US20170204174A1 - Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer - Google Patents

Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer Download PDF

Info

Publication number
US20170204174A1
US20170204174A1 US15/128,604 US201515128604A US2017204174A1 US 20170204174 A1 US20170204174 A1 US 20170204174A1 US 201515128604 A US201515128604 A US 201515128604A US 2017204174 A1 US2017204174 A1 US 2017204174A1
Authority
US
United States
Prior art keywords
antibody
amino acid
acid sequence
seq
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/128,604
Other languages
English (en)
Inventor
Jörg Wischhusen
Markus Junker
Tina SCHÄFER
Dirk PÜHRINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Julius Maximilians Universitaet Wuerzburg
Original Assignee
Julius Maximilians Universitaet Wuerzburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1405477.9A external-priority patent/GB2524553C/en
Priority claimed from GB1405475.3A external-priority patent/GB2524552B/en
Application filed by Julius Maximilians Universitaet Wuerzburg filed Critical Julius Maximilians Universitaet Wuerzburg
Assigned to JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG reassignment JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PÜHRINGER, Dirk, JUNKER, Markus, SCHÄFER, Tina, WISCHHUSEN, Jörg
Publication of US20170204174A1 publication Critical patent/US20170204174A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to monoclonal anti-human-GDF-15 antibodies, pharmaceutical compositions, kits, methods and uses and the cell lines capable of producing the monoclonal antibodies described herein.
  • the present invention further relates to antibodies to human GDF-15 capable of inhibiting cancer growth, treating cancer-induced weight loss and cancer cachexia.
  • cancer cachexia a medical condition triggered by the cancer that typically involves weight loss and loss of skeletal muscle mass. Cancer cachexia accounts for more than 20 percent of all cancer-related deaths (Murphy K T and Lynch G S: Update on emerging drugs for cancer cachexia. Expert Opin Emerg Drugs. 2009 December; 14(4):619-32.).
  • growth factors including factors such as VEGF, PDGF, TGF- ⁇ and GDF-15.
  • GDF-15 growth and differentiation factor-15
  • TGF- ⁇ superfamily a protein which is intracellularly expressed as a precursor, subsequently processed and eventually becomes secreted from the cell into the environment.
  • Both the active, fully processed (mature) form and the precursor of GDF-15 can be found outside cells.
  • the precursor covalently binds via its COOH-terminal amino acid sequence to the extracellular matrix (Bauskin A R et al., Cancer Research 2005) and thus resides on the exterior of a cell.
  • the active, fully processed (mature) form of GDF-15 is soluble and is found in blood sera.
  • the processed form of GDF-15 may potentially act on any target cell within the body that is connected to the blood circulation, provided that the potential target cell expresses a receptor for the soluble GDF-15 ligand.
  • GDF-15 is found under physiological conditions in the placenta.
  • malignant cancers especially aggressive brain cancers, melanoma, lung cancer, gastrointestinal tumors, colon cancer, pancreatic cancer, prostate cancer and breast cancer (Mimeault M and Batra S K, J. Cell Physiol 2010)
  • GDF-15 levels exhibit increased GDF-15 levels in the tumor as well as in blood serum.
  • correlations have been described between high GDF-15 expression and chemoresistance (Huang C Y et al., Clin. Cancer Res. 2009) and between high GDF-15 expression and poor prognosis, respectively (Brown D A et al., Clin. Cancer Res. 2009).
  • GDF-15 is expressed in gliomas of different WHO grades as assessed by immunohistochemistry (Roth et al., Clin. Cancer Res. 2010). Further, Roth et al. stably expressed short hairpin. RNA-expressing DNA constructs targeting endogenous GDF-15 or control constructs in SMA560 glioma cells. When using these pre-established stable cell lines, they observed that tumor formation in mice bearing GDF-15 knockdown SMA560 cells was delayed compared to mice bearing control constructs.
  • Patent application PCT/EP2013/070127 relates to monoclonal anti-GDF-15 antibodies, in particular to an antibody produced by the hybridoma cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142 under the Budapest treaty.
  • PCT/EP2013/070127 also relates to uses of the anti-GDF-15 antibodies.
  • Patent applications WO 2005/099746 and WO 2009/021293 relate to an anti-human-GDF-15 antibody (Mab26) capable of antagonizing effects of human GDF-15 on tumor-induced weight loss in vivo in mice:
  • immunologically compromised mice were administered with human tumor cells (prostate carcinoma cells DU145) transfected with plasmids overexpressing human GDF-15.
  • Tumor cells carrying plasmids lacking a GDF-15 sequence served as a negative control.
  • Those mice expressing xenograft GDF-15 exhibited a tumor-induced weight loss (clinical term: cachexia) and anorexia.
  • a monoclonal antibody to human GDF-15 can be used to treat cancer cachexia and to also treat cancer of human xenograft tumors in mice.
  • an antibody to human GDF-15 in accordance with the present invention has an equilibrium dissociation constant of about 790 pM for recombinant GDF-15 even without additional affinity maturation, which is a higher affinity compared to most known therapeutic antibodies.
  • the antibody to human GDF-15 according to the present invention has superior properties compared to antibodies known from the art, and is particularly useful for inhibiting cancer growth and cancer cachexia.
  • the antibody of the present invention is therefore useful for treating cancer and for treating cancer cachexia. Accordingly, the present invention was completed.
  • the present invention solves the above-mentioned objects by providing the monoclonal antibodies, pharmaceutical compositions, kits, uses and the cell lines capable of producing the monoclonal antibodies described herein.
  • the present inventors surprisingly show that monoclonal antibodies to human GDF-15 and antigen binding portions thereof according to the invention are capable of inhibiting cancer cachexia and/or cancer growth. This was unexpected because those monoclonal antibodies to GDF-15 that were previously known from the art (WO 2005/099746, WO 2009/021293 and Johnen H et al., Nature Medicine, 2007) were only known to cause a reversal of cancer-induced weight loss (i.e. a reversal of a secondary symptom induced by the GDF-15 expressed by the cancer), but were shown to fail at inhibiting growth of the cancer.
  • the present inventors also surprisingly show that human GDF-15 protein can be targeted by the antibodies of the invention in a way that both cancer growth is inhibited and cancer-induced weight loss and cancer cachexia is treated. It is expected that the same mechanisms of cancer growth inhibition and treatment of cancer-induced weight loss and cancer cachexia are applicable to a large number of cancers that overexpress human GDF-15 including the cancers listed below.
  • the monoclonal antibodies and antigen-binding portions thereof according to the invention are derived from a murine anti-GDF-15 antibody, mAb-B1-23, which was described in PCT/EP2013/070127 and deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142 under the Budapest treaty.
  • the anti-human GDF-15 mAb-B1-23 antibodies according to the invention can be generated by replacing constant domains of the murine antibody mAb-B1-23 with the constant domains of a human IgG1 antibody.
  • the present invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto wherein the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto, and wherein the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto.
  • the present invention also relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto, for use in a method for treating cancer cachexia in a mammal.
  • the method comprises administering the antibody or antigen-binding portion thereof to said mammal.
  • the present invention relates to a corresponding method for treatment.
  • the invention also relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the binding is binding to a conformational or discontinuous epitope on human GDF-15 comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26, wherein the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto, and wherein the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto.
  • the invention also relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the binding is binding to a conformational or discontinuous epitope on human GDF-15 comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26, for use in a method for treating cancer cachexia in a mammal.
  • the method comprises administering the antibody or antigen-binding portion thereof to said mammal.
  • the present invention relates to a corresponding method for treatment.
  • the invention also relates to a pharmaceutical composition comprising the antibody or antigen-binding portion thereof according to the invention.
  • the invention also relates to an antibody or antigen-binding portion thereof according to the invention for use in medicine.
  • the invention relates to an antibody or antigen-binding portion thereof or a pharmaceutical composition according to the invention for use in a method for treating cancer in a mammal.
  • the method comprises administering the antibody or antigen-binding portion thereof or the pharmaceutical composition to said mammal.
  • the invention relates to an antibody or antigen-binding portion thereof or a pharmaceutical composition according to the invention for use in a method for treating cancer cachexia in a mammal.
  • the method comprises administering the antibody or antigen-binding portion thereof or the pharmaceutical composition to said mammal.
  • the invention relates to a kit comprising the pharmaceutical composition according to the invention.
  • the invention also relates to an expression vector comprising a nucleotide sequence encoding the antibody or antigen-binding portion thereof according to the invention.
  • the invention relates to a cell line capable of producing an antibody or antigen-binding portion thereof according to the invention.
  • the present invention provides means for the treatment of cancer cachexia and a cancer growth inhibitor that meets the above-defined needs in the art.
  • FIG. 1 NKG2D Expression on NK Cells after Treatment with or without GDF-15.
  • the cell surface expression of NKG2D was determined on NK cells after treatment with the indicated cytokines in the presence or absence of the anti-GDF-15 antibody mAb B1-23.
  • the figure displays specific fluorescence intensities determined by flow cytometry, quantified relative to an unspecific control antibody.
  • FIG. 2 Akt Phosphorylation in the Ovarian Carcinoma Cell Line SK-OV-3.
  • the ratio of phosphorylated Akt to the total amount of Akt was calculated and normalized to the untreated control.
  • FIG. 3 JNK1/2 Phosphorylation in Immune Cells.
  • the ratio of phosphorylated JNK1/2 to the total amount of JNK was calculated and normalized to the untreated control.
  • FIG. 4 An anti-tumor effect of murine B1-23 in vivo.
  • Balb/c nu/nu nude mice were used in a xenograft setting with the melanoma cell line UACC-257.
  • the tumor size of the animal cohort treated with B1-23 (open squares) was significantly decreased, compared to the PBS control group (filled solid circles). Significance was defined as p ⁇ 0.05 as assessed by Wilcoxon's log-rank test.
  • FIG. 5 Treatment of cancer cachexia with anti-GDF-15 antibodies.
  • the figure shows a comparison of the mean body weight of all treated Balb/c nu/nu nude mice, which were inoculated with UACC-257 cells. The changes of the body weight are depicted in percent as compared to the starting body weight on day 0, for a period of 38 days.
  • FIG. 6 Coomassie stain of antibodies used in the study No. 140123.
  • FIG. 7 Improved solubility of the chimeric and the humanized antibody at physiological pH.
  • antibody refers to any functional antibody that is capable of specific binding to the antigen of interest, as generally outlined in chapter 7 of Paul, W. E. (Ed.).: Fundamental Immunology 2nd Ed. Raven Press, Ltd., New York 1989, which is incorporated herein by reference.
  • the term “antibody” encompasses antibodies from any appropriate source species, including chicken and mammalian such as mouse, goat, non-human primate and human.
  • the antibody is a humanized antibody.
  • the antibody is preferably a monoclonal antibody which can be prepared by methods well-known in the art.
  • antibody encompasses an IgG-1, -2, -3, or -4, IgE, IgA, IgM, or IgD isotype antibody.
  • antibody encompasses monomeric antibodies (such as IgD, IgE, IgG) or oligomeric antibodies (such as IgA or IgM).
  • antibody also encompasses—without particular limitations—isolated antibodies and modified antibodies such as genetically engineered antibodies, e.g. chimeric antibodies.
  • each monomer of an antibody comprises two heavy chains and two light chains, as generally known in the art.
  • each heavy and light chain comprises a variable domain (termed V H for the heavy chain and V L for the light chain) which is important for antigen binding.
  • V H variable domain
  • V L variable domain
  • These heavy and light chain variable domains comprise (in an N-terminal to C-terminal order) the regions FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4 (FR, framework region; CDR, complementarity determining region which is also known as hypervariable region).
  • IMGT/V-QUEST an integrated software program for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis. Nucleic Acids Res. 2004 Jul. 1; 32 (Web Server issue):W435-40.
  • the antibody regions indicated above are identified and assigned by using the IMGT/V-QUEST software.
  • a “monoclonal antibody” is an antibody from an essentially homogenous population of antibodies, wherein the antibodies are substantially identical in sequence (i.e. identical except for minor fraction of antibodies containing naturally occurring sequence modifications such as amino acid modifications at their N- and C-termini). Unlike polyclonal antibodies which contain a mixture of different antibodies directed to numerous epitopes, monoclonal antibodies are directed to the same epitope and are therefore highly specific.
  • the term “monoclonal antibody” includes (but is not limited to) antibodies which are obtained from a monoclonal cell population derived from a single cell clone, as for instance the antibodies generated by the hybridoma method described in Köhler and Milstein (Nature, 1975 Aug.
  • a monoclonal antibody may also be obtained from other suitable methods, including phage display techniques such as those described in Clackson et al. (Nature. 1991 Aug. 15; 352(6336):624-8) or Marks et al. (J Mol Biol. 1991 Dec. 5; 222(3):581-97).
  • a monoclonal antibody may be an antibody that has been optimized for antigen-binding properties such as decreased Kd values, optimized association and dissociation kinetics by methods known in the art.
  • Kd values may be optimized by display methods including phage display, resulting in affinity-matured monoclonal antibodies.
  • the term “monoclonal antibody” is not limited to antibody sequences from particular species of origin or from one single species of origin. Thus, the meaning of the term “monoclonal antibody” encompasses chimeric monoclonal antibodies such as humanized monoclonal antibodies.
  • Humanized antibodies are antibodies which contain human sequences and a minor portion of non-human sequences which confer binding specificity to an antigen of interest (e.g. human GDF-15).
  • humanized antibodies are generated by replacing hypervariable region sequences from a human acceptor antibody by hypervariable region sequences from a non-human donor antibody (e.g. a mouse, rabbit, rat donor antibody) that binds to an antigen of interest (e.g. human GDF-15).
  • framework region sequences of the acceptor antibody may also be replaced by the corresponding sequences of the donor antibody.
  • a “humanized antibody” may either contain other (additional or substitute) residues or sequences or not.
  • Such other residues or sequences may serve to further improve antibody properties such as binding properties (e.g. to decrease Kd values) and/or immunogenic properties (e.g. to decrease antigenicity in humans).
  • binding properties e.g. to decrease Kd values
  • immunogenic properties e.g. to decrease antigenicity in humans.
  • Non-limiting examples for methods to generate humanized antibodies are known in the art, e.g. from Riechmann et al. (Nature. 1988 Mar. 24; 332(6162):323-7) or Jones et al. (Nature. 1986 May 29-Jun. 4; 321(6069):522-5).
  • human antibody relates to an antibody containing human variable and constant domain sequences. This definition encompasses antibodies having human sequences bearing single amino acid substitutions or modifications which may serve to further improve antibody properties such as binding properties (e.g. to decrease Kd values) and/or immunogenic properties (e.g. to decrease antigenicity in humans).
  • human antibody excludes humanized antibodies where a portion of non-human sequences confers binding specificity to an antigen of interest.
  • an “antigen-binding portion” of an antibody as used herein refers to a portion of an antibody that retains the capability of the antibody to specifically bind to the antigen (e.g. GDF-15), i.e. the “antigen-binding portion” is capable of competing with the antibody for specific binding to the antigen.
  • the “antigen-binding portion” may contain one or more fragments of the antibody. Without particular limitation, it can be produced by any suitable method known in the art, including recombinant DNA methods and preparation by chemical or enzymatic fragmentation of antibodies.
  • Antigen-binding portions may be Fab fragments, F(ab′) fragments, F(ab′) 2 fragments, single chain antibodies (scFv), single-domain antibodies, diabodies or any other portion(s) of the antibody that allow(s) to retain binding to the antigen.
  • an “antibody” e.g. a monoclonal antibody
  • an “antigen-binding portion” may have been derivatized or be linked to a different molecule.
  • molecules that may be linked to the antibody are other proteins (e.g. other antibodies), a molecular label (e.g. a fluorescent, luminescent, colored or radioactive molecule), a pharmaceutical and/or a toxic agent.
  • the antibody or antigen-binding portion may be linked directly (e.g. in form of a fusion between two proteins), or via a linker molecule (e.g. any suitable type of chemical linker known in the art).
  • the terms “binding” or “bind” refer to specific binding to the antigen of interest (e.g. human GDF-15).
  • the Kd value is less than 100 nM, more preferably less than 50 nM, still more preferably less than nM, still more preferably less than 5 nM and most preferably less than 2 nM.
  • epitope refers to a small portion of an antigen that forms the binding site for an antibody.
  • binding or competitive binding of antibodies or their antigen-binding portions to the antigen of interest is measured by using surface plasmon resonance measurements as a reference standard assay, as described below.
  • K D or “K D value” relate to the equilibrium dissociation constant as known in the art. In the context of the present invention, these terms relate to the equilibrium dissociation constant of an antibody with respect to a particular antigen of interest (e.g. human GDF-15).
  • the equilibrium dissociation constant is a measure of the propensity of a complex (e.g. an antigen-antibody complex) to reversibly dissociate into its components (e.g. the antigen and the antibody).
  • K D values (such as those for the antigen human GDF-15) are generally determined by using surface plasmon resonance measurements as described below.
  • cancer growth as used herein relates to any measureable growth of the cancer.
  • cancer growth relates to a measurable increase in tumor volume over time. If the cancer has formed only a single tumor, “cancer growth” relates only to the increase in volume of the single tumor. If the cancer has formed multiple tumors such as metastases, “cancer growth” relates to the increase in volume of all measurable tumors.
  • the tumor volume can be measured by any method known in the art, including magnetic resonance imaging and computed tomography (CT scan).
  • cancer growth relates to a measurable increase in the number of cancer cells per blood volume.
  • cancer cells can be identified from blood samples by using any method known in the art, including cell morphology measurements, or staining of tumor cell marker proteins such as tumor marker cell surface proteins, e.g. by staining with specific antibodies, and the cancer cells can be counted.
  • inhibiting cancer growth refers to a measurable inhibition of cancer growth in patient treated with the antibody.
  • the inhibition is statistically significant. Inhibition of cancer growth may be assessed by comparing cancer growth in a group of patients treated in accordance with the present invention to a control group of untreated patients, or by comparing a group of patients that receive a standard cancer treatment of the art plus a treatment according to the invention with a control group of patients that only receive a standard cancer treatment of the art.
  • Such studies for assessing the inhibition of cancer growth are designed in accordance with accepted standards for clinical studies, e.g. double-blinded, randomized studies with sufficient statistical power.
  • inhibiting cancer growth includes an inhibition of cancer growth where the cancer growth is inhibited partially (i.e. where the cancer growth in the patient is delayed compared to the control group of patients), an inhibition where the cancer growth is inhibited completely (i.e. where the cancer growth in the patient is stopped), and an inhibition where cancer growth is reversed (i.e. the cancer shrinks).
  • an “isolated antibody” as used herein is an antibody that has been identified and separated from the majority of components (by weight) of its source environment, e.g. from the components of a hybridoma cell culture or a different cell culture that was used for its production (e.g. producer cells such as CHO cells that recombinantly express the antibody). The separation is performed such that it sufficiently removes components that may otherwise interfere with the suitability of the antibody for the desired applications (e.g. with a therapeutic use of the anti-human GDF-15 antibody according to the invention).
  • Methods for preparing isolated antibodies are known in the art and include Protein A chromatography, anion exchange chromatography, cation exchange chromatography, virus retentive filtration and ultrafiltration.
  • the isolated antibody preparation is at least 70% pure (w/w), more preferably at least 80% pure (w/w), still more preferably at least 90% pure (w/w), still more preferably at least 95% pure (w/w), and most preferably at least 99% pure (w/w), as measured by using the Lowry protein assay.
  • a “diabody” as used herein is a small bivalent antigen-binding antibody portion which comprises a heavy chain variable domain linked to a light chain variable domain on the same polypeptide chain linked by a peptide linker that is too short to allow pairing between the two domains on the same chain. This results in pairing with the complementary domains of another chain and in the assembly of a dimeric molecule with two antigen binding sites.
  • Diabodies may be bivalent and monospecific (such as diabodies with two antigen binding sites for human GDF-15), or may be bivalent and bispecific (e.g. diabodies with two antigen binding sites, one being a binding site for human GDF-15, and the other one being a binding site for a different antigen). A detailed description of diabodies can be found in Holliger P et al. (“Diabodies”: small bivalent and bispecific antibody fragments.” Proc Natl Acad Sci USA. 1993 Jul. 15; 90(14):6444-8.).
  • a “single-domain antibody” (which is also referred to as “NanobodyTM”) as used herein is an antibody fragment consisting of a single monomeric variable antibody domain. Structures of and methods for producing single-domain antibodies are known from the art, e.g. from Holt L J et al. (“Domain antibodies: proteins for therapy.” Trends Biotechnol. 2003 November; 21(11):484-90.), Saerens D et al. (“Single-domain antibodies as building blocks for novel therapeutics.” Curr Opin Pharmacol. 2008 October; 8(5):600-8. Epub 2008 Aug. 22.), and Arbabi Ghahroudi M et al. (“Selection and identification of single domain antibody fragments from camel heavy-chain antibodies.” FEBS Lett. 1997 Sep. 15; 414(3):521-6.).
  • a value e.g. a GDF-15 level
  • a value in a patient sample is higher than a value in a corresponding control sample or group of control samples.
  • the difference is statistically significant.
  • elevated GDF-15 levels means that the human patient has higher GDF-15 levels in blood serum before administration of the antibody or antigen-binding portion thereof or the pharmaceutical composition according to the invention, when compared to median GDF-15 levels in blood sera of healthy human control individuals as a reference.
  • a preferred median reference for GDF-15 level in blood sera of healthy human control individuals is ⁇ 0.8 ng/ml.
  • the expected range is between 0.2 ng/ml and 1.2 ng/ml in healthy human controls (Reference: Tanno T et al.: “Growth differentiation factor 15 in erythroid health and disease.” Curr Opin Hematol. 2010 May; 17(3): 184-190.).
  • the levels are 1.2-fold higher, more preferably 1.5-fold higher, still more preferably 2-fold higher and most preferably 5-fold higher.
  • prior to administration means the period of time immediately before administration of the antibody, fragment thereof or the pharmaceutical composition according to the invention.
  • the term “prior to administration” means a period of 30 days immediately before administration; most preferably a period of one week immediately before administration.
  • cancer and “cancer cell” is used herein in accordance with their common meaning in the art (see for instance Weinberg R. et al.: The Biology of Cancer. Garland Science: New York 2006. 850p.).
  • cancer-induced weight loss is used herein in accordance with its common meaning in the art. Cancer-induced weight loss is frequently seen as an adverse effect in individuals having cancer (see, for instance Fearon K. et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011 May; 12(5):489-95.; Tisdale M J.: Mechanisms of cancer cachexia. Physiol Rev. 2009 April; 89(2):381-410.).
  • the term “cancer-induced weight loss” relates to the body weight loss induced by the cancer. Additional body weight loss in addition to the cancer-induced weight loss—e.g. body weight loss induced by cancer treatments such as surgery, chemotherapy and radiotherapy—can also occur in individuals having cancer.
  • cancer-induced weight loss does not include this additional body weight loss.
  • antibodies of the present invention in addition to their effects on cancer-induced weight loss and on cancer growth—may have beneficial effects against such additional body weight loss, e.g. by reverting or partly reverting such additional weight loss, or by preventing or partly preventing such additional body weight loss.
  • Body weight can easily be measured by weighing, and body weight is typically expressed in units of mass such as kg.
  • cancer cachexia is used herein in accordance with its common meaning in the art (see, for instance Fearon K. et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011 May; 12(5):489-95.; Tisdale M J.: Mechanisms of cancer cachexia. Physiol Rev. 2009 April; 89(2):381-410.).
  • the most common symptom of cancer cachexia is cancer-induced weight loss.
  • cancer cachexia is characterized by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutrition.
  • cancer cachexia can be defined by a weight loss of more than 5% during the past 6 months, or by a body mass index of less than 20 g/m 2 and any degree of ongoing weight loss that is higher than 2%, or by sarcopenia (i.e. degenerative loss of muscle mass) and an ongoing weight loss that is higher than 2% (see, Fearon K. et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011 May; 12(5):489-95.).
  • a further symptom of cancer cachexia can be a depletion of adipose tissue.
  • a “treatment” may be a treatment for preventing and/or a treatment for inhibiting or reverting cancer cachexia.
  • a treatment for preventing cancer cachexia is a treatment that is given prophylactically at a stage of the cancer disease where no cancer cachexia has yet occurred.
  • a treatment for inhibiting cancer cachexia is typically a treatment that is given at a stage of the cancer disease where some cancer cachexia has occurred, in order to inhibit a further progression of the cancer cachexia.
  • a treatment for reverting cancer cachexia is typically a treatment that is started at a stage of the cancer where some cancer cachexia has occurred, and which reverts the cancer cachexia.
  • the effect of the treatment can be a partial effect, i.e.
  • the effect of the treatment is a complete prevention, a complete inhibition or a complete reversion of cancer cachexia. More preferably, the effect of the treatment according to the present invention is a complete prevention or a complete reversion of cancer cachexia.
  • the term “complete(ly)” in connection with a treatment of cancer cachexia according to the invention means that in case of a treatment for preventing, no cancer cachexia occurs in the treated individual during and/or following the treatment.
  • the term “complete(ly)” means that no further progression of the cancer cachexia occurs in the treated individual during and/or following the treatment.
  • the term “complete(ly)” means that during or following the treatment, the cancer cachexia is completely reverted such that no cancer cachexia is present in the treated individual.
  • the term “no cancer cachexia” means that by using standard methods for measurements and for diagnosis known in the art, no cancer cachexia is detectable.
  • the term “no further progression of the cancer cachexia” means that by using standard methods for measurements and for diagnosis known in the art, no further progression of cancer cachexia is detectable.
  • the methods known in the art and referred to herein are for instance described in Fearon K C.: Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer. 2008 May; 44(8):1124-32; Fearon K. et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011 May; 12(5):489-95.; or Tisdale M J.: Mechanisms of cancer cachexia. Physiol Rev. 2009 April; 89(2):381-410.
  • the treatment methods and products for use in these methods according to the invention may increase the body weight of the treated mammal compared to its body weight before the onset of cancer cachexia.
  • the term “before the onset of cancer cachexia” means a point in time during the course of the cancer disease, after which cancer cachexia becomes measurable by the methods known in the art such as the methods referred to above.
  • the above-defined effects of the cancer cachexia treatment according to the invention are statistically significant when assessed against a suitable control group whereas individual patients who are treated would not show significant cachexia.
  • each occurrence of the term “comprising” may optionally be substituted with the term “consisting of”.
  • the methods used in the present invention are performed in accordance with procedures known in the art, e.g. the procedures described in Sambrook et al. (“Molecular Cloning: A Laboratory Manual.”, 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989), Ausubel et al. (“Current Protocols in Molecular Biology.” Greene Publishing Associates and Wiley Interscience; New York 1992), and Harlow and Lane (“Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1988), all of which are incorporated herein by reference.
  • Molecular weight is measured by methods known in the art such as mass spectrometry. It is expressed in Dalton (Da) or Kilodalton (kDa).
  • Binding of monoclonal anti-human-GDF-15 antibodies according to the invention is generally assessed by employing surface plasmon resonance measurements using a Bio-Rad® ProteOnTM XPR36 system and Bio-Rad® GLC sensor chips as described for murine anti-human GDF-15 mAb-B1-23 in Example 1.
  • Sequence alignments of sequences according to the invention are performed by using the BLAST algorithm (see Altschul et al. (1990) “Basic local alignment search tool.” Journal of Molecular Biology 215. p. 403-410.; Altschul et al.: (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.).
  • the following parameters are used: Max target sequences 10; Word size 3; BLOSUM 62 matrix; gap costs: existence 11, extension 1; conditional compositional score matrix adjustment.
  • terms such as “identity” or “identical” refer to the identity value obtained by using the BLAST algorithm.
  • Monoclonal antibodies according to the invention can be produced by any method known in the art, including but not limited to the methods referred to in Siegel D L (“Recombinant monoclonal antibody technology.” Transfus Clin Biol. 2002 January; 9(1):15-22.).
  • an antibody according to the invention is produced by the hybridoma cell line 81-23 deposited with the Deutsche Sammlung far Mikroorganismen and Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142 under the Budapest treaty. The deposit was filed on Sep. 29, 2011.
  • Cell proliferation can be measured by suitable methods known in the art, including (but not limited to) visual microscopy, metabolic assays such as those which measure mitochondrial redox potential (e.g. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay; Resazurin staining which is also known as Alamar Blue® assay), staining of known endogenous proliferation biomarkers (e.g. Ki-67), and methods measuring cellular DNA synthesis (e.g. BrdU and [ 3 H]-Thymidine incorporation assays).
  • MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
  • Resazurin staining which is also known as Alamar Blue® assay
  • staining of known endogenous proliferation biomarkers e.g. Ki-67
  • methods measuring cellular DNA synthesis e.g. BrdU and
  • Immunosuppression can be measured by suitable methods known in the art, including (but not limited to) immune cell proliferation, cytokine secretion, intracellular cytokine staining by flow cytometry, cytokine measurement by qRT-PCR, redirected target cell lysis, further cytotoxicity or degranulation assays, downregulation of activating immune cell receptors (like NKG2D), upregulation of inhibitory immune cell receptors, immunological synapse formation, immune cell infiltration.
  • suitable methods known in the art including (but not limited to) immune cell proliferation, cytokine secretion, intracellular cytokine staining by flow cytometry, cytokine measurement by qRT-PCR, redirected target cell lysis, further cytotoxicity or degranulation assays, downregulation of activating immune cell receptors (like NKG2D), upregulation of inhibitory immune cell receptors, immunological synapse formation, immune cell infiltration.
  • an effect shall be measurable in at least one of these or in any other
  • Human GDF-15 levels can be measured by any method known in the art, including measurements of GDF-15 mRNA levels by methods including (but not limited to) quantitative real-time PCR (qRT-PCR) for human GDF-15 mRNA using primers specific to human GDF-15, mRNA in situ hybridization with probes specific to human GDF-15, mRNA deep sequencing methods; and including measurements of GDF-15 protein levels by methods including (but not limited to) mass spectrometry for proteins or peptides derived from human GDF-15, Western Blotting using antibodies specific to human GDF-15, flow cytometry using antibodies specific to human GDF-15, strip tests using antibodies specific to human GDF-15, or immunocytochemistry using antibodies specific to human GDF-15.
  • qRT-PCR quantitative real-time PCR
  • the anti-human GDF-15 antibodies of the present invention are preferred, and the antibody of the invention produced by the hybridoma cell line B1-23 deposited with the Deutsche Sammlung far Mikroorganismen and Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142 is most preferred.
  • human GDF-15 protein can be targeted by an antibody in accordance with the invention in a way that cancer cachexia and cancer-induced weight loss can be treated and that also cancer growth is inhibited.
  • the anti-GDF-15 antibodies known from WO 2005/099746, WO 2009/021293 and Johnen H et al., Nature Medicine, 2007 only inhibit one of the effects of human GDF-15 (i.e. cancer-induced weight loss), but fail to inhibit other effects of human GDF-15 such as those related to cancer growth.
  • the antibodies known from the above documents may only interfere with transport of human GDF-15 across the blood-brain barrier (by forming a large complex that cannot be transported across the blood-brain barrier) but are incapable of binding human GDF-15 in a way that renders it generally unable to interact with its receptor (e.g. a receptor residing on cells outside the brain).
  • the anti-GDF-15 antibodies known from WO 2005/099746, WO 2009/021293 and Johnen H et al., Nature Medicine, 2007 did not lead to a detectable increase in the body weight of the mammals compared to its body weight before the onset of cancer cachexia.
  • the following properties of the antibodies of the present invention are expected to contribute to their capability of inhibiting the effects of human GDF-15 more completely, including the treatment of cachexia and the inhibition of cancer growth:
  • the antibodies of the present invention are capable of binding to mature recombinant human GDF-15 (represented by SEQ ID No: 8) and are therefore capable of binding to active, fully processed (mature) human GDF-15.
  • the inventors show that the mAb-B1-23 antibody according to the invention is capable of binding to the human GDF-15 precursor on human cells.
  • binding and effects of the antibodies according to the present invention are not generally limited to effects on a particular form of human GDF-15.
  • human GDF-15 As to the effects of human GDF-15 on cancer cachexia, these effects may be caused a subset of forms human GDF-15, for instance to soluble forms human GDF-15, which are capable of passing the blood-brain barrier.
  • all of the tested anti-GDF-15 antibodies according to the invention can be used to treat cancer-induced cachexia.
  • the antibodies according to the present invention can interfere with the forms of human GDF-15 which are responsible for cancer cachexia.
  • the antibodies and antigen binding portions thereof according to the invention have high binding affinity, as demonstrated by the mAb-B1-23 antibody according to the invention which has an equilibrium dissociation constant of about 790 pM for recombinant human GDF-15.
  • affinity values are superior to most of the existing therapeutic antibodies, e.g. to the therapeutic antibody Rituximab which has an equilibrium dissociation constant of about 8 nM.
  • High binding affinity will ensure that the antibody to human GDF-15 according to the invention stably binds to human GDF-15, such that effects of human GDF-15 including effects on cancer growth are effectively inhibited.
  • stable binding of the antibodies according to the invention is expected to ensure that forms of human GDF-15 which cause cancer cachexia cannot carry out their pathological function. This may for instance be due to an antibody-dependent sequestration of these forms of human GDF-15 from their possible site of action in the brain. Such binding and sequestration may for instance take place at the site of the cancer, or the antibodies according to the invention may interfere with the transport of human-GDF-15 across the blood brain-barrier.
  • the antibodies and antigen binding portions thereof according to the invention bind to a discontinuous or conformational epitope, as demonstrated below for a murine mAb-B1-23 antibody according to the invention.
  • Binding of antibodies and antigen binding portions thereof according to the invention to a discontinuous or conformational GDF-15 epitope may help to keep human GDF-15 in a specific conformation.
  • This conformation-specificity may be advantageous to keep GDF-15 in a form that cannot be released from the tumor, or that cannot cross the blood brain-barrier and cause cancer cachexia at a possible site of action in the brain.
  • binding to a discontinuous or conformational GDF-15 epitope may contribute to the effective inhibition of effects of human GDF-15 including effects on cancer growth, e.g. by keeping GDF-15 in a conformation that cannot functionally interact with its receptor.
  • the invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto, wherein the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto, and wherein the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 98%, preferably at least 99% identical thereto
  • the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 98%, preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 85% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 98% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 99% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 85% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 98% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 99% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29
  • the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32.
  • the invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence that differs by not more than one amino acid from the amino acid sequence of SEQ ID NO: 5, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence or an amino acid sequence that differs by not more than one amino acid from the amino acid sequence of SEQ ID NO: 7, wherein the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto, and wherein the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 98%, preferably at least 99% identical thereto
  • the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 98%, preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 85% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 98% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises an amino acid sequence at least 99% identical to the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 85% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 98% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99% identical thereto, and the constant domain of the light chain comprises an amino acid sequence at least 99% identical to the amino acid sequence of SEQ ID No: 32.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29
  • the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32.
  • a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto.
  • the constant domain of the heavy chain of this monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto
  • the constant domain of the light chain of this monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 98%, preferably at least 99% identical thereto
  • the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 98%, preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32.
  • a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof comprising the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence that differs by not more than one amino acid from the amino acid sequence of SEQ ID NO: 5, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence or an amino acid sequence that differs by not more than one amino acid from the amino acid sequence of SEQ ID NO: 7.
  • the constant domain of the heavy chain of this monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto
  • the constant domain of the light chain of this monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 85%, preferably at least 90%, more preferably at least 95% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, or an amino acid sequence at least 98%, preferably at least 99% identical thereto
  • the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32, or an amino acid sequence at least 98%, preferably at least 99% identical thereto.
  • the constant domain of the heavy chain comprises the amino acid sequence of SEQ ID No: 29, and the constant domain of the light chain comprises the amino acid sequence of SEQ ID No: 32.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5, or the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5
  • the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and the light chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6 and a CDR2 region comprising the amino acid sequence ser-ala-ser.
  • the antibody is a humanized antibody.
  • all of the variable domains of the humanized antibody are humanized variable domains.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 28, or an amino acid sequence at least 90%, preferably at least 95%, more preferably at least 98%, still more preferably at least 99% identical thereto
  • the light chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 31, or an amino acid sequence at least 90%, preferably at least 95%, more preferably at least 98%, still more preferably at least 99% identical thereto.
  • the heavy chain variable domain comprises the amino acid sequence of SEQ ID No: 28, and the light chain variable domain comprises the amino acid sequence of SEQ ID No: 31.
  • the heavy chain of the monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 27, and the light chain of the monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 30.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 34, or an amino acid sequence at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 98%, still more preferably at least 99% identical thereto, and the light chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises the amino acid sequence of SEQ ID No: 37, or an amino acid sequence at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 98%, still more preferably at least 99% identical thereto.
  • the heavy chain variable domain comprises the amino acid sequence of SEQ ID No: 34
  • the light chain variable domain comprises the amino acid sequence of SEQ ID No: 37.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical thereto
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99 ⁇ s identical thereto.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 95% identical thereto
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 95% identical thereto.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 98% identical thereto
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 98% identical thereto.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2.
  • a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof wherein the heavy chain variable domain comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and wherein the light chain variable domain comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the antibody may have CDR3 sequences as defined in any of the embodiments of the invention described above.
  • the a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof is provided, wherein the antibody or antigen-binding portion thereof is capable of inhibiting cancer growth in a mammal, preferably a human patient.
  • the invention relates to an antigen-binding portion capable of binding to human GDF-15, wherein the antigen-binding portion is a single-domain antibody (also referred to as “NanobodyTM”).
  • the single-domain antibody comprises the CDR1, CDR2, and CDR3 amino acid sequences of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5, respectively.
  • the single-domain antibody comprises the CDR1, CDR2, and CDR3 amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 7, respectively.
  • the single-domain antibody is a humanized antibody.
  • the antibodies of the invention capable of binding to human GDF-15 or the antigen-binding portions thereof have an equilibrium dissociation constant for human GDF-15 that is equal to or less than 100 nM, less than 20 nM, preferably less than 10 nM, more preferably less than 5 nM and most preferably between 0.1 nM and 2 nM.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof binds to the same human GDF-15 epitope as the antibody to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142.
  • DMSZ Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH
  • antibody binding to human GDF-15 in accordance with the present invention is assessed by surface plasmon resonance measurements as a reference standard method, in accordance with the procedures described in Example 1.
  • Binding to the same epitope on human GDF-15 can be assessed similarly by surface plasmon resonance competitive binding experiments of the antibody to human GDF-15 obtainable from the cell line B1-23 and the antibody that is expected to bind to the same human GDF-15 epitope as the antibody to human GDF-15 obtainable from the cell line B1-23.
  • the antibody is the monoclonal antibody capable of binding to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142 or an antigen-binding portion thereof.
  • DMSZ Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof according to the invention is a humanized monoclonal antibody or an antigen-binding portion thereof.
  • humanized monoclonal anti-human-GDF-15 antibodies of the invention or antigen-binding portions thereof can be generated in accordance with techniques known in the art, as described above.
  • the monoclonal antibody capable of binding to human GDF-15 or antigen-binding portion thereof is a humanized antibody derived from the monoclonal antibody capable of binding to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zeilkulturen GmbH (DMSZ) under the accession No. DSM ACC3142, or an antigen-binding portion thereof.
  • DMSZ Deutsche Sammlung für Mikroorganismen and Zeilkulturen GmbH
  • the heavy chain variable domain of the humanized antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5
  • the light chain variable domain of the humanized antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the heavy chain variable domain of the humanized antibody or antigen-binding portion thereof comprises or further comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and the light chain variable domain of the humanized antibody or antigen-binding portion thereof comprises or further comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 7.
  • a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof is provided, wherein the binding is binding to a conformational or discontinuous epitope on human GDF-15 comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26.
  • the antibody or antigen-binding portion thereof is an antibody or antigen-binding portion thereof as defined in any one of the above embodiments.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is a diabody.
  • the diabody is bivalent and monospecific, with two identical antigen binding sites for human GDF-15.
  • the diabody is bivalent and bispecific, with one antigen binding site being a binding site for human GDF-15, and the other antigen binding site being a binding site for a different antigen.
  • Non-limiting examples for the different antigen according to this second aspect of this embodiment are i) cell surface antigens that are co-expressed with GDF-15 at high levels on the same cancer (e.g.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is linked to a drug.
  • the drug can be a known anticancer agent and/or an immune-stimulatory molecule.
  • known anticancer agents include alkylating agents such as cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, and ifosfamide; anti-metabolites such as azathioprine and mercaptopurine; alkaloids such as vinca alkaloids (e.g.
  • vincristine, vinblastine, vinorelbine, and vindesine taxanes (e.g. paclitaxel, docetaxel) etoposide and teniposide; topoisomerase inhibitors such as camptothecins (e.g. irinotecan and topotecan); cytotoxic antibiotics such as actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and mitomycin; and radioisotopes.
  • taxanes e.g. paclitaxel, docetaxel
  • topoisomerase inhibitors such as camptothecins (e.g. irinotecan and topotecan)
  • cytotoxic antibiotics such as actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubi
  • Linking of the antibodies or the antigen-binding portions thereof of the invention to anticancer agents is expected to result in stronger cancer tumor growth inhibition compared to the antibody without the anticancer agent, because the resulting conjugate will accumulate at the site of the tumor due to the presence of GDF-15 in the tumor, leading to the accumulation of the anticancer agent at the site of the tumor and to enhanced effects of the anticancer agent on the tumor.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is modified by an amino acid tag.
  • tags include Polyhistidin (His-) tags, FLAG-tag, Hemagglutinin (HA) tag, glycoprotein D (gD) tag, and c-myc tag. Tags may be used for various purposes. For instance, they may be used to assist purification of the antibody capable of binding to human GDF- or the antigen-binding portion thereof, or they may be used for detection of the antibody or the antigen-binding portion thereof (e.g. when used in diagnostic assays). Preferably, such tags are present at the C-terminus or N-terminus of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is capable of inhibiting cancer growth in a mammal, preferably a human patient.
  • the human GDF-15 is recombinant human.
  • GDF-15 having the amino acid sequence represented by SEQ ID No: 8.
  • the binding of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is a binding to a conformational or discontinuous epitope on human GDF-15.
  • the monoclonal antibodies of the present invention capable of binding to human GDF-15 or the antigen-binding portions thereof are isolated antibodies.
  • the antibody has a size of more than 100 kDa, preferably more than 110 kDa, more preferably more than 120 kDa, still more preferably more than 130 kDa, and most preferably more than 140 kDa.
  • the antibody is a full-length antibody, more preferably a full-length IgG antibody.
  • the invention also relates to an expression vector comprising a nucleotide sequence encoding the antibody or antigen-binding portion thereof as defined above.
  • the present invention also provides a cell line capable of producing an antibody or antigen-binding portion thereof according to the present invention.
  • the cell line can be derived from any cell line that is known in that art and suitable for the production of antibodies or antigen-binding portions thereof.
  • the cell line is the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142.
  • the cell line contains an expression vector according to the invention as defined above.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising any of the antibodies or antigen-binding portions thereof as defined above.
  • compositions in accordance with the present invention are prepared in accordance with known standards for the preparation of pharmaceutical compositions containing antibodies and portions thereof.
  • compositions are prepared in a way that they can be stored and administered appropriately, e.g. by using pharmaceutically acceptable components such as carriers, excipients or stabilizers.
  • Such pharmaceutically acceptable components are not toxic in the amounts used when administering the pharmaceutical composition to a patient.
  • the pharmaceutical acceptable components added to the pharmaceutical compositions may depend on the particular intended use of the pharmaceutical compositions and the route of administration.
  • the pharmaceutically acceptable components used in connection with the present invention are used in accordance with knowledge available in the art, e.g. from Remington's Pharmaceutical Sciences, Ed. A R Gennaro, 20th edition, 2000, Williams & Wilkins, PA, USA.
  • the present invention further relates to a method for treating cancer cachexia in a mammal.
  • the method comprises administering an antibody or antigen-binding portion thereof as defined above, or a pharmaceutical composition as defined above to said mammal.
  • the present invention relates to an antibody or antigen-binding portion thereof as defined above, or a pharmaceutical composition as defined above for use in these methods.
  • the mammal is a human patient.
  • the present invention further relates to a method for treating cancer in a mammal.
  • the method comprises administering an antibody or antigen-binding portion thereof as defined above, or a pharmaceutical composition as defined above to said mammal.
  • the present invention relates to an antibody or antigen-binding portion thereof as defined above, or a pharmaceutical composition as defined above for use in these methods.
  • the mammal is a human patient.
  • the present invention relates to several surprising advantages compared to the effects observed in the art.
  • one main benefit of the invention lies in that the anti-GDF-15 antibodies disclosed herein can be used to more effectively treat cancer-induced weight loss and/or cancer cachexia.
  • the treatment with the antibodies according to the invention can completely prevent cancer cachexia (when given prophylactically) or completely reverse cancer cachexia (when given after the onset of cancer cachexia).
  • the antibodies according to the invention can even increase the body weight of the treated mammal during a prophylactic treatment for the prevention of cachexia. Likewise, it is expected that in the course of a therapeutic treatment started after the onset of cancer cachexia, the antibodies according to the invention can not only reverse the loss in body weight, but also increase the body weight of the treated mammal compared to its body weight before the onset of cancer cachexia.
  • the antibodies according to the invention may be beneficial in various clinical situations. For instance, administration of many ingredients that are pharmaceutically active against cancer (e.g. various chemotherapeutic drugs) can lead to a loss of body weight of mammals including human patients. Such an additional loss in body weight could be counteracted by the increase in body weight due to the administration of the antibodies according to the invention. Therefore, the uses of the antibodies according to the invention may be particularly advantageous and safe for combination regimens with additional chemotherapeutic drugs. Similarly, the uses of the antibodies according to the invention may be particularly advantageous for mammals such as human patients that already had a low body weight prior to the onset of cancer and/or prior to the onset of cancer cachexia. Patients with a low body weight may for instance be cachectic patients, e.g. patients with a body-mass-index of less than 18 kg/m 2 .
  • the antibodies are not only effective for the treatment of cancer cachexia, but also effective for the treatment of cancer.
  • the treatment methods and products for use of the antibodies according to the invention are expected to be particularly beneficial for the treatment of cancer patient sub-groups which suffer from cancer-induced weight loss and/or cancer cachexia, respectively.
  • cancer and cancer cachexia treatments may be simplified by using the same treatment for all cancer patients, irrespective of whether or not they suffer from cancer-induced weight loss and/or cancer cachexia. This is because due to the dual effects of the antibodies against cancer and cancer cachexia, it is expected that these antibodies will obviate the need for additional drugs for the treatment of cancer cachexia.
  • the method for treating cancer cachexia is a method for completely preventing or completely reverting cancer cachexia.
  • the method for treating cancer cachexia is a method for completely preventing cancer cachexia.
  • the method for treating cancer cachexia is a method for completely reverting cancer cachexia.
  • the method increases body weight of the mammal compared to its body weight before the onset of cancer cachexia.
  • the increase in body weight of the mammal is at least 1.5%, preferably at least 2.5%, more preferably at least 5% compared to its body weight before the onset of cancer cachexia.
  • the method is a method for both treating cancer and treating cancer cachexia in the same mammal.
  • the antibody has a size of more than 100 kDa, preferably more than 110 kDa, more preferably more than 120 kDa, still more preferably more than 130 kDa, and most preferably more than 140 kDa.
  • the antibody is a full-length antibody, more preferably a full-length IgG antibody.
  • the antibody has an Fc portion which is capable of binding to the Fc receptor.
  • the cancer cells of the mammal endogenously express GDF-15 and/or the cancer cells of the mammal stimulate endogenous expression of GDF-15 in non-cancerous cells of the mammal.
  • the cancer cells of the mammal are characterized in that they endogenously express GDF-15.
  • the mammal is human patient.
  • the human GDF-15 is recombinant human GDF-15 having the amino acid sequence represented by SEQ ID No: 8.
  • the human patient has elevated GDF-15 levels in blood serum before administration.
  • the treatment methods according to the invention are expected to be particularly effective at inhibiting cancer growth.
  • GDF-15 levels are GDF-15 protein levels measured using the antibody according to the invention obtainable from the hybridoma cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142, preferably measured by immunochemistry.
  • the antibody or antigen-binding portion thereof is the sole ingredient pharmaceutically active against cancer used in the method.
  • the antibody or antigen-binding portion thereof is used in combination with one or more further ingredients pharmaceutically active against cancer.
  • the one or more further ingredients pharmaceutically active against cancer is a known anticancer agent and/or an immune-stimulatory molecule as defined above.
  • the anticancer agent can for instance be selected from alkylating agents such as cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, and Ifosfamide; anti-metabolites such as azathioprine and mercaptopurine; alkaloids such as vinca alkaloids (e.g. vincristine, vinblastine, vinorelbine, and vindesine), taxanes (e.g. paclitaxel, docetaxel) etoposide and teniposide; topoisomerase inhibitors such as camptothecins (e.g.
  • alkylating agents such as cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, and Ifosfamide
  • anti-metabolites such as azathioprine and mercaptopurine
  • alkaloids such as
  • cytotoxic antibiotics such as actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and mitomycin; and radioisotopes. Due to the increasing effect of the antibodies according to the invention on body weight of the mammals including human patients, these combined uses of the antibodies or antigen-binding portions thereof and the ingredients pharmaceutically active against cancer are expected to be particularly safe, because they may compensate a possible additional weight loss resulting from the administration of the ingredients pharmaceutically active against cancer.
  • the cancer is selected from the group consisting of brain cancers including glioma, cancers of the nervous system, melanoma, lung cancer, lip and oral cavity cancer, hepatic carcinoma, leukemia, Hodgkin lymphoma, Non-Hodgkin lymphoma, bladder cancer, cervix uteri cancer, corpus uteri cancer, testis cancer, thyroid cancer, kidney cancer, gallbladder cancer, multiple myeloma, nasopharynx cancer, larynx cancer, pharynx cancer, oesophagus cancer, gastrointestinal tumors including stomach and colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer and breast cancer, preferably from the group consisting of melanoma, prostate cancer, breast cancer, brain cancers including glioma, colorectal cancer, stomach cancer, oesophagus cancer and
  • the tumor or tumors formed by the cancer have higher human GDF-15 levels prior to administration compared to a control sample of the same patient obtained from a non-cancerous part of the tissue which is the tissue of origin of the cancer, preferably 1.2-fold higher levels, more preferably 1.5-fold higher levels, still more preferably 2-fold higher levels and most preferably 5-fold higher levels.
  • the treatment methods according to the invention are expected to be particularly effective at inhibiting cancer growth.
  • the method for treating cancer comprises inhibiting cancer growth.
  • cancer growth is stopped.
  • the cancer shrinks.
  • the method for treating cancer comprises the induction of killing of cancer cells by NK cells and CD8+ T cells in the human patient. Due to their capability of preventing GDF-15 mediated down-regulation of the known immune surveillance regulator NKG2D, the antibodies or antigen-binding portions thereof according to the invention are expected to restore immune surveillance and induce the killing of cancer cells by NK cells and CD8+ T cells, in addition to effects of the antibodies or antigen-binding portions thereof that are independent of the immune system.
  • kits comprising the pharmaceutical compositions as defined above.
  • kits are kits for use in the methods according to the invention as defined above.
  • the present invention also provides a diagnostic kit comprising any of the antibodies or antigen-binding portions thereof according to the invention.
  • the diagnostic kit may be used to detect whether the tumor or tumors of a cancer patient formed by the cancer have higher human GDF-15 levels compared to a control sample of the same patient obtained from a non-cancerous part of the tissue which is the tissue of origin of the cancer.
  • the diagnostic kit may be used to detect whether a human cancer patient has elevated GDF-15 levels in blood serum.
  • amino acid sequences referred to in the present application are as follows (in an N-terminal to C-terminal order; represented in the one-letter amino acid code):
  • SEQ ID No: 1 (Region of the Heavy Chain Variable Domain comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region from the Polypeptide Sequence of monoclonal anti-human GDF-15 mAb-B1-23):
  • SEQ ID No: 2 (Region of the Light Chain Variable Domain comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region from the Polypeptide Sequence of monoclonal anti-human GDF-15 mAb-B1-23):
  • SEQ ID No: 8 (recombinant mature human GDF-15 protein):
  • SEQ ID No: 9 human GDF-15 precursor protein
  • SEQ ID No: 10 human GDF-15 precursor protein N-terminal and C-terminal GSGS linker
  • SEQ ID No: 13 (peptide derived from human GDF-15):
  • SEQ ID No; 14 (peptide derived from human GDF-15):
  • SEQ ID No: 15 (peptide derived from human GDF-15):
  • SEQ ID No: 16 (peptide derived from human GDF-15):
  • SEQ ID No: 17 (peptide derived from human GDF-5):
  • SEQ ID No: 18 (peptide derived from human GDF-15):
  • SEQ ID No: 19 (peptide derived from human GDF-15):
  • SEQ ID No: 20 (peptide derived from human GDF-15):
  • SEQ ID No: 25 (GDF-15 peptide comprising part of the GDF-15 Epitope that binds to B1-23):
  • SEQ ID No: 26 (GDF-15 peptide comprising part of the GDF-15 Epitope that binds to B1-23):
  • nucleic acid sequences referred to in the present application are as follows (in a 5′ to 3′ order; represented in accordance with the standard nucleic acid code):
  • SEQ ID No: 21 DNA nucleotide sequence encoding the amino acid sequence defined in SEQ ID No: 1):
  • SEQ ID No: 22 (DNA nucleotide sequence encoding the amino acid sequence defined in SEQ ID No: 2):
  • SEQ ID No: 23 (DNA nucleotide sequence encoding the amino acid sequence defined in SEQ ID No: 5):
  • SEQ ID No: 24 (DNA nucleotide sequence encoding the amino acid sequence defined in SEQ ID No: 7):
  • SEQ ID No: 27 amino acid sequence of the heavy chain of the H1L5 humanized B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 28 amino acid sequence of the heavy chain variable domain of the H1L5 humanized B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 29 amino acid sequence of the heavy chain constant domain of the H1L5 humanized B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 30 amino acid sequence of the light chain of the H1L5 humanized B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 31 amino acid sequence of the light chain variable domain of the H1L5 humanized B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 32 amino acid sequence of the light chain constant domain of the H1L5 humanized B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 33 amino acid sequence of the heavy chain of the chimeric B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 34 amino acid sequence of the heavy chain variable domain of the chimeric B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 35 amino acid sequence of the heavy chain constant domain of the chimeric B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 36 amino acid sequence of the light chain of the chimeric B1-23 anti-GDF-15 antibody
  • SEQ ID No: 37 amino acid sequence of the light chain variable domain of the chimeric B1-23 anti-GDF-15 antibody:
  • SEQ ID No: 38 amino acid sequence of the light chain constant domain of the chimeric B1-23 anti-GDF-15 antibody:
  • the antibody B1-23 was generated in a GDF-15 knock out mouse.
  • Recombinant human GDF-15 (SEQ ID No: 8) was used as the immunogen.
  • the hybridoma cell line B1-23 producing mAb-B1-23 was deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142, in accordance with the Budapest Treaty.
  • Kd dissociation constant
  • Binding of the monoclonal anti-human-GDF-15 antibody anti-human GDF-15 mAb-B1-23 was measured by employing surface plasmon resonance measurements using a Bio-Rad® ProteOnTM XPR36 system and Bio-Rad® GLC sensor chips:
  • recombinant mature human GDF-15 protein was immobilized on flow cells 1 and 2. On one flow cell recombinant GDF-15 derived from Baculvirus-transfected insect cells (HighFive insect cells) and on the other recombinant protein derived from expression in E. coli was used.
  • the non-reacted coupling groups were then quenched by perfusion with 1M ethanolamine pH 8.5 and the biosensor was equilibrated by perfusing the chip with running buffer (10M HEPES, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween®20, pH 7.4, referred to as HBS150).
  • running buffer 10M HEPES, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween®20, pH 7.4, referred to as HBS150.
  • HBS150 running buffer
  • two flow cells were used, one empty with no protein coupled and one coupled with an non-physiological protein partner (human Interleukin-5), which was immobilized using the same coupling chemistry and the same coupling density.
  • anti-human GDF-15 mAb-B1-23 was dissolved in HBS150 and used in six different concentrations as analyte (concentration: 0.4, 0.8, 3, 12, 49 and 98 nM).
  • concentration: 0.4, 0.8, 3, 12, 49 and 98 nM concentration: 0.4, 0.8, 3, 12, 49 and 98 nM.
  • the analyte was perfused over the biosensor using the one-shot kinetics setup to avoid intermittent regeneration, all measurements were performed at 25° C. and using a flow rate of 1041 min ⁇ 1 .
  • For processing the bulk face effect and unspecific binding to the sensor matrix was removed by subtracting the SPR data of the empty flow cell (flow cell 3) from all other SPR data.
  • the resulting sensogram was analyzed using the software ProteOn Manager version 3.0. For analysis of the binding kinetics a 1:1 Langmuir-type interaction was assumed.
  • the anti-human GDF-15 mAb-B1-23 shows no binding to human interleukin-5 and thus confirms the specificity of the interaction data and the anti-human GDF-15 mAb-B1-23.
  • the amino acid sequence of recombinant human GDF-15 (as expressed in Baculovirus-transfected insect cells) is:
  • the dissociation constant (Kd) of 790 pM was determined.
  • a chimeric anti-human GDF-15 mAb-B1-23 antibody according to the invention was generated by replacing constant domains of the murine antibody with the constant domains of a human IgG1 antibody (trastuzumab backbone).
  • the amino acid sequence of the heavy chain of this chimeric antibody is shown in SEQ ID No: 33, and the amino acid sequence of the light chain of this chimeric antibody is shown in SEQ ID No: 36.
  • a humanized anti-human GDF-15 mAb-B1-23 antibody according to the invention was developed by humanizing the variable domains of the chimeric antibody, i.e. by replacing the framework regions of the chimeric antibody with human sequences.
  • the amino acid sequence of the heavy chain of this humanized antibody is shown in SEQ ID No: 27, and the amino acid sequence of the light chain of this humanized antibody is shown in SEQ ID No: 30.
  • This antibody is referred to as H1L5 anti-GDF-15 antibody or humanized B1-23-H1L5 antibody or H1L5 antibody.
  • the plasmid DNA was then transiently transfected into CHO cells, followed by an analysis and quantification of antibody expression using a protein A biosensor.
  • the cDNA of candidate cultures for antibody expression was sequenced.
  • the obtained monoclonal antibodies were analyzed (see Examples 7 to 9).
  • NKG2D Natural Killer Group 2D
  • NK cells and CD8+ T cells are known to play an important role in the immune surveillance against tumors.
  • Transformed as well as viral infected cells express ligands, which bind to the NKG2D receptor, thereby activating the cytotoxic effector functions of the described immune cells. In that way transformed cells can be detected and eliminated by the immune system.
  • the expression level of NKG2D on the cell surface of lymphocytes was downregulated ( FIG. 1 ).
  • the immune cells were stained with the following FACS-antibodies: anti CD3, anti CD56, anti-NKG2D.
  • FACS-antibodies anti CD3, anti CD56, anti-NKG2D.
  • the experiment focused on NK cells and their NKG2D surface expression.
  • the low NKG2D level on immune cells led to an impaired tumor/target cell lysis.
  • the GDF-15 mediated downregulation of NKG2D was prevented by mAb B1-23.
  • human GDF-15 downregulates expression of NKG2D on the cell surface of lymphocytes and thereby downregulates immune surveillance against tumors.
  • the antibodies of the present invention are capable of preventing GDF-15 mediated downregulation of NKG2D and should be capable of restoring immune surveillance and inducing the killing of cancer cells by NK cells and CD8+ T cells.
  • the CDR regions of the mAb B1-23 antibody correspond to CDR regions of the chimeric and humanized antibodies, it is expected that the functional properties including the binding properties of these antibodies are similar.
  • AKT is a molecule, which is part of the PI3K-pathway and contributes to the activation and proliferation of cells.
  • SK-OV-3 cells were treated with 10 ng/ml recombinant GDF-15 for 10 min at 37° C., 5% CO2. 5 minutes preincubation of 2 ⁇ g mAb-B1-23 with 10 ng/ml GDF-15 at 37° C. blocked the GDF-15 mediated AKT-phosphorylation ( FIG. 2 ). This showed the neutralizing effect of mAb-B1-23.
  • GDF-15 led to the phosphorylation of JNK, a kinase, which is activated either by cytokines or by stress.
  • Balb/c nu/nu nude mice were used in a xenograft setting with the melanoma cell line UACC-257. The mice were treated either with the antibody B1-23 or with PBS. Each treatment cohort contained 10 Balb/c nu/nu nude mice.
  • the UACC-257 melanoma cells Prior to injection, the UACC-257 melanoma cells were grown in complete medium, excluding any contamination. The cells were harvested when 70-80% confluence was reached in the cell culture flask. Cells were then washed with PBS and counted. 1 ⁇ 10 7 viable cells were suspended in PBS.
  • the first injection/treatment was administered in 6 week old Balb/c nu/nu nude mice.
  • the inoculation area of the mice was cleaned with ethanol.
  • the UACC 257 cells were mixed and drawn into a syringe without a needle, in order to avoid negative pressure on the tumor cells.
  • the cell suspension containing 1 ⁇ 10 7 cells in PBS was injected subcutaneously (s.c.) into the lower flank of the mice.
  • the intraperitoneal (i.p.) injection of either B1-23 (25 mg/kg body weight) or the same volume of PBS started immediately after the tumor cell inoculation (defined as day 1) and was administered twice a week.
  • the tumors were grown for 48 days.
  • the tumor diameters were measured with a caliper and the tumor volume in mm 3 was calculated by the formula:
  • the tumor size of the animal cohort treated with B1-23 was significantly decreased, compared to the PBS control group.
  • Example 5 mAb B1-23 Recognizes a Conformational or a Discontinuous Epitope of Human GDF-15
  • the protein sequence was translated into 13mer peptides with a shift of one amino acid.
  • the C- and N-termini were elongated by a neutral GSGS linker to avoid truncated peptides (bold letters).
  • Blocking buffer Rockland blocking buffer MB-070
  • Control antibodies Monoclonal anti-HA (12CA5)-LL-Atto 680 (1:1000), monoclonal anti-FLAG(M2)-FluoProbes752 (1:1000); staining in incubation buffer for 1 h at RT
  • the peptide array with 10, 12 and 15mer B7H3-derived linear peptides was incubated with secondary goat anti-mouse IgG (H+L) IRDye680 antibody only at a dilution of 1:5000 for 1 h at room temperature to analyze background interactions of the secondary antibody.
  • the PEPperCHIP® was washed 2 ⁇ 1 min with standard buffer, rinsed with dist. water and dried in a stream of air.
  • the peptide microarray was incubated overnight at 4° C. with monoclonal mouse antibody GDF-15 at a dilution of 1:100. Repeated washing in standard buffer (2 ⁇ 1 min) was followed by incubation for 30 min with the secondary antibody at a dilution of 1:5000 at room temperature. After 2 ⁇ 10 sec. washing in standard buffer and short rinsing with dist. water, the PEPperCHIP® was dried in a stream of air. Read-out was done with Odyssey® Imaging System at a resolution of 21 ⁇ m and green/red intensities of 7/7 before and after staining of control peptides by anti-HA and anti-FLAG(M2) antibodies.
  • Example 6 Structural Identification of Peptide Ligand Epitopes by Mass Spectrometric Epitope Excision and Epitope Extraction
  • the epitope of recombinant human GDF-15 which binds to the antibody B1-23 was identified by means of the epitope excision method and epitope extraction method (Suckau et al. Proc Nati Acad Sci USA. 1990 December; 87(24): 9848-9852.; R. Stefanescu et al., Eur. J. Mass Spectrom. 13, 69-75 (2007)).
  • the antibody B1-23 was added to NHS-activated 6-aminohexanoic acid coupled sepharose.
  • the sepharose-coupled antibody B1-23 was then loaded into a 0.8 ml microcolumn and washed with blocking and washing buffers.
  • Recombinant human GDF-15 was digested with trypsin for 2 h at 37° C. (in solution), resulting in different peptides, according to the trypsin cleavage sites in the protein. After complete digestion, the peptides were loaded on the affinity column containing the immobilized antibody B1-23. Unbound as well as potentially bound peptides of GDF-15 were used for mass spectrometry analysis. An identification of peptides by means of mass spectrometry was not possible. This was a further indicator that the binding region of GDF-15 in the immune complex B1-23 comprises a discontinuous or conformational epitope.
  • the digested peptides should bind its interaction partner, unless there was a trypsin cleavage site in the epitope peptide.
  • a discontinuous or conformational epitope could be confirmed by the epitope excision method described in the following part.
  • the immobilized antibody B1-23 on the affinity column was then incubated with recombinant GDF-15 for 2 h.
  • the formed immune complex on the affinity column was then incubated with trypsin for 2 h at 37° C.
  • the cleavage resulted in different peptides derived from the recombinant GDF-15.
  • the immobilized antibody itself is proteolytically stable.
  • the resulting peptides of the digested GDF-15 protein, which were shielded by the antibody and thus protected from proteolytic cleavage, were eluted under acidic conditions (TFA, pH2), collected and identified by mass spectrometry.
  • the part of human GDF-15, which binds the antibody B1-23, comprises a discontinuous or conformational epitope.
  • Mass spectrometry identified 2 peptides in the GDF-15 protein, which are responsible for the formation of the immune complex. These peptides are restricted to the positions 40-(EVQVTMCIGACPSQFR) and 94-114 (TDTGVSLQTYDDLLAKDCHCI) in the GDF-15 amino acid sequence. Thus, these two peptides comprise an epitope of the GDF-15 protein that binds to the antibody B1-23.
  • mice per treatment group were subcutaneously inoculated with 10 ⁇ 10 6 UACC-257 cells per animal in a 1:1 volume ratio with matrigel (100 ⁇ l cells+100 ⁇ l matrigel). The animals were treated on the same day with the respective antibodies, as indicated below:
  • the dacarbazine group (group 1) served as a reference group/positive control for tumor growth arrest (cytostatic drug for the treatment of malignant melanoma in humans).
  • the PBS group (group 2) served as a growth control/vehicle control group, because all used substances of the other groups were administered in PBS.
  • the group of the murine B1-23 lead candidate antibody (group 3) served as reference group for a comparison with the chimeric B1-23 antibody and with the humanized B1-23 H1L5 (groups 4 and 5).
  • Group 4 is the group of the chimerized B1-23 lead candidate antibody, which contains murine variable domains and constant domains of a human IgG1 antibody (trastuzumab backbone).
  • Group 5 is the group of the H1L5 humanized B1-23 lead candidate antibody, which contains humanized frameworks within the murine variable regions and constant domains of a human IgG1 antibody (trastuzumab backbone).
  • Group 6 is the group of the B12 isotype antibody.
  • the antibody B12 (Lot. No.: ID3195) was produced by the company Evitria AG. B12 binds to an HIV antigen and should therefore neither bind to antigens in nude mice nor to antigens of the human tumor. 312 was selected as a highly suitable isotype control, because the immunoglobulin backbone of B12 also consists of the human IgG1 antibody trastuzumab and is therefore almost identical to the chimeric B1-23 and the H1L5 humanized 31-23 antibodies, except for their variable regions.
  • the study was carried out in a double-blinded manner for the treatment with the antibodies and for the treatment with PBS.
  • mice of the groups that did not receive treatment with anti-GDF-15 antibodies exhibited a weight loss of more than 10%.
  • a weight loss of as little as 5% over a period of 6 months is considered as being indicative of cancer cachexia (Fearon K. et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011 May; 12(5):489-95.).
  • the mice in the study, which did not receive treatment with anti-GDF-15 antibodies not only exhibited weight loss but also exhibited cancer cachexia. This effect is completely prevented by the anti-GDF-15 antibodies tested. It is therefore expected that the anti-GDF-15 antibodies in accordance with the invention are capable of both treating cancer-induced weight loss and treating cancer cachexia.
  • the feed consumption of the mice was evaluated by pairwise comparisons of the study groups (Table 1). Notably, the feed consumption of the mice in the anti-GDF-15 antibody groups (B1-23, chimeric B1-23 and humanized B1-23-H1L5) was significantly higher than the feed consumption of the mice in the groups which did not receive the anti-GDF-15 antibodies.
  • Table 1 Comparative evaluation of the feed consumption between the different treatment groups. For the measured time intervals (day 17-20, day 20-24, day 24-27, day 27-31, day 31-34), the average feed consumption per mouse and day was calculated for each respective group. The values are indicated together with their standard deviation. Feed consumption vs. vs. per mouse chimeric humanized. vs. and day B1-23 B1-23 B1-23 dacarbazine 2.8 ⁇ 0.2 g ** ** ** PBS 2.6 ⁇ 0.4 g ** ** ** ** Chimeric 3.5 ⁇ 0.2 g — n.s. n.s.
  • the quality of the humanized anti-GDF-15 antibody B1-23-H1L5 used in the study was tested by using gel electrophoresis and coomassie staining of the antibodies (see FIG. 6 ).
  • the band of the humanized anti-GDF-15 antibody B1-23-H1L5 was sharp and clear, whereas the bands of the murine B1-23 anti-GDF-15 antibody and the B12 control antibody appeared less sharp and at a higher molecular weight. This suggests that the humanized anti-GDF-15 antibody B1-23-H1L5 is not prone to aggregation, and that some aggregation may have shifted the molecular weight of the other antibodies to higher values.
  • SAW Surface Acoustic Wave
  • Antibody Kd value (nM) B1-23 anti-GDF-15 antibody 28.8 nM (murine, IgG2a) Chimeric B1-23 anti-GDF-15 antibody 14 nM (chimerized, human IgG1) H1L5 humanized B1-23 5.62 nM (humanized, human IgG1) Rituxumab 1116 nM (control antibody) Herceptin No binding (control antibody)
  • the murine antibody (B1-23) as well as the chimeric B1-23 antibody were present in purified form.
  • the H1L5 humanized B1-23 antibody was a serum-free CHO cell culture supernatant.
  • the Kd value of the murine B1-23 deviates from the Kd values determined by Biacore® analyses (surface plasmon resonance) by a factor of 35.
  • the chimeric 81-23 anti-GDF-15 antibody and the H1L5 humanized B1-23 antibody exhibited affinities to human GDF-15 which were about 2-fold and 5-fold higher, respectively, than the affinity of the murine B1-23 anti-GDF-antibody.
  • the chimeric B1-23 anti-GDF-15 antibody and the H1L5 humanized B1-23 antibody are high affinity antibodies.
  • antibody samples were shaken for 48 hours at room temperature in microcentrifuge tubes, and subsequently, the tubes were visually analyzed for aggregated antibody precipitates.
  • the H1L5 humanized B1-23 antibody surprisingly showed no tendency to aggregate, even when the antibody was only present in phosphate-buffered saline (PBS), and when no stabilizing proteins such as BSA were present.
  • PBS phosphate-buffered saline
  • the antibodies, antigen-binding portions thereof, pharmaceutical compositions and kits according to the present invention may be industrially manufactured and sold as products for the claimed methods and uses (e.g. for treating cancer cachexia and cancer), in accordance with known standards for the manufacture of pharmaceutical products. Accordingly, the present invention is industrially applicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US15/128,604 2014-03-26 2015-03-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer Abandoned US20170204174A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1405477.9A GB2524553C (en) 2014-03-26 2014-03-26 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia
GB1405477.9 2014-03-26
GB1405475.3A GB2524552B (en) 2014-03-26 2014-03-26 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and use thereof for treating cancer
GB1405475.3 2014-03-26
PCT/EP2015/056654 WO2015144855A1 (en) 2014-03-26 2015-03-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/056654 A-371-Of-International WO2015144855A1 (en) 2014-03-26 2015-03-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/912,358 Continuation US10604565B2 (en) 2014-03-26 2018-03-05 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer

Publications (1)

Publication Number Publication Date
US20170204174A1 true US20170204174A1 (en) 2017-07-20

Family

ID=52745885

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/128,604 Abandoned US20170204174A1 (en) 2014-03-26 2015-03-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer
US15/912,358 Active 2035-06-19 US10604565B2 (en) 2014-03-26 2018-03-05 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US16/794,406 Active 2035-12-30 US11760795B2 (en) 2014-03-26 2020-02-19 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US16/794,401 Active 2035-07-11 US11634482B2 (en) 2014-03-26 2020-02-19 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US18/364,173 Pending US20230382987A1 (en) 2014-03-26 2023-08-02 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and usesthereof for treating cancer cachexia and cancer

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/912,358 Active 2035-06-19 US10604565B2 (en) 2014-03-26 2018-03-05 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US16/794,406 Active 2035-12-30 US11760795B2 (en) 2014-03-26 2020-02-19 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US16/794,401 Active 2035-07-11 US11634482B2 (en) 2014-03-26 2020-02-19 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US18/364,173 Pending US20230382987A1 (en) 2014-03-26 2023-08-02 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and usesthereof for treating cancer cachexia and cancer

Country Status (22)

Country Link
US (5) US20170204174A1 (da)
EP (3) EP3653644B1 (da)
JP (3) JP6865585B2 (da)
KR (1) KR102520978B1 (da)
CN (1) CN106536553B (da)
AU (2) AU2015238264B2 (da)
BR (1) BR122023027559A2 (da)
CA (1) CA2943694A1 (da)
CY (1) CY1122456T1 (da)
DK (2) DK3122775T3 (da)
ES (2) ES2965626T3 (da)
FI (1) FI3653644T3 (da)
HR (2) HRP20231514T1 (da)
HU (2) HUE047398T2 (da)
IL (2) IL248038B (da)
LT (2) LT3122775T (da)
NZ (1) NZ724649A (da)
PL (2) PL3122775T3 (da)
PT (2) PT3653644T (da)
RS (1) RS59700B1 (da)
SI (1) SI3122775T1 (da)
WO (1) WO2015144855A1 (da)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634482B2 (en) 2014-03-26 2023-04-25 Julius-Maxmilians-Universitat Wurzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049470A1 (en) 2014-09-25 2016-03-31 Aveo Pharmaceuticals, Inc. Methods of reversing cachexia and prolonging survival comprising administering a gdf15 modulator and an anti-cancer agent
GB201517528D0 (en) * 2015-10-02 2015-11-18 Julius Maximillians Universitãt Würzburg GDF-15 as a diagnosis marker for melanoma
AU2016333538B2 (en) * 2015-10-02 2022-03-31 Julius-Maximilians-Universität Würzburg GDF-15 as a diagnostic marker to predict the clinical outcome of a treatment with immune checkpoint blockers
WO2017055613A2 (en) * 2015-10-02 2017-04-06 Julius-Maximilians-Universität Würzburg Combination therapy using inhibitors of human growth and differentiation factor 15 (gdf-15) and immune checkpoint blockers
US11312766B2 (en) 2016-04-27 2022-04-26 Novartis Ag Antibodies against growth differentiation factor 15 and uses thereof
CA3029136A1 (en) * 2016-07-06 2018-01-11 National Research Council Of Canada Humanized antibodies transmigrating the blood-brain barrier and uses thereof
WO2018071493A1 (en) * 2016-10-12 2018-04-19 Janssen Biotech, Inc. Methods for screening for modulators of gdf15-like biological activity
AU2017371382A1 (en) * 2016-12-06 2019-06-13 St Vincent's Hospital Sydney Limited Treatment of obesity and eating disorders
TWI803682B (zh) * 2018-08-20 2023-06-01 美商輝瑞股份有限公司 抗-gdf15抗體、組成物及使用方法
WO2022101263A1 (en) * 2020-11-10 2022-05-19 Catalym Gmbh Anti-gdf15 antibody and a dosage regimen for the treatment of cancer
MX2023011655A (es) 2021-03-31 2023-10-11 Cambridge Entpr Ltd Inhibidores terapeuticos de la se?alizacion de gdf15.
AU2022328390A1 (en) 2021-08-10 2024-03-21 Adimab, Llc Anti-gdf15 antibodies, compositions and uses thereof
WO2023122213A1 (en) 2021-12-22 2023-06-29 Byomass Inc. Targeting gdf15-gfral pathway cross-reference to related applications
WO2023217068A1 (zh) * 2022-05-09 2023-11-16 舒泰神(北京)生物制药股份有限公司 特异性识别gdf15的抗体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052480A1 (en) * 1998-04-30 2002-05-02 John Edward Park Fapalpha-specific antibody with improved producibility
US20090324604A1 (en) * 2004-01-07 2009-12-31 Chiron Corporation M-csf specific monoclonal antibody and uses thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953639A1 (en) * 1998-04-30 1999-11-03 Boehringer Ingelheim International GmbH FAPalpha-specific antibody with improved producibility
US6465181B2 (en) 1999-03-25 2002-10-15 Abbott Laboratories Reagents and methods useful for detecting diseases of the prostate
JP2002543841A (ja) 1999-05-17 2002-12-24 バイオファーム ゲゼルシャフト ツア バイオテクノロジシェン エントヴィックルング ウント ツム フェルトリーブ フォン ファルマカ エムベーハー TGF−βスーパーファミリーの新規のメンバーであるGDF―15の神経保護特性
AU2001288770A1 (en) 2000-09-08 2002-03-22 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services A non-steroidal anti-inflammatory drug activated gene with anti-tumorigenic properties
WO2005099746A1 (en) 2004-04-13 2005-10-27 St Vincent's Hospital Sydney Limited Method for modulating appetite
US20100278843A1 (en) 2007-08-16 2010-11-04 St. Vincent's Hospital Sydney Limited Agents and methods for modulating macrophage inhibitory cytokine (mic-1) activity
JP2011502106A (ja) * 2007-10-09 2011-01-20 セントビンセンツ ホスピタル シドニー リミテッド マクロファージ阻害性サイトカイン−1を除去又は不活性化して悪液質を治療する方法
CN102164959A (zh) 2008-09-29 2011-08-24 罗氏格黎卡特股份公司 针对人il17的抗体及其应用
WO2011050407A1 (en) 2009-10-28 2011-05-05 St Vincent's Hospital Sydney Limited Methods of diagnosing and prognosing colonic polyps
US9212221B2 (en) * 2010-03-03 2015-12-15 Detroit R & D, Inc. Form-specific antibodies for NAG-1 (MIC-1, GDF-15), H6D and other TGF-β subfamily and heart disease and cancer diagnoses
PT2644698T (pt) * 2010-11-17 2018-01-31 Chugai Pharmaceutical Co Ltd Molécula multiespecífica de ligação ao antigénio com uma função alternativa à função do fator viii de coagulação do sangue
US8790651B2 (en) * 2011-07-21 2014-07-29 Zoetis Llc Interleukin-31 monoclonal antibody
CN102321173B (zh) 2011-08-12 2013-04-03 中国医学科学院肿瘤研究所 人源化巨噬细胞抑制因子1单克隆抗体及其应用
EP2565262A1 (en) 2011-08-31 2013-03-06 VTU Holding GmbH Protein expression
EP2807266B1 (en) 2012-01-26 2020-01-15 Amgen Inc. Growth differentiation factor 15 (gdf-15) polypeptides
TR201910744T4 (tr) * 2012-09-26 2019-08-21 Univ Wuerzburg J Maximilians Büyüme ve farklılaşma faktörü 15 e (gdf-15) yönelik monoklonal antikorlar.
DK2934584T3 (da) 2012-12-21 2020-05-18 Aveo Pharmaceuticals Inc Anti-gdf15-antistoffer
HUE047398T2 (hu) 2014-03-26 2020-04-28 Univ Wuerzburg J Maximilians Növekedési és differenciálódási faktor 15 (GDF-15) elleni monoklonális antitestek és azok alkalmazásai rákos sorvadás és rák kezelésére

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052480A1 (en) * 1998-04-30 2002-05-02 John Edward Park Fapalpha-specific antibody with improved producibility
US20090324604A1 (en) * 2004-01-07 2009-12-31 Chiron Corporation M-csf specific monoclonal antibody and uses thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Chen et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol. 1999 Nov 5;293(4):865-81. *
De Pascalis et al. Grafting of "abbreviated" complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody. J Immunol. 2002 Sep 15;169(6):3076-84. *
MacCallum et al. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol. 1996 Oct 11;262(5):732-45. *
Rudikoff et al. Single amino acid substitution altering antigen-binding specificity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1979-83. *
U. S. Application No. 14/431,281, filed 09/26/2013 *
Vajdos et al. Comprehensive functional maps of the antigen-binding site of an anti-ErbB2 antibody obtained with shotgun scanning mutagenesis. J Mol Biol. 2002 Jul 5;320(2):415-28. *
Wu et al. Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J Mol Biol. 1999 Nov 19;294(1):151-62. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634482B2 (en) 2014-03-26 2023-04-25 Julius-Maxmilians-Universitat Wurzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer

Also Published As

Publication number Publication date
EP4316596A3 (en) 2024-04-17
HUE064573T2 (hu) 2024-03-28
BR112016022013A2 (pt) 2017-10-31
EP4316596A2 (en) 2024-02-07
US10604565B2 (en) 2020-03-31
DK3653644T3 (da) 2023-12-18
JP2021119138A (ja) 2021-08-12
AU2015238264A1 (en) 2016-10-20
US20180298091A1 (en) 2018-10-18
KR20160139005A (ko) 2016-12-06
US11634482B2 (en) 2023-04-25
US20200308265A1 (en) 2020-10-01
PT3653644T (pt) 2023-12-19
CN106536553B (zh) 2021-03-12
JP2023098966A (ja) 2023-07-11
EP3653644B1 (en) 2023-11-15
PL3122775T3 (pl) 2020-05-18
IL248038B (en) 2020-08-31
BR122023027559A2 (pt) 2024-01-30
DK3122775T3 (da) 2020-02-03
EP3653644A1 (en) 2020-05-20
PT3122775T (pt) 2019-12-26
IL248038A0 (en) 2016-11-30
ES2965626T3 (es) 2024-04-16
LT3122775T (lt) 2020-02-10
US20200308264A1 (en) 2020-10-01
FI3653644T3 (fi) 2023-12-12
PL3653644T3 (pl) 2024-03-04
HUE047398T2 (hu) 2020-04-28
LT3653644T (lt) 2024-01-25
IL276405B (en) 2021-07-29
AU2020260440A1 (en) 2020-11-26
CY1122456T1 (el) 2021-01-27
ES2763859T3 (es) 2020-06-01
RS59700B1 (sr) 2020-01-31
KR102520978B1 (ko) 2023-04-11
SI3122775T1 (sl) 2020-02-28
AU2020260440B2 (en) 2024-03-21
IL276405A (en) 2020-09-30
JP6865585B2 (ja) 2021-04-28
US11760795B2 (en) 2023-09-19
AU2015238264B2 (en) 2020-09-03
CN106536553A (zh) 2017-03-22
US20230382987A1 (en) 2023-11-30
JP2017508475A (ja) 2017-03-30
CA2943694A1 (en) 2015-10-01
NZ724649A (en) 2022-07-01
HRP20231514T1 (hr) 2024-03-01
HRP20200034T1 (hr) 2020-03-20
EP3122775A1 (en) 2017-02-01
WO2015144855A1 (en) 2015-10-01
EP3122775B1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
US11634482B2 (en) Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US11891436B2 (en) Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)
GB2524553A (en) Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and use thereof for treating cancer cachexia
GB2524552A (en) Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and use thereof for treating cancer
BR112016022013B1 (pt) Anticorpos monoclonais que se ligam a gdf-15 humano e kit compreendendo os mesmos

Legal Events

Date Code Title Description
AS Assignment

Owner name: JULIUS-MAXIMILIANS-UNIVERSITAET WUERZBURG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WISCHHUSEN, JOERG;JUNKER, MARKUS;SCHAEFER, TINA;AND OTHERS;SIGNING DATES FROM 20170130 TO 20170220;REEL/FRAME:041846/0562

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION