from [Ac3+10° C.] to 950° C., for a third holding time t3: 180 s or less>
  • This is for controlling the microstructure to an austenite single-phase microstructure by holding in the temperature region of an austenite single-phase region, with the purpose to prevent ferrite from remaining until the subsequent cooling.
  • If the third heating time T3 is less than [Ac3+10° C.], ferrite remains, and growth of ferrite cannot be suppressed in the cooling process in the subsequent step (3), and as a result, ferrite is formed excessively. On the other hand, if the third heating temperature T3 exceeds 950° C. or the third holding time t3 exceeds 180 s, Mn distributed during two-phase region heating in the step (1) is uniformized, and the carbon concentration distribution in retained γ cannot be broadened.
  • <(3) Cooled from the third heating temperature T3 to 500° C. at an average cooling rate HR1: 20° C./s or more>
  • This is for preventing formation of ferrite and providing a bainite-based microstructure.
  • The average cooling rate HR3 in the temperature range above is more preferably 25° C./s or more, still more preferably 30° C./s or more.
  • <(4) Held at an austempering temperature T4: from 350 to 480° C., for an austempering holding time t4: 10 s or more, and then cooled to room temperature>
  • This is for promoting bainite transformation to cause an enrichment of carbon in untransformed austenite and thereby obtain stable retained γ.
  • [Modification Example of Heat Treatment Conditions]
  • The step (1) may be configured as in the following step (1a).
  • (1a) The cold-rolled sheet is heated to a first heating temperature T1: from [Ac1−100° C.] to [Ac1−30° C.], and held at that temperature for a first holding time: 10 s or more, or is heated at an average heating rate of 2° C./s or less in the same temperature range and then held at the second heating temperature T2: from [0.7×Ac1+0.3×Ac3] to [0.2×Ac1+0.8×Ac3] for the second holding time t2: 5 s or more.
  • In this way, by previously holding for a predetermined time or gradually heating in the temperature range of ferrite/cementite two-phase region, Mn is enriched in cementite and thereby the Mn concentration distribution between ferrite/austenite during subsequent heating in the ferrite/austenite two-phase region is promoted, and as a result, the local speed difference of bainite transformation during austempering treatment in the step (4) is increased, making it possible to more broaden the carbon concentration distribution in retained γ.
  • The step (4) may be configured as in the following step (4a).
  • (4a) The sheet is held at an austempering temperature T4: from 350 to 480° C., for an austempering holding time t4: 10 s or more, then reheated to a reheating temperature T5: from 500 to 600° C., held at that temperature for a reheating holding time t5: 30 s or less, and thereafter cooled to room temperature.
  • In this way, the steel sheet of the present invention may be reheated in a temperature range in which retained γ does not decomposes to cause alloying of a plating layer and thereby fabricated as a plated steel sheet.
  • The present invention is more specifically described below by referring to Examples, but the present invention is not limited by the following Examples and can be of course carried out by appropriately adding changes within the range adaptable to the gist described above and below, and all of these changes are encompassed by the technical scope of the present invention.
  • EXAMPLES
  • A steel having the components shown in Table 1 below was manufactured by vacuum melting, then made into a steel sheet having a sheet thickness of 30 mm by hot forging, and subjected to hot rolling. The hot rolling conditions have substantially no effect on the final microstructure and properties of the steel sheet of the present invention, but in this Example, heating at 1,200° C. was performed, followed by multi-stage rolling under the condition of an end temperature of hot rolling of 880° C., thereby obtaining a sheet thickness of 2.5 mm. Then, cooling to 500° C. was performed at a cooling rate of 30° C./s and the cooling was stopped, followed by inserting into a furnace heated at 500° C., holding for 30 min, and furnace-cooling to obtain a hot-rolled sheet. This hot-rolled sheet was subjected to pickling to remove surface scales and then cold rolled to 1.4 mm to produce a cold-rolled sheet.
  • The cold-rolled sheet was used as a starting material and heat-treated under the conditions shown in Table 2 below. Here, the average heating rate from room temperature to the first heating temperature (holding temperature) was set to a constant rate of 10° C./s, the average heating rate to the next heating temperature (holding temperature) was set to a constant rate of 20° C./s, and the average heating rate further to the next heating temperature (holding temperature) was set to a constant rate of 10° C./s. In addition, the average heating rate from the austempering temperature T4 to the reheating temperature T5 was set to a constant rate of 10° C./s, and the average cooling rate from the austempering temperature T4 or reheating temperature T5 to room temperature was set to a constant rate of 10° C./s.
  • TABLE 1
    Steel Component (mass %) [remainder: Fe and unavoidable impurity]
    Species C Si Mn P S Al Si + Al Others
    A 0.22 1.25 2.01 0.010 0.002 0.04 1.29
    B 0.22 1.25 2.01 0.010 0.002 0.04 1.29
    C 0.25 1.64 1.79 0.010 0.002 0.04 1.68
    D 0.18 1.50 2.41 0.010 0.002 0.04 1.54
    E 0.19 1.39 2.25 0.010 0.002 0.04 1.43
    F 0.21 1.61 2.55 0.010 0.002 0.04 1.65
    G 0.20 1.80 1.84 0.010 0.002 0.04 1.84
    H 0.20 1.22 2.20 0.010 0.002 0.04 1.26
    I 0.20 1.83 2.10 0.010 0.002 0.04 1.87
    J 0.13 1.35 1.94 0.010 0.002 0.04 1.39
    K 0.22 0.96 2.01 0.010 0.002 0.30 1.26
    L 0.22 0.96 2.01 0.010 0.002 0.30 1.26
    M 0.05 1.55 1.85 0.010 0.002 0.04 1.59
    N 0.30 1.48 2.03 0.010 0.002 0.04 1.52
    O 0.21 0.40 2.00 0.010 0.002 0.04 0.44
    P 0.24 1.30 0.80 0.010 0.002 0.04 1.34
    Q 0.15 1.48 5.00 0.010 0.002 0.04 1.52
    R 0.18 1.04 2.00 0.010 0.002 0.04 1.08 Cu: 0.2
    S 0.25 1.44 2.14 0.010 0.002 0.04 1.48 Ni: 0.2
    T 0.23 1.29 2.08 0.010 0.002 0.04 1.33 Cr: 0.1
    U 0.28 1.59 2.23 0.010 0.002 0.04 1.63 Mo: 0.1
    V 0.31 1.50 1.84 0.010 0.002 0.04 1.54    B: 0.002
      Ti: 0.02
    W 0.19 1.59 1.94 0.010 0.002 0.04 1.63   V: 0.05
    X 0.25 1.48 2.11 0.010 0.002 0.04 1.52  Nb: 0.05
    Y 0.30 1.93 2.05 0.010 0.002 0.04 1.97   Ti: 0.05
    Z 0.18 1.25 2.15 0.010 0.002 0.04 1.29   Mg: 0.002
    AA 0.21 1.50 2.10 0.010 0.002 0.04 1.54 REM: 0.002
    Steel Transformation Temperature (° C.)
    Species Ac1 Ac3 0.7Ac1 + 0.3Ac3 0.2Ac1 + 0.8Ac3
    A 738 827 765 809
    B 738 827 765 809
    C 752 845 780 826
    D 741 836 769 817
    E 739 833 768 814
    F 743 829 769 812
    G 756 861 787 840
    H 735 825 762 807
    I 754 855 784 835
    J 742 856 776 833
    K 729 918 786 881
    L 729 918 786 881
    M 748 895 792 866
    N 744 821 767 806
    O 719 800 743 784
    P 752 862 785 840
    Q 713 765 728 754
    R 732 831 762 811
    S 739 823 764 806
    T 740 824 765 807
    U 745 827 770 811
    V 747 818 768 804
    W 749 857 781 835
    X 743 828 769 811
    Y 757 821 776 808
    Z 736 832 765 813
    AA 744 838 772 819
    (underline: out of the range of the present invention, —: not added)
  • TABLE 2
    Heat
    Treatment Steel T1 t1 T2 t2 T3 t3 CR1 T4 t4 T5 t5
    No. Species (° C.) (s) (° C.) (s) (° C.) (s) (° C./s) (° C.) (s) (° C.) (s)
     1* A  —*  —* —* —* 900 40 28 400 600
     2* B  700* 10 900 40 28 400 600
     3 C 800 10 900 40 28 400 600
     4 D 700 10 800 20 900 40 28 400 600
     5* E 800 10  800* 40 28 400 600
     6* F 800 10 900 40  10* 400 600
     7* G 800 10 900 40 28  510* 600
     8* H 800 10 900 40 28  320* 600
     9 I 800 10 900 40 28 400 600 510 10
    10 J 800 10 900 40 28 400 600
    11 K 830 10 930 40 28 400 600
    12* L  —*  —* —* —* 930 40 28 400 600
    13 M 800 10 900 40 28 400 600
    14 N 780 10 900 40 28 400 600
    15 O 750 10 900 40 28 400 600
    16 P 800 10 900 40 28 400 600
    17 Q 750 10 900 40 28 400 600
    18 R 700 10 800 20 900 40 28 400 600
    19 S 700 10 800 20 900 40 28 400 600
    20 T 700 10 800 20 900 40 28 400 600
    21 U 700 10 800 20 900 40 28 400 600
    22 V 700 10 800 20 900 40 28 400 600
    23 W 700 10 800 20 900 40 28 400 600
    24 X 700 10 800 20 900 40 28 400 600
    25 Y 700 10 800 20 900 40 28 400 600
    26 Z 700 10 800 20 900 40 28 400 600
    27 AA 700 10 800 20 900 40 28 400 600
    (underline: out of the range of the present invention,
    *out of the recommended range, —: not applied)
  • With respect to each steel sheet after the heat treatment above, the area ratio of retained γ and the average carbon concentration (CγR) and carbon concentration distribution in retained γ were measured by the measuring methods described in the item of
  • MODES FOR CARRYING OUT THE INVENTION
  • In all microstructures of steel sheets used in this Example, the remainder other than retained austenite and ferrite was composed of one member or two or more members of bainite, martensite, tempered bainite and tempered martensite and therefore, in Table 3 below, only the area ratios of retained austenite and ferrite are shown.
  • With respect to each steel sheet after the heat treatment above, in order to evaluate the strength-ductility balance, the yield strength YS, tensile strength TS and elongation (total elongation) EL were measured by a tensile test. The tensile test was conducted in accordance with JIS Z 2241 by preparing a JIS No. 5 specimen. Furthermore, in order to evaluate the stretch flangeability λ of each steel sheet, the hole expansion ratio was measured in conformity with The Japan Iron and Steel Federation Standard JFST 1001.
  • The measurement results are shown in Table 3 below. In this Table, those where the steel sheet after the heat treatment had properties of a yield ratio (YR) or 0.7 or more and a tensile strength (TS)×elongation (EL)×stretch flangeability (λ) of 1,000,000 MPa·%·% or more were judged as pass (A), and others were judged as fail (B).
  • TABLE 3
    Steel Microstructure
    Heat Carbon Concentration Distribution in γR
    Steel Steel Treatment Area Ratio (%) % CγR σ % C R(C ≧ 1.5%)
    No. Species No. γR α (mass %) (mass %) (%)
     1 A   1* 10.5 0 1.02 0.39 1.15
     2 B   2*  9.0 0 0.91 0.46 0.90
     3 C  3 11.2 0 0.92 0.47 1.22
     4 D  4  9.2 0 1.05 0.63 2.19
     5 E   5* 13.6 21 0.95 0.34 0.72
     6 F   6*  6.6 41 0.83 0.31 0.10
     7 G   7*  9.2 0 0.87 0.52 1.04
     8 H   8*  4.1 0 1.18 0.60 1.22
     9 I  9 10.2 0 1.02 0.51 1.77
    10 J 10  9.2 0 1.01 0.52 1.59
    11 K 11 10.5 0 1.17 0.52 2.76
    12 L  12* 11.1 0 1.17 0.28 1.32
    13 M 13  4.8 0 1.02 0.59 2.04
    14 N 14 15.3 0 1.04 0.61 3.45
    15 O 15  2.4 0 1.02 0.59 0.50
    16 P 16  9.6 45 1.01 0.52 1.66
    17 Q 17  2.4 0 0.82 0.42 0.13
    18 R 18 10.6 0 1.08 0.51 2.17
    19 S 19 10.0 0 1.04 0.52 1.88
    20 T 20 11.0 0 1.07 0.55 2.39
    21 U 21 10.5 0 1.03 0.52 1.92
    22 V 22 10.3 0 1.02 0.52 1.83
    23 W 23 11.1 0 1.07 0.51 2.22
    24 X 24 11.0 0 1.05 0.50 2.02
    25 Y 25 11.8 0 1.06 0.57 2.60
    26 Z 26 10.1 0 1.05 0.52 1.95
    27 AA 27 10.2 0 1.10 0.52 2.25
    Heat Mechanical Properties
    Steel Steel Treatment YS TS YR EL λ TS × EL × λ
    No. Species No. (MPa) (MPa) (—) (%) (%) (MPa · %2) Judgment
     1 A   1* 820 1020 0.804 15.2 55  852720 B
     2 B   2* 802 1001 0.801 14.8 51  755555 B
     3 C  3 812 1028 0.790 18.4 55 1040336 A
     4 D  4 801 1010 0.793 20.5 55 1138775 A
     5 E   5* 572 1021 0.560 24.8 23  582378 B
     6 F   6* 450 891 0.505 21.8 24  466171 B
     7 G   7* 630 844 0.746 20.7 51  891011 B
     8 H   8* 750 840 0.893 17.8 55  822360 B
     9 I  9 812 1028 0.790 18.6 55 1051644 A
    10 J 10 651 842 0.773 25.1 54 1141247 A
    11 K 11 819 1031 0.794 10.9 54 1163587 A
    12 L  12* 812 968 0.839 12.3 55  654852 B
    13 M 13 820 1022 0.802 15.2 55  854392 B
    14 N 14 1042 1201 0.868 20.4 45 1102518 A
    15 O 15 820 1020 0.804 12.1 56  691152 B
    16 P 16 651 842 0.773 23.5 31  613397 B
    17 Q 17 1215 1520 0.799 9.2 25  349600 B
    18 R 18 800 1026 0.780 21.3 53 1158251 A
    19 S 19 782 1056 0.741 20.5 52 1125696 A
    20 T 20 784 1038 0.755 21.6 53 1188302 A
    21 U 21 820 1054 0.778 20.9 51 1123459 A
    22 V 22 788 1030 0.765 21.4 52 1146184 A
    23 W 23 794 1050 0.756 21.1 51 1129905 A
    24 X 24 782 1036 0.755 21.9 52 1179797 A
    25 Y 25 820 1038 0.790 21.1 51 1116992 A
    26 Z 26 820 1021 0.803 20.5 54 1130247 A
    27 AA 27 798 1043 0.765 20.1 55 1153037 A
    (underline: out of the range of the present invention,
    *out of the recommended range, α: ferrite)
  • As shown in Table 3 above, Steel Nos. 3, 4, 9 to 11, 14, and 18 to 27, which are inventive steels (rated A), where steel species satisfying the requirements specifying the components of the present invention were used and the heat treatment was performed under recommended conditions, are as a result the inventive steel satisfying the requirements specifying the microstructure of the present invention and having mechanical properties satisfying the acceptance criteria, and it could be confirmed that a high-strength high-ductility steel sheet having excellent strength-ductility balance is obtained.
  • On the other hand, in Steel Nos. 1, 2, 5 to 8, 12, 13, and 15 to 17, which are comparative steels (rated B), at least any one of the requirements specifying the components and specifying the microstructure of the present invention is not fulfilled, and the properties do not satisfy the acceptance criteria.
  • More specifically, each of Steel Nos. 1, 2, 5 to 8, and 12 uses a steel species satisfying the requirements specifying the components of the present invention but is manufactured under the conditions deviating in part from the recommended manufacturing conditions and therefore does not fulfill the requirements specifying the microstructure, leading to poor properties.
  • On the other hand, each of Steel Nos. 13 and 15 to 17 is manufactured under the recommended manufacturing conditions but uses a steel species deviating in part from the requirements specifying the components of the present invention and therefore does not fulfill the requirements specifying the microstructure, leading to poor properties.
  • As above, the applicability of the present invention was verified.
  • While the present invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the present invention.
  • The present application is based on a Japanese patent application filed on Nov. 26, 2014 (Application No. 2014-238710), the content thereof being incorporated herein by reference.
  • INDUSTRIAL APPLICABILITY
  • The steel sheet of the present invention is excellent in strength and ductility balance and is useful, e.g., as a thin steel sheet for automobiles.

Claims (2)

1. A high-strength high-ductility steel sheet, comprising, in mass %,
C: 0.10% or more and less than 0.35%,
Si+Al: from 0.5 to 2.0%,
Mn: from 1.0 to 4.0%,
P: from 0 to 0.05%,
S: from 0 to 0.01%, and
iron,
wherein
the steel sheet has a steel microstructure comprising, in terms of an area ratio relative to entire microstructure,
8% or more of a retained austenite,
more than 5% and 50% or less of ferrite, and
at least one of bainite, martensite, tempered bainite, and tempered martensite, and
with respect to a carbon concentration in the retained austenite, an average carbon concentration is from 0.8 to 1.1 mass %, a standard deviation of a carbon concentration distribution is 0.25 mass % or more, and an area ratio of a region having a carbon concentration of 1.3 mass % or more, relative to the entire microstructure, is 1.0% or more.
2. The steel sheet according to claim 1, further comprising, in mass %, at least one of (a) to (c):
(a) a total of 1.0% or less of at least one of Cu, Ni, Mo, Cr, and B;
(b) a total of 0.2% or less of at least one of V, Nb, Ti, Zr, and Hf; and
(c) a total of 0.01% or less of at least one of Ca, Mg and REM.
US15/528,675 2014-11-26 2015-11-25 High-strength high-ductility steel sheet Abandoned US20170268077A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014238710A JP6282577B2 (en) 2014-11-26 2014-11-26 High strength high ductility steel sheet
JP2014-238710 2014-11-26
PCT/JP2015/083078 WO2016084847A1 (en) 2014-11-26 2015-11-25 High-strength high-ductility steel sheet

Publications (1)

Publication Number Publication Date
US20170268077A1 true US20170268077A1 (en) 2017-09-21

Family

ID=56074399

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/528,675 Abandoned US20170268077A1 (en) 2014-11-26 2015-11-25 High-strength high-ductility steel sheet

Country Status (6)

Country Link
US (1) US20170268077A1 (en)
EP (1) EP3225708A4 (en)
JP (1) JP6282577B2 (en)
KR (1) KR102111921B1 (en)
CN (1) CN107002192B (en)
WO (1) WO2016084847A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019063081A1 (en) * 2017-09-28 2019-04-04 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
US11279984B2 (en) 2016-12-21 2022-03-22 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
US11332805B2 (en) * 2017-05-24 2022-05-17 Kobe Steel, Ltd. High-strength steel sheet and production method for same
US11466337B2 (en) * 2017-05-31 2022-10-11 Kobe Steel, Ltd. High-strength steel sheet and method for producing same
US11655516B2 (en) 2016-12-21 2023-05-23 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
CN108018484B (en) * 2016-10-31 2020-01-31 宝山钢铁股份有限公司 Cold-rolled high-strength steel having tensile strength of 1500MPa or more and excellent formability, and method for producing same
MX2021008617A (en) * 2019-01-18 2021-08-19 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for manufacturing same.
KR102616426B1 (en) * 2019-12-20 2023-12-27 닛폰세이테츠 가부시키가이샤 Ni-plated steel sheet and manufacturing method of Ni-plated steel sheet
CN113308593B (en) * 2021-05-28 2022-08-09 四川大学 Carbon distribution and two-step isothermal quenching based medium carbon silicon manganese low alloy steel heat treatment process
CN114908287B (en) * 2022-04-11 2023-04-14 武汉科技大学 Low-alloy lightweight high-strength automobile steel and production method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270334A1 (en) * 2002-09-04 2004-03-29 Colorado School Of Mines Method for producing steel with retained austenite
JP4109619B2 (en) * 2003-12-16 2008-07-02 株式会社神戸製鋼所 High strength steel plate with excellent elongation and stretch flangeability
JP2005336526A (en) * 2004-05-25 2005-12-08 Kobe Steel Ltd High strength steel sheet having excellent workability and its production method
JP4716358B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High-strength cold-rolled steel sheet and plated steel sheet with excellent balance between strength and workability
JP2010065272A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5365112B2 (en) * 2008-09-10 2013-12-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5400484B2 (en) * 2009-06-09 2014-01-29 株式会社神戸製鋼所 High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
JP5883211B2 (en) * 2010-01-29 2016-03-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent workability and method for producing the same
MX2012008690A (en) * 2010-01-29 2012-08-23 Nippon Steel Corp Steel sheet and process for producing steel sheet.
JP5807368B2 (en) 2010-06-16 2015-11-10 新日鐵住金株式会社 High-strength cold-rolled steel sheet having a very high uniform elongation in the direction of 45 ° with respect to the rolling direction and a method for producing the same
JP5589925B2 (en) 2010-06-28 2014-09-17 新日鐵住金株式会社 High-strength thin steel sheet with excellent elongation and uniform paint bake-hardening performance and method for producing the same
JP5719545B2 (en) 2010-08-13 2015-05-20 新日鐵住金株式会社 High strength thin steel sheet with excellent elongation and press forming stability
JP5825205B2 (en) * 2011-07-06 2015-12-02 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5632904B2 (en) * 2012-03-29 2014-11-26 株式会社神戸製鋼所 Manufacturing method of high-strength cold-rolled steel sheet with excellent workability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279984B2 (en) 2016-12-21 2022-03-22 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
US11655516B2 (en) 2016-12-21 2023-05-23 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
US11332805B2 (en) * 2017-05-24 2022-05-17 Kobe Steel, Ltd. High-strength steel sheet and production method for same
US11466337B2 (en) * 2017-05-31 2022-10-11 Kobe Steel, Ltd. High-strength steel sheet and method for producing same
WO2019063081A1 (en) * 2017-09-28 2019-04-04 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof

Also Published As

Publication number Publication date
EP3225708A4 (en) 2018-05-02
KR102111921B1 (en) 2020-05-18
CN107002192B (en) 2019-03-08
JP2016098427A (en) 2016-05-30
EP3225708A1 (en) 2017-10-04
WO2016084847A1 (en) 2016-06-02
CN107002192A (en) 2017-08-01
JP6282577B2 (en) 2018-02-21
KR20170070230A (en) 2017-06-21

Similar Documents

Publication Publication Date Title
US20170268077A1 (en) High-strength high-ductility steel sheet
US11466337B2 (en) High-strength steel sheet and method for producing same
US10072316B2 (en) High-strength cold-rolled steel sheet and method for producing the same
US20170335423A1 (en) High strength high ductility steel plate
US9914988B2 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
KR102119332B1 (en) High-strength steel sheet and its manufacturing method
US20190093191A1 (en) Hot pressed member and method of manufacturing same
WO2012067159A1 (en) High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part
US9994941B2 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
KR101736632B1 (en) Cold-rolled steel sheet and galvanized steel sheet having high yield strength and ductility and method for manufacturing thereof
KR101714930B1 (en) Ultra high strength steel sheet having excellent hole expansion ratio, and method for manufacturing the same
JP2013227603A (en) High-strength hot-rolled steel sheet excellent in stretchability, hole expansibility and low-temperature toughness and manufacturing method therefor
KR102469278B1 (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
US20190233915A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2016136625A1 (en) High-strength, highly-ductile steel sheet
JP6348436B2 (en) High strength high ductility steel sheet
KR20220071035A (en) Ultra high strength cold rolled steel sheet treated by softening heat process and method of manufacturing the same
KR102504647B1 (en) Ultra high strength cold rolled steel sheet and method of manufacturing the same
KR20220047846A (en) High-strength steel sheet and manufacturing method thereof
CN113412340A (en) Steel plate

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURAKAMI, TOSHIO;OTANI, SHIGEO;REEL/FRAME:042524/0574

Effective date: 20160301

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION