KR20170070230A - High-strength high-ductility steel sheet - Google Patents

High-strength high-ductility steel sheet Download PDF

Info

Publication number
KR20170070230A
KR20170070230A KR1020177013590A KR20177013590A KR20170070230A KR 20170070230 A KR20170070230 A KR 20170070230A KR 1020177013590 A KR1020177013590 A KR 1020177013590A KR 20177013590 A KR20177013590 A KR 20177013590A KR 20170070230 A KR20170070230 A KR 20170070230A
Authority
KR
South Korea
Prior art keywords
carbon concentration
steel sheet
less
residual
mass
Prior art date
Application number
KR1020177013590A
Other languages
Korean (ko)
Other versions
KR102111921B1 (en
Inventor
도시오 무라카미
시게오 오타니
Original Assignee
가부시키가이샤 고베 세이코쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 고베 세이코쇼 filed Critical 가부시키가이샤 고베 세이코쇼
Publication of KR20170070230A publication Critical patent/KR20170070230A/en
Application granted granted Critical
Publication of KR102111921B1 publication Critical patent/KR102111921B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling

Abstract

특정한 합금 성분을 포함하고, 강 조직이, 잔류 오스테나이트가 전체 조직으로 해서 8면적% 이상이고, 잔부가 베이나이트, 마텐자이트, 템퍼링 베이나이트 및 템퍼링 마텐자이트 중 1종 또는 2종 이상이며, 잔류 오스테나이트 중의 탄소 농도의 평균 탄소 농도 및 탄소 농도 분포의 표준 편차가 각각 특정한 범위에 있는 고강도 고연성 강판.The steel structure contains a specific alloy component and the remaining austenite is 8% or more by area in total structure and the remainder is at least one of bainite, martensite, tempering bainite and tempering martensite , The average carbon concentration of the carbon concentration in the retained austenite, and the standard deviation of the carbon concentration distribution are within a specific range, respectively.

Description

고강도 고연성 강판{HIGH-STRENGTH HIGH-DUCTILITY STEEL SHEET}HIGH-STRENGTH HIGH-DUCTILITY STEEL SHEET [0002]

본 발명은 자동차 박강판 등으로서 유용한 고강도 고연성 강판에 관한 것이고, 상세하게는, 강판의 강도·연성 밸런스 향상 기술에 관한 것이다.The present invention relates to a high strength and high ductility steel sheet useful as an automotive thin steel plate or the like, and more particularly to a technique of improving the strength and ductility balance of a steel sheet.

예를 들면 자동차의 골격 부품 등에 사용되는 강판에는, 충돌 안전성이나 차체 경량화에 의한 연비 경감 등을 목적으로 해서 더한층의 고강도가 요구됨과 더불어, 형상이 복잡한 골격 부품으로 가공하기 위해서 우수한 성형 가공성에 더하여, 추가로 부품끼리를 접합해서 어셈블리로 조립할 때의 용접성도 요구된다. 이 때문에, 구체적으로 요구되는 기계적 특성(이하, 간단히 「특성」이라고도 한다)으로서는, 탄소량을 0.3질량% 이하로 억제하면서, 항복비(YR)가 0.7 이상, 인장 강도(TS)×신도(EL)×신장 플랜지성(λ)이 1000000MPa·%·% 이상을 확보할 수 있는 강판의 개발이 요망되고 있다.For example, a steel plate used for skeleton parts of automobiles is required to have a higher strength for the purpose of collision safety and fuel consumption reduction by weight reduction of the vehicle, and in addition to excellent molding processability for machining into a complicated skeleton part, In addition, weldability is required when the parts are joined together and assembled into an assembly. For this reason, it is preferable to use a resin having a yield ratio (YR) of 0.7 or more, a tensile strength (TS) x elongation (EL) of less than 0.3 mass% ) X tensile strength (lambda) of 1000000 MPa ·% ·% or more.

980MPa급 이상의 고강도 강판에 있어서, 고강도화와 고연성 확보를 양립시키기 위해서는, 잔류 오스테나이트에 의한 TRIP 효과를 활용한 TRIP 강이나 TBF 강 등을 이용하는 것이 유효하다. 이들 강의 강도-연성 밸런스를 더 향상시키도록, 잔류 오스테나이트의 양, 평균 탄소 농도, 형태에 대해서 여러 가지 검토가 이루어져, 보다 양호한 특성을 갖는 강판이 제안되어 있다(예를 들면, 특허문헌 1∼3 참조).In order to achieve both high strength and high ductility in a high strength steel sheet of 980 MPa or more in grade, it is effective to use TRIP steel or TBF steel utilizing the TRIP effect due to retained austenite. In order to further improve the strength-ductility balance of these steels, various studies have been made on the amount of retained austenite, the average carbon concentration and the shape, and steel sheets having better properties have been proposed (see, for example, 3).

예를 들어, 특허문헌 1에는, 강 조직 중의 잔류 오스테나이트의 형태를 라스 형상과 섬 형상으로 분류한 경우, 섬 형상의 잔류 오스테나이트의 비율을 일정한 범위로 제어함으로써, 신도와 프레스 성형 안정성이 우수한 고강도 박강판이 제안되어 있다. 이 기술에서는, 실온에서의 양호한 신도에 더하여, 100∼200℃의 온간에서의 양호한 신도가 실현되고 있지만, 충돌 특성으로서 유효한 재료 인자인 YR과 강도-연성 밸런스가 충분히 확보되어 있지 않다고 상정되어, 상기 요망 레벨을 만족시키는 것이라고는 생각되지 않는다.For example, in Patent Document 1, when the shape of the retained austenite in the steel structure is classified into the lath shape and the island shape, by controlling the ratio of the retained austenite in the island shape to a certain range, A high strength thin steel sheet has been proposed. In this technique, in addition to good elongation at room temperature, good elongation at a warming of 100 to 200 DEG C is achieved. However, it is assumed that YR and a strength-ductility balance, which are effective material factors as collision characteristics, It is not considered to satisfy the demand level.

또한, 특허문헌 2에는, 강 조직 중에 있어서의 오스테나이트상의 결정 방위의 집적도를 높임으로써, 압연 방향에 대해서 45° 방향의 균일 신도를 현저히 개선한 고강도 냉연 강판이 제안되어 있다. 그러나, 일반적인 연성 평가 방향인, 압연 방향 및 압연 직각 방향의 특성은 특필하는 것이 아니어서, 상기 요망 레벨을 만족시키는 것이라고는 생각되지 않는다.Patent Document 2 proposes a high strength cold rolled steel sheet in which the degree of uniformity of the orientation of the austenite phase in the steel structure is increased to remarkably improve the uniform elongation in the direction of 45 DEG with respect to the rolling direction. However, the characteristics in the rolling direction and the direction perpendicular to the rolling direction, which are general ductility evaluation directions, are not particularly mentioned, and it is not considered to satisfy the above-mentioned demand level.

또한, 특허문헌 3에는, 강 조직 중의 잔류 오스테나이트립의 표면과 내부에 C 농도차를 부여함으로써, 도장 베이킹 경화성과 강도-연성 밸런스가 개선된 고강도 박강판이 제안되어 있다. 그러나, 이 기술에 있어서의, 잔류 오스테나이트립으로의 C 농도차의 부여는, 도장 베이킹 경화성의 개선을 주목적으로 한 것에 지나지 않고, 본 발명과 같이, 잔류 오스테나이트의 안정성을 개선함으로써 연성을 높이기 위해서, 잔류 오스테나이트에 필요한 탄소 농도 분포를 부여하는 것을 의도한 것은 아니어서, 본원 발명과는 완전히 기술적 사상을 달리하는 것이다.Further, Patent Document 3 proposes a high-strength thin steel sheet improved in paint baking hardenability and strength-ductility balance by imparting a C concentration difference to the surface and the interior of the retained austenite grains in the steel structure. However, the application of the difference in C concentration to the retained austenite grains in this technique is merely aimed at improving the coating baking hardenability, and the stability of the retained austenite is improved as in the present invention, , It is not intended to give the carbon concentration distribution necessary for the retained austenite, so that it is completely different from the technical idea of the present invention.

일본 특허공개 2012-41573호 공보Japanese Patent Application Laid-Open No. 2004-41573 일본 특허공개 2012-21225호 공보Japanese Patent Application Laid-Open Publication No. 2012-21225 일본 특허공개 2012-31505호 공보Japanese Patent Application Laid-Open No. 2001-31505

그래서 본 발명의 목적은, 항복비(YR)가 0.7 이상, 인장 강도(TS)×신도(EL)×신장 플랜지성(λ)이 1000000MPa·%·% 이상을 확보할 수 있는, 강도-연성 밸런스가 우수한 고강도 고연성 강판을 제공하는 것에 있다.SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a strength-ductile balance material which can secure a tensile strength (TS) × elongation (EL) × stretch flangeability (λ) of 1,000,000 MPa ·% Strength steel sheet having excellent strength and ductility.

본 발명의 제 1 발명에 따른 고강도 고연성 강판은, In the high strength and high ductility steel sheet according to the first invention of the present invention,

성분 조성이, 질량%로,The composition of matter, in% by mass,

C: 0.10% 이상 0.35% 미만, C: not less than 0.10% and not more than 0.35%

Si+Al: 0.5∼2.0%, Si + Al: 0.5 to 2.0%

Mn: 1.0∼4.0%, Mn: 1.0 to 4.0%

P: 0∼0.05%, P: 0 to 0.05%

S: 0∼0.01% S: 0 to 0.01%

이고, 잔부가 철 및 불가피적 불순물로 이루어지며, , The balance being iron and inevitable impurities,

강 조직이, However,

잔류 오스테나이트가 전체 조직에 대한 면적률로 8% 이상 The retained austenite has an area ratio of not less than 8%

이고, 잔부가 베이나이트, 마텐자이트, 템퍼링 베이나이트 및 템퍼링 마텐자이트 중 1종 또는 2종 이상으로 이루어짐과 더불어, And the remainder is composed of one or more of bainite, martensite, tempering bainite and tempering martensite,

상기 잔류 오스테나이트 중의 탄소 농도에 관하여, With respect to the carbon concentration in the retained austenite,

그의 평균 탄소 농도가 0.9∼1.2질량%, Its average carbon concentration is 0.9 to 1.2% by mass,

그의 탄소 농도 분포의 표준 편차가 0.35질량% 이상, The standard deviation of the carbon concentration distribution is 0.35 mass% or more,

그의 탄소 농도가 1.5질량% 이상인 영역이 전체 조직에 대한 면적률로 1.0% 이상인 것을 특징으로 한다.And an area having a carbon concentration of 1.5% by mass or more is 1.0% or more in terms of an area ratio with respect to the whole texture.

본 발명의 제 2 발명에 따른 고강도 고연성 강판은, In the high strength and high ductility steel sheet according to the second invention of the present invention,

상기 제 1 발명에 있어서, In the first invention,

성분 조성이, 질량%로, 추가로, The composition of matter is, by mass%, further,

Cu, Ni, Mo, Cr 및 B 중 1종 또는 2종 이상을 합계로 1.0% 이하 포함하는 것이다.Cu, Ni, Mo, Cr and B in a total amount of not more than 1.0%.

본 발명의 제 3 발명에 따른 고강도 고연성 강판은, In the high strength and high ductility steel sheet according to the third invention of the present invention,

상기 제 1 또는 제 2 발명에 있어서, In the first or second invention,

성분 조성이, 질량%로, 추가로, The composition of matter is, by mass%, further,

V, Nb, Ti, Zr 및 Hf 중 1종 또는 2종 이상을 합계로 0.2% 이하 포함하는 것이다.V, Nb, Ti, Zr and Hf in a total amount of not more than 0.2%.

본 발명의 제 4 발명에 따른 고강도 고연성 강판은, In the high strength and high ductility steel sheet according to the fourth invention of the present invention,

상기 제 1∼제 3 발명 중 어느 하나의 발명에 있어서, In any one of the first to third inventions described above,

성분 조성이, 질량%로, 추가로, The composition of matter is, by mass%, further,

Ca, Mg 및 REM 중 1종 또는 2종 이상을 합계로 0.01% 이하 포함하는 것이다.Ca, Mg, and REM in a total amount of 0.01% or less.

본 발명에 의하면, 잔류 오스테나이트의 양(면적률)과 평균의 탄소 농도를 규정할 뿐만 아니라, 탄소 농도의 분포도 제어함으로써, 변형의 초기부터 후기까지 TRIP 현상을 발현시켜 높은 가공 경화율을 실현하는 것에 의해, 항복비(YR)가 0.7 이상, 인장 강도(TS)×신도(EL)×신장 플랜지성(λ)이 1000000MPa·%·% 이상을 확보할 수 있는, 강도-연성 밸런스가 우수한 고강도 고연성 강판을 제공할 수 있게 되었다.According to the present invention, not only the amount of the retained austenite (area ratio) and the average carbon concentration are specified, but also the distribution of the carbon concentration is controlled, thereby realizing the TRIP phenomenon from the initial stage to the late stage of deformation and realizing a high work hardening rate (YR) of 0.7 or more and a tensile strength (TS) x elongation (EL) x elongation flange formability (lambda) of 1000000 MPa ·% ·% or more. So that a ductile steel sheet can be provided.

도 1은 X선 회절법에 의해 측정된 잔류 γ의 회절 피크를 모식적으로 나타내는 도면이다.
도 2는 본 발명에 따른 고강도 고연성 강판을 제조하기 위한 열처리 조건을 모식적으로 나타내는 도면이다.
1 is a diagram schematically showing a diffraction peak of residual? As measured by an X-ray diffraction method.
2 is a diagram schematically showing a heat treatment condition for manufacturing a high strength and high ductility steel sheet according to the present invention.

본 발명자들은, 상기 과제를 해결하기 위해서, TBF 강으로 이루어지는 강판에 있어서, 그의 기계적 특성으로서, 항복비(YR)가 0.7 이상, 인장 강도(TS)×신도(EL)×신장 플랜지성(λ)이 1000000MPa·%·% 이상을 확보할 수 있는 방책에 대해서 여러 가지 검토를 거듭해 왔다. 그 결과, 이하의 사고 연구에 의해, 상기 원하는 특성을 확보할 수 있다는 것에 도달했다.(YR) of 0.7 or more and a tensile strength (TS) x elongation (EL) x elongation flangeability (lambda) of at least 0.7 as a mechanical property of a steel sheet made of TBF steel, Has been repeatedly examined for measures that can secure 1000000 MPa ·% ·% or more. As a result, by the following accident study, it has been found that the desired characteristics can be secured.

즉, 강도-연성 밸런스를 종래 기술보다도 더 향상시키기 위해서는, TRIP 현상을 촉진하는 잔류 오스테나이트(이하, 「잔류 γ」라고도 표기한다)를 보다 유효하게 활용할 필요가 있다. 그런데, 강판의 용접성을 확보하는 관점에서 강판 중의 C 함유량에는 상한 제약이 존재하기 때문에, 잔류 γ량 및 잔류 γ 중의 평균 탄소 농도를 증가시키는 데에는 한계가 있다.That is, in order to further improve the strength-ductility balance as compared with the prior art, it is necessary to more effectively utilize the retained austenite (hereinafter also referred to as "residual?") For promoting the TRIP phenomenon. However, from the viewpoint of securing the weldability of the steel sheet, there is a limitation on the C content in the steel sheet, so there is a limit to increase the residual? Amount and the average carbon concentration in the residual?.

그래서, 본 발명자들은, 잔류 γ 중의 탄소 농도 분포에 주목했다. 즉, TRIP 현상에 의해, 고강도 및 고연성을 달성하기 위해서는, 변형의 초기부터 중기에 걸쳐 높은 가공 경화율을 실현하는 것이 중요하고, 그것을 위해서는, 탄소 농도가 낮은 불안정한 잔류 γ가 일부 존재할 필요가 있다. 한편으로, 변형량이 커졌을 때, 즉 변형의 후기에 있어서도 높은 가공 경화율을 유지하기 위해서는, 탄소 농도가 높고 안정한 잔류 γ도 제작할 필요가 있다.Therefore, the present inventors paid attention to the carbon concentration distribution in the residual?. That is, in order to achieve high strength and high ductility by the TRIP phenomenon, it is important to realize a high work hardening rate from the early stage of deformation to the middle stage, and in order to do so, it is necessary that some unstable residual? . On the other hand, in order to maintain a high work hardening rate even when the amount of deformation increases, that is, even in the latter stage of deformation, it is necessary to prepare a stable residual gamma having a high carbon concentration.

즉, 잔류 γ는 안정도가 높기만 해도, 또는 안정도가 낮기만 해도 안 되고, 안정도, 즉, 탄소 농도 분포가 폭넓게 존재하고 있는 것이 중요하다.That is, it is important that the residual? Has not only a high stability or a low stability, but also a stability, that is, a carbon concentration distribution widely exists.

본 발명자들은, 상기 지견에 기초해서 더 검토를 진행한 결과, 본 발명을 완성하기에 이르렀다.The present inventors have further studied based on the above findings, and as a result, they have completed the present invention.

이하, 우선 본 발명에 따른 고강도 고연성 강판(이하, 「본 발명 강판」이라고도 한다)을 특징짓는 강 조직(이하, 간단히 「조직」이라고 하는 경우도 있다)에 대해서 설명한다.Hereinafter, a steel structure (hereinafter also referred to simply as " structure ") which characterizes a high-strength high-ductile steel sheet according to the present invention (hereinafter also referred to as " steel sheet according to the present invention "

〔본 발명 강판의 강 조직〕[Steel structure of steel sheet of the present invention]

전술한 바와 같이, 본 발명 강판은, TBF 강의 조직을 베이스로 하는 것이지만, 특히, 소정의 탄소 농도의 잔류 γ를 소정량 함유한 뒤에, 그 잔류 γ 중의 탄소 농도 분포가 제어되어 있다는 점에서, 상기 종래 기술과 상위하다.As described above, the steel sheet of the present invention is based on the structure of the TBF steel. In particular, since the carbon concentration distribution in the residual? Is controlled after containing a predetermined amount of residual? Having a predetermined carbon concentration, Which is different from the prior art.

<잔류 오스테나이트: 전체 조직에 대한 면적률로 8% 이상>&Lt; Residual austenite: 8% or more in terms of area ratio to the whole structure >

잔류 γ는 연성의 향상에 유용하고, 이와 같은 작용을 유효하게 발휘시키기 위해서는, 전체 조직에 대한 면적률로 8% 이상, 바람직하게는 9% 이상, 더 바람직하게는 10% 이상 존재시키는 것이 필요하다. 한편, 잔류 γ의 면적률은 20% 이하가 바람직하고, 더 바람직하게는 18% 이하, 특히 바람직하게는 16% 이하이다.The residual? Is useful for improving the ductility. In order to effectively exhibit such action, it is necessary to make the area ratio to the total structure at least 8%, preferably at least 9%, more preferably at least 10% . On the other hand, the area ratio of the residual? Is preferably 20% or less, more preferably 18% or less, particularly preferably 16% or less.

<잔부: 베이나이트, 마텐자이트, 템퍼링 베이나이트 및 템퍼링 마텐자이트 중 1종 또는 2종 이상>&Lt; Balance: at least one of bainite, martensite, tempering bainite and tempering martensite >

페라이트의 생성을 방지하여, 미세하고 균일한 조직인 베이나이트나 마텐자이트, 및/또는 그들의 템퍼링 조직으로 모상을 구축함으로써, 모상 조직의 미세화에 의해, 저하중 시에 있어서의 변형 방지에 의한 항복 강도 YS의 상승이 가능해진다.It is possible to prevent the formation of ferrite and to prevent the generation of ferrite and to improve the yield strength due to the prevention of deformation at the time of deformation due to the fineness of the hosiery structure by constructing the parent phase with a fine and uniform structure of bainite or martensite and / YS can be increased.

<잔류 γ 중의 평균 탄소 농도(%CγR): 0.9∼1.2질량%>&Lt; Average carbon concentration (% C ? R ) in residual?: 0.9 to 1.2 mass%

%CγR은 변형 시에 잔류 γ가 마텐자이트로 변태되는 안정도에 영향을 주는 지표이다. %CγR이 지나치게 낮으면, 잔류 γ가 불안정하므로, 응력 부여 후, 소성 변형하기 전에 가공 유기 마텐자이트 변태가 일어나기 때문에, 필요한 신도가 얻어지지 않게 된다. 한편, %CγR이 지나치게 높으면, 잔류 γ가 지나치게 안정하게 되어서, 가공을 가하더라도 가공 유기 마텐자이트 변태가 일어나지 않기 때문에, 역시 필요한 신장 플랜지성이 얻어지지 않게 된다. 필요한 신도를 얻기 위해서는, %CγR은 0.9∼1.2질량%로 할 필요가 있다. %CγR의 바람직한 하한은 1.0질량%이다.% C γR is an index that affects the stability of residual γ to martensitic transformation during deformation. If the% C ? R is too low, the residual? Is unstable, so that after the stress is applied, the processed organic martensite transformation occurs before the plastic deformation, so that the required elongation can not be obtained. On the other hand, if the% C ? R is too high, the residual? Becomes excessively stable, and the processed organic martensite transformation does not occur even if the processing is carried out, so that the necessary stretch flangeability can not be obtained. In order to obtain the necessary elongation, the% C ? R must be set to 0.9 to 1.2% by mass. The lower limit of the% C ? R is preferably 1.0% by mass.

<잔류 γ 중의 탄소 농도 분포의 표준 편차: 0.35질량% 이상><Standard deviation of carbon concentration distribution in residual y: 0.35 mass% or more>

변형의 초기부터 후기에 걸쳐 가공 경화율을 높이고 유지하기 위해서, 잔류 γ 중의 탄소 농도 분포를 넓힘으로써, 안정성이 상이한 잔류 γ를 제작하기 위함이다. 이와 같은 작용을 유효하게 발휘시키기 위해서는, 잔류 γ 중의 탄소 농도 분포의 표준 편차는 0.35질량% 이상, 바람직하게는 0.40질량% 이상, 더 바람직하게는 0.45질량% 이상으로 할 필요가 있다. 한편, 본 발명에 따른 고강도 고연성 강판에 있어서는, 잔류 γ 중의 탄소 농도 분포의 표준 편차는 실제상, 0.70질량% 정도가 상한이고, 바람직하게는 0.65질량% 이하이다.In order to increase and maintain the work hardening rate from the initial stage to the later stage of deformation, the carbon concentration distribution in the residual? Is widened to produce the residual? Having different stability. In order to effectively exhibit such an effect, the standard deviation of the carbon concentration distribution in the residual? Should be 0.35% by mass or more, preferably 0.40% by mass or more, and more preferably 0.45% by mass or more. On the other hand, in the high-strength high-ductile steel sheet according to the present invention, the standard deviation of the carbon concentration distribution in the residual? Is practically an upper limit of about 0.70 mass%, preferably 0.65 mass% or less.

<잔류 γ 중의 탄소 농도가 1.5질량% 이상인 영역: 전체 조직에 대한 면적률로 1.0% 이상>&Lt; Area where the carbon concentration in the residual? Is not less than 1.5% by mass: not less than 1.0%

신도를 높이기 위해서는, 왜곡량이 증가했을 때에 있어서의, 잔류 γ의 안정도가 높은 것이 중요하고, 그것을 위해서는, 평균적으로 탄소 농도가 높은 것만으로는 충분하지 않고, 안정도가 높은, 즉 탄소 농도가 높은 잔류 γ가 일정량 이상 존재하는 것이 필요하다. 구체적으로는, 잔류 γ 중의 탄소 농도가 1.5질량% 이상인 영역이 전체 조직에 대한 면적률로 1.0% 이상, 바람직하게는 1.5% 이상, 더 바람직하게는 2.0% 이상 존재하게 할 필요가 있다. 한편, 본 발명에 따른 고강도 고연성 강판에 있어서는, 잔류 γ 중의 탄소 농도가 1.5질량% 이상인 영역의 전체 조직에 대한 면적률은 전체 잔류 γ 면적의 1/2 정도가 상한이고, 바람직하게는 2/5 이하, 더 바람직하게는 1/3 이하이다.In order to increase the elongation, it is important that the stability of the residual? When the amount of distortion increases is high. For this purpose, it is not sufficient if only the average carbon concentration is high and the residual? Is required to be present in a certain amount or more. Concretely, it is necessary that the area where the carbon concentration in the residual? Is not less than 1.5% by mass is not less than 1.0%, preferably not less than 1.5%, more preferably not less than 2.0% as the area ratio with respect to the whole texture. On the other hand, in the high-strength high-ductile steel sheet according to the present invention, the area ratio of the region having the carbon concentration in the residual? Of 1.5% by mass or more to the whole structure is about 1/2 of the total residual? Area, 5 or less, more preferably 1/3 or less.

〔잔류 γ의 면적률, 잔류 γ 중의 평균 탄소 농도(%CγR) 및 그의 탄소 농도 분포의 각 측정 방법〕[Method of measuring the area ratio of residual?, The average carbon concentration ( ? C ? R ) in residual? And the carbon concentration distribution thereof]

여기에서, 잔류 γ의 면적률, 평균 탄소 농도(%CγR) 및 탄소 농도 분포의 각 측정 방법에 대해서 설명한다.Here, the measurement method of the area ratio of the residual?, The average carbon concentration (% C ? R ) and the carbon concentration distribution will be described.

잔류 γ의 면적률(VγR) 및 평균 탄소 농도(%CγR)에 대해서는, 강판의 1/4의 두께까지 연삭한 후, 화학 연마하고 나서 X선 회절법에 의해 측정했다(ISIJ Int. Vol. 33, (1933), No. 7, p. 776). 한편, 본 발명에 있어서는, X선 회절 장치로서 (주)리가쿠제 2차원 미소부 X선 회절 장치(RINT-RAPIDII)를 이용하고, X선으로서 Co-Kα선을 이용했다.The area ratio V ? R and the average carbon concentration (% C ? R ) of the residual? Were measured by an X-ray diffraction method after grinding to a thickness of 1/4 of the steel sheet and chemical polishing (ISIJ Int. Vol 33, (1933), No. 7, p. 776). On the other hand, in the present invention, a two-dimensional micrographic X-ray diffraction apparatus (RINT-RAPIDII) manufactured by Rigaku Corporation was used as the X-ray diffraction apparatus, and Co-K?

한편, 잔류 γ 이외의 조직에 대해서는, 강판을 나이탈 부식시키고, 광학 현미경(배율 400배)으로 관찰해서 잔류 γ 이외의 조직을 동정했다.On the other hand, for the tissues other than the residual?, The steel sheet was detached and corroded and observed under an optical microscope (magnification: 400x) to identify tissues other than residual?.

계속해서, 잔류 γ 중의 탄소 농도의 분포에 대해서는, 상기 X선 회절 장치로 측정된, (200)γ, (220)γ 및 (311)γ의 3개의 회절 피크를 이용하여 이하와 같이 해서 구했다.Subsequently, the distribution of the carbon concentration in the residual? Was determined as follows using three diffraction peaks of (200)?, (220)? And (311)? Measured by the above X-ray diffractometer.

우선, 도 1의 모식도에 나타내는 바와 같이, (200)γ, (220)γ 및 (311)γ의 3개의 회절 피크에 대해서, 각각 회절 강도가 최대가 되는 2θ(2θavg(hkl))과 그의 반가폭 Δ2θ(hkl)을 구했다. 여기에서, (hkl)은 (200), (220) 또는 (311)을 의미하는 것으로 한다(이하 동일).First, as shown in the schematic diagram of FIG. 1, 2θ (2θ avg (hkl)) at which the diffraction intensity becomes maximum is obtained for three diffraction peaks of (200) γ, (220) The half-value width? 2? (Hkl) was obtained. Here, (hkl) means (200), (220) or (311) (the same applies hereinafter).

계속해서, 상기 2θavg(hkl)로부터, 브래그 조건: λ=2dsinθ(d: 회절 격자 상수, λ: Co-Kα선의 파장)를 이용해서, 하기 식(1)로부터 d(hkl)을 구했다.Subsequently, from the 2θ avg (hkl), the Bragg condition: λ = 2dsinθ saved d (hkl) from the following formula (1) using (d:: the diffraction grating constant, λ Co-Kα line wavelength).

d(hkl)=λ/{2sin(2θavg(hkl)/2)}…식(1)d (hkl) =? / {2 sin (2? avg (hkl) / 2)} ... Equation (1)

그리고, 하기 식(3)에 의해, 결정 격자 상수 a0(hkl)을 구하고, 그들 3개의 결정 격자 상수 a0(hkl)을 산술 평균해서 결정 격자 상수 a0을 구했다.The crystal lattice constants a 0 (hkl) were obtained by the following equation (3), and the three crystal lattice constants a 0 (hkl) were arithmetically averaged to obtain a crystal lattice constant a 0 .

a0(hkl)=d(hkl)√(h2+k2+l2)…식(2) a 0 (hkl) = d ( hkl) √ (h 2 + k 2 + l 2) ... Equation (2)

그리고, 하기 식(3)에 나타내는 Dyson의 식(Dyson D. J., Holmes B. (1970), "Effect of alloying additions on the lattice parameter austenite", J. Iron Steel Inst., 208: 469-474.)을 이용해서 탄소 농도 %Cavg(단위: 질량%)를 구했다. (한편, 이 탄소 농도 %Cavg는 탄소 농도 분포를 규정하기 위한 지표로서만 이용하는 것이고, 별도 측정된 상기 평균 탄소 농도 %CγR과는 엄밀하게는 반드시 일치한다고는 할 수 없다는 것을 주기해 둔다.)(Dyson DJ, Holmes B. (1970), "Effect of alloying additions on the lattice parameter austenite", J. Iron Steel Inst., 208: 469-474) shown in the following formula (3) To obtain a carbon concentration% C avg (unit: mass%). (On the other hand, this carbon concentration% C avg is used only as an index for defining the carbon concentration distribution, and it can not be said that it is strictly consistent with the above-mentioned average carbon concentration% C γR . )

%Cavg=(1/0.033)·(a0-0.0012·%Mn+0.00157·%Si-0.0056·%Al)…식(3) % C avg = (1 / 0.033) (a 0 -0.0012.% Mn + 0.00157.% Si-0.0056.% Al) Equation (3)

여기에서, %Mn, %Si, %Al은 각각 강판 중의 Mn, Si, Al의 함유량(질량%)이다.Here,% Mn,% Si and% Al are the contents (mass%) of Mn, Si and Al in the steel sheet, respectively.

다음으로, 잔류 γ 중의 탄소 농도 분포의 반가폭 Δ%C를 이하의 순서로 구했다.Next, the half value width?% C of the carbon concentration distribution in the residual? Was obtained in the following order.

우선, 각 피크의 회절 각도 2θ(hkl)의 반가폭 Δ2θ(hkl)의 상하한에 있어서의 회절 각도를 하기 식(4) 및 (5)로 구했다(도 1 참조). First, the diffraction angles at the upper and lower limits of the half-value width? 2 (hkl) of the diffraction angle 2? (Hkl) of each peak were determined by the following formulas (4) and (5) (see FIG.

L(hkl)=2θavg(hkl)-Δ2θ(hkl)/2…식(4) 2θ L (hkl) = 2θ avg (hkl) -Δ2θ (hkl) / 2 ... Equation (4)

H(hkl)=2θavg(hkl)+Δ2θ(hkl)/2…식(5) 2? H (hkl) = 2? Avg (hkl) +? 2? (Hkl) / 2 Equation (5)

그래서, 상기 2θL(hkl) 및 2θH(hkl)을 각각 이용해서, 상기와 마찬가지의 순서로 브래그 조건 및 상기 식(1)∼(3)을 이용함으로써, 탄소 농도 분포의 반가폭의 상하한값 %CL 및 %CH를 구했다. 그리고, 탄소 농도 분포의 반가폭 Δ%C를 하기 식(6)으로 구했다.Thus, by using Bragg conditions and the above equations (1) to (3) in the same order as above using the 2? L (hkl) and 2? H (hkl), the upper and lower limits % C L and% C H were obtained. Then, the full width at half maximum of the carbon concentration distribution?% C was calculated by the following equation (6).

Δ%C=%CH-%CL…식(6) Δ% C =% C H -% C L ... Equation (6)

그리고, 탄소 농도 분포가 정규 분포라고 가정하여, 이하와 같이 해서, 상기 반가폭 Δ%C로부터 표준 편차 σ%C를 산출했다.Then, assuming that the carbon concentration distribution is a normal distribution, the standard deviation? % C was calculated from the half-value width?% C as follows.

즉, 정규 분포의 확률 밀도 함수 f(x)는, 평균값 u와 표준 편차 σ로부터, 하기 식(7)로 표시된다. That is, the probability density function f (x) of the normal distribution is expressed by the following equation (7) from the average value u and the standard deviation?.

f(x)={1/√(2πσ)}·exp{-(x-u)2/(2σ2)}…식(7) f (x) = {1 /? (2??)} exp {- (xu) 2 / ( 2 ? 2 )} ... Equation (7)

평균값에 있어서의 확률 f(u)는, 상기 식(7)에 x=u를 대입함으로써 하기 식(8)로 구해진다.The probability f (u) in the average value is obtained by the following equation (8) by substituting x = u into the above equation (7).

f(u)=1/√(2πσ)…식(8) f (u) = 1 /? (2?) ... Equation (8)

그리고, 평균값 u=%Cavg로부터 반가폭 Δ%C의 1/2만큼 상하로 이동한 값(%Cavg±Δ%C/2)에서의 확률 밀도 f(%Cavg±Δ%C/2)는, 평균값 u=%Cavg에서의 확률 밀도 f(u)=f(%Cavg)의 1/2이 되므로, 식(7) 및 (8)로부터 하기 식(9)의 관계가 얻어진다.Then, the average value u =% a value half as much as move up and down in the half-height width from C avg Δ% C (% C avg ± Δ% C / 2) the probability density at f (% C avg ± Δ% C / 2 ) Is 1/2 of the probability density f (u) = f (% C avg ) at the average value u =% C avg , the relationship of the following equation (9) is obtained from the equations (7) and (8) .

{1/√(2πσ%C)}·exp{-(Δ%C/2)2/(2σ%C 2)}=1/{2√(2πσ%C)}…식(9) {1 / √ (2πσ% C )} · exp {- (Δ% C / 2) 2 / (2σ% C 2)} = 1 / {2√ (2πσ% C)} ... Equation (9)

상기 식(9)를 변형함으로써, 반가폭 Δ%C로부터 표준 편차 σ%C를 구하는 식으로서 하기 식(10)이 도출되므로, 이 식(10)에 반가폭 Δ%C를 대입함으로써 표준 편차 σ%C를 산출했다.The following equation (10) is derived from the equation (9) to obtain the standard deviation? % C from the half-width width?% C and therefore the standard deviation? % C was calculated.

σ%C=√{(Δ%C/2)2/(2ln2)}…식(10) ? % C =? {?% C / 2) 2 / (2ln2)} ... Equation (10)

그리고, 상기와 같이 해서 구한 잔류 γ 중의 탄소 농도 분포의 평균값 %Cavg와 σ%C를 이용해서, 하기 식(11)에 나타내는 누적 밀도 함수 g(x)에 의해, 탄소 농도가 1.5질량% 이상인 영역의 전체 조직에 대한 면적률 VγR(C≥1.5%)를 구하는 식으로서 하기 식(12)를 도출하여, 이 식(12)를 이용해서 VγR(C≥1.5%)를 산출했다.And, at least by the cumulative density function g (x) shown in the following formula (11) using the mean value% C avg and σ% C of the carbon concentration distribution of the obtained residue γ as described above, the carbon concentration is 1.5 mass% (12) is derived from the area ratio V ? R (C ? 1.5%) with respect to the entire tissue of the region, and V ? R (C ? 1.5%) is calculated using this formula (12).

g(x)=(1/2)·[1+erf{(x-u)/√(2σ2)}]…식(11) g (x) = (1/2) · [1 + erf {(xu) / √ (2σ 2 )}] Equation (11)

VγR(C≥1.5%)=VγR{1-g(1.5)}V ? R (C ? 1.5%) = V ? R {1-g (1.5)}

=VγR[0.5-erf{(1.5-%Cavg)/√(2σ%C 2)}]…식(12) = V ? R [0.5-erf {(1.5% C avg ) / ( 2? % C 2 )}] Equation (12)

여기에서, VγR은 전체 잔류 γ의 면적률이다.Here, V ? R is the area ratio of the total residual ?.

다음으로, 본 발명 강판을 구성하는 성분 조성에 대해서 설명한다. 이하, 화학 성분의 단위는 전부 질량%이다. 또한, 각 성분의 「함유량」을 간단히 「양」이라고 기재하는 경우도 있다.Next, the composition of components constituting the inventive steel sheet will be described. Hereinafter, the units of the chemical components are all% by mass. Further, the &quot; content &quot; of each component may be simply described as &quot; amount &quot;.

〔본 발명 강판의 성분 조성〕[Composition of the steel sheet of the present invention]

C: 0.10% 이상 0.35% 미만 C: 0.10% or more and less than 0.35%

C는 잔류 오스테나이트의 양(면적률)의 확보에 기여함으로써, 강도와 연성을 확보하기 위해서 필수인 원소이다. 이와 같은 작용을 유효하게 발휘시키기 위해서는, C를 0.10% 이상, 바람직하게는 0.12% 이상, 더 바람직하게는 0.14% 이상 함유시킬 필요가 있다. 단, C량이 과잉이 되면 용접성을 열화시키므로, C량은 0.35% 미만, 바람직하게는 0.32% 이하, 보다 바람직하게는 0.30% 이하, 더 바람직하게는 0.28% 이하로 한다.C is an essential element for securing strength and ductility by contributing to securing the amount (area ratio) of retained austenite. In order to exhibit such an effect effectively, it is necessary to contain C of 0.10% or more, preferably 0.12% or more, and more preferably 0.14% or more. However, when the amount of C is excessive, the weldability is deteriorated. Therefore, the amount of C is less than 0.35%, preferably not more than 0.32%, more preferably not more than 0.30%, more preferably not more than 0.28%.

Si+Al: 0.5∼2.0%Si + Al: 0.5 to 2.0%

Si 및 Al은 잔류 오스테나이트가 분해되어서 탄화물이 생성되는 것을 유효하게 억제하는 원소이다. 이와 같은 작용을 유효하게 발휘시키기 위해서는, Si 및 Al을 합계로 0.5% 이상, 바람직하게는 0.7% 이상, 더 바람직하게는 0.9% 이상 함유시킬 필요가 있다. 단, Si 및 Al을 과잉으로 함유시켜도 상기 효과가 포화되어 버려, 경제적으로 쓸데없을 뿐만 아니라, 열간 취성을 야기하기 때문에, Si 및 Al의 합계량은 2.0% 이하, 바람직하게는 1.9% 이하, 더 바람직하게는 1.8% 이하로 한다.Si and Al are elements that effectively inhibit the formation of carbide by decomposition of the retained austenite. In order to exhibit such an effect effectively, it is necessary to contain Si and Al in a total amount of not less than 0.5%, preferably not less than 0.7%, more preferably not less than 0.9%. However, even if Si and Al are contained excessively, the above effect is saturated, which is economically useless and causes hot brittleness. Therefore, the total amount of Si and Al is 2.0% or less, preferably 1.9% or less And not more than 1.8%.

Mn: 1.0∼4.0%Mn: 1.0 to 4.0%

Mn은 오스테나이트를 안정화하고, 원하는 잔류 오스테나이트를 얻기 위해서 필요한 원소이다. 이와 같은 작용을 유효하게 발휘시키기 위해서는, Mn을 1.0% 이상, 바람직하게는 1.3% 이상, 더 바람직하게는 1.6% 이상 함유시키는 것이 필요하다. 단, Mn량이 과잉이 되면 주편(鑄片) 균열이 생기는 등의 악영향이 보여지므로, Mn량은 4.0% 이하, 바람직하게는 3.5% 이하, 더 바람직하게는 3.0% 이하로 한다.Mn is an element necessary for stabilizing austenite and obtaining a desired retained austenite. In order to exhibit such an effect effectively, it is necessary to contain 1.0% or more, preferably 1.3% or more, and more preferably 1.6% or more of Mn. However, when the Mn content is excessive, adverse effects such as cracking of the cast slab are observed. Therefore, the Mn content is 4.0% or less, preferably 3.5% or less, more preferably 3.0% or less.

P: 0∼0.05% P: 0 to 0.05%

P는 불순물 원소로서 불가피적으로 존재하지만, 원하는 잔류 γ를 확보하기 위해서 함유시켜도 되는 원소이다. 단, P를 과잉으로 함유시키면 2차 가공성이 열화되므로, P량은 0.05% 이하, 바람직하게는 0.03% 이하, 더 바람직하게는 0.02% 이하로 한다.P is inevitably present as an impurity element, but it is an element that can be contained in order to secure a desired residual?. However, if P is contained excessively, the secondary processability deteriorates. Therefore, the P content is 0.05% or less, preferably 0.03% or less, more preferably 0.02% or less.

S: 0∼0.01% S: 0 to 0.01%

S도 불순물 원소로서 불가피적으로 존재하고, MnS 등의 황화물계 개재물을 형성하여, 균열의 기점이 되어서 가공성을 열화시키는 원소이므로, S량은 0.01% 이하, 바람직하게는 0.005% 이하, 더 바람직하게는 0.003% 이하로 한다.S is inevitably present as an impurity element and forms a sulfide inclusion such as MnS to become a starting point of cracking and deteriorates workability. Therefore, the S content is 0.01% or less, preferably 0.005% or less, more preferably 0.005% Is 0.003% or less.

본 발명의 강은 상기 원소를 필수 성분으로서 함유하고, 잔부는 철 및 불가피적 불순물이지만, 기타, 본 발명의 작용을 손상시키지 않는 범위에서, 이하의 허용 성분을 함유시킬 수 있다.The steel of the present invention contains the above element as an essential component and the remainder is iron and inevitable impurities. However, the following allowable components may be added to the steel in the range not impairing the function of the present invention.

Cu, Ni, Mo, Cr 및 B 중 1종 또는 2종 이상: 합계로 1.0% 이하One or more of Cu, Ni, Mo, Cr and B: 1.0% or less in total

이들 원소는, 강의 강화 원소로서 유용함과 더불어, 잔류 γ의 안정화나 소정량의 확보에 유효한 원소이다. 이와 같은 작용을 유효하게 발휘시키기 위해서는, 이들 원소는 합계량으로 0.001% 이상, 나아가서는 0.01% 이상 함유시키는 것이 권장된다. 단, 이들 원소를 과잉으로 함유시켜도 상기 효과가 포화되어 버려, 경제적으로 쓸데없으므로, 이들 원소는 합계량으로 1.0% 이하, 나아가서는 0.5% 이하로 하는 것이 바람직하다.These elements are useful as strengthening elements for steel and are effective elements for stabilizing residual γ and securing a predetermined amount. In order to effectively exhibit such an action, it is recommended that these elements be contained in an amount of 0.001% or more, more preferably 0.01% or more. However, even if these elements are contained in excess, the above effects are saturated and economically unnecessary. Therefore, the total amount of these elements is preferably 1.0% or less, more preferably 0.5% or less.

V, Nb, Ti, Zr 및 Hf 중 1종 또는 2종 이상: 합계로 0.2% 이하V, Nb, Ti, Zr and Hf: not more than 0.2% in total

이들 원소는, 석출 강화 및 조직 미세화의 효과가 있고, 고강도화에 유용한 원소이다. 이와 같은 작용을 유효하게 발휘시키기 위해서는, 이들 원소를 합계량으로 0.01% 이상, 나아가서는 0.02% 이상 함유시키는 것이 권장된다. 단, 이들 원소를 과잉으로 함유시켜도 상기 효과가 포화되어 버려, 경제적으로 쓸데없으므로, 이들 원소는 합계량으로 0.2% 이하, 나아가서는 0.1% 이하로 하는 것이 바람직하다.These elements have effects of precipitation strengthening and fine structure, and are useful elements for increasing the strength. In order to effectively exhibit such an action, it is recommended that these elements be contained in an amount of 0.01% or more, more preferably 0.02% or more. However, even if these elements are contained in excess, the above effects are saturated and economically unnecessary. Therefore, it is preferable that the total amount of these elements is 0.2% or less, more preferably 0.1% or less.

Ca, Mg 및 REM 중 1종 또는 2종 이상: 합계로 0.01% 이하Ca, Mg and REM: 0.01% or less in total

이들 원소는, 강 중 황화물의 형태를 제어하여, 가공성 향상에 유효한 원소이다. 여기에서, 본 발명에 이용되는 REM(희토류 원소)으로서는, Sc, Y, 란타노이드 등을 들 수 있다. 상기 작용을 유효하게 발휘시키기 위해서는, 이들 원소를 합계량으로 0.001% 이상, 나아가서는 0.002% 이상 함유시키는 것이 권장된다. 단, 이들 원소를 과잉으로 함유시켜도 상기 효과가 포화되어 버려, 경제적으로 쓸데없으므로, 이들 원소는 합계량으로 0.01% 이하, 나아가서는 0.005% 이하로 하는 것이 바람직하다.These elements are effective elements for improving workability by controlling the form of sulfides in steel. Examples of REM (rare earth element) used in the present invention include Sc, Y, lanthanoid and the like. In order to exhibit the above-mentioned action effectively, it is recommended to contain these elements in a total amount of 0.001% or more, more preferably 0.002% or more. However, even if these elements are contained in excess, the above effects are saturated and economically unnecessary. Therefore, it is preferable that the total amount of these elements is 0.01% or less, more preferably 0.005% or less.

다음으로, 상기 본 발명 강판을 얻기 위한 바람직한 제조 조건을 이하에 설명한다.Next, preferable manufacturing conditions for obtaining the inventive steel sheet will be described below.

〔본 발명 강판의 바람직한 제조 방법〕[Preferred Production Method of Steel Sheet of the Present Invention]

본 발명 강판은, 상기 성분 조성을 만족하는 강재를 열간 압연하고, 이어서 냉간 압연한 후, 예를 들면 하기의 공정(1)∼(4)의 조건에서 열처리를 행해서 제조할 수 있다(도 2 참조).The steel sheet of the present invention can be produced by hot-rolling a steel material satisfying the above-mentioned composition, then cold-rolling the steel sheet, and then heat-treating the steel sheet under the following conditions (1) to (4) .

[열처리 조건][Heat treatment conditions]

(1) 냉연판을 제 2 가열 온도 T2: [0.7×Ac1+0.3×Ac3]∼[0.2×Ac1+0.8×Ac3]로 가열해서 그 온도에서 제 2 유지 시간 t2: 5s 이상 유지하거나, 또는 동 온도 범위를 4℃/s 이하의 평균 가열 속도로 가열한 후,(1) The cold-rolled sheet is heated to the second heating temperature T2: [0.7 x Ac1 + 0.3 x Ac3] to [0.2 x Ac1 + 0.8 x Ac3] and maintained at the temperature for the second holding time t2: After heating the temperature range at an average heating rate of 4 DEG C / s or less,

(2) 추가로 제 3 가열 온도 T3: [Ac3+10℃]∼950℃로 가열하여, 그 온도에서 제 3 유지 시간 t3: 180s 이하 유지한 후,(2) further heating at a third heating temperature T3: [Ac3 + 10 占 폚] to 950 占 폚, maintaining the third holding time t3 at 180 占 폚 for 180 seconds or less,

(3) 상기 제 3 가열 온도 T3으로부터 500℃까지를 평균 냉각 속도 CR1: 20℃/s 이상으로 냉각한 후,(3) cooling from the third heating temperature T3 to 500 DEG C at an average cooling rate CR1 of at least 20 DEG C / s,

(4) 오스템퍼링 온도 T4: 350∼480℃에서 오스템퍼링 유지 시간 t4: 10s 이상 유지 후, 실온까지 냉각한다.(4) Austempering temperature T4: Maintain the maintenance time at t4: 10 s or more at 350 to 480 캜, and then cool to room temperature.

이하, 상기 열처리 조건이 권장되는 이유에 대해서 설명한다.Hereinafter, the reason why the above-mentioned heat treatment condition is recommended will be described.

<(1) 제 2 가열 온도 T2: [0.7×Ac1+0.3×Ac3]∼[0.2×Ac1+0.8×Ac3]에서 제 2 유지 시간 t2: 5s 이상 유지하거나, 또는 동 온도 범위를 4℃/s 이하의 평균 가열 속도로 가열> (1) The second holding time t2 is maintained at the second heating temperature T2: [0.7 x Ac1 + 0.3 x Ac3] to [0.2 x Ac1 + 0.8 x Ac3] Heating at the following average heating rate &gt;

페라이트/오스테나이트의 2상역 온도 영역에서 소정 시간 유지 또는 서가열함으로써, 이 2상역 온도 영역에서 역변태 중에 Mn 농도 분배를 일으키게 하는 것에 의해, 상기 공정(4)에 있어서의 오스템퍼링 처리 시의 베이나이트 변태의 국소적인 속도차를 크게 하여, 잔류 γ 중의 탄소 농도 분포를 넓게 하기 위함이다.The Mn concentration distribution is caused during the reverse transformation in the bimetallic temperature region by holding or heating the ferrite / austenite at a bimetallic temperature region for a predetermined time or longer, The local velocity difference of the knight transformation is increased to widen the carbon concentration distribution in the residual?.

당해 온도 범위에 있어서의 유지 시간 t2는, 보다 바람직하게는 10s 이상, 더 바람직하게는 20s 이상이지만, 생산성의 관점에서 200s 이하로 하는 것이 권장된다.The holding time t2 in the temperature range is more preferably 10 s or more, and even more preferably 20 s or more, but from the viewpoint of productivity, it is recommended that the holding time t2 is 200 s or less.

한편, Ac1 및 Ac3은, 강판의 화학 성분으로부터, 레슬리 저, 「철강재료과학」, 고다 나리야스 역, 마루젠주식회사, 1985년, p. 273에 기재된 식을 이용해서 구할 수 있다.On the other hand, Ac1 and Ac3 are derived from the chemical composition of the steel sheet by Leslie, &quot; Steel Materials Science &quot;, Kodanariasu, Maruzen Co., Ltd., 1985, p. 273 &lt; / RTI &gt;

<(2) 추가로 제 3 가열 유지 온도 T3: [Ac3+10℃]∼950℃에서 제 3 유지 시간 t3: 180s 이하 유지>(2) The third heating and holding temperature T3: [Ac3 + 10 占 폚] to 950 占 폚 and the third holding time t3: 180 seconds or less>

오스테나이트 단상(單相)역 온도 영역에서 유지함으로써, 조직을 오스테나이트 단상 조직으로 하는 것에 의해, 그 후의 냉각 시까지 페라이트가 잔존하는 것을 방지하기 위함이다.The ferrite is retained in the austenite single phase inverse temperature region so as to prevent the ferrite from remaining in the austenite single phase structure until the subsequent cooling.

제 3 가열 온도 T3을 [Ac3+10℃] 미만으로 하면, 페라이트가 잔존하여, 그 후의 상기 공정(3)의 냉각 과정에서 페라이트의 성장을 억제할 수 없어, 페라이트가 과잉으로 형성된다. 한편, 제 3 가열 온도 T3을 950℃ 초과, 또는 제 3 유지 시간 t3을 180s 초과로 하면, 상기 공정(1)에서 2상역 가열 시에 분포된 Mn이 균일화되어 버려, 잔류 γ 중의 탄소 농도 분포를 넓게 할 수 없게 된다.If the third heating temperature T3 is less than [Ac3 + 10 占 폚], the ferrite remains and the growth of ferrite can not be suppressed during the cooling process of the subsequent step (3). On the other hand, if the third heating temperature T3 is more than 950 DEG C or the third holding time t3 is more than 180s, the Mn distributed during heating in the two-phase heating in the step (1) becomes uniform, It can not be made wide.

<(3) 제 3 가열 온도 T3으로부터 500℃까지를 평균 냉각 속도 HR1: 20℃/s 이상으로 냉각>(3) Cooling from the third heating temperature T3 to 500 占 폚 at an average cooling rate HR1 of 20 占 폚 / s or more>

페라이트의 형성을 방지하여, 베이나이트 주체의 조직으로 하기 위함이다.To prevent the formation of ferrite and to make the structure of bainite-based body.

이 온도 범위에 있어서의 평균 냉각 속도 HR3은, 보다 바람직하게는 25℃/s 이상, 더 바람직하게는 30℃/s 이상이다.The average cooling rate HR3 in this temperature range is more preferably 25 DEG C / s or more, and still more preferably 30 DEG C / s or more.

<(4) 오스템퍼링 온도 T4: 350∼480℃에서 오스템퍼링 유지 시간 t4: 10s 이상 유지 후, 실온까지 냉각>(4) Austempering temperature T4: Holding time at t4 for at least 10 seconds, at austempering holding time at 350 to 480 DEG C,

베이나이트 변태를 촉진시켜서, 미변태 오스테나이트로 탄소를 농화시킴으로써, 안정한 잔류 γ를 얻기 위함이다.To accelerate bainite transformation and to concentrate carbon with untransformed austenite to obtain stable residual?.

[열처리 조건의 변형예][Modified examples of heat treatment conditions]

한편, 상기 공정(1)은 하기 공정(1a)와 같이 구성해도 된다.On the other hand, the step (1) may be configured as the following step (1a).

(1a) 냉연판을 제 1 가열 온도 T1: [Ac1-100℃]∼[Ac1-30℃]로 가열해서 그 온도에서 제 1 유지 시간: 10s 이상 유지하거나, 또는 동 온도 범위를 2℃/s 이하의 평균 가열 속도로 가열한 후에, 제 2 가열 온도 T2: [0.7×Ac1+0.3×Ac3]∼[0.2×Ac1+0.8×Ac3]에서 제 2 유지 시간 t2: 5s 이상 유지한다.(1a) The cold-rolled sheet is heated at a first heating temperature T1: [Ac1-100 占 폚] to [Ac1-30 占 폚] and maintained at that temperature for a first holding time of 10 seconds or longer, And the second holding time t2 is maintained at the second heating temperature T2: [0.7 x Ac1 + 0.3 x Ac3] to [0.2 x Ac1 + 0.8 x Ac3] for not less than the second holding time t2: 5 s.

이와 같이, 미리 페라이트/시멘타이트 2상역 온도 영역에서 소정 시간 유지 또는 서가열함으로써, 시멘타이트 중으로 Mn을 농화시켜 두고, 그 후의 페라이트/오스테나이트 2상역 가열 시에 있어서 페라이트/오스테나이트간의 Mn 농도 분배를 촉진시키는 것에 의해, 상기 공정(4)에 있어서의 오스템퍼링 처리 시의 베이나이트 변태의 국소적인 속도차를 크게 하여, 잔류 γ 중의 탄소 농도 분포를 보다 넓게 할 수 있다.As described above, Mn is concentrated in the cementite by holding or heating in advance in the ferrite / cementite 2-phase temperature region for a predetermined time, thereby accelerating the distribution of Mn concentration between the ferrite / austenite in the subsequent ferrite / austenite bimetallic heating , The local velocity difference of the bainite transformation during the oust tempering process in the step (4) can be made larger, and the carbon concentration distribution in the residual? Can be widened.

또한, 상기 공정(4)는 하기 공정(4a)와 같이 구성해도 된다.The step (4) may be configured as in the following step (4a).

(4a) 오스템퍼링 온도 T4: 350∼480℃에서 오스템퍼링 유지 시간 t4: 10s 이상 유지 후, 재가열 온도 T5: 500∼600℃로 재가열하고, 그 온도에서 재가열 유지 시간 t5: 30s 이하 유지한 후에, 실온까지 냉각한다.(4a) Austempering temperature T4: 350 to 480 占 폚 maintains the maintenance time t4: 10 s or more, reheats the reheat temperature T5 to 500 to 600 占 폚, maintains the reheat holding time t5 to 30 seconds or less, Cool to room temperature.

이와 같이, 본 발명 강판은, 잔류 γ가 분해되지 않는 온도역으로 재가열해서 도금층을 합금화함으로써, 도금 강판으로 할 수도 있다.As described above, the steel sheet of the present invention can be made of a plated steel sheet by re-heating to a temperature range where the residual? Is not decomposed to alloy the plated layer.

이하, 실시예를 들어 본 발명을 보다 구체적으로 설명하지만, 본 발명은 물론 하기 실시예에 의해 제한을 받는 것은 아니고, 전·후기의 취지에 적합할 수 있는 범위에서 적당하게 변경을 가하여 실시하는 것도 물론 가능하며, 그들은 모두 본 발명의 기술적 범위에 포함된다.The present invention will be described in more detail with reference to the following examples. However, the present invention is of course not limited by the following examples, and it is also possible to carry out the modifications appropriately within a range that is suitable for the purpose Of course, all of which are included in the technical scope of the present invention.

실시예 Example

하기 표 1에 나타내는 성분의 강을 진공 용제로 제조한 후, 열간 단조로 판 두께 30mm의 강판으로 한 후, 열간 압연을 실시했다. 열간 압연의 조건은, 본 발명 강판의 최종 조직 및 특성에 본질적인 영향을 미치지 않지만, 본 실시예에서는 1200℃로 가열한 후, 다단 압연으로, 열간 압연의 종료 온도 880℃의 조건에서 판 두께 2.5mm로 했다. 그 후, 500℃까지 30℃/s의 냉각 속도로 냉각해서 냉각을 정지하고, 500℃로 가열한 노에 삽입 후 30min 유지하고, 그 후 노냉해서 열연판으로 했다. 이 열연판에 산세를 실시해서 표면의 스케일을 제거한 후, 1.4mm까지 냉간 압연을 실시해서 냉연판으로 했다.The steel having the components shown in the following Table 1 was made of a vacuum solvent, hot-forged to form a steel sheet having a thickness of 30 mm, and hot-rolled. The conditions of the hot rolling do not essentially affect the final structure and properties of the steel sheet of the present invention. However, in this embodiment, after heating to 1200 deg. C, multi-stage rolling is performed under the conditions of the end temperature of hot rolling of 880 deg. . Thereafter, the steel sheet was cooled to 500 deg. C at a cooling rate of 30 deg. C / s to stop the cooling, inserted into a furnace heated to 500 deg. C, held for 30 minutes and then cooled to obtain a hot rolled sheet. The hot-rolled sheet was pickled to remove the scale of the surface, and then cold-rolled to 1.4 mm to obtain a cold-rolled sheet.

그리고, 상기 냉연판을 출발재로 해서, 하기 표 2에 나타내는 조건에서 열처리를 실시했다. 한편, 실온으로부터 최초의 가열 온도(유지 온도)까지의 평균 가열 속도는 10℃/s 일정, 다음의 가열 온도(유지 온도)까지의 평균 가열 속도는 20℃/s 일정, 또 다음의 가열 온도(유지 온도)까지의 평균 가열 속도는 10℃/s 일정으로 했다. 또한, 오스템퍼링 온도 T4로부터 재가열 온도 T5까지의 평균 가열 속도는 10℃/s 일정, 오스템퍼링 온도 T4 또는 재가열 온도 T5로부터 실온까지의 평균 냉각 속도는 10℃/s 일정으로 했다.Then, the cold-rolled sheet was used as a starting material and heat-treated under the conditions shown in Table 2 below. On the other hand, the average heating rate from the room temperature to the initial heating temperature (holding temperature) is fixed at 10 占 폚 / sec, the average heating rate to the next heating temperature (holding temperature) is 20 占 폚 / Holding temperature) was set at a constant 10 ° C / s. The average heating rate from the tempering temperature T4 to the reheating temperature T5 was fixed at 10 占 폚 / sec, and the average cooling rate from the tempering temperature T4 or the reheating temperature T5 to the room temperature was fixed at 10 占 폚 / sec.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

상기 열처리 후의 각 강판에 대해서, 상기 [발명을 실시하기 위한 구체적인 내용]의 항에서 설명한 측정 방법에 의해, 잔류 γ의 면적률, 잔류 γ 중의 평균 탄소 농도(CγR) 및 그의 탄소 농도 분포를 측정했다.For each of the steel sheets subjected to the heat treatment, the area ratio of the residual?, The average carbon concentration (? R) in the residual? And the carbon concentration distribution thereof were measured by the measuring method described in the section " .

한편, 본 실시예에 있어서 사용한 강판의 조직은 모두, 잔류 오스테나이트 및 페라이트 이외의 잔부는 베이나이트, 마텐자이트, 템퍼링 베이나이트 및 템퍼링 마텐자이트 중 1종 또는 2종 이상으로 이루어지는 것이었으므로, 하기 표 3에서는, 잔류 오스테나이트 및 페라이트의 면적률만을 기재했다.On the other hand, in all of the structures of the steel sheet used in the present embodiment, the balance other than the retained austenite and ferrite was composed of one or more of bainite, martensite, tempering bainite and tempering martensite , And only area ratios of retained austenite and ferrite are shown in Table 3 below.

또한, 상기 열처리 후의 각 강판에 대해서, 강도-연성 밸런스를 평가하기 위해서, 인장 시험에 의해, 항복 강도 YS, 인장 강도 TS 및 신도(전체 신도) EL을 측정했다. 한편, 인장 시험은 JIS 5호 시험편을 제작해서, JIS Z 2241에 따라서 실시했다. 또한, 각 강판의 신장 플랜지성 λ를 평가하기 위해, 일본 철강 연맹 규격 JFST1001에 준해서 구멍 확장률을 측정했다.For each of the steel sheets subjected to the heat treatment, the yield strength YS, the tensile strength TS and the elongation (total elongation) EL were measured by a tensile test in order to evaluate the strength-ductility balance. On the other hand, the tensile test was carried out in accordance with JIS Z 2241 by preparing a JIS No. 5 test piece. Further, in order to evaluate the extension flange lambda of each steel sheet, the hole expanding rate was measured in accordance with JFST1001 of Japan Steel Federation.

측정 결과를 하기 표 3에 나타낸다. 동 표에 있어서, 상기 열처리 후의 강판의 특성이, 항복비(YR)가 0.7 이상, 인장 강도(TS)×신도(EL)×신장 플랜지성(λ)이 1000000MPa·%·% 이상인 것을 합격(○)으로 하고, 그 이외의 것을 불합격(×)으로 했다.The measurement results are shown in Table 3 below. (*) Of the steel sheet after the heat treatment is such that the yield ratio (YR) is 0.7 or more and the tensile strength (TS) x elongation (EL) x stretch flangeability (?) Is 1000000 MPa% ), And the other ones were rejected (x).

Figure pct00003
Figure pct00003

상기 표 3에 나타내는 바와 같이, 발명강(평가가 ○인 것)인 강 No. 3, 4, 9∼11, 14, 18∼27은 본 발명의 성분 규정의 요건을 만족하는 강종을 이용하여, 권장된 조건에서 열처리한 결과, 본 발명의 조직 규정의 요건을 충족하는 발명강으로, 기계적 특성이 합격 기준을 만족시키고 있어, 강도-연성 밸런스가 우수한 고강도 강연성 강판이 얻어진다는 것을 확인할 수 있었다.As shown in the above Table 3, the steel No. 1 having the inventive steel (evaluation is?). 3, 4, 9 to 11, 14 and 18 to 27 show the inventive steel which satisfies the requirements of the present invention as a result of the heat treatment under the recommended conditions by using the steel material satisfying the requirements of the present invention. , The mechanical properties satisfied the acceptance criteria, and it was confirmed that a steel sheet with high strength and excellent strength-ductility balance was obtained.

이에 비해서, 비교강(평가가 ×인 것)인 강 No. 1, 2, 5∼8, 12, 13, 15∼17은 본 발명의 성분 규정 및 조직 규정의 요건 중 적어도 어느 하나를 충족하지 않아, 특성이 합격 기준을 만족시키고 있지 않다.On the other hand, in the case of the steel No. 1 which is the comparative steel (evaluation x). 1, 2, 5 to 8, 12, 13, and 15 to 17 do not satisfy at least one of the requirements of the constitutional regulations and the organizational regulations of the present invention, and the characteristics do not satisfy the acceptance criteria.

즉, 강 No. 1, 2, 5∼8, 12는 본 발명의 성분 규정의 요건을 만족하는 강종을 이용하고 있지만, 권장된 제조 조건을 일부 벗어나는 조건에서 제조하고 있기 때문에, 조직 규정의 요건을 충족하지 않아, 특성이 뒤떨어져 있다.That is, 1, 2, 5 to 8, and 12 use a steel grade that meets the requirements of the specification of the present invention. However, since the steel grade is manufactured under a condition partially deviating from the recommended manufacturing conditions, This is behind.

한편, 강 No. 13, 15∼17은 권장된 제조 조건에서 제조하고 있지만, 본 발명의 성분 규정의 요건을 일부 벗어나는 강종을 이용하고 있기 때문에, 조직 규정의 요건을 충족하지 않아, 특성이 뒤떨어져 있다.On the other hand, 13, and 15 to 17 are manufactured under the recommended manufacturing conditions, but because they use steel grades that deviate somewhat from the requirements of the present invention, they do not meet the requirements of the organization regulations and are inferior in properties.

이상으로부터 본 발명의 적용성이 확인되었다.The applicability of the present invention was confirmed from the above.

본 발명을 상세하게 또한 특정한 실시태양을 참조하여 설명했지만, 본 발명의 정신과 범위를 일탈함이 없이 다양한 변경이나 수정을 가할 수 있다는 것은 당업자에게 분명하다.While the invention has been described in detail and with reference to specific embodiments thereof, it is evident to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

본 출원은 2014년 11월 26일 출원된 일본 특허출원(특원 2014-238710)에 기초하는 것이고, 그 내용은 여기에 참조로서 원용된다.The present application is based on Japanese Patent Application (Japanese Patent Application No. 2014-238710) filed on November 26, 2014, the content of which is incorporated herein by reference.

본 발명의 강판은 강도나 연성 밸런스가 우수하여, 자동차 박강판 등에 유용하다.The steel sheet of the present invention is excellent in balance of strength and ductility, and is useful for automotive steel sheets and the like.

Claims (2)

성분 조성이, 질량%로,
C: 0.10% 이상 0.35% 미만,
Si+Al: 0.5∼2.0%,
Mn: 1.0∼4.0%,
P: 0∼0.05%,
S: 0∼0.01%
이고, 잔부가 철 및 불가피적 불순물로 이루어지며,
강 조직이,
잔류 오스테나이트가 전체 조직에 대한 면적률로 8% 이상이고, 잔부가 베이나이트, 마텐자이트, 템퍼링 베이나이트 및 템퍼링 마텐자이트 중 1종 또는 2종 이상으로 이루어짐과 더불어,
상기 잔류 오스테나이트 중의 탄소 농도에 관하여,
그의 평균 탄소 농도가 0.9∼1.2질량%,
그의 탄소 농도 분포의 표준 편차가 0.35질량% 이상,
그의 탄소 농도가 1.5질량% 이상인 영역이 전체 조직에 대한 면적률로 1.0% 이상
인 것을 특징으로 하는 고강도 고연성 강판.
The composition of matter, in% by mass,
C: not less than 0.10% and not more than 0.35%
Si + Al: 0.5 to 2.0%
Mn: 1.0 to 4.0%
P: 0 to 0.05%
S: 0 to 0.01%
, The balance being iron and inevitable impurities,
However,
The residual austenite is not less than 8% in area ratio to the entire structure and the remainder is composed of one or more of bainite, martensite, tempering bainite and tempering martensite,
With respect to the carbon concentration in the retained austenite,
Its average carbon concentration is 0.9 to 1.2% by mass,
The standard deviation of the carbon concentration distribution is 0.35 mass% or more,
The area where the carbon concentration is 1.5% by mass or more is 1.0% or more
Wherein the high strength steel sheet is a high strength steel sheet.
제 1 항에 있어서,
성분 조성이, 질량%로, 추가로 하기 (a)∼(c) 중 어느 하나를 포함하는 것인 고강도 고연성 강판.
(a) Cu, Ni, Mo, Cr 및 B 중 1종 또는 2종 이상을 합계로 1.0% 이하
(b) V, Nb, Ti, Zr 및 Hf 중 1종 또는 2종 이상을 합계로 0.2% 이하
(c) Ca, Mg 및 REM 중 1종 또는 2종 이상을 합계로 0.01% 이하
The method according to claim 1,
Wherein the composition comprises, by mass%, any one of the following (a) to (c).
(a) one or more of Cu, Ni, Mo, Cr and B in a total amount of not more than 1.0%
(b) one or more of V, Nb, Ti, Zr and Hf in a total amount of not more than 0.2%
(c) 0.01% or less in total of one or more of Ca, Mg and REM
KR1020177013590A 2014-11-26 2015-11-25 High-strength high-ductility steel sheet KR102111921B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-238710 2014-11-26
JP2014238710A JP6282577B2 (en) 2014-11-26 2014-11-26 High strength high ductility steel sheet
PCT/JP2015/083078 WO2016084847A1 (en) 2014-11-26 2015-11-25 High-strength high-ductility steel sheet

Publications (2)

Publication Number Publication Date
KR20170070230A true KR20170070230A (en) 2017-06-21
KR102111921B1 KR102111921B1 (en) 2020-05-18

Family

ID=56074399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177013590A KR102111921B1 (en) 2014-11-26 2015-11-25 High-strength high-ductility steel sheet

Country Status (6)

Country Link
US (1) US20170268077A1 (en)
EP (1) EP3225708A4 (en)
JP (1) JP6282577B2 (en)
KR (1) KR102111921B1 (en)
CN (1) CN107002192B (en)
WO (1) WO2016084847A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208763A1 (en) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
CN108018484B (en) 2016-10-31 2020-01-31 宝山钢铁股份有限公司 Cold-rolled high-strength steel having tensile strength of 1500MPa or more and excellent formability, and method for producing same
WO2018115933A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2018115936A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP6860420B2 (en) * 2017-05-24 2021-04-14 株式会社神戸製鋼所 High-strength steel sheet and its manufacturing method
JP6849536B2 (en) * 2017-05-31 2021-03-24 株式会社神戸製鋼所 High-strength steel sheet and its manufacturing method
WO2019063081A1 (en) * 2017-09-28 2019-04-04 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof
US20220064754A1 (en) * 2019-01-18 2022-03-03 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
CN114746584A (en) * 2019-12-20 2022-07-12 日本制铁株式会社 Ni-plated steel sheet and method for producing Ni-plated steel sheet
CN113308593B (en) * 2021-05-28 2022-08-09 四川大学 Carbon distribution and two-step isothermal quenching based medium carbon silicon manganese low alloy steel heat treatment process
CN114908287B (en) * 2022-04-11 2023-04-14 武汉科技大学 Low-alloy lightweight high-strength automobile steel and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021225A (en) 2010-06-16 2012-02-02 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in uniform elongation in direction of 45 degrees with respect to rolling direction, and method for manufacturing the same
JP2012031505A (en) 2010-06-28 2012-02-16 Nippon Steel Corp High-strength thin steel sheet excellent in elongation and uniform coating-baking hardenability and method for producing the same
JP2012041573A (en) 2010-08-13 2012-03-01 Nippon Steel Corp High strength thin steel sheet having excellent elongation and press forming stability
KR20120107003A (en) * 2010-01-29 2012-09-27 신닛뽄세이테쯔 카부시키카이샤 Steel sheet and process for producing steel sheet
JP2013032581A (en) * 2011-07-06 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method for producing cold rolled steel sheet
JP2013227653A (en) * 2012-03-29 2013-11-07 Kobe Steel Ltd Method for producing high-strength cold-rolled steel sheet with excellent workability

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270334A1 (en) * 2002-09-04 2004-03-29 Colorado School Of Mines Method for producing steel with retained austenite
JP4109619B2 (en) * 2003-12-16 2008-07-02 株式会社神戸製鋼所 High strength steel plate with excellent elongation and stretch flangeability
JP2005336526A (en) * 2004-05-25 2005-12-08 Kobe Steel Ltd High strength steel sheet having excellent workability and its production method
JP4716358B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High-strength cold-rolled steel sheet and plated steel sheet with excellent balance between strength and workability
JP2010065272A (en) * 2008-09-10 2010-03-25 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP5365112B2 (en) * 2008-09-10 2013-12-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5400484B2 (en) * 2009-06-09 2014-01-29 株式会社神戸製鋼所 High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
JP5883211B2 (en) * 2010-01-29 2016-03-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent workability and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120107003A (en) * 2010-01-29 2012-09-27 신닛뽄세이테쯔 카부시키카이샤 Steel sheet and process for producing steel sheet
JP2012021225A (en) 2010-06-16 2012-02-02 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in uniform elongation in direction of 45 degrees with respect to rolling direction, and method for manufacturing the same
JP2012031505A (en) 2010-06-28 2012-02-16 Nippon Steel Corp High-strength thin steel sheet excellent in elongation and uniform coating-baking hardenability and method for producing the same
JP2012041573A (en) 2010-08-13 2012-03-01 Nippon Steel Corp High strength thin steel sheet having excellent elongation and press forming stability
JP2013032581A (en) * 2011-07-06 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method for producing cold rolled steel sheet
JP2013227653A (en) * 2012-03-29 2013-11-07 Kobe Steel Ltd Method for producing high-strength cold-rolled steel sheet with excellent workability

Also Published As

Publication number Publication date
JP2016098427A (en) 2016-05-30
CN107002192B (en) 2019-03-08
CN107002192A (en) 2017-08-01
KR102111921B1 (en) 2020-05-18
JP6282577B2 (en) 2018-02-21
EP3225708A4 (en) 2018-05-02
WO2016084847A1 (en) 2016-06-02
EP3225708A1 (en) 2017-10-04
US20170268077A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
KR102111921B1 (en) High-strength high-ductility steel sheet
KR102119333B1 (en) High-strength steel sheet and its manufacturing method
US10156005B2 (en) High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
KR101532492B1 (en) High-strength steel plate with excellent formability, warm working method, and warm-worked automotive part
JP5182386B2 (en) High-strength cold-rolled steel sheet having a high yield ratio with excellent workability and method for producing the same
KR102111923B1 (en) High strength high ductility steel plate
EP2762581B1 (en) Hot-rolled steel sheet and method for producing same
EP3366797A1 (en) Hot press member and method for producing same
JP5671359B2 (en) High strength steel plate with excellent warm workability
KR20160114660A (en) High-strength cold-rolled steel sheet and method for manufacturing same
WO2013129049A1 (en) High-strength steel sheet with excellent warm formability and process for manufacturing same
KR20170103905A (en) Ultra-high strength steel sheet with excellent yield ratio and workability
JP6348435B2 (en) High strength high ductility steel sheet
JP6472692B2 (en) High-strength steel sheet with excellent formability
JP2016180140A (en) High-strength steel sheet with excellent formability
WO2016152675A1 (en) High-strength steel sheet having excellent workability
JP6348436B2 (en) High strength high ductility steel sheet
KR102231344B1 (en) Ultra-high strength steel sheet having excellent hole-expandability and ductility, and method for manufacturing thereof
JP7191796B2 (en) High-strength steel plate and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2019101001960; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20190611

Effective date: 20200128

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant