US20170231599A1 - Concurrent acquisition of harmonic and fundamental images for screening applications - Google Patents
Concurrent acquisition of harmonic and fundamental images for screening applications Download PDFInfo
- Publication number
- US20170231599A1 US20170231599A1 US15/504,408 US201515504408A US2017231599A1 US 20170231599 A1 US20170231599 A1 US 20170231599A1 US 201515504408 A US201515504408 A US 201515504408A US 2017231599 A1 US2017231599 A1 US 2017231599A1
- Authority
- US
- United States
- Prior art keywords
- modes
- mode
- review
- imaging
- acquisition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012216 screening Methods 0.000 title claims description 21
- 238000003384 imaging method Methods 0.000 claims abstract description 98
- 238000012552 review Methods 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000002604 ultrasonography Methods 0.000 claims description 29
- 238000012285 ultrasound imaging Methods 0.000 claims description 20
- 238000013329 compounding Methods 0.000 claims description 19
- 230000003902 lesion Effects 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000009877 rendering Methods 0.000 claims description 8
- 238000002399 angioplasty Methods 0.000 claims description 4
- 238000002091 elastography Methods 0.000 claims description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 3
- 208000026310 Breast neoplasm Diseases 0.000 claims description 3
- 210000000056 organ Anatomy 0.000 claims description 3
- 230000006870 function Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 210000000481 breast Anatomy 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 208000031513 cyst Diseases 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- 206010073713 Musculoskeletal injury Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000009607 mammography Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0825—Clinical applications for diagnosis of the breast, e.g. mammography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0833—Clinical applications involving detecting or locating foreign bodies or organic structures
- A61B8/085—Clinical applications involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/465—Displaying means of special interest adapted to display user selection data, e.g. icons or menus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5207—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52098—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging related to workflow protocols
-
- G06F19/321—
-
- G06F19/3406—
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/467—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5246—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5246—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
- A61B8/5253—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode combining overlapping images, e.g. spatial compounding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
Definitions
- This disclosure relates to medical instruments and more particularly to diagnostic ultrasound where different imaging modes (e.g., fundamental and harmonic images) are acquired during a single screening acquisition, so that any mode can later be selectively reviewed.
- imaging modes e.g., fundamental and harmonic images
- Breast density is one of the strongest predictors of a failure of mammography to detect cancer and is also a well-established predictor of breast cancer risk.
- a basic concept of breast ultrasound screening is that an operator, who may or may not be skilled in interpreting ultrasound images, acquires ultrasound images covering all of the breast tissue as efficiently as possible.
- the acquisition may be performed free-hand or free-hand with electromagnetic (EM) tracking.
- EM electromagnetic
- the acquisition may also be semi-automated or fully automated. In all of these cases, the reading and interpretation of these images is performed very efficiently off-line by a radiologist.
- the radiologist reviews a complete set of images on a workstation and may also review images that are rendered from the images collected, such as “C” plane images.
- a method for providing multiple review modes in a single acquisition scan includes acquiring image frames for a plurality of imaging modes by switching image acquisition modes in real-time during a single acquisition sequence.
- the image frames are stored in non-transitory memory for each acquisition mode for subsequent review.
- a display selectively generated for each of the plurality of imaging modes from stored images for a selected imaging mode such that each of the plurality of image modes is available for review from the single acquisition sequence.
- Another method for providing multiple review modes in a single acquisition scan includes selecting a relative frame rate for each of a plurality of imaging modes in a single acquisition sequence; acquiring image frames for the plurality of imaging modes by switching image acquisition modes during the single acquisition sequence; displaying a single imaging mode during the single acquisition; storing the image frames in non-transitory memory for each acquisition mode for subsequent review; and during review, generating a display for each of the plurality of imaging modes from stored images as selected by a user such that each of the plurality of image modes is available for review from the single acquisition sequence.
- Another method for providing multiple review modes in a single acquisition scan includes acquiring image frames, which include raw data for generating a plurality of imaging modes, during a single acquisition sequence; storing the image frames in non-transitory memory for subsequent review; and, during review, generating a display for each of the plurality of imaging modes from stored images as selected by a user such that each of the plurality of image modes is generated by post-processing the raw data from the single acquisition sequence.
- a system for providing multiple review modes in a single acquisition scan includes an ultrasound imaging device configured to acquire image frames for a plurality of imaging modes by automated switching of image acquisition modes during a single acquisition sequence. Alternately or in combination, raw data collected by the ultrasound imaging device and post-processed to generate a plurality of imaging modes from the raw data.
- a memory device is configured to store the image frames in non-transitory memory for each acquisition mode for subsequent review.
- a review workstation has a display for viewing one of the plurality of imaging modes from stored images for a selected imaging mode such that each of the plurality of imaging modes is available for review from the single acquisition sequence.
- FIG. 1 is a block/flow diagram showing an ultrasonic system configured to collect multiple imaging modes in a single acquisition sequence in accordance with one embodiment
- FIG. 2A is a diagram showing an alternating mode pattern for acquiring images for two imaging modes in accordance with one embodiment
- FIG. 2B is a diagram showing an alternating mode pattern for acquiring images where images are taken with a set number of sequential frames for one or more imaging modes in accordance with other embodiments;
- FIG. 3 is a block/flow diagram showing a review workstation for reviewing stored ultrasonic images from a single acquisition sequence in accordance with one embodiment
- FIG. 4 is a block/flow diagram showing methods for providing multiple review modes in a single acquisition scan in accordance with illustrative embodiments.
- ultrasound screening methods and systems are provided where ultrasound data acquired during a single scan can be employed for generating multiple imaging modes, e.g., fundamental imaging, harmonic imaging, color imaging, color power angioplasty imaging, elastography imaging, etc.
- imaging modes e.g., fundamental imaging, harmonic imaging, color imaging, color power angioplasty imaging, elastography imaging, etc.
- Conventional scan and review processes often employ an automated scanning of tissue where the scan mode is typically for a single imaging mode.
- a single scan sequentially provides frames for a plurality of different imaging modes. The frames are stored and can be employed later to generate a display for review for each of the plurality of imaging modes. In other words, as a result of a single scan, fundamental images, harmonic images, etc.
- diagnostic ultrasound e.g., real-time scanning
- diagnostic ultrasound it is common to use both fundamental and harmonic imaging to characterize a lesion, since each provides some unique information.
- different imaging modes may be employed. However, for screening with stored ultrasound images, the mode was previously selected during the scan, and employing different imaging modes was not available for a reviewer.
- a plurality of imaging modes are collected (e.g., fundamental and harmonic images) during screening acquisition, so that the clinician can look at either mode later in review. This may be achieved by collecting sufficiently raw data and applying software post-processing to generate the desired modes, or during acquisition, automatically switching between the modes for a set duration to acquire data for multiple modes.
- the present invention will be described in terms of medical instruments; however, the teachings of the present invention are much broader and are applicable to any ultrasonic imaging system and method.
- the present principles are employed in tracking or analyzing complex biological or mechanical systems.
- the present principles are applicable to internal tracking procedures of biological systems, procedures in all areas of the body such as the breasts, lungs, gastro-intestinal tract, excretory organs, blood vessels, liver, etc.
- the elements depicted in the FIGS. may be implemented in various combinations of hardware and software and provide functions which may be combined in a single element or multiple elements.
- processor or “controller” should not be construed to refer exclusively to hardware capable of executing software, and can implicitly include, without limitation, digital signal processor (“DSP”) hardware, read-only memory (“ROM”) for storing software, random access memory (“RAM”), non-volatile storage, etc.
- DSP digital signal processor
- ROM read-only memory
- RAM random access memory
- non-volatile storage etc.
- embodiments of the present invention can take the form of a computer program product accessible from a computer-usable or computer-readable storage medium providing program code for use by or in connection with a computer or any instruction execution system.
- a computer-usable or computer readable storage medium can be any apparatus that may include, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
- the medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
- Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk.
- Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W), Blu-RayTM and DVD.
- an ultrasound imaging system 10 constructed in accordance with the present principles is shown in block diagram form.
- an ultrasound system 10 includes a probe 12 having a transducer or transducer array 14 for transmitting ultrasonic waves and receiving echo information.
- transducer arrays are well known in the art, e.g., linear arrays, convex arrays or phased arrays.
- the transducer array 14 can include a two dimensional array (as shown) of transducer elements capable of scanning in both elevation and azimuth dimensions for 2D and/or 3D imaging.
- the transducer array 14 is coupled to a microbeamformer 16 in the probe 12 , which controls transmission and reception of signals by the transducer elements in the array.
- the microbeamformer 16 is coupled by the probe cable to a transmit/receive (T/R) switch 18 , which switches between transmission and reception and protects a main beamformer 22 from high energy transmit signals.
- T/R switch 18 and other elements in the system can be included in the transducer probe rather than in a separate ultrasound system base.
- the transmission of ultrasonic beams from the transducer array 14 under control of the microbeamformer 16 is directed by a transmit controller 20 coupled to the T/R switch 18 and the beamformer 22 , which may receive input from the user's operation of a user interface or control panel 24 .
- the transmit controller 20 automatically switches the imaging modes for one or more frames to concurrently acquire (receive) echoes/images in multiple imaging modes.
- a user may adjust the relative frame rate between the imaging modes using the interface 24 , and, in particular, a frame rate control 48 .
- Another function controlled by the transmit controller 20 is the direction in which beams are steered. Beams may be steered straight ahead from (orthogonal to) the transducer array, or at different angles for a wider field of view.
- the partially beamformed signals produced by the microbeamformer 16 are coupled to a main beamformer 22 where partially beamformed signals from individual patches of transducer elements are combined into a fully beamformed signal.
- the beamformed signals are coupled to a signal processor 26 .
- the signal processor 26 can process the received echo signals in various ways, such as bandpass filtering, decimation, I and Q component separation, and harmonic signal separation.
- the signal processor 26 may also perform additional signal enhancement such as speckle reduction, signal compounding, and noise elimination.
- the processed signals are coupled to a B mode processor 28 , which can employ amplitude detection for the imaging of structures in the body.
- the signals produced by the B mode processor are coupled to a scan converter 30 and a multiplanar reformatter 32 .
- the scan converter 30 arranges the echo signals in the spatial relationship from which they were received in a desired image format.
- the scan converter 30 may arrange the echo signal into a two dimensional (2D) sector-shaped format, or a pyramidal three dimensional (3D) image.
- the multiplanar reformatter 32 can convert echoes which are received from points in a common plane in a volumetric region of the body into an ultrasonic image of that plane, as described in U.S. Pat. No. 6,443,896 (Detmer).
- a volume renderer 34 converts the echo signals of a 3D data set into a projected 3D image as viewed from a given reference point, e.g., as described in U.S. Pat. No. 6,530,885 (Entrekin et al.).
- the 2D or 3D images are coupled from the scan converter 30 , multiplanar reformatter 32 , and volume renderer 34 to an image processor 36 for further enhancement, buffering and temporary storage for display on an image display 38 .
- a graphics processor 40 can generate graphic overlays for display with the ultrasound images. These graphic overlays or parameter blocks can contain, e.g., standard identifying information such as patient name, date and time of the image, imaging parameters, frame indices and the like. For these purposes, the graphics processor 40 receives input from the user interface 24 , such as a typed patient name.
- the user interface 24 can also be coupled to the multiplanar reformatter 32 for selection and control of a display of multiple multiplanar reformatted (MPR) images.
- MPR multiplanar reformatted
- screening ultrasound data is acquired and stored in memory 42 in a format that allows an offline reader/reviewer to still be able to access multiple imaging modes, e.g., to help characterize a suspicious lesion, etc., but without significantly complicating or extending the workflow for either acquisition or review.
- the ultrasound system 10 is programmed to acquire images that alternate between modes, e.g., fundamental, harmonic, etc. In one example, to make acquisition easier for the operator, only the fundamental (or harmonic) images are shown on the display 38 , the other images are acquired but not shown.
- the memory 42 stores frames in memory structures or logically connects (e.g., points to or indexes) frames of a same mode.
- This may include organizing frames of a stream by the use of indexing, multiplexing or other techniques to designate which frames are associated with each imaging mode.
- the frames may be stored in separate data structures 44 , 46 for easy access when attempting to regenerate an image in a particular imaging mode.
- the memory 42 is depicted as being placed after the scan converter 30 ; however, the memory 42 may store data at any position in the signal path.
- the data stored may be sufficiently raw data that needs to be stored earlier in the signal path to permit the raw data to be available for rendering in multiple modes. In such a case, the switching between modes is not needed as the data will be stored to recreate these modes in post-processing to generate the desired modes during or for review.
- the resolution of one mode may be adjusted using a frame rate control 48 .
- the frame rate control 48 may be employed to adjust the number of frames for one mode versus the other modes.
- the frame rate control 48 may be implemented in software, hardware or a combination of both. This will be further described with reference to FIGS. 2A and 2B .
- FIGS. 2A and 2B diagrams illustratively show imaging mode frame collection.
- FIG. 2A shows acquired frames 150 , which alternate between a first mode (mode A) and a second mode (mode B).
- mode A and mode B may include fundamental and harmonic imaging modes.
- the frame rate will be reduced by a factor of 2, but since ultrasound systems are now able to acquire images at high frame rates that accuracy/resolution is not compromised.
- frame rate settings are preferably over 100 Hz.
- the imaging mode streams may be separated and both streams of, e.g., fundamental and harmonic imaging may be stored and exported as separate but linked loops.
- the linking may include the use of time stamps, frame numbers, indexes, etc.
- the same workflow provides access to multiple imaging modes. These imaging modes are compiled at a later time (not necessarily during scanning), and the reviewer can select the imaging mode to display with minimal loss of accuracy and no time lost during the scanning process.
- the screening process includes the review of the images at a separate time and/or location, e.g., at a workstation configured for reviewing.
- FIG. 2B shows a more general frame collection scheme where one or multiple frames 160 are collected for each imaging mode.
- a single mode A frame may be collected followed by N (an integer number) mode B frames, and then repeated.
- N mode A frames may be taken followed by a single mode B frame and then repeated.
- N mode A frames may be collected followed by N mode B frames, and then repeated.
- a greater number of modes may be employed and different combinations of frame numbers may be employed.
- the additional frame numbers for a particular imaging mode may be selected to increase resolution for that imaging mode relative the other imaging mode or modes. These adjustments in frame numbers may be selected for the scanning based on experience, desired results or other criteria.
- Spatial compound imaging or spatial compounding is an ultrasound technique that uses electronic beam steering of a transducer array to rapidly acquire several (e.g., three to nine) overlapping scans of an object from different view angles. These single-angle scans are averaged to form a multiangle compound image that is updated with each subsequent scan.
- Compound imaging shows improved image quality compared with conventional ultrasound, primarily because of reduction of speckle, clutter, and other acoustic artifacts, and provides improved contrast resolution and tissue differentiation, which are beneficial for imaging the breast, peripheral blood vessels, and musculoskeletal injuries.
- Ultrasound data would be acquired in SonoCT (and if desired fundamental and harmonic modes), and the operator or scanner would see a SonoCT image, but the component frames and not the compounded frames would be stored in memory 42 (e.g., as a separate mode).
- workstation software would perform the compounding step needed to generate a SonoCT image to present to the radiologist, or the radiologist could choose to view the non-SonoCT image (i.e., to asses lesion shadowing) in which case only the non-steered component image would be presented.
- the post-processing of the image stream may be performed with or without the mode switching process step.
- the switching mode data collection can be post-processed to switch compounding on or off.
- the sufficiently raw data can be collected and be post-processed to switch compounding on or off.
- System 100 may include a workstation or console 112 from which images are reviewed and modes selected.
- Workstation 112 preferably includes one or more processors 114 and memory 116 for storing programs, applications and data.
- Memory 116 may store an image rendering module 115 configured to collect and render image frames for the display of one or more imaging modes.
- the image rendering module 115 is configured to receive image data and link or process image modes for display.
- An image 134 can be generated from frames 140 stored in memory 116 and can be displayed on a display device 118 .
- Workstation 112 includes the display 118 for reviewing internal images of a subject (e.g., a patient). Display 118 may also permit a user to interact with the workstation 112 and its components and functions, or any other element within the system 100 . This is further facilitated by an interface 120 which may include a keyboard, mouse, a joystick, a haptic device, or any other peripheral or control to permit user feedback from and interaction with the workstation 112 .
- each imaging mode is acquired sequentially and so each mode can be fully optimized without compromise, for example, in terms of the acquisition design (e.g., line density, focal zones), signal and image processing, display parameters, etc.
- the non-steered frame may be designated differently from the other component frames, since this non-steered frame will be visualized on its own without the benefit of compounding. That is, it may have a different line density, more focal zones, more frequency compounding, or a different display map.
- the review and interpretation of the images may be performed either on the system 10 ( FIG. 1 ) or off the system on the workstation 100 .
- review software of image rendering module 115 needs to be able to support the capability to correctly process the separate modes being presented. For fundamental versus harmonic imaging, this may only involve pulling images from the appropriate data stream and applying a suitable display map.
- SonoCT versus non-SonoCT the review software of image rendering module 115 needs to be able to extract only the non-steered frames and apply appropriate display maps for non-SonoCT, or extract all the frames and apply a compounding algorithm to them, plus appropriate display mapping for SonoCT.
- the acquisition may be obtained as a sufficiently raw data stream.
- the acquisition is more efficient because all of the imaging acquired can be utilized to display in more than one mode (i.e., there are no alternating modes).
- both the fundamental and harmonic images that are displayed in review may be extracted from the same acquisition and the same data.
- the modes extracted from the data may be based on software operations rather than mode switching.
- a single kind of data acquisition is stored which includes all mode components, and these are separated through additional processing by image rendering module 115 , such as, e.g., band-pass filtering of IQ data, applying different summation weights to radio frequency (RF) data acquired with opposite polarity transmit waveforms, etc.
- image rendering module 115 such as, e.g., band-pass filtering of IQ data, applying different summation weights to radio frequency (RF) data acquired with opposite polarity transmit waveforms, etc.
- the stored data is stored in a format that is sufficiently raw (i.e., minimally processed) so that the components of all modes (e.g., fundamental and harmonic) can be extracted with sufficient quality.
- both the fundamental and harmonic images that are displayed in review may be extracted from the same acquisition. Only one kind of acquisition is defined and stored during scanning, which includes both fundamental and harmonic components (and other modes), and these are separated through additional processing at the workstation 112 .
- the additional processing may be performed by the image rendering module 115 and may include functions such as image filtering, band-pass filtering of IQ data, applying different summation weights to RF data acquired with opposite polarity transmit waveforms, etc.
- the present principles are particularly useful in medical procedures such as for breast screening or other screening procedures.
- the present principles may also be applicable to any clinical application that involves the need for rapid acquisition with minimal interpretation during acquisition, followed by careful review and interpretation post-acquisition.
- One example may include screening for liver cancer with ultrasound.
- Target platforms for the present principles include any ultrasound systems and workstations designed for screening purposes.
- a relative frame rate may be selected for each of the plurality of imaging modes in the acquisition sequence.
- the frame rate may be programmed into the system (e.g., by controlling the transmitter) to toggle between different imaging modes for different consecutive durations to control the number of frames received for each imaging mode.
- the relative frame rate between imaging modes may include an integer multiple of successive frames for at least one of the imaging modes in the acquisition sequence.
- image frames are acquired. This may include acquiring image frames for a plurality of imaging modes by switching image acquisition modes during a single acquisition sequence.
- the imaging frames may be acquired from at least two imaging modes (e.g., two) and the image acquisition modes are switched such that frames are acquired in an alternating manner for each of the two modes.
- acquiring image frames includes acquiring data that is sufficiently raw to generate images in multiple modes by soft processing in block 205 . This means that the collected data includes sufficient information for generating each of the desired imaging modalities.
- raw data is acquired for generating at least two imaging modes in block 207 .
- the imaging modes may include ultrasonic imaging modes, and the ultrasonic imaging modes include one or more of fundamental, harmonic, compound fundamental, compound harmonic, color, color power angioplasty, elastography, etc.
- the image frames may be acquired by scan and displayed to an operator in a single imaging mode during the single acquisition.
- the image frames are stored in non-transitory memory for each acquisition mode for subsequent review.
- the storage may include storing images of a particular mode together (in a separate device, memory partition etc.), logically linking the images of a particular mode, employing indexing of images and providing a lookup table, generating the mode images from sufficiently raw data, etc.
- a display is selectively generated for each of the plurality of imaging modes from stored images for a selected imaging mode such that each of the plurality of image modes is available for review from the single acquisition sequence.
- the generation of images may include post-processing of the sufficiently raw data, provide grouping of collected frames from a single imaging mode, etc.
- a reviewer can switch between different imaging modes, e.g., fundamental, harmonic, compound fundamental, compound harmonic, etc. to obtain a more accurate result by employing the strength of each imaging mode. Since the desired imaging modes are all available, there is a significantly reduced need to rescan the patient in other imaging modes as in conventional workflows.
- the plurality of imaging modes may include multiple imaging modes for discovering different diagnostic information employed for identifying a lesion in an organ, or other applications. Such applications may include breast cancer screening, liver cancer screening, etc.
- enabling/disabling compounding using the stored images may be performed using software functions.
- Other image processing functions may also be performed using software functions, e.g., filtering, contrast enhancement, generating modes from raw data, etc.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Vascular Medicine (AREA)
- Computer Networks & Wireless Communication (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/504,408 US20170231599A1 (en) | 2014-08-28 | 2015-08-10 | Concurrent acquisition of harmonic and fundamental images for screening applications |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462042980P | 2014-08-28 | 2014-08-28 | |
| PCT/IB2015/056064 WO2016030785A1 (en) | 2014-08-28 | 2015-08-10 | Concurrent acquisition of harmonic and fundamental images for screening applications |
| US15/504,408 US20170231599A1 (en) | 2014-08-28 | 2015-08-10 | Concurrent acquisition of harmonic and fundamental images for screening applications |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170231599A1 true US20170231599A1 (en) | 2017-08-17 |
Family
ID=54151338
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/504,408 Abandoned US20170231599A1 (en) | 2014-08-28 | 2015-08-10 | Concurrent acquisition of harmonic and fundamental images for screening applications |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20170231599A1 (enExample) |
| EP (1) | EP3185779B1 (enExample) |
| JP (1) | JP6665167B2 (enExample) |
| CN (1) | CN106604682A (enExample) |
| WO (1) | WO2016030785A1 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11710229B2 (en) | 2020-03-23 | 2023-07-25 | GE Precision Healthcare LLC | Methods and systems for shear wave elastography |
| US20230240660A1 (en) * | 2017-11-28 | 2023-08-03 | Beijing Shen Mindray Medical Electronics Technology Academy Co., Ltd. | Contrast enhanced ultrasound imaging method and ultrasound imaging device |
| EP4329629A1 (en) * | 2021-04-28 | 2024-03-06 | Koninklijke Philips N.V. | User interface and method of setting acquisition priority in interleaved imaging modes of ultrasound imaging |
| US20250017572A1 (en) * | 2018-05-08 | 2025-01-16 | Fujifilm Sonosite, Inc. | Ultrasound System with Automated Wall Tracing |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3549528A1 (en) * | 2018-04-05 | 2019-10-09 | Koninklijke Philips N.V. | Ultrasound imaging system and method |
| CN111820945A (zh) * | 2019-04-16 | 2020-10-27 | 深圳迈瑞生物医疗电子股份有限公司 | 执行超声成像的系统和方法 |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6117079A (en) * | 1999-04-28 | 2000-09-12 | General Electric Company | Method and apparatus for handling image data after unsuccessful transfer to remotely located device |
| US6146330A (en) * | 1998-04-10 | 2000-11-14 | Kabushiki Kaisha Toshiba | Ultrasound diagnosis apparatus for generating an image based on extracted harmonics component |
| US20030097068A1 (en) * | 1998-06-02 | 2003-05-22 | Acuson Corporation | Medical diagnostic ultrasound system and method for versatile processing |
| US20060074314A1 (en) * | 2004-10-06 | 2006-04-06 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive mastopexy |
| US20070086632A1 (en) * | 2005-09-30 | 2007-04-19 | Siemens Medical Solutions Usa, Inc. | Medical data storage or review with interactive features of a video format |
| US20080119733A1 (en) * | 2006-11-22 | 2008-05-22 | Wei Zhang | Selectably compounding and displaying breast ultrasound images |
| US20090043206A1 (en) * | 2007-08-06 | 2009-02-12 | Farhad Towfiq | System and method for three-dimensional ultrasound imaging |
| US20120089026A1 (en) * | 2005-09-01 | 2012-04-12 | U-Systems, Inc. | Breast ultrasound scanning template |
| US20130267850A1 (en) * | 2010-12-06 | 2013-10-10 | Michael Berman | System and method for ultrasonic examination of the breast |
| US8579891B2 (en) * | 2011-12-09 | 2013-11-12 | Metavention, Inc. | Devices for thermally-induced hepatic neuromodulation |
| WO2013183651A1 (ja) * | 2012-06-05 | 2013-12-12 | 株式会社東芝 | 超音波診断装置及び画像処理装置 |
| US20140253703A1 (en) * | 2013-03-11 | 2014-09-11 | Timothy King | Video Capture And Streaming Diagnostics Metadata |
| US9420991B2 (en) * | 2005-09-01 | 2016-08-23 | Shih-Ping Wang | Breast ultrasound scanning device |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3580627B2 (ja) * | 1996-01-29 | 2004-10-27 | 株式会社東芝 | 超音波診断装置 |
| US6224552B1 (en) * | 1998-10-01 | 2001-05-01 | Atl Ultrasound | Ultrasonic diagnostic imaging system with reduced spatial compounding seam artifacts |
| US20030013959A1 (en) * | 1999-08-20 | 2003-01-16 | Sorin Grunwald | User interface for handheld imaging devices |
| US6530885B1 (en) | 2000-03-17 | 2003-03-11 | Atl Ultrasound, Inc. | Spatially compounded three dimensional ultrasonic images |
| US6443896B1 (en) | 2000-08-17 | 2002-09-03 | Koninklijke Philips Electronics N.V. | Method for creating multiplanar ultrasonic images of a three dimensional object |
| US7615008B2 (en) * | 2000-11-24 | 2009-11-10 | U-Systems, Inc. | Processing and displaying breast ultrasound information |
| US6540683B1 (en) * | 2001-09-14 | 2003-04-01 | Gregory Sharat Lin | Dual-frequency ultrasonic array transducer and method of harmonic imaging |
| JP3908555B2 (ja) * | 2002-02-08 | 2007-04-25 | 株式会社東芝 | 超音波診断装置 |
| JP2004154567A (ja) * | 2002-10-15 | 2004-06-03 | Matsushita Electric Ind Co Ltd | 画像処理装置、方法およびプログラム |
| US20070010747A1 (en) * | 2005-05-26 | 2007-01-11 | Sabourin Thomas J | Methods and systems for acquiring ultrasound image data |
| US20070161898A1 (en) * | 2006-01-10 | 2007-07-12 | Siemens Medical Solutions Usa, Inc. | Raw data reprocessing in ultrasound diagnostic imaging |
-
2015
- 2015-08-10 WO PCT/IB2015/056064 patent/WO2016030785A1/en not_active Ceased
- 2015-08-10 US US15/504,408 patent/US20170231599A1/en not_active Abandoned
- 2015-08-10 CN CN201580046564.1A patent/CN106604682A/zh active Pending
- 2015-08-10 JP JP2017510874A patent/JP6665167B2/ja active Active
- 2015-08-10 EP EP15767297.3A patent/EP3185779B1/en active Active
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6146330A (en) * | 1998-04-10 | 2000-11-14 | Kabushiki Kaisha Toshiba | Ultrasound diagnosis apparatus for generating an image based on extracted harmonics component |
| US20030097068A1 (en) * | 1998-06-02 | 2003-05-22 | Acuson Corporation | Medical diagnostic ultrasound system and method for versatile processing |
| US6117079A (en) * | 1999-04-28 | 2000-09-12 | General Electric Company | Method and apparatus for handling image data after unsuccessful transfer to remotely located device |
| US20060074314A1 (en) * | 2004-10-06 | 2006-04-06 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive mastopexy |
| US9420991B2 (en) * | 2005-09-01 | 2016-08-23 | Shih-Ping Wang | Breast ultrasound scanning device |
| US20120089026A1 (en) * | 2005-09-01 | 2012-04-12 | U-Systems, Inc. | Breast ultrasound scanning template |
| US20070086632A1 (en) * | 2005-09-30 | 2007-04-19 | Siemens Medical Solutions Usa, Inc. | Medical data storage or review with interactive features of a video format |
| US20080119733A1 (en) * | 2006-11-22 | 2008-05-22 | Wei Zhang | Selectably compounding and displaying breast ultrasound images |
| US20090043206A1 (en) * | 2007-08-06 | 2009-02-12 | Farhad Towfiq | System and method for three-dimensional ultrasound imaging |
| US20130267850A1 (en) * | 2010-12-06 | 2013-10-10 | Michael Berman | System and method for ultrasonic examination of the breast |
| US8579891B2 (en) * | 2011-12-09 | 2013-11-12 | Metavention, Inc. | Devices for thermally-induced hepatic neuromodulation |
| WO2013183651A1 (ja) * | 2012-06-05 | 2013-12-12 | 株式会社東芝 | 超音波診断装置及び画像処理装置 |
| US20150087980A1 (en) * | 2012-06-05 | 2015-03-26 | Kabushiki Kaisha Toshiba | Ultrasound diagnosis apparatus and image processing apparatus |
| US20140253703A1 (en) * | 2013-03-11 | 2014-09-11 | Timothy King | Video Capture And Streaming Diagnostics Metadata |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230240660A1 (en) * | 2017-11-28 | 2023-08-03 | Beijing Shen Mindray Medical Electronics Technology Academy Co., Ltd. | Contrast enhanced ultrasound imaging method and ultrasound imaging device |
| US12178655B2 (en) * | 2017-11-28 | 2024-12-31 | Beijing Shen Mindray Medical Electronics Technology Academy Co., Ltd. | Method for generating contrast enhanced ultrasound images with varied imaging parameters and ultrasound imaging device performing the method |
| US20250017572A1 (en) * | 2018-05-08 | 2025-01-16 | Fujifilm Sonosite, Inc. | Ultrasound System with Automated Wall Tracing |
| US11710229B2 (en) | 2020-03-23 | 2023-07-25 | GE Precision Healthcare LLC | Methods and systems for shear wave elastography |
| EP4329629A1 (en) * | 2021-04-28 | 2024-03-06 | Koninklijke Philips N.V. | User interface and method of setting acquisition priority in interleaved imaging modes of ultrasound imaging |
| US20240206850A1 (en) * | 2021-04-28 | 2024-06-27 | Koninklijke Philips N.V. | User interface and method of setting acquisition priority in interleaved imaging modes of ultrasound imaging |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016030785A1 (en) | 2016-03-03 |
| JP2017525491A (ja) | 2017-09-07 |
| CN106604682A (zh) | 2017-04-26 |
| EP3185779B1 (en) | 2022-12-21 |
| EP3185779A1 (en) | 2017-07-05 |
| JP6665167B2 (ja) | 2020-03-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3185779B1 (en) | Concurrent acquisition of harmonic and fundamental images for screening applications | |
| US11992369B2 (en) | Intelligent ultrasound system for detecting image artefacts | |
| JP5688197B2 (ja) | 2次元超音波画像の3次元表示 | |
| US11653897B2 (en) | Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus | |
| JP6097452B2 (ja) | 超音波撮像システム及び超音波撮像方法 | |
| CN102309338A (zh) | 用于超声数据处理的方法和系统 | |
| KR20160110239A (ko) | 서브-볼륨의 연속적으로 배향되는 향상된 초음파 이미징 | |
| US20100125201A1 (en) | Ultrasound imaging apparatus | |
| US11717268B2 (en) | Ultrasound imaging system and method for compounding 3D images via stitching based on point distances | |
| KR20060100283A (ko) | 초음파 화상 생성 방법 및 초음파 진단 장치 | |
| US20210077075A1 (en) | Ultrasound image processing | |
| US20220160333A1 (en) | Optimal ultrasound-based organ segmentation | |
| US20170169609A1 (en) | Motion adaptive visualization in medical 4d imaging | |
| JP2010264241A (ja) | 器官表示のための超音波診断システムおよび器官表示方法 | |
| EP2644102A1 (en) | Method and apparatus for indicating medical equipment on ultrasound image | |
| JP2019154571A (ja) | 解析装置、及び制御プログラム | |
| JP7216738B2 (ja) | 三次元超音波画像の提供 | |
| KR20160056164A (ko) | 초음파 진단장치, 그에 따른 초음파 진단 장치의 동작 방법 및 그에 따른 컴퓨터 판독 가능한 저장매체 | |
| EP4512344A1 (en) | Motion prediction for zoom stabilization systems and methods | |
| CN112672696A (zh) | 用于跟踪超声图像中的工具的系统和方法 | |
| US20250279187A1 (en) | Analysing an ultrasound image feed | |
| WO2025040487A1 (en) | Motion prediction for zoom stabilization systems and methods | |
| JP2013236863A (ja) | 超音波診断装置及び画像処理装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KONINKLIJKE PHILIPS N.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAGO, JAMES ROBERTSON;REEL/FRAME:041276/0357 Effective date: 20170215 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |