US20170158593A1 - Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials - Google Patents

Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials Download PDF

Info

Publication number
US20170158593A1
US20170158593A1 US15/232,285 US201615232285A US2017158593A1 US 20170158593 A1 US20170158593 A1 US 20170158593A1 US 201615232285 A US201615232285 A US 201615232285A US 2017158593 A1 US2017158593 A1 US 2017158593A1
Authority
US
United States
Prior art keywords
adipic acid
metal
catalyst
hydrodeoxygenation
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/232,285
Inventor
Thomas R. Boussie
Eric L. Dias
Zachary M. Fresco
Vincent J. Murphy
James Shoemaker
Raymond Archer
Hong Jiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Archer Daniels Midland Co
Original Assignee
Rennovia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rennovia Inc filed Critical Rennovia Inc
Priority to US15/232,285 priority Critical patent/US20170158593A1/en
Assigned to RENNOVIA INC. reassignment RENNOVIA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARCHER, RAYMOND, BOUSSIE, THOMAS R., DIAS, ERIC L., FRESCO, ZACHARY M., JIANG, HONG, MURPHY, VINCENT J., SHOEMAKER, JAMES
Publication of US20170158593A1 publication Critical patent/US20170158593A1/en
Assigned to PACIFIC WESTERN BANK reassignment PACIFIC WESTERN BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RENNOVIA INC.
Assigned to RENNOVIA INC. reassignment RENNOVIA INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PACIFIC WESTERN BANK
Assigned to ARCHER-DANIELS-MIDLAND COMPANY reassignment ARCHER-DANIELS-MIDLAND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RENNOVIA INC.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/08Preparation of lactams from carboxylic acids or derivatives thereof, e.g. hydroxy carboxylic acids, lactones or nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product.
  • the present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof.
  • the present invention also includes processes comprising the catalytic oxidation of glucose to glucaric acid and catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product.
  • the present invention also relates to processes for the preparation of industrial chemicals such as adiponitrile, hexamethylene diamine, caprolactam, caprolactone, 1,6-hexanediol, adipate esters, polyamides (e.g., nylons) and polyesters from an adipic acid product obtained from processes which include the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof.
  • industrial chemicals such as adiponitrile, hexamethylene diamine, caprolactam, caprolactone, 1,6-hexanediol, adipate esters, polyamides (e.g., nylons) and polyesters from an adipic acid product obtained from processes which include the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof.
  • Crude oil is currently the source of most commodity and specialty organic chemicals. Many of these chemicals are employed in the manufacture of polymers and other materials. Examples include ethylene, propylene, styrene, bisphenol A, terephthalic acid, adipic acid, caprolactam, hexamethylene diamine, adiponitrile, caprolactone, acrylic acid, acrylonitrile, 1,6-hexanediol, 1,3-propanediol, and others. Crude oil is first refined into hydrocarbon intermediates such as ethylene, propylene, benzene, and cyclohexane. These hydrocarbon intermediates are then typically selectively oxidized using various processes to produce the desired chemical.
  • hydrocarbon intermediates such as ethylene, propylene, benzene, and cyclohexane.
  • crude oil is refined into cyclohexane which is then selectively oxidized to “KA oil” which is then further oxidized for the production of adipic acid, an important industrial monomer used for the production of nylon 6,6.
  • KA oil an important industrial monomer used for the production of nylon 6,6.
  • Many known processes are employed industrially to produce these petrochemicals from precursors found in crude oil. For example, see Ullmann's Encyclopedia of Industrial Chemistry , Wiley 2009 (7th edition), which is incorporated herein by reference.
  • the present invention is directed to processes for preparing an adipic acid product from polyhydroxyl-containing biorenewable materials.
  • a process for producing an adipic acid product from a glucose source comprises converting by chemocatalytic means at least a portion of the glucose source to the adipic acid product.
  • the process for preparing an adipic acid product comprises reacting, in the presence of a hydrodeoxygenation catalyst and a halogen source, a hydrodeoxygenation substrate and hydrogen to convert at least a portion of the hydrodeoxygenation substrate to an adipic acid product, wherein the hydrodeoxygenation substrate comprises a compound of formula I
  • X is independently hydroxyl, oxo, halo, acyloxy or hydrogen provided that at least one X is not hydrogen and R 1 is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl; or a mono- or di-lactone thereof.
  • the process for preparing an adipic acid product comprises converting at least a portion of a glucose source to a hydrodeoxygenation substrate comprising glucaric acid or derivative thereof, and converting at least a portion of the glucaric acid or derivative to an adipic acid product.
  • the present invention is further directed to processes for preparing glucaric acid.
  • the process comprises reacting glucose with a source of oxygen in the presence of an oxidation catalyst and in the substantial absence of added base.
  • the present invention is further directed to processes for preparing glucaric acid by reacting glucose with oxygen in the presence of an oxidation catalyst, wherein at least a portion of the glucose is solubilized with a weak carboxylic acid, preferably acetic acid.
  • the present invention is further directed to processes for the preparation of industrial chemicals such as adiponitrile, hexamethylene diamine, caprolactam, caprolactone, 1,6-hexanediol, adipate esters, polyamides (e.g., nylons) and polyesters from an adipic acid product obtained from processes for the chemocatalytic conversion of a glucose source, which may include, for example, the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof.
  • industrial chemicals such as adiponitrile, hexamethylene diamine, caprolactam, caprolactone, 1,6-hexanediol, adipate esters, polyamides (e.g., nylons) and polyesters from an adipic acid product obtained from processes for the chemocatalytic conversion of a glucose source, which may include, for example, the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof.
  • the present invention is further directed to adipic acid product, polyamides, polyesters and caprolactam produced at least in part from adipic acid product produced by the hydrodeoxygenation of a hydrodeoxygenation substrate, and, more particularly, from glucaric acid or derivative thereof.
  • a hydrodeoxygenation substrate comprising glucaric acid and/or derivatives thereof to an adipic acid product.
  • the catalytic hydrodeoxygenation includes reacting, in the presence of a hydrodeoxygenation catalyst (i.e., catalyst suitable for the hydrodeoxygenation reaction) and a halogen source, a hydrodeoxygenation substrate and hydrogen to convert at least a portion of the hydrodeoxygenation substrate to an adipic acid product.
  • a hydrodeoxygenation catalyst i.e., catalyst suitable for the hydrodeoxygenation reaction
  • the hydrodeoxygenation catalyst of the present invention comprises a d-block metal (i.e., transition metal; groups 3-12 of the periodic table) and is hydroxyl, halo, oxo or acyloxy selective, more typically hydroxyl-selective, which increases yield and improves process economics.
  • a d-block metal i.e., transition metal; groups 3-12 of the periodic table
  • the present invention also relates to processes for the catalytic production of glucaric acid from glucose.
  • the process includes reacting glucose with oxygen in the presence of an oxidation catalyst and in the substantial absence of added base, wherein at least 50% of the glucose is converted to glucaric acid.
  • Conducting the oxidation reaction in the substantial absence of added base facilitates product recovery and improves process economics. Further, this reaction can be conducted in the presence of a weak carboxylic acid, such as acetic acid, in which at least a portion of the glucose is solubilized.
  • preferred oxidation catalysts and/or oxidation reaction conditions provide yields of glucaric acid in excess of 60%, and up to 65% or more.
  • an adipic acid product prepared in accordance with the disclosed processes may be converted, according to processes known in the art, to various other industrially significant chemicals including, for example, adiponitrile, caprolactam, caprolactone, hexamethylene diamine, 1,6-hexanediol, adipate esters, polyamides (e.g., nylon) or polyesters.
  • adiponitrile, caprolactam, caprolactone, hexamethylene diamine, 1,6-hexanediol, adipate esters, polyamides (e.g., nylon) and polyesters may be prepared from glucose derived from biorenewable sources.
  • Glucose can be obtained from various carbohydrate-containing sources including conventional biorenewable sources such as corn grain (maize), wheat, potato, cassava and rice as well as alternative sources such as energy crops, plant biomass, agricultural wastes, forestry residues, sugar processing residues and plant-derived household wastes. More generally, biorenewable sources that may be used in accordance with the present invention include any renewable organic matter that includes a source of carbohydrates such as, for example, switch grass, miscanthus , trees (hardwood and softwood), vegetation, and crop residues (e.g., bagasse and corn stover). Other sources can include, for example, waste materials (e.g., spent paper, green waste, municipal waste, etc.).
  • waste materials e.g., spent paper, green waste, municipal waste, etc.
  • Carbohydrates such as glucose may be isolated from biorenewable materials using methods that are known in the art. See, for example, Centi and van Santen, Catalysis for Renewables , Wiley-VCH, Weinheim 2007; Kamm, Gruber and Kamm, Biorefineries - Industrial Processes and Products , Wiley-VCH, Weinheim 2006; Shang-Tian Yang, Bioprocessing for Value - Added Products from Renewable Resources New Technologies and Applications , Elsevier B. V. 2007; Furia, Starch in the Food Industry, Chapter 8 , CRC Handbook of Food Additives 2 nd Edition CRC Press, 1973.
  • glucose is converted to, for example, glucaric acid.
  • the preparation of glucaric acid can be effected with glucose using oxidation methods that are generally known in the art. See, for example, U.S. Pat. No. 2,472,168, which illustrates a method for the preparation of glucaric acid from glucose using a platinum catalyst in the presence of oxygen and a base. Further examples of the preparation of glucaric acid from glucose using a platinum catalyst in the presence of oxygen and a base are illustrated in the Journal of Catalysis Vol. 67, p. 1-13, and p. 14-20 (1981). Other oxidation methods may also be employed, see for example, U.S. Pat. Nos.
  • glucose may be converted to glucaric acid in high yield by reacting glucose with oxygen (as used herein, oxygen can be supplied to the reaction as air, oxygen-enriched air, oxygen alone, or oxygen with other constituents substantially inert to the reaction) in the presence of an oxidation catalyst and in the absence of added base according to the following reaction:
  • the “absence of added base” as used herein means that base, if present (for example, as a constituent of a feedstock), is present in a concentration which has essentially no effect on the efficacy of the reaction; i.e., the oxidation reaction is being conducted essentially free of added base. It has also been discovered that this oxidation reaction can also be conducted in the presence of a weak carboxylic acid, such as acetic acid, in which glucose is soluble.
  • weak carboxylic acid means any unsubstituted or substituted carboxylic acid having a pKa of at least about 3.5, more preferably at least about 4.5 and, more particularly, is selected from among unsubstituted acids such as acetic acid, propionic acid or butyric acid, or mixtures thereof.
  • the initial pH of the reaction mixture is no greater than about 7, and typically is less than 7 such as, for example, 6 or less when a weak carboxylic acid is used to solubilize at least a portion of the glucose.
  • the initial pH of the reaction mixture is the pH of the reaction mixture prior to contact with oxygen in the presence of an oxidation catalyst. It is expected that the pH of the reaction mixture after oxygen contact will vary as the reaction proceeds. It is believed that as the concentration of the glucaric acid increases (as the reaction proceeds) the pH will decrease from the initial pH.
  • nitrogen is employed in known processes as an oxidant such as in the form of nitrate, in many instances as nitric acid.
  • an oxidant such as in the form of nitrate, in many instances as nitric acid.
  • an oxidation reaction employing air or oxygen-enriched air is a reaction conducted essentially free of nitrogen in a form in which it would be an active reaction constituent.
  • the temperature of the oxidation reaction mixture is at least about 40° C., more typically 60° C., or higher. In various embodiments, the temperature of the oxidation reaction mixture is from about 40° C. to about 150° C., from about 60° C. to about 150° C., from about 70° C. to about 150° C., from about 70° C. to about 140° C., or from about 80° C. to about 120° C.
  • the partial pressure of oxygen is at least about 15 pounds per square inch absolute (psia) (104 kPa), at least about 25 psia (172 kPa), at least about 40 psia (276 kPa), or at least about 60 psia (414 kPa). In various embodiments, the partial pressure of oxygen is up to about 1000 psia (6895 kPa), or more typically in the range of from about 15 psia (104 kPa) to about 500 psia (3447 kPa).
  • the oxidation reaction is typically conducted in the presence of a solvent to glucose.
  • Solvents suitable for the oxidation reaction include water and weak carboxylic acids such as acetic acid. Utilization of weak carboxylic acid as a solvent adds cost to the process which cost, as a practical matter, must be balanced against any benefits derived from the use thereof.
  • suitable solvents for the present invention include water, mixtures of water and weak carboxylic acid, or weak carboxylic acid.
  • the oxidation reaction can be conducted in a batch, semi-batch, or continuous reactor design using fixed bed reactors, trickle bed reactors, slurry phase reactors, moving bed reactors, or any other design that allows for heterogeneous catalytic reactions.
  • reactors can be seen in Chemical Process Equipment—Selection and Design , Couper et al., Elsevier 1990, which is incorporated herein by reference. It should be understood that glucose, oxygen, any solvent, and the oxidation catalyst may be introduced into a suitable reactor separately or in various combinations.
  • oxidation catalyst Catalysts suitable for the oxidation reaction
  • heterogeneous catalysts including solid-phase catalysts comprising one or more supported or unsupported metals.
  • metal is present at a surface of a support (i.e., at one or more surfaces, external or internal).
  • metal is selected from the group consisting of palladium, platinum, and combinations thereof. Additional other metals may be present, including one or more d-block metals, alone or in combination with one or more rare earth metals (e.g. lanthanides), alone or in combination with one or more main group metals (e.g. Al, Ga, Tl, In, Sn, Pb or Bi).
  • the metals may be present in various forms (e.g., elemental, metal oxide, metal hydroxides, metal ions, etc.).
  • the metal(s) at a surface of a support may constitute from about 0.25% to about 10%, or from about 1% to about 8%, or from about 2.5% to about 7.5% (e.g., 5%) of the total weight of the catalyst.
  • the oxidation catalyst comprises a first metal (M1) and a second metal (M2) at a surface of a support, wherein the M1 metal is selected from the group consisting of palladium and platinum and the M2 metal is selected from the group consisting of d-block metals, rare earth metals, and main group metals, wherein the M1 metal is not the same metal as the M2 metal.
  • the M1 metal is platinum and the M2 metal is selected from the group consisting of manganese, iron, and cobalt.
  • the M1:M2 molar ratio may vary, for example, from about 500:1 to about 1:1, from about 250:1 to about 1:1, from about 100:1 to about 1:1, from about 50:1 to about 1:1, from about 20:1 to about 1:1, or from about 10:1 to about 1:1.
  • the M1:M2 molar ratio may vary, for example, from about 1:100 to about 1:1, from about 1:50 to about 1:1, from about 1:10 to about 1:1, from about 1:5 to about 1:1, or from about 1:2 to about 1:1.
  • the weight percents of M1 and M2 relative to the catalyst weight may vary.
  • the weight percent of M1 may range from about 0.5% to about 10%, more preferably from about 1% to about 8%, and still more preferably from about 2.5% to about 7.5% (e.g., about 5%).
  • the weight percent of M2 may range from about 0.25% to about 10%, from about 0.5% to about 8%, or from about 0.5% to about 5%.
  • a third metal may be added to produce a M1/M2/M3 catalyst wherein the M3 metal is not the same metal as the M1 metal and the M2 metal.
  • a fourth metal may be added to produce a M1/M2/M3/M4 catalyst wherein the M4 metal is not the same metal as the M1 metal, the M2 metal or the M3 metal.
  • the M3 metal and M4 metal may each be selected from the group consisting of d-block metals, rare earth metals (e.g. lanthanides), or main group metals (e.g. Al, Ga, Tl, In, Sn, Pb or Bi).
  • Suitable catalyst supports include carbon, alumina, silica, ceria, titania, zirconia, niobia, zeolite, magnesia, clays, iron oxide, silicon carbide, aluminosilicates, and modifications, mixtures or combinations thereof.
  • the preferred support materials may be modified using methods known in the art such as heat treatment, acid treatment or by the introduction of a dopant (for example, metal-doped titanias, metal-doped zirconias (e.g., tungstated-zirconia), metal-doped cerias, and metal-modified niobias).
  • Particularly preferred supports are carbon (which may be activated carbon, carbon black, coke or charcoal), alumina, zirconia, titania, zeolite and silica.
  • the support of the oxidation catalyst is selected from the group consisting of carbon, zirconia, zeolite, and silica.
  • the metals may be deposited using procedures known in the art including, but not limited to incipient wetness, ion-exchange, deposition-precipitation, and vacuum impregnation. When two or more metals are deposited on the same support, they may be deposited sequentially or simultaneously.
  • the catalyst is dried at a temperature of at least about 50° C., more typically at least about 120° C. for a period of time of at least about 1 hour, more typically 3 hours or more. In these and other embodiments, the catalyst is dried under sub-atmospheric pressure conditions. In various embodiments, the catalyst is reduced after drying (e.g., by flowing 5% H 2 in N 2 at 350° C. for 3 hours). Still further, in these and other embodiments, the catalyst is calcined, for example, at a temperature of at least about 500° C. for a period of time (e.g., at least about 3 hours).
  • the reaction product of the oxidation step will, as described above, yield glucaric acid in considerable and heretofore unexpected fraction, but may also yield derivatives thereof, such as glucarolactones.
  • glucarolactones like glucaric acid, constitute hydrodeoxygenation substrate which is particularly amenable to the production of adipic acid product as hereinafter described.
  • Glucarolactones which may be present in the reaction mixture resulting from the oxidation step include mono and di-lactones such as D-glucaro-1,4-lactone, D-glucaro-6,3-lactone, and D-glucaro-1,4:6,3-dilactone.
  • One advantage of higher concentrations of glucarolactones is further improvement in the economics of the hydrodeoxygenation step resulting from a reduction in the amount of water produced.
  • Glucaric acid produced in accordance with the above may be converted to various other glucaric acid derivatives, such as salts, esters, ketones, and lactones. Methods to convert carboxylic acids to such derivatives are known in the art, see, for example, Wade, Organic Chemistry 3 rd ed , Prentice Hall 1995.
  • an adipic acid product may be prepared by chemocatalytic conversion of a glucose source.
  • preparation of an adipic acid product includes chemocatalytic conversion of a glucose source to glucaric acid.
  • a hydrodeoxygenation substrate comprising at least a portion of the glucaric acid or derivatives thereof is converted to an adipic acid product.
  • Derivatives of glucaric acid include compounds as defined below.
  • the hydrodeoxygenation substrate comprises a compound of the formula I:
  • X is independently hydroxyl, oxo, halo, acyloxy or hydrogen provided that at least one X is not hydrogen;
  • R 1 is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl; or a mono- or di-lactone thereof
  • hydrocarbyl refers to hydrocarbyl moieties, preferably containing 1 to about 50 carbon atoms, preferably 1 to about 30 carbon atoms, and even more preferably 1 to about 18 carbon atoms, including branched or unbranched, and saturated or unsaturated species.
  • Preferred hydrocarbyl can be selected from the group consisting of alkyl, alkylene, alkoxy, alkylamino, thioalkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, aryl, aralkyl heteroaryl, N-heteroaryl, heteroarylalkyl, and the like.
  • a hydrocarbyl may be optionally substituted hydrocarbyl.
  • various hydrocarbyls can be further selected from substituted alkyl, substituted cycloalkyl and the like.
  • Salt forming ions include, without limitation, for example ammonium ions and metal ions (e.g., alkali and alkaline earth metals).
  • R 1 is a salt forming ion (i.e., a cation)
  • the carboxyl group may be considered to be anion (i.e., carboxylate anion).
  • the hydrodeoxygenation substrate comprises a compound of formula I, wherein X is hydroxyl and R 1 is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl.
  • the hydrodeoxygenation substrate contains a six carbon chain comprising four chiral centers. As a result several stereoisomers are possible.
  • the preferred hydrodeoxygenation substrate comprises glucaric acid.
  • the hydrodeoxygenation substrate may also contain various ketones.
  • ketones such as 2-keto-glucaric acid (2,3,4-trihydroxy-5-oxohexanedioic acid) and 3-keto-glucaric acid (2,3,5-trihydroxy-4-oxohexanedioic acid) may be formed.
  • the hydrodeoxygenation substrate may comprise various lactones derived from glucaric acid.
  • various mono- and di-lactones are present in equilibrium with glucaric acid in aqueous solution, including for example, D-glucaro-1,4-lactone, D-glucaro-6,3-lactone, and D-glucaro-1,4:6,3-dilactone.
  • processes have been developed to quantitatively convert glucaric acid or a salt thereof in solution to one or more lactones and recover a substantially pure lactone stream.
  • lactones such as L-threo-4-deoxy-hex-4-enaro-6,3-lactone and L-erythro-4-deoxy-hex-4-enaro-6,3-lactone may form from the thermal decomposition of D-Glucaro-1,4:6,3-dilactone.
  • the hydrodeoxygenation substrate comprises D-glucaro-1,4-lactone.
  • the hydrodeoxygenation substrate comprises D-glucaro-6,3-lactone.
  • the hydrodeoxygenation substrate comprises D-glucaro-1,4:6,3-dilactone.
  • the hydrodeoxygenation substrate comprises L-threo-4-deoxy-hex-4-enaro-6,3-lactone.
  • the hydrodeoxygenation substrate comprises L-erythro-4-deoxy-hex-4-enaro-6,3-lactone.
  • an adipic acid product (formula II) may be prepared by reacting, in the presence of a hydrodeoxygenation catalyst and a halogen source, a hydrodeoxygenation substrate (formula I) and hydrogen, according to the following reaction:
  • the adipic acid product (formula II) comprises adipic acid.
  • a hydrodeoxygenation substrate is converted to an adipic acid product by catalytic hydrodeoxygenation in which carbon-hydroxyl groups are converted to carbon-hydrogen groups.
  • the catalytic hydrodeoxygenation is hydroxyl-selective wherein the reaction is completed without substantial conversion of the one or more other non-hydroxyl functional group of the substrate.
  • a hydrodeoxygenation substrate is catalytically hydrodeoxygenated in the presence of hydrogen, a halogen source and a hydrodeoxygenation catalyst.
  • the hydrodeoxygenation substrate is halogenated with the halogen source, to form a halogenated intermediate containing a carbon-halogen bond (e.g., a secondary alcohol group on the glucaric acid is converted to a halide to produce an alkyl halide).
  • the carbon-halogen bond of the halogenated intermediate is believed to be converted to a carbon-hydrogen bond via one or more of the following pathways.
  • the halogenated intermediate reacts with hydrogen in the presence of the hydrodeoxygenation catalyst leading to the formation of a carbon-hydrogen bond along with the generation of hydrohalic acid.
  • the halogenated intermediate undergoes a dehydrohalogenation reaction to form an olefin intermediate and hydrohalic acid.
  • the olefin is further reduced in the presence of the hydrodeoxygenation catalyst leading to the formation of a carbon-hydrogen bond (or the olefin may be an enol form of a ketone which can interconvert to a keto form which can reduce to an alcohol group which can undergo further hydrodeoxygenation).
  • hydrodeoxygenation reaction can be conducted by first forming and optionally purifying or isolating these various intermediates formed by combining a hydrodeoxygenation substrate and a halogen source and subsequently reacting the intermediate with hydrogen in the presence of the hydrodeoxygenation catalyst and optionally in the absence of any halogen source.
  • the hydrodeoxygenation substrate is halogenated with hydrohalic acid to form a halogenated intermediate (e.g., an alkyl halide).
  • a halogenated intermediate e.g., an alkyl halide
  • the hydrodeoxygenation substrate is halogenated with a molecular halogen to form the halogenated intermediate (e.g., an alkyl halide).
  • the halogen source may be in a form selected from the group consisting of atomic, ionic, molecular, and mixtures thereof.
  • Halogen sources include hydrohalic acids (e.g., HCl, HBr, HI and mixtures thereof; preferably HBr and/or HI), halide salts, (substituted or unsubstituted) alkyl halides, or elemental halogens (e.g. chlorine, bromine, iodine or mixtures thereof; preferably bromine and/or iodine).
  • the halogen source is in molecular form and, more preferably, is bromine.
  • the halogen source is a hydrohalic acid, in particular hydrogen bromide.
  • the molar ratio of halogen to the hydrodeoxygenation substrate is about equal to or less than about 1.
  • the mole ratio of halogen to the hydrodeoxygenation substrate is typically from about 1:1 to about 0.1:1, more typically from about 0.7:1 to about 0.3:1, and still more typically about 0.5:1.
  • the reaction allows for recovery of the halogen source and catalytic quantities (where molar ratio of halogen to the hydrodeoxygenation substrate is less than about 1) of halogen can be used, recovered and recycled for continued use as a halogen source.
  • the temperature of the hydrodeoxygenation reaction mixture is at least about 20° C., typically at least about 80° C., and more typically at least about 100° C. In various embodiments, the temperature of the hydrodeoxygenation reaction is conducted in the range of from about 20° C. to about 250° C., from about 80° C. to about 200° C., more preferably from about 120° C. to about 180° C., and still more preferably between about 140° C. and 180° C.
  • the partial pressure of hydrogen is at least about 25 psia (172 kPa), more typically at least about 200 psia (1379 kPa) or at least about 400 psia (2758 kPa). In various embodiments, the partial pressure of hydrogen is from about 25 psia (172 kPa) to about 2500 psia (17237 kPa), from about 200 psia (1379 kPa) to about 2000 psia (13790 kPa), or from about 400 psia (2758 kPa) to about 1500 psia (10343 kPa).
  • the hydrodeoxygenation reaction is typically conducted in the presence of a solvent.
  • Solvents suitable for the selective hydrodeoxygenation reaction include water and carboxylic acids, amides, esters, lactones, sulfoxides, sulfones and mixtures thereof.
  • Preferred solvents include water, mixtures of water and weak carboxylic acid, and weak carboxylic acid.
  • a preferred weak carboxylic acid is acetic acid.
  • the reaction can be conducted in a batch, semi-batch, or continuous reactor design using fixed bed reactors, trickle bed reactors, slurry phase reactors, moving bed reactors, or any other design that allows for heterogeneous catalytic reactions.
  • reactors can be seen in Chemical Process Equipment—Selection and Design , Couper et al., Elsevier 1990, which is incorporated herein by reference. It should be understood that the hydrodeoxygenation substrate, halogen source, hydrogen, any solvent, and the hydrodeoxygenation catalyst may be introduced into a suitable reactor separately or in various combinations.
  • the hydrodeoxygenation catalyst is heterogeneous, but a suitable homogeneous catalyst may be employed.
  • the hydrodeoxygenation catalyst comprises a solid-phase heterogeneous catalyst in which one or more metals is present at a surface of a support (i.e., at one or more surfaces, external or internal).
  • Preferred metals are d-block metals which may be used alone, in combination with each other, in combination with one or more rare earth metals (e.g. lanthanides), and in combination with one or more main group metals (e.g., Al, Ga, Tl, In, Sn, Pb or Bi).
  • Preferred d-block metals are selected from the group consisting of cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum and combinations thereof. More preferred d-block metals are selected from the group consisting of ruthenium, rhodium, palladium, platinum, and combinations thereof.
  • the catalyst comprises platinum.
  • the metals may be present in various forms (e.g., elemental, metal oxide, metal hydroxides, metal ions etc.).
  • the metal(s) at a surface of a support may constitute from about 0.25% to about 10%, or from about 1% to about 8%, or from about 2.5% to about 7.5% (e.g., 5%) of the catalyst weight.
  • the catalyst comprises two or more metals.
  • two of more metals may be co-supported on or within the same support (e.g., as a mixed-metal catalyst on silica; M1/M2/Silica catalyst), or they may be supported on different support materials.
  • the hydrodeoxygenation catalyst comprises a first metal (M1) and a second metal (M2) at a surface of a support, wherein the M1 metal comprises a d-block metal and the M2 metal is selected from the group consisting of d-block metals, rare earth metals, and main group metals, wherein the M1 metal is not the same metal as the M2 metal.
  • the M1 metal is selected from the group consisting of cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum. In more preferred embodiments, the M1 metal is selected from the group consisting of ruthenium, rhodium, palladium, and platinum. In various embodiments, the M2 metal is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, palladium, silver, tungsten, iridium, platinum, and gold. In more preferred embodiments, the M2 metal is selected from the group consisting of molybdenum, ruthenium, rhodium, palladium, iridium, platinum, and gold.
  • the M1 metal is selected from the group of platinum, rhodium and palladium
  • the M2 metal is selected from the group consisting of ruthenium, rhodium, palladium, platinum, and gold.
  • M1 is platinum and M2 is rhodium.
  • the M1:M2 molar ratio may vary, for example, from about 500:1 to about 1:1, from about 250:1 to about 1:1, from about 100:1 to about 1:1, from about 50:1 to about 1:1, from about 20:1 to about 1:1, or from about 10:1 to about 1:1.
  • the M1:M2 molar ratio may vary, for example, from about 1:100 to about 1:1, from about 1:50 to about 1:1, from about 1:10 to about 1:1, from about 1:5 to about 1:1, or from about 1:2 to about 1:1.
  • the weight percents of M1 and M2 relative to the total catalyst weight may vary.
  • the weight percent of M1 may range from about 0.5% to about 10%, more preferably from about 1% to about 8%, and still more preferably from about 2.5% to about 7.5% (e.g., about 5%).
  • the weight percent of M2 may range from about 0.25% to about 10%, from about 0.5% to about 8%, or from about 0.5% to about 5%.
  • a third metal may be added to produce a M1/M2/M3 catalyst wherein the M3 metal is not the same metal as the M1 metal and the M2 metal.
  • a fourth metal may be added to produce a M1/M2/M3/M4 catalyst wherein the M4 metal is not the same metal as the M1 metal, the M2 metal or the M3 metal.
  • M3 and M4 may each be selected from the group consisting of d-block metals, rare earth metals (e.g. lanthanides), or main group metals (e.g. Al, Ga, Tl, In, Sn, Pb or Bi).
  • Preferred catalyst supports include carbon, alumina, silica, ceria, titania, zirconia, niobia, zeolite, magnesia, clays, iron oxide, silicon carbide, aluminosilicates, and modifications, mixtures or combinations thereof.
  • the preferred supports may be modified through methods known in the art such as heat treatment, acid treatment, the introduction of a dopant (for example, metal-doped titanias, metal-doped zirconias (e.g. tungstated zirconia), metal-doped cerias, and metal-modified niobias).
  • the hydrodeoxygenation catalyst support is selected from the group consisting of silica, zirconia and titania.
  • a catalyst comprising platinum and rhodium is on a support comprising silica.
  • the metals may be deposited using procedures known in the art including, but not limited to incipient wetness, ion-exchange, deposition-precipitation and vacuum impregnation. When the two or more metals are deposited on the same support, they may be deposited sequentially, or simultaneously.
  • the catalyst is dried at a temperature of at least about 50° C., more typically at least about 120° C. or more for a period of time of at least about 1 hour, more typically at least about 3 hours or more. In these and other embodiments, the catalyst is dried under sub-atmospheric conditions.
  • the catalyst is reduced after drying (e.g., by flowing 5% H 2 in N 2 at 350° C. for 3 hours). Still further, in these and other embodiments, the catalyst is calcined, for example, at a temperature of at least about 500° C. for a period of time (e.g., at least about 3 hours).
  • catalysts mixtures (co-catalysts or mixed metal catalysts) containing more than one metal may affect separate steps of the mechanistic reaction pathway.
  • An adipic acid product may be recovered from the hydrodeoxygenation reaction mixture by one or more conventional methods known in the art including, for example, solvent extraction, crystallization or evaporative processes.
  • adipic acid to downstream chemical products or intermediates including adipate esters, polyesters, adiponitrile, hexamethylene diamine (HMDA), caprolactam, caprolactone, 1,6-hexanediol, aminocaproic acid, and polyamide such as nylons.
  • HMDA hexamethylene diamine
  • caprolactam caprolactone
  • 1,6-hexanediol aminocaproic acid
  • polyamide such as nylons.
  • an adipic acid product is converted to adiponitrile wherein the adipic acid product is prepared in accordance with the present invention.
  • Adiponitrile can be used industrially for the manufacture of hexamethylene diamine, see Smiley, “Hexamethylenediamine” in Ullman's Encyclopedia of Industrial Chemistry , Wiley-VCH 2009. Therefore, in further embodiments, an adipic acid product is converted to hexamethylene diamine wherein the adipic acid product is prepared in accordance with the present invention.
  • Adipic acid is useful in the production of polyamides, such as nylon 6,6 and nylon 4,6.
  • polyamides such as nylon 6,6 and nylon 4,6.
  • the hexamethylene diamine formed from an adipic acid product prepared in accordance with the present invention can likewise be further used for the preparation of polyamides such as nylon 6,6 and nylon 6,12.
  • polyamides such as nylon 6,6 and nylon 6,12.
  • adipic acid and a polymer precursor derived from an adipic acid product may be reacted to produce a polyamide, wherein the adipic acid product is prepared in accordance with the present invention.
  • Polymer precursor refers to a monomer which can be converted to a polymer (or copolymer) under appropriate polymerization conditions.
  • the polyamide comprises nylon 6,6.
  • nylon 6,6 is produced by reacting an adipic acid product with a polymer precursor derived from an adipic acid product, wherein the polymer precursor comprises hexamethylene diamine.
  • hexamethylene diamine may be prepared by converting an adipic acid product to adiponitrile which then may be converted to hexamethylene diamine, wherein the adipic acid product is prepared in accordance with the present invention.
  • an adipic acid product is converted to caprolactam wherein the adipic acid product is prepared in accordance with the present invention.
  • the caprolactam formed can be further used for the preparation of polyamides by means generally known in the art. Specifically, caprolactam can be further used for the preparation of nylon 6. See, for example Kohan, Mestemacher, Pagilagan, Redmond, “Polyamides” in Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH, Weinheim, 2005.
  • nylon 6 is produced by reacting caprolactam derived from an adipic acid product prepared in accordance with the present invention.
  • adipic acid and a polymer precursor may be reacted to produce a polyester, wherein the adipic acid product is prepared in accordance with the present invention.
  • an adipic acid product is converted to 1,6-hexanediol wherein the adipic acid product is prepared in accordance with the present invention.
  • 1,6-hexanediol is a valuable chemical intermediate used in the production of polyesters and polyurethanes.
  • polyester may be prepared by reacting adipic acid and 1,6-hexandiol derived from an adipic acid product, prepared in accordance with the present invention.
  • a salt of adipic acid may be produce wherein the process comprises reacting adipic acid with hexamethylene diamine, thereby forming the salt, wherein adipic acid is prepared in accordance with the present invention.
  • Example 1 Reactions were conducted in 1 mL glass vials housed in a pressurized vessel in accordance with the procedures described in the examples below.
  • Product yields were determined using a Dionex ICS-3000 Chromatography system.
  • Example 2 the products were first separated on an Ionpac ⁇ AS11-HC column and then quantified by conductivity detection through comparison with calibration standards.
  • Example 2 the products were first separated on an Acclaim ⁇ Organic Acid column and then quantified by a UV detector through comparison with calibration standards.
  • Catalysts were dispensed into 1 mL vials within a 96-well reactor insert (Symyx Solutions).
  • the reaction substrate was D-glucose (Sigma-Aldrich, 0.552M in water).
  • To each vial was added 250 ⁇ L of glucose solution.
  • the vials were each covered with a Teflon pin-hole sheet, a silicone pin-hole mat and steel gas diffusion plate (Symyx Solutions).
  • the reactor insert was placed in a pressure vessel and charged three times with oxygen to 100 psig with venting after each pressurization step. The reactor was then charged to 75 psig with oxygen, or to 500 psig with air, closed and placed on a shaker, heated at the designated temperature for the specified reaction time.
  • the mixtures were agitated to impregnate the support.
  • M2 Ru, Rh, Pd, Ir, Pt, Au, Mo
  • the mixtures were agitated via a multi-tube vortexer to impregnate the supports.
  • the glass vial arrays of M1/M2/Support catalysts were dried in a furnace at 120° C. for 1 hour, followed by calcination at 500° C. for 3 hours. Upon cooling the arrays of catalysts were stored in a dessicator until used.
  • the glass vial arrays of M1/M2/Support catalysts were dried in a furnace at 120° C. for 1 hour, followed by calcination at 500° C. for 3 hours. Upon cooling the arrays of catalysts were stored in a dessicator until used.
  • the arrays of catalysts were transferred to 1 mL glass vials within a 96-well reactor insert (Symyx Solutions). Each vial within each array received a glass bead and 250 ⁇ L of 0.2 M Glucaric Acid (prepared from calcium glucarate) (Sigma-Adrich), 0.1 M HBr (examples 1-37; Sigma-Aldrich) or 0.2 M HBr (example 38; Sigma-Aldrich) in Acetic Acid (Sigma-Aldrich). Upon solution addition, the arrays of vials were covered with a Teflon pin-hole sheet, a silicone pin-hole mat and steel gas diffusion plate (Symyx Solutions).
  • the reactor insert was placed in a pressure vessel pressurized and vented 3 times with nitrogen and 3 times with hydrogen before being pressurized with hydrogen to 710 psig, heated to 140° C. (examples 1-37) or 160° C. (example 38) and shaken for 3 hours. After 3 hours the reactors were cooled, vented and purged with nitrogen. 750 ⁇ l of water was then added to each vial. Following the water addition, the arrays were covered and shaken to ensure adequate mixing. Subsequently, the covered arrays were placed in a centrifuge to separate the catalyst particles. Each reaction samples was then diluted 2-fold with water to generate a sample for analysis by HPLC. The results are presented in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 14/854,780, filed Sep. 15, 2015, which is a continuation of U.S. application Ser. No. 14/153,248, filed Jan. 13, 2014, now issued U.S. Pat. No. 9,156,766, which is a division of U.S. application Ser. No. 12/814,188, filed Jun. 11, 2010, now issued U.S. Pat. No. 8,669,397, which claims benefit of U.S. provisional application Ser. No. 61/268,414, filed Jun. 13, 2009, and U.S. provisional application Ser. No. 61/311,190, filed Mar. 5, 2010, the entire disclosures of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising the catalytic oxidation of glucose to glucaric acid and catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also relates to processes for the preparation of industrial chemicals such as adiponitrile, hexamethylene diamine, caprolactam, caprolactone, 1,6-hexanediol, adipate esters, polyamides (e.g., nylons) and polyesters from an adipic acid product obtained from processes which include the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof.
  • BACKGROUND OF THE INVENTION
  • Crude oil is currently the source of most commodity and specialty organic chemicals. Many of these chemicals are employed in the manufacture of polymers and other materials. Examples include ethylene, propylene, styrene, bisphenol A, terephthalic acid, adipic acid, caprolactam, hexamethylene diamine, adiponitrile, caprolactone, acrylic acid, acrylonitrile, 1,6-hexanediol, 1,3-propanediol, and others. Crude oil is first refined into hydrocarbon intermediates such as ethylene, propylene, benzene, and cyclohexane. These hydrocarbon intermediates are then typically selectively oxidized using various processes to produce the desired chemical. For example, crude oil is refined into cyclohexane which is then selectively oxidized to “KA oil” which is then further oxidized for the production of adipic acid, an important industrial monomer used for the production of nylon 6,6. Many known processes are employed industrially to produce these petrochemicals from precursors found in crude oil. For example, see Ullmann's Encyclopedia of Industrial Chemistry, Wiley 2009 (7th edition), which is incorporated herein by reference.
  • For many years there has been an interest in using biorenewable materials as a feedstock to replace or supplement crude oil. See, for example, Klass, Biomass for Renewable Energy, Fuels, and Chemicals, Academic Press, 1998, which is incorporated herein by reference. Moreover, there have been efforts to produce adipic acid from renewable resources using processes involving a combination of biocatalytic and chemocatalytic processes. See, for example, “Benzene-Free Synthesis of Adipic Acid”, Frost et al. Biotechnol. Prog. 2002, Vol. 18, pp. 201-211, and U.S. Pat. Nos. 4,400,468, and 5,487,987.
  • One of the major challenges for converting biorenewable resources such as carbohydrates (e.g. glucose derived from starch, cellulose or sucrose) to current commodity and specialty chemicals is the selective removal of oxygen atoms from the carbohydrate. Approaches are known for converting carbon-oxygen single bonds to carbon-hydrogen bonds. See, for example: U.S. Pat. No. 5,516,960; U.S. Patent App. Pub. US2007/0215484 and Japanese Patent No. 78,144,506. Each of these known approaches suffers from various limitations and we believe that, currently, none of such methods are used industrially for the manufacture of specialty or industrial chemicals.
  • Thus, there remains a need for new, industrially scalable methods for the selective and commercially-meaningful conversion of carbon-oxygen single bonds to carbon-hydrogen bonds, especially as applied in connection with the production of chemicals from polyhydroxyl-containing substrates (e.g., glucaric acid), and especially for the production of chemicals from polyhydroxyl-containing biorenewable materials (e.g., glucose derived from starch, cellulose or sucrose) to important chemical intermediates such as adipic acid.
  • SUMMARY OF THE INVENTION
  • Briefly, therefore, the present invention is directed to processes for preparing an adipic acid product from polyhydroxyl-containing biorenewable materials. In accordance with one embodiment, a process for producing an adipic acid product from a glucose source is provided which comprises converting by chemocatalytic means at least a portion of the glucose source to the adipic acid product.
  • In accordance with another embodiment, the process for preparing an adipic acid product comprises reacting, in the presence of a hydrodeoxygenation catalyst and a halogen source, a hydrodeoxygenation substrate and hydrogen to convert at least a portion of the hydrodeoxygenation substrate to an adipic acid product, wherein the hydrodeoxygenation substrate comprises a compound of formula I
  • Figure US20170158593A1-20170608-C00001
  • wherein X is independently hydroxyl, oxo, halo, acyloxy or hydrogen provided that at least one X is not hydrogen and R1 is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl; or a mono- or di-lactone thereof.
  • In accordance with another embodiment, the process for preparing an adipic acid product comprises converting at least a portion of a glucose source to a hydrodeoxygenation substrate comprising glucaric acid or derivative thereof, and converting at least a portion of the glucaric acid or derivative to an adipic acid product.
  • The present invention is further directed to processes for preparing glucaric acid. In one embodiment, the process comprises reacting glucose with a source of oxygen in the presence of an oxidation catalyst and in the substantial absence of added base.
  • The present invention is further directed to processes for preparing glucaric acid by reacting glucose with oxygen in the presence of an oxidation catalyst, wherein at least a portion of the glucose is solubilized with a weak carboxylic acid, preferably acetic acid.
  • The present invention is further directed to processes for the preparation of industrial chemicals such as adiponitrile, hexamethylene diamine, caprolactam, caprolactone, 1,6-hexanediol, adipate esters, polyamides (e.g., nylons) and polyesters from an adipic acid product obtained from processes for the chemocatalytic conversion of a glucose source, which may include, for example, the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof.
  • The present invention is further directed to adipic acid product, polyamides, polyesters and caprolactam produced at least in part from adipic acid product produced by the hydrodeoxygenation of a hydrodeoxygenation substrate, and, more particularly, from glucaric acid or derivative thereof.
  • Other objects and features will become apparent and/or will be pointed out hereinafter.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In accordance with the present invention, applicants disclose processes for the chemocatalytic conversion of a glucose source to an adipic acid product.
  • Further, in accordance with the present invention, applicants disclose processes for the catalytic hydrodeoxygenation of a hydrodeoxygenation substrate comprising glucaric acid and/or derivatives thereof to an adipic acid product. The catalytic hydrodeoxygenation includes reacting, in the presence of a hydrodeoxygenation catalyst (i.e., catalyst suitable for the hydrodeoxygenation reaction) and a halogen source, a hydrodeoxygenation substrate and hydrogen to convert at least a portion of the hydrodeoxygenation substrate to an adipic acid product. The hydrodeoxygenation catalyst of the present invention comprises a d-block metal (i.e., transition metal; groups 3-12 of the periodic table) and is hydroxyl, halo, oxo or acyloxy selective, more typically hydroxyl-selective, which increases yield and improves process economics.
  • The present invention also relates to processes for the catalytic production of glucaric acid from glucose. The process includes reacting glucose with oxygen in the presence of an oxidation catalyst and in the substantial absence of added base, wherein at least 50% of the glucose is converted to glucaric acid. Conducting the oxidation reaction in the substantial absence of added base facilitates product recovery and improves process economics. Further, this reaction can be conducted in the presence of a weak carboxylic acid, such as acetic acid, in which at least a portion of the glucose is solubilized. Moreover, preferred oxidation catalysts and/or oxidation reaction conditions provide yields of glucaric acid in excess of 60%, and up to 65% or more.
  • In another aspect of the invention, an adipic acid product prepared in accordance with the disclosed processes may be converted, according to processes known in the art, to various other industrially significant chemicals including, for example, adiponitrile, caprolactam, caprolactone, hexamethylene diamine, 1,6-hexanediol, adipate esters, polyamides (e.g., nylon) or polyesters. Thus, adiponitrile, caprolactam, caprolactone, hexamethylene diamine, 1,6-hexanediol, adipate esters, polyamides (e.g., nylon) and polyesters may be prepared from glucose derived from biorenewable sources.
  • I. Feedstocks
  • Glucose can be obtained from various carbohydrate-containing sources including conventional biorenewable sources such as corn grain (maize), wheat, potato, cassava and rice as well as alternative sources such as energy crops, plant biomass, agricultural wastes, forestry residues, sugar processing residues and plant-derived household wastes. More generally, biorenewable sources that may be used in accordance with the present invention include any renewable organic matter that includes a source of carbohydrates such as, for example, switch grass, miscanthus, trees (hardwood and softwood), vegetation, and crop residues (e.g., bagasse and corn stover). Other sources can include, for example, waste materials (e.g., spent paper, green waste, municipal waste, etc.). Carbohydrates such as glucose may be isolated from biorenewable materials using methods that are known in the art. See, for example, Centi and van Santen, Catalysis for Renewables, Wiley-VCH, Weinheim 2007; Kamm, Gruber and Kamm, Biorefineries-Industrial Processes and Products, Wiley-VCH, Weinheim 2006; Shang-Tian Yang, Bioprocessing for Value-Added Products from Renewable Resources New Technologies and Applications, Elsevier B. V. 2007; Furia, Starch in the Food Industry, Chapter 8, CRC Handbook of Food Additives 2nd Edition CRC Press, 1973. See also chapters devoted to Starch, Sugar and Syrups within Kirk-Othmer Encyclopedia of Chemical Technology 5th Edition, John Wiley and Sons 2001. Also, processes to convert starch to glucose are known in the art, see, for example, Schenck, “Glucose and Glucose containing Syrups” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH 2009. Furthermore, methods to convert cellulose to glucose are known in the art, see, for example, Centi and van Santen, Catalysis for Renewables, Wiley-VCH, Weinheim 2007; Kamm, Gruber and Kamm, Biorefineries-Industrial Processes and Products, Wiley-VCH, Weinheim 2006; Shang-Tian Yang, Bioprocessing for Value Added Products from Renewable Resources New Technologies and Applications, Elsevier B. V. 2007.
  • II. Preparation of Glucaric Acid
  • In accordance with the present invention, glucose is converted to, for example, glucaric acid. The preparation of glucaric acid can be effected with glucose using oxidation methods that are generally known in the art. See, for example, U.S. Pat. No. 2,472,168, which illustrates a method for the preparation of glucaric acid from glucose using a platinum catalyst in the presence of oxygen and a base. Further examples of the preparation of glucaric acid from glucose using a platinum catalyst in the presence of oxygen and a base are illustrated in the Journal of Catalysis Vol. 67, p. 1-13, and p. 14-20 (1981). Other oxidation methods may also be employed, see for example, U.S. Pat. Nos. 6,049,004, 5,599,977, and 6,498,269, WO 2008/021054 and J Chem. Technol. Biotechnol. Vol. 76, p. 186-190 (2001); J. Agr. Food Chem. Vol. 1, p. 779-783 (1953); J. Carbohydrate Chem. Vol. 21, p. 65-77 (2002); Carbohydrate Res. Vol. 337, p. 1059-1063 (2002); Carbohydrate Res. 336, p. 75-78 (2001); Carbohydrate Res. Vol. 330, p. 21-29 (2001). However, these processes suffer from economic shortcomings resulting from, among other matters, process yield limitations and the requirement for additional reaction constituents.
  • Applicants have discovered that glucose may be converted to glucaric acid in high yield by reacting glucose with oxygen (as used herein, oxygen can be supplied to the reaction as air, oxygen-enriched air, oxygen alone, or oxygen with other constituents substantially inert to the reaction) in the presence of an oxidation catalyst and in the absence of added base according to the following reaction:
  • Figure US20170158593A1-20170608-C00002
  • Surprisingly, conducting the oxidation reaction in the absence of added base and in accordance with the reaction conditions set forth herein, does not lead to significant catalyst poisoning effects and catalyst oxidation selectivity is maintained. In fact, catalytic selectivity can be maintained to attain glucaric acid yield in excess of 50%, even 60% and, in some instances, attain yields in excess of 65% or higher. The absence of added base advantageously facilitates separation and isolation of the glucaric acid, thereby providing a process that is more amenable to industrial application, and improves overall process economics by eliminating a reaction constituent. The “absence of added base” as used herein means that base, if present (for example, as a constituent of a feedstock), is present in a concentration which has essentially no effect on the efficacy of the reaction; i.e., the oxidation reaction is being conducted essentially free of added base. It has also been discovered that this oxidation reaction can also be conducted in the presence of a weak carboxylic acid, such as acetic acid, in which glucose is soluble. The term “weak carboxylic acid” as used herein means any unsubstituted or substituted carboxylic acid having a pKa of at least about 3.5, more preferably at least about 4.5 and, more particularly, is selected from among unsubstituted acids such as acetic acid, propionic acid or butyric acid, or mixtures thereof.
  • It has been further discovered that conducting the oxidation reaction under increased oxygen partial pressures and/or higher oxidation reaction mixture temperatures tends to increase the yield of glucaric acid when the reaction is conducted in the substantial absence of added base.
  • In these and various other embodiments, the initial pH of the reaction mixture is no greater than about 7, and typically is less than 7 such as, for example, 6 or less when a weak carboxylic acid is used to solubilize at least a portion of the glucose. In accordance with the present invention, the initial pH of the reaction mixture is the pH of the reaction mixture prior to contact with oxygen in the presence of an oxidation catalyst. It is expected that the pH of the reaction mixture after oxygen contact will vary as the reaction proceeds. It is believed that as the concentration of the glucaric acid increases (as the reaction proceeds) the pH will decrease from the initial pH.
  • Another advantage of the present invention is the essential absence of nitrogen as an active reaction constituent. Typically, nitrogen is employed in known processes as an oxidant such as in the form of nitrate, in many instances as nitric acid. The use of nitrogen in a form in which it is an active reaction constituent, such as nitrate or nitric acid, results in the need for NOx abatement technology and acid regeneration technology, both of which add significant cost to the production of glucaric acid from these known processes, as well as providing a corrosive environment which may deleteriously affect the equipment used to carry out the process. By contrast, for example, in the event air or oxygen-enriched air is used in the oxidation reaction of the present invention as the source of oxygen, the nitrogen is essentially an inactive or inert constituent. Thus, for example, in accordance with the present invention, an oxidation reaction employing air or oxygen-enriched air is a reaction conducted essentially free of nitrogen in a form in which it would be an active reaction constituent.
  • Generally, the temperature of the oxidation reaction mixture is at least about 40° C., more typically 60° C., or higher. In various embodiments, the temperature of the oxidation reaction mixture is from about 40° C. to about 150° C., from about 60° C. to about 150° C., from about 70° C. to about 150° C., from about 70° C. to about 140° C., or from about 80° C. to about 120° C.
  • Typically, the partial pressure of oxygen is at least about 15 pounds per square inch absolute (psia) (104 kPa), at least about 25 psia (172 kPa), at least about 40 psia (276 kPa), or at least about 60 psia (414 kPa). In various embodiments, the partial pressure of oxygen is up to about 1000 psia (6895 kPa), or more typically in the range of from about 15 psia (104 kPa) to about 500 psia (3447 kPa).
  • The oxidation reaction is typically conducted in the presence of a solvent to glucose. Solvents suitable for the oxidation reaction include water and weak carboxylic acids such as acetic acid. Utilization of weak carboxylic acid as a solvent adds cost to the process which cost, as a practical matter, must be balanced against any benefits derived from the use thereof. Thus, suitable solvents for the present invention include water, mixtures of water and weak carboxylic acid, or weak carboxylic acid.
  • In general, the oxidation reaction can be conducted in a batch, semi-batch, or continuous reactor design using fixed bed reactors, trickle bed reactors, slurry phase reactors, moving bed reactors, or any other design that allows for heterogeneous catalytic reactions. Examples of reactors can be seen in Chemical Process Equipment—Selection and Design, Couper et al., Elsevier 1990, which is incorporated herein by reference. It should be understood that glucose, oxygen, any solvent, and the oxidation catalyst may be introduced into a suitable reactor separately or in various combinations.
  • Catalysts suitable for the oxidation reaction (“oxidation catalyst”) include heterogeneous catalysts, including solid-phase catalysts comprising one or more supported or unsupported metals. In various embodiments, metal is present at a surface of a support (i.e., at one or more surfaces, external or internal). Typically, metal is selected from the group consisting of palladium, platinum, and combinations thereof. Additional other metals may be present, including one or more d-block metals, alone or in combination with one or more rare earth metals (e.g. lanthanides), alone or in combination with one or more main group metals (e.g. Al, Ga, Tl, In, Sn, Pb or Bi). In general, the metals may be present in various forms (e.g., elemental, metal oxide, metal hydroxides, metal ions, etc.). Typically, the metal(s) at a surface of a support may constitute from about 0.25% to about 10%, or from about 1% to about 8%, or from about 2.5% to about 7.5% (e.g., 5%) of the total weight of the catalyst.
  • In various embodiments, the oxidation catalyst comprises a first metal (M1) and a second metal (M2) at a surface of a support, wherein the M1 metal is selected from the group consisting of palladium and platinum and the M2 metal is selected from the group consisting of d-block metals, rare earth metals, and main group metals, wherein the M1 metal is not the same metal as the M2 metal. In various preferred embodiments, the M1 metal is platinum and the M2 metal is selected from the group consisting of manganese, iron, and cobalt.
  • The M1:M2 molar ratio may vary, for example, from about 500:1 to about 1:1, from about 250:1 to about 1:1, from about 100:1 to about 1:1, from about 50:1 to about 1:1, from about 20:1 to about 1:1, or from about 10:1 to about 1:1. In various other embodiments, the M1:M2 molar ratio may vary, for example, from about 1:100 to about 1:1, from about 1:50 to about 1:1, from about 1:10 to about 1:1, from about 1:5 to about 1:1, or from about 1:2 to about 1:1.
  • Moreover, the weight percents of M1 and M2 relative to the catalyst weight may vary. Typically, the weight percent of M1 may range from about 0.5% to about 10%, more preferably from about 1% to about 8%, and still more preferably from about 2.5% to about 7.5% (e.g., about 5%). The weight percent of M2 may range from about 0.25% to about 10%, from about 0.5% to about 8%, or from about 0.5% to about 5%.
  • In various other embodiments, a third metal (M3) may be added to produce a M1/M2/M3 catalyst wherein the M3 metal is not the same metal as the M1 metal and the M2 metal. In yet other embodiments a fourth metal (M4) may be added to produce a M1/M2/M3/M4 catalyst wherein the M4 metal is not the same metal as the M1 metal, the M2 metal or the M3 metal. The M3 metal and M4 metal may each be selected from the group consisting of d-block metals, rare earth metals (e.g. lanthanides), or main group metals (e.g. Al, Ga, Tl, In, Sn, Pb or Bi).
  • Suitable catalyst supports include carbon, alumina, silica, ceria, titania, zirconia, niobia, zeolite, magnesia, clays, iron oxide, silicon carbide, aluminosilicates, and modifications, mixtures or combinations thereof. The preferred support materials may be modified using methods known in the art such as heat treatment, acid treatment or by the introduction of a dopant (for example, metal-doped titanias, metal-doped zirconias (e.g., tungstated-zirconia), metal-doped cerias, and metal-modified niobias). Particularly preferred supports are carbon (which may be activated carbon, carbon black, coke or charcoal), alumina, zirconia, titania, zeolite and silica. In various embodiments, the support of the oxidation catalyst is selected from the group consisting of carbon, zirconia, zeolite, and silica.
  • When a catalyst support is used, the metals may be deposited using procedures known in the art including, but not limited to incipient wetness, ion-exchange, deposition-precipitation, and vacuum impregnation. When two or more metals are deposited on the same support, they may be deposited sequentially or simultaneously. In various embodiments, following metal deposition, the catalyst is dried at a temperature of at least about 50° C., more typically at least about 120° C. for a period of time of at least about 1 hour, more typically 3 hours or more. In these and other embodiments, the catalyst is dried under sub-atmospheric pressure conditions. In various embodiments, the catalyst is reduced after drying (e.g., by flowing 5% H2 in N2 at 350° C. for 3 hours). Still further, in these and other embodiments, the catalyst is calcined, for example, at a temperature of at least about 500° C. for a period of time (e.g., at least about 3 hours).
  • The reaction product of the oxidation step will, as described above, yield glucaric acid in considerable and heretofore unexpected fraction, but may also yield derivatives thereof, such as glucarolactones. These glucarolactones, like glucaric acid, constitute hydrodeoxygenation substrate which is particularly amenable to the production of adipic acid product as hereinafter described. Glucarolactones which may be present in the reaction mixture resulting from the oxidation step include mono and di-lactones such as D-glucaro-1,4-lactone, D-glucaro-6,3-lactone, and D-glucaro-1,4:6,3-dilactone. One advantage of higher concentrations of glucarolactones is further improvement in the economics of the hydrodeoxygenation step resulting from a reduction in the amount of water produced.
  • Glucaric acid produced in accordance with the above may be converted to various other glucaric acid derivatives, such as salts, esters, ketones, and lactones. Methods to convert carboxylic acids to such derivatives are known in the art, see, for example, Wade, Organic Chemistry 3rd ed, Prentice Hall 1995.
  • III. Preparation of an Adipic Acid Product
  • In accordance with the present invention, an adipic acid product may be prepared by chemocatalytic conversion of a glucose source. In various embodiments, preparation of an adipic acid product includes chemocatalytic conversion of a glucose source to glucaric acid. In these and other embodiments, a hydrodeoxygenation substrate comprising at least a portion of the glucaric acid or derivatives thereof is converted to an adipic acid product. Derivatives of glucaric acid include compounds as defined below.
  • The hydrodeoxygenation substrate comprises a compound of the formula I:
  • Figure US20170158593A1-20170608-C00003
  • wherein X is independently hydroxyl, oxo, halo, acyloxy or hydrogen provided that at least one X is not hydrogen; R1 is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl; or a mono- or di-lactone thereof
  • As used herein, the term “hydrocarbyl” refers to hydrocarbyl moieties, preferably containing 1 to about 50 carbon atoms, preferably 1 to about 30 carbon atoms, and even more preferably 1 to about 18 carbon atoms, including branched or unbranched, and saturated or unsaturated species. Preferred hydrocarbyl can be selected from the group consisting of alkyl, alkylene, alkoxy, alkylamino, thioalkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, aryl, aralkyl heteroaryl, N-heteroaryl, heteroarylalkyl, and the like. A hydrocarbyl may be optionally substituted hydrocarbyl. Hence, various hydrocarbyls can be further selected from substituted alkyl, substituted cycloalkyl and the like.
  • Salt forming ions include, without limitation, for example ammonium ions and metal ions (e.g., alkali and alkaline earth metals). When R1 is a salt forming ion (i.e., a cation), the carboxyl group may be considered to be anion (i.e., carboxylate anion).
  • In various embodiments, the hydrodeoxygenation substrate comprises a compound of formula I, wherein X is hydroxyl and R1 is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl.
  • As shown in formula I, the hydrodeoxygenation substrate contains a six carbon chain comprising four chiral centers. As a result several stereoisomers are possible. However, the preferred hydrodeoxygenation substrate comprises glucaric acid.
  • The hydrodeoxygenation substrate may also contain various ketones. For example, not wishing to be bound by theory, when glucaric acid is further oxidized, ketones such as 2-keto-glucaric acid (2,3,4-trihydroxy-5-oxohexanedioic acid) and 3-keto-glucaric acid (2,3,5-trihydroxy-4-oxohexanedioic acid) may be formed.
  • The hydrodeoxygenation substrate may comprise various lactones derived from glucaric acid. For example, not wishing to be bound by theory, it is believed that various mono- and di-lactones are present in equilibrium with glucaric acid in aqueous solution, including for example, D-glucaro-1,4-lactone, D-glucaro-6,3-lactone, and D-glucaro-1,4:6,3-dilactone. Moreover, processes have been developed to quantitatively convert glucaric acid or a salt thereof in solution to one or more lactones and recover a substantially pure lactone stream. For example see “Convenient Large-Scale Synthesis of D-Glucaro-1,4:6,3-dilactone” Gehret et al., J. Org. Chem., 74 (21), pp. 8373-8376 (2009). Also, lactones such as L-threo-4-deoxy-hex-4-enaro-6,3-lactone and L-erythro-4-deoxy-hex-4-enaro-6,3-lactone may form from the thermal decomposition of D-Glucaro-1,4:6,3-dilactone.
  • Therefore, in various embodiments, the hydrodeoxygenation substrate comprises D-glucaro-1,4-lactone. In these and other embodiments, the hydrodeoxygenation substrate comprises D-glucaro-6,3-lactone. Still further, in these and other embodiments, the hydrodeoxygenation substrate comprises D-glucaro-1,4:6,3-dilactone. In these and other embodiments, the hydrodeoxygenation substrate comprises L-threo-4-deoxy-hex-4-enaro-6,3-lactone. Still even further, in these and other embodiments, the hydrodeoxygenation substrate comprises L-erythro-4-deoxy-hex-4-enaro-6,3-lactone.
  • Also, in accordance with the present invention, an adipic acid product (formula II) may be prepared by reacting, in the presence of a hydrodeoxygenation catalyst and a halogen source, a hydrodeoxygenation substrate (formula I) and hydrogen, according to the following reaction:
  • Figure US20170158593A1-20170608-C00004
  • wherein X and R1 are defined as described above.
  • In preferred embodiments, the adipic acid product (formula II) comprises adipic acid.
  • In the above reaction, a hydrodeoxygenation substrate is converted to an adipic acid product by catalytic hydrodeoxygenation in which carbon-hydroxyl groups are converted to carbon-hydrogen groups. In various embodiments, the catalytic hydrodeoxygenation is hydroxyl-selective wherein the reaction is completed without substantial conversion of the one or more other non-hydroxyl functional group of the substrate.
  • In accordance with the present invention, a hydrodeoxygenation substrate is catalytically hydrodeoxygenated in the presence of hydrogen, a halogen source and a hydrodeoxygenation catalyst. Without being bound by theory, it is believed that during this reaction the hydrodeoxygenation substrate is halogenated with the halogen source, to form a halogenated intermediate containing a carbon-halogen bond (e.g., a secondary alcohol group on the glucaric acid is converted to a halide to produce an alkyl halide). The carbon-halogen bond of the halogenated intermediate is believed to be converted to a carbon-hydrogen bond via one or more of the following pathways. In the first pathway, the halogenated intermediate reacts with hydrogen in the presence of the hydrodeoxygenation catalyst leading to the formation of a carbon-hydrogen bond along with the generation of hydrohalic acid. In the second pathway, the halogenated intermediate undergoes a dehydrohalogenation reaction to form an olefin intermediate and hydrohalic acid. The olefin is further reduced in the presence of the hydrodeoxygenation catalyst leading to the formation of a carbon-hydrogen bond (or the olefin may be an enol form of a ketone which can interconvert to a keto form which can reduce to an alcohol group which can undergo further hydrodeoxygenation). Effecting the reaction pursuant to the above described first and second pathways generates hydrohalic acid as a by-product, which is available for further reaction. In the third pathway, the halogenated intermediate reacts with hydrohalic acid leading to the formation of a carbon-hydrogen bond along with the formation of molecular halogen (or interhalogen). Effecting the reaction pursuant to the third pathway generates molecular halogen as a by-product, which is available for further reaction. One or more of the various pathways described above may occur concurrently.
  • It should be recognized that the hydrodeoxygenation reaction can be conducted by first forming and optionally purifying or isolating these various intermediates formed by combining a hydrodeoxygenation substrate and a halogen source and subsequently reacting the intermediate with hydrogen in the presence of the hydrodeoxygenation catalyst and optionally in the absence of any halogen source.
  • In various embodiments, the hydrodeoxygenation substrate is halogenated with hydrohalic acid to form a halogenated intermediate (e.g., an alkyl halide). In other embodiments, the hydrodeoxygenation substrate is halogenated with a molecular halogen to form the halogenated intermediate (e.g., an alkyl halide).
  • The halogen source may be in a form selected from the group consisting of atomic, ionic, molecular, and mixtures thereof. Halogen sources include hydrohalic acids (e.g., HCl, HBr, HI and mixtures thereof; preferably HBr and/or HI), halide salts, (substituted or unsubstituted) alkyl halides, or elemental halogens (e.g. chlorine, bromine, iodine or mixtures thereof; preferably bromine and/or iodine). In various embodiments the halogen source is in molecular form and, more preferably, is bromine. In more preferred embodiments, the halogen source is a hydrohalic acid, in particular hydrogen bromide.
  • Generally, the molar ratio of halogen to the hydrodeoxygenation substrate is about equal to or less than about 1. In various embodiments, the mole ratio of halogen to the hydrodeoxygenation substrate is typically from about 1:1 to about 0.1:1, more typically from about 0.7:1 to about 0.3:1, and still more typically about 0.5:1.
  • Generally, the reaction allows for recovery of the halogen source and catalytic quantities (where molar ratio of halogen to the hydrodeoxygenation substrate is less than about 1) of halogen can be used, recovered and recycled for continued use as a halogen source.
  • Generally, the temperature of the hydrodeoxygenation reaction mixture is at least about 20° C., typically at least about 80° C., and more typically at least about 100° C. In various embodiments, the temperature of the hydrodeoxygenation reaction is conducted in the range of from about 20° C. to about 250° C., from about 80° C. to about 200° C., more preferably from about 120° C. to about 180° C., and still more preferably between about 140° C. and 180° C.
  • Typically, the partial pressure of hydrogen is at least about 25 psia (172 kPa), more typically at least about 200 psia (1379 kPa) or at least about 400 psia (2758 kPa). In various embodiments, the partial pressure of hydrogen is from about 25 psia (172 kPa) to about 2500 psia (17237 kPa), from about 200 psia (1379 kPa) to about 2000 psia (13790 kPa), or from about 400 psia (2758 kPa) to about 1500 psia (10343 kPa).
  • The hydrodeoxygenation reaction is typically conducted in the presence of a solvent. Solvents suitable for the selective hydrodeoxygenation reaction include water and carboxylic acids, amides, esters, lactones, sulfoxides, sulfones and mixtures thereof. Preferred solvents include water, mixtures of water and weak carboxylic acid, and weak carboxylic acid. A preferred weak carboxylic acid is acetic acid.
  • In general, the reaction can be conducted in a batch, semi-batch, or continuous reactor design using fixed bed reactors, trickle bed reactors, slurry phase reactors, moving bed reactors, or any other design that allows for heterogeneous catalytic reactions. Examples of reactors can be seen in Chemical Process Equipment—Selection and Design, Couper et al., Elsevier 1990, which is incorporated herein by reference. It should be understood that the hydrodeoxygenation substrate, halogen source, hydrogen, any solvent, and the hydrodeoxygenation catalyst may be introduced into a suitable reactor separately or in various combinations.
  • In various preferred embodiments, the hydrodeoxygenation catalyst is heterogeneous, but a suitable homogeneous catalyst may be employed. In these and various other preferred embodiments the hydrodeoxygenation catalyst comprises a solid-phase heterogeneous catalyst in which one or more metals is present at a surface of a support (i.e., at one or more surfaces, external or internal). Preferred metals are d-block metals which may be used alone, in combination with each other, in combination with one or more rare earth metals (e.g. lanthanides), and in combination with one or more main group metals (e.g., Al, Ga, Tl, In, Sn, Pb or Bi). Preferred d-block metals are selected from the group consisting of cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum and combinations thereof. More preferred d-block metals are selected from the group consisting of ruthenium, rhodium, palladium, platinum, and combinations thereof. In certain preferred embodiments, the catalyst comprises platinum. In general, the metals may be present in various forms (e.g., elemental, metal oxide, metal hydroxides, metal ions etc.). Typically, the metal(s) at a surface of a support may constitute from about 0.25% to about 10%, or from about 1% to about 8%, or from about 2.5% to about 7.5% (e.g., 5%) of the catalyst weight.
  • In various embodiments, the catalyst comprises two or more metals. For example, two of more metals (M1 and M2) may be co-supported on or within the same support (e.g., as a mixed-metal catalyst on silica; M1/M2/Silica catalyst), or they may be supported on different support materials. In various embodiments the hydrodeoxygenation catalyst comprises a first metal (M1) and a second metal (M2) at a surface of a support, wherein the M1 metal comprises a d-block metal and the M2 metal is selected from the group consisting of d-block metals, rare earth metals, and main group metals, wherein the M1 metal is not the same metal as the M2 metal. In various embodiments, the M1 metal is selected from the group consisting of cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum. In more preferred embodiments, the M1 metal is selected from the group consisting of ruthenium, rhodium, palladium, and platinum. In various embodiments, the M2 metal is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, palladium, silver, tungsten, iridium, platinum, and gold. In more preferred embodiments, the M2 metal is selected from the group consisting of molybdenum, ruthenium, rhodium, palladium, iridium, platinum, and gold.
  • In more preferred embodiments, the M1 metal is selected from the group of platinum, rhodium and palladium, and the M2 metal is selected from the group consisting of ruthenium, rhodium, palladium, platinum, and gold. In certain more preferred embodiments, M1 is platinum and M2 is rhodium.
  • In various embodiments, the M1:M2 molar ratio may vary, for example, from about 500:1 to about 1:1, from about 250:1 to about 1:1, from about 100:1 to about 1:1, from about 50:1 to about 1:1, from about 20:1 to about 1:1, or from about 10:1 to about 1:1. In various other embodiments, the M1:M2 molar ratio may vary, for example, from about 1:100 to about 1:1, from about 1:50 to about 1:1, from about 1:10 to about 1:1, from about 1:5 to about 1:1, or from about 1:2 to about 1:1.
  • Moreover, in various embodiments, the weight percents of M1 and M2 relative to the total catalyst weight may vary. Typically, the weight percent of M1 may range from about 0.5% to about 10%, more preferably from about 1% to about 8%, and still more preferably from about 2.5% to about 7.5% (e.g., about 5%). The weight percent of M2 may range from about 0.25% to about 10%, from about 0.5% to about 8%, or from about 0.5% to about 5%.
  • In various other embodiments, a third metal (M3) may be added to produce a M1/M2/M3 catalyst wherein the M3 metal is not the same metal as the M1 metal and the M2 metal. In other embodiments a fourth metal (M4) may be added to produce a M1/M2/M3/M4 catalyst wherein the M4 metal is not the same metal as the M1 metal, the M2 metal or the M3 metal. M3 and M4 may each be selected from the group consisting of d-block metals, rare earth metals (e.g. lanthanides), or main group metals (e.g. Al, Ga, Tl, In, Sn, Pb or Bi).
  • Preferred catalyst supports include carbon, alumina, silica, ceria, titania, zirconia, niobia, zeolite, magnesia, clays, iron oxide, silicon carbide, aluminosilicates, and modifications, mixtures or combinations thereof. The preferred supports may be modified through methods known in the art such as heat treatment, acid treatment, the introduction of a dopant (for example, metal-doped titanias, metal-doped zirconias (e.g. tungstated zirconia), metal-doped cerias, and metal-modified niobias). In various preferred embodiments, the hydrodeoxygenation catalyst support is selected from the group consisting of silica, zirconia and titania. In certain preferred embodiments, a catalyst comprising platinum and rhodium is on a support comprising silica.
  • When a catalyst support is used, the metals may be deposited using procedures known in the art including, but not limited to incipient wetness, ion-exchange, deposition-precipitation and vacuum impregnation. When the two or more metals are deposited on the same support, they may be deposited sequentially, or simultaneously. In various embodiments, following metal deposition, the catalyst is dried at a temperature of at least about 50° C., more typically at least about 120° C. or more for a period of time of at least about 1 hour, more typically at least about 3 hours or more. In these and other embodiments, the catalyst is dried under sub-atmospheric conditions. In various embodiments, the catalyst is reduced after drying (e.g., by flowing 5% H2 in N2 at 350° C. for 3 hours). Still further, in these and other embodiments, the catalyst is calcined, for example, at a temperature of at least about 500° C. for a period of time (e.g., at least about 3 hours).
  • Without being bound by theory not expressly recited in the claims, catalysts mixtures (co-catalysts or mixed metal catalysts) containing more than one metal may affect separate steps of the mechanistic reaction pathway.
  • An adipic acid product may be recovered from the hydrodeoxygenation reaction mixture by one or more conventional methods known in the art including, for example, solvent extraction, crystallization or evaporative processes.
  • IV. Downstream Chemical Products
  • Various methods are known in the art for conversion of adipic acid to downstream chemical products or intermediates including adipate esters, polyesters, adiponitrile, hexamethylene diamine (HMDA), caprolactam, caprolactone, 1,6-hexanediol, aminocaproic acid, and polyamide such as nylons. For conversions from adipic acid, see for example, without limitation, U.S. Pat. Nos. 3,671,566, 3,917,707, 4,767,856, 5,900,511, 5,986,127, 6,008,418, 6,087,296, 6,147,208, 6,462,220, 6,521,779, 6,569,802, and Musser, “Adipic Acid” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  • In various embodiments, an adipic acid product is converted to adiponitrile wherein the adipic acid product is prepared in accordance with the present invention. Adiponitrile can be used industrially for the manufacture of hexamethylene diamine, see Smiley, “Hexamethylenediamine” in Ullman's Encyclopedia of Industrial Chemistry, Wiley-VCH 2009. Therefore, in further embodiments, an adipic acid product is converted to hexamethylene diamine wherein the adipic acid product is prepared in accordance with the present invention.
  • Adipic acid is useful in the production of polyamides, such as nylon 6,6 and nylon 4,6. See, for example, U.S. Pat. No. 4,722,997, and Musser, “Adipic Acid” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. The hexamethylene diamine formed from an adipic acid product prepared in accordance with the present invention can likewise be further used for the preparation of polyamides such as nylon 6,6 and nylon 6,12. See, for example Kohan, Mestemacher, Pagilagan, Redmond, “Polyamides” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  • Accordingly, adipic acid and a polymer precursor derived from an adipic acid product (e.g., hexamethylene diamine) may be reacted to produce a polyamide, wherein the adipic acid product is prepared in accordance with the present invention. Polymer precursor, as used herein, refers to a monomer which can be converted to a polymer (or copolymer) under appropriate polymerization conditions. In various embodiments, the polyamide comprises nylon 6,6. In these embodiments, nylon 6,6 is produced by reacting an adipic acid product with a polymer precursor derived from an adipic acid product, wherein the polymer precursor comprises hexamethylene diamine. In these embodiments, hexamethylene diamine may be prepared by converting an adipic acid product to adiponitrile which then may be converted to hexamethylene diamine, wherein the adipic acid product is prepared in accordance with the present invention.
  • In other embodiments, an adipic acid product is converted to caprolactam wherein the adipic acid product is prepared in accordance with the present invention. The caprolactam formed can be further used for the preparation of polyamides by means generally known in the art. Specifically, caprolactam can be further used for the preparation of nylon 6. See, for example Kohan, Mestemacher, Pagilagan, Redmond, “Polyamides” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  • In various embodiments, nylon 6 is produced by reacting caprolactam derived from an adipic acid product prepared in accordance with the present invention.
  • In other embodiments, adipic acid and a polymer precursor may be reacted to produce a polyester, wherein the adipic acid product is prepared in accordance with the present invention.
  • In other embodiments, an adipic acid product is converted to 1,6-hexanediol wherein the adipic acid product is prepared in accordance with the present invention. 1,6-hexanediol is a valuable chemical intermediate used in the production of polyesters and polyurethanes. Accordingly, in various embodiments, polyester may be prepared by reacting adipic acid and 1,6-hexandiol derived from an adipic acid product, prepared in accordance with the present invention.
  • In various embodiments a salt of adipic acid may be produce wherein the process comprises reacting adipic acid with hexamethylene diamine, thereby forming the salt, wherein adipic acid is prepared in accordance with the present invention.
  • When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
  • In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
  • As various changes could be made in the above compositions and processes without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
  • Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
  • EXAMPLES
  • The following non-limiting examples are provided to further illustrate the present invention.
  • Reactions were conducted in 1 mL glass vials housed in a pressurized vessel in accordance with the procedures described in the examples below. Product yields were determined using a Dionex ICS-3000 Chromatography system. For Example 1, the products were first separated on an Ionpac© AS11-HC column and then quantified by conductivity detection through comparison with calibration standards. For Example 2, the products were first separated on an Acclaim© Organic Acid column and then quantified by a UV detector through comparison with calibration standards.
  • Example 1: Glucose to Glucaric Acid
  • Several catalysts were obtained from commercial vendors: Johnson Matthey 5% Pt/C (three examples; JM-23 [B103032-5, Lot #C-9090]; JM-25 [B103014-5, Lot #C9230]; and JM-27 [B-501032-5, Lot #C-9188]), Johnson Matthey 5% Pt/Al2O3 (two examples; JM-32 [B301013-5, Lot #C8959] and JM-33 [B301099-5, Lot #C9218]), and BASF Escat 2351 5% Pt/SiO2 [Lot #A4048107]; and 1.5% Au/TiO2 [Sal Chemie 02-10]. Other catalysts were prepared in accordance with the procedure described herein.
  • Preparation of Supported Platinum Catalysts
  • Multiple portions of suitably concentrated aqueous Pt(NO3)2 solutions (Heraeus) were added to the appropriate support (wherein the total combined volume of the Pt(NO3)2 solutions was matched to equal to the pore volume of the chosen support) with agitation between additions. Post impregnation, the product was dried in a furnace at 120° C. for 12 hours, Material for catalyst testing was prepared by reduction under flowing 5 vol. % H2 in N2 for 3 hours at either 200° C. or 350° C. Note that this procedure was used for all supports except carbon. See the later description for the preparation of a Pt/Carbon catalyst.
  • Preparation of Pt/M2/Support Catalysts (M2=Mn, Co, Fe, Re, Cu)
  • Approximately 7-8 mg of dried supported platinum catalyst (taken post drying but prior to reduction) was dispensed into an 8×12 array containing 1 mL glass vials. To select vials within the array, 6-7 μl (where the total addition volume was matched to equal to the pore volume of the support weighed into the vial) of suitably concentrated M2 stock solutions were added (M2=Mn, Fe, Co, Re, Cu obtained from Strem or Sigma-Aldrich, see Table 1). Post M2 addition, the mixtures were agitated via a multi-tube vortexer to impregnate the supports. Post impregnation, the glass vial arrays of Pt/M2/Support catalysts were dried in a furnace at 120° C. for 1 hour, followed by calcination at 500° C. for 3 hours followed by reduction under flowing 5 vol. % H2 in N2 at either 200° C. or 350° C. for 3 hours. Note that this procedure was used to prepare all Pt/M2/Support catalysts with the exception of the 1.5% Pt/1.5% Au/Titania catalyst. In this case Pt(NO3)2 solution was added to a dried sample of the commercial 1.5% Au/Titania catalyst [Rid Chemie 02-10] (wherein the total volume of the Pt(NO3)2 volume was matched to equal to the pore volume of the catalyst) with agitation, whereupon the material was dried in a furnace at 120° C. for 1 hour, followed by reduction under flowing 5 vol. % H2 in N2 at 350° C. for 3 hours.
  • Preparation of 4 wt. % Pt/Carbon Catalyst
  • Multiple portions of suitably concentrated aqueous Pt(NO3)2 solution (Heraeus) were added to 2 g of dried Degussa HP-160 furnace black carbon (3.94 mL total addition volume) with agitation between additions. Post impregnation, the 4 wt. % Pt/Carbon was dried under vacuum for one hour at 50° C., followed by reduction under flowing 5 vol. % H2 in N2 for three hours at 350° C.
  • Glucose to Glucaric Acid Reactions
  • Catalysts were dispensed into 1 mL vials within a 96-well reactor insert (Symyx Solutions). The reaction substrate was D-glucose (Sigma-Aldrich, 0.552M in water). To each vial was added 250 μL of glucose solution. The vials were each covered with a Teflon pin-hole sheet, a silicone pin-hole mat and steel gas diffusion plate (Symyx Solutions). The reactor insert was placed in a pressure vessel and charged three times with oxygen to 100 psig with venting after each pressurization step. The reactor was then charged to 75 psig with oxygen, or to 500 psig with air, closed and placed on a shaker, heated at the designated temperature for the specified reaction time. After the reaction time had elapsed shaking was stopped and the reactor cooled to room temperature whereupon the reactors were vented. Samples for ion-chromatography (IC) analysis were prepared by adding to each reaction vial 750 μL of a 1.067 wt. % citric acid solution (as internal standard) then the plate was covered and mixed followed by centrifugation to separate catalyst particles. Each reaction sample was further diluted by performing two 20-fold dilutions then analyzed by Ion Chromatography. In some instances, HCl was used as alternative internal standard through the addition of 100 μL of 50 ppm solution during the second 20-fold dilution. The results are presented in Table 1.
  • TABLE 1
    M1 M2 Temp. Time Catalyst Glucaric
    Catalyst (wt. % M2 wt. % Pt/Support) Precursor Precursor (° C.) (Hours) Amount (mg) Acid Yield (%)
     1 0.06% Mn 4% Pt/Silica Davisil 635 Pt(NO3)2 Mn(NO3)2 80 5 7 38
     2 0.06% Fe 4% Pt/Silica Davisil 635 Pt(NO3)2 Fe(NO3)3 80 5 8 28
     3 0.06% Co 4% Pt/Silica Davisil 635 Pt(NO3)2 Co(NO3)2 80 5 8 34
     4 4% Pt/Silica Davisil 635 Pt(NO3)2 None 80 5 8 34
     5 4% Pt/Silica 5 μm Cariact Pt(NO3)2 None 90 5 8 50
     6 4% Pt/Silica 5 μm Cariact Pt(NO3)2 None 90 8 8 66
     7 4% Pt/Silica Merck 10180 Pt(NO3)2 None 90 5 8 40
     8 1.91% Re 4% Pt/Silica Merck 10180 Pt(NO3)2 HReO4 90 5 8 39
     9 0.65% Cu 4% Pt/Silica Merck 10180 Pt(NO3)2 Cu(NO3)2 90 5 8 39
    10 0.10% Mo 4% Pt/Silica Merck 10180 Pt(NO3)2 (NH4)6Mo7O24 90 5 8 38
    11 4% Pt/Carbon Degussa HP-160 Pt(NO3)2 None 80 5 8 53
    12 4% Pt/Carbon Degussa HP-160 Pt(NO3)2 None 90 8 8 60
    13 5% Pt/C [JM-23] None 80 5 10 52
    14 5% Pt/C [JM-25] None 80 5 10 57
    15 5% Pt/C [JM-27] None 80 5 10 57
    16 5% Pt/Al2O3 [JM-32] None 80 5 10 23
    17 5% Pt/Al2O3 [JM-33] None 80 5 10 31
    18 5% Pt/SiO2 [BASF Escat 2351] Pt(NO3)2 None 80 5 10 15
    19 8% Pt/Zirconia Daiichi Kigenso Z-1044 Pt(NO3)2 None 90 5 8 52
    20 8% Pt/Zirconia Daiichi Kigenso Z-1628 Pt(NO3)2 None 90 5 8 59
    21 8% Pt/Zirconia Ceria Daiichi Kigenso Z-
    1006 Pt(NO3)2 None 90 5 8 54
    22 8% Pt/Ceria Daiichi Kigenso Z-1627 Pt(NO3)2 None 90 5 8 17
    b23 a4% Pt/Zeolite Zeolyst CP 811C-300 Pt(NO3)2 None 100 5 8 39
    b24 a4% Pt/Titania NorPro ST 61120 Pt(NO3)2 None 100 5 8 30
    1.5% Pt 1.5% Au/Titania [Süd Chemie 02-
    b24 10] Pt(NO3)2 100 5 8 55
    b25 4% Pt 4% Au/Titania NorPro ST 61120 AuCl3 Pt(NO3)2 100 5 8 32
    aThese catalysts were calcined at 500 C. for 3 hours prior to reduction.
    bThese reactions were run under 500 psig of air, all other reactions in Table 1 were run under 75 psig of O2.
    Catalysts in examples 4-7, 11-12 were reduced at 200° C. under flowing 5 vol. % H2 in N2 for 3 hours.
    Catalysts in examples 1-3, 8-10, 19-25 were reduced at 350° C. under flowing 5 vol. % H2 in N2 for 3 hours.
    Commercial catalysts in examples 13-18 were screened directly.
  • Example 2: Glucaric Acid to Adipic Acid Preparation of M1/Support Catalysts (M1=Ru, Rh, Pd, Pt)x
  • 2 g of dried 5 μm Silica Cariact (Fuji Silysia) or 45 μm Titania NorPro ST 61120 (Saint-Gobain) was weighed into vials. Suitably concentrated M1 stock solutions (M1=Ru, Rh, Pd, Pt) were prepared from concentrated acidic stock solutions purchased from Heraeus (see Table 1). For each M1, multiple additions of the dilute M1 stock solution were added to the Support (Silica pore volume=0.7 mL/g, Titania NorPro=0.45 mL/g) until a total volume of 1.4 ml (Silica) or 0.9 mL (Titania) was reached. After each addition, the mixtures were agitated to impregnate the support. Post impregnation, the X wt. % M1/Support mixtures (X=2−5) were dried in a furnace at 120° C. for 12 hours.
  • Preparation of M1/M2/Support Catalysts (M2=Ru, Rh, Pd, Ir, Pt, Au, Mo)
  • 7-12 mg of dried X wt. % M1/Support (M1=Ru, Rh, Pd Pt) (X=2−5) were dispensed into 8×12 arrays containing 1 mL glass vials. To select vials within the array, 3-8 μl (where the total addition volume was matched to equal to the pore volume of the dried X wt. % M1/Support catalysts weighed into the vial) of suitably concentrated M2 stock solutions were added (M2=Ru, Rh, Pd, Ir, Pt, Au (obtained from Heraeus), and Mo (obtained from Strem), see Table 1). Post M2 addition, the mixtures were agitated via a multi-tube vortexer to impregnate the supports. Post impregnation, the glass vial arrays of M1/M2/Support catalysts were dried in a furnace at 120° C. for 1 hour, followed by calcination at 500° C. for 3 hours. Upon cooling the arrays of catalysts were stored in a dessicator until used.
  • Preparation of M1/M2/Support Catalysts by Coimpregnation (M1/M2=Rh, Pd, Pt).
  • 7-12 mg of silica support (Davisil 635 W.R. Grace & Co.) were dispensed into 8×12 arrays containing 1 mL glass vials. Supports were dried at 120° C. for 12 hours prior to use. To select vials within the array, 6-11 μl (where the total addition volume was matched to equal to the pore volume of the Support weighed into the vial) of suitably concentrated pre-mixed M1/M2 stock solutions were added (M1/M2=Rh, Pd, Pt) (obtained from Heraeus), Post metal addition, the mixtures were agitated via a multi-tube vortexer to impregnate the supports. Post impregnation, the glass vial arrays of M1/M2/Support catalysts were dried in a furnace at 120° C. for 1 hour, followed by calcination at 500° C. for 3 hours. Upon cooling the arrays of catalysts were stored in a dessicator until used.
  • Glucaric Acid to Adipic Acid Reactions.
  • The arrays of catalysts were transferred to 1 mL glass vials within a 96-well reactor insert (Symyx Solutions). Each vial within each array received a glass bead and 250 μL of 0.2 M Glucaric Acid (prepared from calcium glucarate) (Sigma-Adrich), 0.1 M HBr (examples 1-37; Sigma-Aldrich) or 0.2 M HBr (example 38; Sigma-Aldrich) in Acetic Acid (Sigma-Aldrich). Upon solution addition, the arrays of vials were covered with a Teflon pin-hole sheet, a silicone pin-hole mat and steel gas diffusion plate (Symyx Solutions). The reactor insert was placed in a pressure vessel pressurized and vented 3 times with nitrogen and 3 times with hydrogen before being pressurized with hydrogen to 710 psig, heated to 140° C. (examples 1-37) or 160° C. (example 38) and shaken for 3 hours. After 3 hours the reactors were cooled, vented and purged with nitrogen. 750 μl of water was then added to each vial. Following the water addition, the arrays were covered and shaken to ensure adequate mixing. Subsequently, the covered arrays were placed in a centrifuge to separate the catalyst particles. Each reaction samples was then diluted 2-fold with water to generate a sample for analysis by HPLC. The results are presented in Table 2.
  • TABLE 2
    Catalyst Adipic
    Amount Acid Yield
    Catalyst (wt. % M2 wt. % M1/Support) M1 Precursor M2 Precursor (mg) (%)
    1 0.5% Pd 5% Rh/Silica 5 μm Cariact Rh(NO3)3 Pd(NO3)2 8 51
    2 0.5% Pd 5% Rh/Silica 5 μm Cariact Rh(NO3)3 Pd(NO3)2 8 53
    3 0.5% Ru 5% Pd/Silica 5 μm Cariact Pd(NO3)2 aRu(NO)(NO3)x(OH)y 8 74
    4 0.5% Ru 5% Pd/Silica 5 μm Cariact Pd(NO3)2 aRu(NO)(NO3)x(OH)y 8 77
    5 0.5% Ru 5% Rh/Silica 5 μm Cariact Rh(NO3)3 aRu(NO)(NO3)x(OH)y 10 50
    6 0.5% Ru 5% Rh/Silica 5 μm Cariact Rh(NO3)3 aRu(NO)(NO3)x(OH)y 8 57
    7 1% Ir 5% Rh/Silica 5 μm Cariact Rh(NO3)3 H2IrCl6•H20 8 53
    8 2.5% Mo 5% Pd/Silica 5 μm Cariact Pd(NO3)2 (NH4)6Mo7O24 8 53
    9 2.5% Pd 5% Rh/Silica 5 μm Cariact Rh(NO3)3 Pd(NO3)2 8 50
    10 2.5% Pd 5% Rh/Silica 5 μm Cariact Rh(NO3)3 Pd(NO3)2 13 50
    11 2.5% Ru 5% Pd/Silica 5 μm Cariact Pd(NO3)2 aRu(NO)(NO3)x(OH)y 8 63
    12 2.5% Ru 5% Pd/Silica 5 μm Cariact Pd(NO3)2 aRu(NO)(NO3)x(OH)y 8 63
    13 2.5% Ru 5% Rh/Silica 5 μm Cariact Rh(NO3)3 aRu(NO)(NO3)x(OH)y 11 51
    14 2.5% Ru 5% Rh/Silica 5 μm Cariact Rh(NO3)3 aRu(NO)(NO3)x(OH)y 8 54
    15 5% Ir 5% Rh/Silica 5 μm Cariact Rh(NO3)3 H2IrCl6•H20 8 52
    16 5% Pt 5% Pd/Silica 5 μm Cariact Pd(NO3)2 Pt(NO3)2 8 54
    17 b5% Rh/Silica 5 μm Cariact Rh(NO3)3 None 8 49
    18 b5% Pd/Silica 5 μm Cariact Pd(NO3)2 None 8 47
    d19 b5% Pt/Silica 5 μm Cariact Pt(NO3)2 None 8 69
    20 0.5% Au 5% Rh/Silica 5 μm Cariact Rh(NO3)3 AuCl3 9 48
    21 0.5% Au 5% Rh/Silica 5 μm Cariact Rh(NO3)3 AuCl3 14 50
    22 2% Pd 2% Rh/Titania NorPro ST 61120 Rh(NO3)3 Pd(NO3)2 8 47
    23 2% Pd 4% Pt/Titania NorPro ST 61120 Pt(NO3)2 Pd(NO3)2 7 38
    24 4% Pt 2% Ru/Titania NorPro ST 61120 aRu(NO)(NO3)x(OH)y Pt(NO3)2 9 46
    25 4% Pt 2% Rh/Titania NorPro ST 61120 Rh(NO3)3 Pt(NO3)2 8 60
    26 4% Pt 2% Pd/Titania NorPro ST 61120 Pd(NO3)2 Pt(NO3)2 7 39
    27 2% Ru 2% Pd/Titania NorPro ST61120 Pd(NO3)2 aRu(NO)(NO3)x(OH)y 12 22
    28 2% Ru 4% Pt/Titania NorPro ST 61120 Pt(NO3)2 aRu(NO)(NO3)x(OH)y 8 38
    29 2% Rh 2% Pd/Titania NorPro ST61120 Pd(NO3)2 Rh(NO3)3 7 46
    30 2% Rh 4% Pt/Titania NorPro ST 61120 Pt(NO3)2 Rh(NO3)3 9 52
    31 c1.6% Rh 1.6% Pd/Silica Davisil 635 Pd(NO3)2 Rh(NO3)3 8 51
    32 c1.6% Rh 3.0% Pt/Silica Davisil 635 Pt(NO3)2 Rh(NO3)3 8 61
    33 c0.3% Rh 5.4% Pt/Silica Davisil 635 Pt(NO3)2 Rh(NO3)3 8 47
    34 b3.2% Pd/Silica Davisil 635 Pd(NO3)2 none 8 46
    35 b6.0% Pt/Silica Davisil 635 Pt(NO3)2 none 8 35
    36 b3.2% Rh/Silica Davisil 635 Rh(NO3)3 none 8 30
    37 c0.6% Pt 2.9% Pt/Silica Davisil 635 Pd(NO3)2 Pt(NO3)2 8 45
    e38 c1.65% Rh 4.7% Pt/Silica Davisil 635 Pt(NO3)2 Rh(NO3)3 8 89
    aWhere x + y = 3
    bWhere no M2 was used, the M1/Support catalyst was calcined at 500° C. for 3 hours prior to use
    cPrepared by coimpregnation
    dThis reaction was run for 6 hours
    eThis reaction was conducted at 160° C.

Claims (6)

1-46. (canceled)
47. A process for producing an adipic acid product from a glucose source, the process comprising:
converting by chemocatalytic means at least a portion of the glucose source to the adipic acid product.
48. The process as set forth in claim 47 wherein the process comprises:
converting by chemocatalytic means at least a portion of the glucose source to glucaric acid or derivative thereof; and,
converting by chemocatalytic means at least a portion of the glucaric acid or derivative thereof to the adipic acid product.
49. The process as set forth in claim 47 wherein the adipic acid product comprises adipic acid.
50. The process as set forth in claim 48 wherein the adipic acid product comprises adipic acid.
51-58. (canceled)
US15/232,285 2009-06-13 2016-08-09 Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials Abandoned US20170158593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/232,285 US20170158593A1 (en) 2009-06-13 2016-08-09 Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US26841409P 2009-06-13 2009-06-13
US31119010P 2010-03-05 2010-03-05
US12/814,188 US8669397B2 (en) 2009-06-13 2010-06-11 Production of adipic acid and derivatives from carbohydrate-containing materials
US14/153,248 US9156766B2 (en) 2009-06-13 2014-01-13 Production of adipic acid and derivatives from carbohydrate-containing materials
US14/854,780 US9434709B2 (en) 2009-06-13 2015-09-15 Production of adipic acid and derivatives from carbohydrate-containing materials
US15/232,285 US20170158593A1 (en) 2009-06-13 2016-08-09 Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/854,780 Continuation US9434709B2 (en) 2009-06-13 2015-09-15 Production of adipic acid and derivatives from carbohydrate-containing materials

Publications (1)

Publication Number Publication Date
US20170158593A1 true US20170158593A1 (en) 2017-06-08

Family

ID=43759532

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/814,188 Active 2031-06-30 US8669397B2 (en) 2009-06-13 2010-06-11 Production of adipic acid and derivatives from carbohydrate-containing materials
US14/153,248 Active 2030-08-04 US9156766B2 (en) 2009-06-13 2014-01-13 Production of adipic acid and derivatives from carbohydrate-containing materials
US14/854,780 Active US9434709B2 (en) 2009-06-13 2015-09-15 Production of adipic acid and derivatives from carbohydrate-containing materials
US15/232,285 Abandoned US20170158593A1 (en) 2009-06-13 2016-08-09 Production of Adipic Acid and Derivatives from Carbohydrate-Containing Materials

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/814,188 Active 2031-06-30 US8669397B2 (en) 2009-06-13 2010-06-11 Production of adipic acid and derivatives from carbohydrate-containing materials
US14/153,248 Active 2030-08-04 US9156766B2 (en) 2009-06-13 2014-01-13 Production of adipic acid and derivatives from carbohydrate-containing materials
US14/854,780 Active US9434709B2 (en) 2009-06-13 2015-09-15 Production of adipic acid and derivatives from carbohydrate-containing materials

Country Status (12)

Country Link
US (4) US8669397B2 (en)
EP (2) EP2579981B1 (en)
JP (1) JP5882309B2 (en)
CN (1) CN102971074B (en)
AU (1) AU2010355259B2 (en)
BR (1) BR112012031494B1 (en)
DK (1) DK2579981T3 (en)
ES (1) ES2949379T3 (en)
FI (1) FI2579981T3 (en)
PL (1) PL2579981T3 (en)
SG (1) SG186205A1 (en)
WO (1) WO2011155964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829439B2 (en) * 2018-08-28 2020-11-10 Hyundai Motor Company Method for producing adipamide as intermediate for production of raw material for bio-based nylon

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2371839B1 (en) * 2010-06-16 2012-11-19 Consejo Superior De Investigaciones Científicas (Csic) BIOMASS CONVERSION PROCESS IN LIQUID FUEL.
CA2807561C (en) 2010-08-06 2022-04-12 Mascoma Corporation Production of malonyl-coa derived products via anaerobic pathways
AU2012243157A1 (en) * 2011-04-13 2013-10-24 Rennovia, Inc. Production of caprolactam from carbohydrate-containing materials
CA2882925C (en) 2011-08-26 2020-04-07 Polyvalor Societe En Commandite Methods for the valorization of carbohydrates
EP2790806A1 (en) 2011-12-14 2014-10-22 Rennovia, Inc. Process for the separation of mono-and di-carboxylic acid compounds
WO2013090031A2 (en) 2011-12-14 2013-06-20 Rennovia, Inc. Water concentration reduction process
CN104169259B (en) 2012-02-23 2016-09-21 莱诺维亚公司 Caprolactam is produced from adipic acid
SA113340550B1 (en) * 2012-05-15 2016-10-13 رينوفيا، انك. Reduction catalysts comprising platinum and rhodium
CN111454144A (en) * 2012-06-11 2020-07-28 阿彻丹尼尔斯米德兰公司 Method for producing adipic acid from 1, 6-hexanediol
US10150719B2 (en) * 2013-08-23 2018-12-11 Archer-Daniels-Midland Company Production of 1,6-hexanediol from adipic acid
AU2015253175A1 (en) 2014-04-29 2016-09-29 Archer-Daniels-Midland Company Carbon black based shaped porous products
US11253839B2 (en) 2014-04-29 2022-02-22 Archer-Daniels-Midland Company Shaped porous carbon products
GB2540895A (en) 2014-05-12 2017-02-01 Virdia Inc Hydrogenation of oxygenated molecules from biomass refining
KR101679914B1 (en) 2014-08-18 2016-11-25 현대자동차주식회사 Synthesis method of glucaric acid
JP6290756B2 (en) * 2014-09-17 2018-03-07 旭化成株式会社 Method for producing compound having two or more carboxyl groups from primary alcohol, and catalyst used therefor
EP3200891B1 (en) 2014-09-29 2020-08-19 Archer-Daniels-Midland Company Preparation and separation of a dicarboxylic acid-containing mixture using a dicarboxylate form of an anion exchange chromatography resin
CA2897454C (en) 2015-07-03 2023-03-14 Governing Council Of The University Of Toronto Microorganisms and methods for biosynthesis of adipic acid
US10722867B2 (en) 2015-10-28 2020-07-28 Archer-Daniels-Midland Company Porous shaped carbon products
US10464048B2 (en) 2015-10-28 2019-11-05 Archer-Daniels-Midland Company Porous shaped metal-carbon products
US10821422B2 (en) 2015-11-17 2020-11-03 University Of Kansas Methods of forming and using metal alloy oxidative catalysts
US10208006B2 (en) 2016-01-13 2019-02-19 Stora Enso Oyj Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof
US10774058B2 (en) 2017-02-10 2020-09-15 Basf Se Process for preparing D-glucaro-6,3-lactone
CN107188795A (en) * 2017-06-05 2017-09-22 中国石油大学(华东) A kind of method that low-temperature catalytic oxidation method prepares saccharic acid
BR112019027341A2 (en) 2017-06-22 2020-07-07 Archer Daniels Midland Company process for producing fdca esters and process for producing fdca esters from dextrose
CN110997647A (en) 2017-07-12 2020-04-10 斯道拉恩索公司 Purified 2, 5-furandicarboxylic acid pathway products
WO2019014393A1 (en) 2017-07-12 2019-01-17 Stora Enso Oyj Novel processes for preparation of 2,5-furandicarboxylic acid
CA3074401A1 (en) 2017-10-05 2019-04-11 Basf Se N-alkyl-d-glucaro-6 amide derivatives and alkylammonium salts thereof as intermediates for preparing d-glucaro-6,3-lactone monoamide
EP3781551A1 (en) 2018-04-18 2021-02-24 Basf Se D-glucaro-6,3-lactone monoester and a process for the preparation thereof
KR102634393B1 (en) * 2018-08-28 2024-02-06 현대자동차주식회사 Method of manufacturing bio-adipic acid derived from glucose
KR20200025040A (en) 2018-08-29 2020-03-10 현대자동차주식회사 Method for manufacturing the Adipic acid
EP3782976B1 (en) 2019-08-21 2023-10-18 Kemijski Institut Sustainable process for producing muconic, hexenedioic and adipic acid (and their esters) from aldaric acids by heterogeneous catalysis
CN110568043B (en) * 2019-08-26 2022-02-01 宁德师范学院 Pt @ Au/C bimetallic nano material and method for detecting glucose by using same
PL3822247T3 (en) 2019-11-18 2022-09-26 Archer Daniels Midland Company Processes for preparing aldaric, aldonic, and uronic acids
FI3822248T3 (en) 2019-11-18 2023-02-28 Processes for preparing aldaric, aldonic, and uronic acids
EP4153550A1 (en) 2020-05-18 2023-03-29 Archer Daniels Midland Company Processes for the hydrogenolysis of glycerol
CN113069545B (en) * 2021-03-29 2022-03-25 华南农业大学 Long-acting antibacterial material with underwater adhesion photo-thermal dual responsiveness and preparation and application thereof
CN115448900A (en) * 2021-06-09 2022-12-09 安徽省兴宙医药食品有限公司 Production process of gluconic acid-delta-lactone
KR20240034394A (en) 2022-09-07 2024-03-14 현대자동차주식회사 A method of producing adipic acid

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600871A (en) 1945-10-17 1948-04-21 Walter Norman Haworth Improvements relating to the manufacture of 5-hydroxymethyl 2-furfural
GB591858A (en) 1944-05-30 1947-09-01 Walter Norman Haworth Improvements relating to the manufacture of 5-hydroxy-methyl furfural or levulinic acid
US2472168A (en) 1948-10-12 1949-06-07 Charles L Mehltretter Process for the preparation of d-glucosaccharic acid
US2750394A (en) 1952-05-22 1956-06-12 Food Chemical And Res Lab Inc Manufacture of 5-hydroxymethyl 2-furfural
US2851468A (en) 1953-06-10 1958-09-09 Dendrol Inc Preparation of hydroxymethylfurfural from cellulosic materials
US2929823A (en) 1956-11-26 1960-03-22 Merck & Co Inc Production of 5-hydroxymethylfurfural
US2917520A (en) 1957-09-11 1959-12-15 Arthur C Cope Production and recovery of furans
US3083236A (en) 1958-09-10 1963-03-26 Merck & Co Inc Hydrogenation of 5-hydroxy-methyl furfural
US3070633A (en) 1958-09-10 1962-12-25 Merck & Co Inc Process for producing 1, 6-hexanediol
GB876463A (en) 1959-02-25 1961-09-06 Atlas Powder Co Process for preparing hydroxymethyl furfural
US3118912A (en) 1960-04-18 1964-01-21 Rayonier Inc Preparation of hydroxymethylfurfural
US3189651A (en) 1962-01-16 1965-06-15 Merck & Co Inc Process for preparing hexamethylenediamine compounds from 5-aminomethyl-2-furfurylamine compounds
US3225066A (en) 1963-04-18 1965-12-21 Atlas Chem Ind Process for the preparation of tetrahydrofuran-cis, 2,5-dicarboxylic acid and salts thereof
US3326944A (en) 1964-03-09 1967-06-20 Atlas Chem Ind Method of producing dehydromucic acid
GB1044883A (en) 1964-03-12 1966-10-05 British Petroleum Co Alkaryl esters of aliphatic dicarboxylic acids
GB1208101A (en) 1966-10-13 1970-10-07 Johnson Matthey Co Ltd Improvements in and relating to the catalytic oxidation of glucose
US3483228A (en) 1966-10-18 1969-12-09 Merck & Co Inc Method for producing 5-hydroxymethyl furfural
US3860626A (en) 1967-07-26 1975-01-14 Inst Neorganicheskoi Khim Methods for the preparation of borotrihydroxyglutarate
US4060547A (en) 1968-08-15 1977-11-29 Monsanto Company Production of dicarboxylic acids
DE1916601C3 (en) 1969-04-01 1975-01-09 Basf Ag, 6700 Ludwigshafen Process for the production of adipic acid dinitrile
DE2161768A1 (en) 1970-12-14 1972-07-06 The Procter & Gamble Co., Cincinnati, Ohio (V.StA.) Builder mixtures
DE2233977A1 (en) 1971-07-14 1973-02-01 Unilever Nv PROCESS FOR PREPARING OXYDED CARBOHYDRATES
US3761579A (en) 1971-09-01 1973-09-25 Monsanto Co Hydrogen iodide
JPS5513243Y2 (en) 1973-06-25 1980-03-25
US3917707A (en) 1974-07-31 1975-11-04 Du Pont Suppression of 1,2-diaminocyclohexane formation during production of hexamethylenediamine
US4363815A (en) 1975-07-23 1982-12-14 Yu Ruey J Alpha hydroxyacids, alpha ketoacids and their use in treating skin conditions
US4078139A (en) 1975-07-31 1978-03-07 Schering Corporation Process for deoxygenating secondary alcohols
US4067900A (en) 1975-08-25 1978-01-10 Monsanto Company Hydrogenolysis of alcohols, ketones, aldehydes, esters and ethers
JPS53144506U (en) 1977-04-20 1978-11-14
FR2464260A1 (en) 1979-09-05 1981-03-06 Roquette Freres PROCESS FOR PRODUCING 5-HYDROXYMETHYLFURFURAL
US4302432A (en) 1980-11-21 1981-11-24 Eastman Kodak Company Preparation of hydrogen iodide, lithium iodide and methyl iodide
US4337202A (en) 1981-04-16 1982-06-29 Boise Cascade Corporation Process of making L-gulono gamma lactone
US4401823A (en) 1981-05-18 1983-08-30 Uop Inc. Hydrogenolysis of polyhydroxylated compounds
US4400468A (en) 1981-10-05 1983-08-23 Hydrocarbon Research Inc. Process for producing adipic acid from biomass
FR2528842B1 (en) 1982-06-16 1985-09-06 Agrifurane Sa IMPROVED DECARBONYLATION PROCESS FOR FURFURAL IN ORDER TO OBTAIN FURANNE AND DECARBONYLATION CATALYST FOR ITS IMPLEMENTATION
US4439551A (en) 1983-03-18 1984-03-27 Texaco, Inc. Packaging foam polyurethane composition employing novel polyol blend
JPS59190984U (en) 1983-06-03 1984-12-18 三菱重工業株式会社 Scroll type fluid device
FR2551754B1 (en) 1983-09-14 1988-04-08 Roquette Freres PROCESS FOR THE MANUFACTURE OF 5-HYDROXYMETHYLFURFURAL
JPS6092239A (en) 1983-10-24 1985-05-23 Kawaken Fine Chem Co Ltd Preparation of gluconic acid
FR2556344A1 (en) 1983-12-12 1985-06-14 British Petroleum Co Process for production of furfural and 5-(hydroxymethyl)furfural and corresponding hydrogenated derivatives
US4533743A (en) 1983-12-16 1985-08-06 Atlantic Richfield Company Furfural process
US4620034A (en) 1984-01-23 1986-10-28 Akzo Nv Process for the preparation of 2-keto-aldonic acids
US4605790A (en) 1985-05-21 1986-08-12 E. I. Du Pont De Nemours And Company Phenol from coal and biomass
US4722997A (en) 1985-05-31 1988-02-02 Stamicarbon, B.V. Process for the preparation of nylon 4,6
JPS6280289A (en) 1985-10-03 1987-04-13 Yamasa Shoyu Co Ltd Method for deoxidizing alcohol
DE3601281A1 (en) 1986-01-17 1987-07-23 Sueddeutsche Zucker Ag METHOD FOR PRODUCING 5-HYDROXYMETHYLFURFURAL, INCLUDING A CRYSTALINE PRODUCT, WITH THE EXCLUSIVE USE OF WATER AS A SOLVENT
FR2597474B1 (en) 1986-01-30 1988-09-23 Roquette Freres PROCESS FOR THE OXIDATION OF ALDOSES, CATALYST IMPLEMENTED AND PRODUCTS THUS OBTAINED.
DE3643011A1 (en) 1986-12-17 1988-06-30 Basf Ag METHOD FOR PRODUCING CAPROLACTAM FROM 6-AMINOCAPRONIC ACID, THEIR ESTERS AND AMIDES
US5149680A (en) 1987-03-31 1992-09-22 The British Petroleum Company P.L.C. Platinum group metal alloy catalysts for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
AT387247B (en) 1987-05-12 1988-12-27 Voest Alpine Ind Anlagen COMBINED PROCESS FOR THE THERMAL AND CHEMICAL TREATMENT OF BIOMASS CONTAINING LIGNOCELLULOSE AND FOR THE EXTRACTION OF FURFURAL
US4820880A (en) 1987-05-18 1989-04-11 Michigan Biotechnology Institute Process for the production of 3,4-dideoxyhexitol
DE3842825A1 (en) 1988-01-08 1989-07-20 Krupp Gmbh METHOD AND DEVICE FOR PRODUCING FURFURAL
US4833230A (en) 1988-06-21 1989-05-23 Research Corporation Technologies, Inc. Polyhydroxypolyamides and process for making same
DE3823301C1 (en) 1988-07-09 1989-11-02 Degussa Ag, 6000 Frankfurt, De
DE3826073A1 (en) 1988-07-30 1990-02-01 Hoechst Ag METHOD FOR THE OXIDATION OF 5-HYDROXYMETHYLFURFURAL
US5359137A (en) 1989-04-26 1994-10-25 E. I. Du Pont De Nemours And Company Preparation of adipic acid from lactones
US5247012A (en) 1989-12-08 1993-09-21 The Geon Company Glutaric acid based polyester internally plasticized PVC
US5071754A (en) 1990-01-23 1991-12-10 Battelle Memorial Institute Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid
US5252473A (en) 1990-01-23 1993-10-12 Battelle Memorial Institute Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid
FR2664273B1 (en) 1990-06-27 1994-04-29 Beghin Say Sa NEW PROCESS FOR THE PREPARATION OF 5-HYDROXYMETHYLFURFURAL FROM SACCHARIDES.
FR2663933B1 (en) 1990-06-27 1994-06-17 Beghin Say Sa NEW PROCESS FOR THE PREPARATION OF 5-HYDROXYMETHYLFURFURAL FROM SACCHARIDES.
FR2669635B1 (en) 1990-11-22 1994-06-10 Furchim PROCESS FOR THE MANUFACTURE OF HIGH PURITY HYDROXYMETHYLFURFURAL (HMF).
FR2670209B1 (en) 1990-12-07 1995-04-28 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF FURFURAL HYDROXYMETHYL-5 BY HETEROGENEOUS CATALYSIS.
DE4106937A1 (en) 1991-03-05 1992-09-10 Bayer Ag METHOD FOR RECOVERY OF ADIPINIC ACID
US5132456A (en) 1991-05-07 1992-07-21 The Regents Of The University Of California Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pKa of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine
US5276240A (en) 1991-10-18 1994-01-04 Board Of Regents, The University Of Texas System Catalytic hydrodehalogenation of polyhalogenated hydrocarbons
ATE143378T1 (en) 1991-12-23 1996-10-15 Cerestar Holding Bv METHOD FOR PRODUCING OXYGEN ACIDS FROM CARBOHYDRATES
US5196617A (en) 1992-01-14 1993-03-23 Engelhard Corporation Method of hydrodehalogenating halogenated organic compounds in aqueous environmental sources
US5434233A (en) 1992-08-12 1995-07-18 Kiely; Donald E. Polyaldaramide polymers useful for films and adhesives
US5430214A (en) 1992-10-01 1995-07-04 The Dow Chemical Company Hydrodehalogenation process and catalyst for use therein
US5281647A (en) 1992-11-10 1994-01-25 Miles Inc. Polymeric plasticizers and a process for preparing the same
NL9300540A (en) 1993-03-25 1994-10-17 Inst Voor Agrotech Onderzoek Method for oxidizing carbohydrates.
US5562777A (en) 1993-03-26 1996-10-08 Arkenol, Inc. Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials
US5597714A (en) 1993-03-26 1997-01-28 Arkenol, Inc. Strong acid hydrolysis of cellulosic and hemicellulosic materials
US5426219A (en) 1993-07-26 1995-06-20 A.E. Staley Manufacturing Co. Process for recovering organic acids
EP0638362B1 (en) 1993-08-11 2001-03-21 Mitsubishi Gas Chemical Company, Inc. Titanosilicate catalyst particle
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
US5426252A (en) 1993-10-15 1995-06-20 Akzo Nobel Nv Catalytic hydrodechlorination of a chloromethane
LV10857B (en) 1993-12-28 1996-08-20 Univ Rigas Tehniska Method for producing of glucaric acid (saccharic acid)
US5811628A (en) 1994-07-26 1998-09-22 Leuna-Katalysatoren Gmbh Method for the complete hydrodechlorination of chlorinated hydrocarbons
US5625110A (en) 1994-07-26 1997-04-29 Leuna-Katalysatoren Gmbh Hydrodehalogenation catalyst
US5516960A (en) 1994-08-02 1996-05-14 Board Of Regents, The University Of Texas System Process for producing hydrocarbon fuels
US5599977A (en) 1995-06-02 1997-02-04 Kiely; Donald E. Oxidation process
FR2736636B1 (en) 1995-07-11 1997-09-19 Roquette Freres PROCESS FOR THE MANUFACTURE OF XYLARIC ACID AND USES THEREOF
DE19535395C1 (en) 1995-09-23 1997-03-06 Degussa Process for the hydrogenolysis of C-O and C = O bonds in organic substances
FR2740707B1 (en) 1995-11-08 1997-12-26 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF A RUTHENIUM / TIN BI-METAL CATALYST
DE19542287A1 (en) 1995-11-14 1997-05-15 Suedzucker Ag Process for the preparation of di- and higher-oxidized carboxylic acids of carbohydrates, carbohydrate derivatives or primary alcohols
US5919994A (en) 1995-11-29 1999-07-06 E. I. Du Pont De Nemours And Company Catalytic halogenated hydrocarbon processing and ruthenium catalysts for use therein
US6127585A (en) 1995-11-29 2000-10-03 E. I. Du Pont De Nemours And Company Catalysts for halogenated hydrocarbon processing, their precursors and their preparation and use
US5721189A (en) 1995-12-07 1998-02-24 Akzo Nobel N.V. Treatment to improve the durability of a hydrodechlorination catalyst and catalyst
DE19548289A1 (en) 1995-12-22 1997-06-26 Basf Ag Process for the simultaneous production of caprolactam and hexamethylenediamine
WO1997031882A1 (en) 1996-03-01 1997-09-04 Basf Aktiengesellschaft Process for preparing 1,6 hexane diol with a level of purity over 99 %
DE19609069A1 (en) 1996-03-08 1997-09-11 Episucres Sa Catalytic hydrolysis of complex sugar solutions
US5766439A (en) 1996-10-10 1998-06-16 A. E. Staley Manufacturing Co. Production and recovery of organic acids
US6028025A (en) 1996-10-21 2000-02-22 Massachusetts Institute Of Technology Metalloporphyrin oxidation catalyst covalently coupled to an inorganic surface and method making same
TW377306B (en) 1996-12-16 1999-12-21 Asahi Chemical Ind Noble metal support
JPH10216518A (en) * 1997-02-10 1998-08-18 Toyota Motor Corp Gold alloy catalyst
JP4756719B2 (en) 1997-02-17 2011-08-24 ダイセル化学工業株式会社 Oxidation catalyst system, oxidation method and oxide production method
US5789333A (en) 1997-03-05 1998-08-04 Iowa State University Research Foundation, Inc. Catalyst system comprising a first catalyst system tethered to a supported catalyst
US5900511A (en) 1997-03-28 1999-05-04 E. I. De Pont De Nemours And Company Process for continuous hydrogenation of adiponitrile
EP1140357A4 (en) 1997-05-07 2002-05-08 George A Olah Nanoscale solid superacid catalysts with pendant fluoroalkylsulfonic acid or fluoro, perfluoroalkylsulfonic acid groups
JP3903598B2 (en) * 1997-09-24 2007-04-11 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
DE19743621C1 (en) 1997-10-02 1999-03-25 Rwe Dea Ag Oxidation of primary alcohol to aldehyde and acid
US5986127A (en) 1999-03-15 1999-11-16 E. I. Du Pont De Nemours And Company Aminonitrile production
US5998657A (en) 1998-04-15 1999-12-07 Eastman Chemical Company Process for the generation of α, β-unsaturated carboxylic acids and esters using niobium catalyst
JP2000070718A (en) 1998-06-17 2000-03-07 Nippon Shokubai Co Ltd Production of benzyl ester
US6232264B1 (en) 1998-06-18 2001-05-15 Vanderbilt University Polymetallic precursors and compositions and methods for making supported polymetallic nanocomposites
DE19839338A1 (en) 1998-08-28 2000-03-02 Basf Ag Improved process for the simultaneous production of 6-aminocapronitrile and hexamethylenediamine
US6087296A (en) 1998-11-05 2000-07-11 E. I. Du Pont De Nemours & Co. Raney iron catalyst and a process for hydrogenating organic compounds using said catalyst
FR2785608B1 (en) 1998-11-05 2000-12-29 Rhone Poulenc Fibres PROCESS FOR HEMIHYDROGENATION OF DINITRILES
US6049004A (en) 1998-12-11 2000-04-11 Kiely; Donald E. Nitric acid removal from oxidation products
DE19905655A1 (en) 1999-02-11 2000-08-17 Karl Zeitsch Process for the production of furfural by delayed relaxation
DE19911504B4 (en) 1999-03-16 2006-02-23 Südzucker AG Mannheim/Ochsenfurt Process for the industrial oxidation of alcohols, aldehydes or polyhydroxy compounds
US6436866B1 (en) 1999-05-26 2002-08-20 Asahi Kasei Kabushiki Kaisha Lewis acid catalyst composition
US6399540B1 (en) 1999-08-12 2002-06-04 Sumitomo Chemical Co., Ltd. Porous titania, catalyst comprising the porous titania
JP4555415B2 (en) 1999-09-01 2010-09-29 ダイセル化学工業株式会社 Catalyst comprising nitrogen-containing heterocyclic compound, and method for producing organic compound using the catalyst
AU7318900A (en) 1999-09-21 2001-04-24 Asahi Kasei Kabushiki Kaisha Catalysts for hydrogenation of carboxylic acid
US6569670B2 (en) 1999-09-30 2003-05-27 Cognis Corporation Fermentation process
US6569802B1 (en) 1999-11-30 2003-05-27 E. I. Du Pont De Nemours And Company Catalyst for selective hydrogenation of dinitriles
FR2801901B1 (en) 1999-12-07 2003-11-14 Roquette Freres PROCESS FOR CONVERTING ORGANIC MATERIALS, IN PARTICULAR SUGAR, COMPRISING AN ENZYMATIC OXIDATION STEP IN THE PRESENCE OF RUTHENIUM OR PALLADIUM
JP2001316311A (en) 2000-03-03 2001-11-13 Asahi Kasei Corp Highly pure 1,5-pentanediol
US6498269B1 (en) 2000-10-17 2002-12-24 The University Of Connecticut Method for the oxidation of aldehydes, hemiacetals and primary alcohols
TWI294308B (en) 2000-11-15 2008-03-11 Daicel Chem
AU2002219818B2 (en) 2000-11-20 2007-08-16 Cargill, Incorporated 3-hydroxypropionic acid and other organic compounds
US6559275B2 (en) 2000-12-01 2003-05-06 Canon Kabushiki Kaisha Method for producing aliphatic polyester
US20020111458A1 (en) 2000-12-01 2002-08-15 Masato Minami Method for producing aliphatic polyester
JP2002308819A (en) 2001-04-12 2002-10-23 Canon Inc Method for producing caproic acid from cellulose and method for recycling cellulose as resources
US6692578B2 (en) 2001-02-23 2004-02-17 Battelle Memorial Institute Hydrolysis of biomass material
US6518440B2 (en) 2001-03-05 2003-02-11 Gene E. Lightner Hydroxymethylfurfural derived from cellulose contained in lignocellulose solids
US6716339B2 (en) 2001-03-30 2004-04-06 Corning Incorporated Hydrotreating process with monolithic catalyst
ES2265041T3 (en) 2001-04-30 2007-02-01 Ciba Specialty Chemicals Holding Inc. USE OF METAL COMPLEX COMPOUNDS AS OXIDATION CATALYSTS.
US7138035B2 (en) 2001-05-08 2006-11-21 National Starch And Chemical Investment Holding Corporation Process for the selective modification of carbohydrates by peroxidase catalyzed oxidation
US6441202B1 (en) 2001-08-20 2002-08-27 Gene E. Lightner Heterocyclic compounds extracted by a hydrocarbon
KR100905829B1 (en) 2001-09-28 2009-07-02 다이셀 가가꾸 고교 가부시끼가이샤 Catalysts Comprised of N-Substituted Cyclic Imides and Processes for Preparing Organic Compounds with The Catalysts
US6933404B2 (en) 2001-12-18 2005-08-23 Metabolix Inc. Methods of making intermediates from polyhydroxyalkanoates
US6773512B2 (en) 2001-12-31 2004-08-10 Danisco Sweeteners Oy Method for the recovery of sugars
US7364880B2 (en) 2002-02-01 2008-04-29 Cargill, Incorporated Integration of at least two processes to re-use acid
AU2003299488B2 (en) 2002-05-10 2008-05-08 Wisconsin Alumni Research Foundation Low-temperature hydrocarbon production from oxygenated hydrocarbons
FR2843050B1 (en) 2002-08-01 2005-04-15 Inst Francais Du Petrole METAL CATALYST OF GROUP VI AND GROUP VIII AT LEAST IN PART IN THE FORM OF HETEROPOLYANIONS IN THE OXIDE PRECURSOR
GB0218012D0 (en) 2002-08-05 2002-09-11 Ciba Spec Chem Water Treat Ltd Production of a fermentation product
GB0218010D0 (en) 2002-08-05 2002-09-11 Ciba Spec Chem Water Treat Ltd Production of a fermentation product
AU2003300909A1 (en) 2002-12-10 2004-06-30 The University Of Montana Method of preparing high molecular weight random polyhydroxypolyamides
ES2217962B1 (en) 2003-02-14 2006-02-16 Universidad Politecnica De Valencia CRYSTAL POROUS MATERIAL (ZEOLITA ITQ-24), ITS PREPARATION PROCEDURE AND ITS USE IN THE CATALITICAL CONVERSION OF ORGANIC COMPONENTS.
US20050009694A1 (en) 2003-06-30 2005-01-13 Watts Daniel J. Catalysts and methods for making same
US20070027341A1 (en) 2003-07-01 2007-02-01 Michele Rossi Process and catalyst for the preparation of aldonic acids
JP2005060447A (en) 2003-08-19 2005-03-10 Toray Ind Inc Polyamide resin
JP2005154302A (en) * 2003-11-21 2005-06-16 Mitsubishi Gas Chem Co Inc Method for oxidizing glucide
EP1694853A1 (en) 2003-12-18 2006-08-30 Cerestar Holding B.V. Oxidation of carbohydrates by means of peroxidases and nitroxy radicals
JP2005200321A (en) 2004-01-14 2005-07-28 Canon Inc Method for producing 5-hydroxymethylfurfural and furfural
WO2005067531A2 (en) 2004-01-16 2005-07-28 Novozymes Inc. Methods for degrading lignocellulosic materials
JP2005232116A (en) 2004-02-23 2005-09-02 Canon Inc Method for producing lactic acid, 5-hydroxymethylfurfural and furfural
CN100564330C (en) 2004-02-27 2009-12-02 陶氏环球技术公司 From the aqueous stream that contains organic compound, reclaim the method for this organic compound
US6958405B2 (en) 2004-03-09 2005-10-25 Arco Chemical Technology, L.P. Polymer-encapsulated titanium zeolites for oxidation reactions
CN1997736B (en) 2004-03-25 2011-05-11 诺维信股份有限公司 Methods for degrading or converting plant cell wall polysaccharides
BRPI0510746A (en) 2004-06-10 2007-11-20 Univ Michigan State synthesis of caprolactam from lysine
CA2571060A1 (en) 2004-06-30 2006-01-12 E.I. Du Pont De Nemours And Company Synthesis of aldonolactones, aldarolactones, and aldarodilactones using azeotrophic distillation
CN1993365A (en) 2004-06-30 2007-07-04 纳幕尔杜邦公司 Synthesis of aldonolactones, aldarolactones, and aldarodilactones using azeotrophic distillation
US20060084800A1 (en) 2004-06-30 2006-04-20 Chenault Henry K Synthesis of aldonolactones, aldarolactones, and aldarodilactones using azeotropic distillation
US20080096242A1 (en) 2004-09-01 2008-04-24 Agrotechnology And Food Innovations B.V. Enhanced Substrate Conversion Efficiency Of Fermentation Processes
US7371894B2 (en) 2004-09-02 2008-05-13 Eastman Chemical Company Optimized liquid-phase oxidation
US7317116B2 (en) 2004-12-10 2008-01-08 Archer-Daniels-Midland-Company Processes for the preparation and purification of hydroxymethylfuraldehyde and derivatives
US7393963B2 (en) 2004-12-10 2008-07-01 Archer-Daniels-Midland Company Conversion of 2,5-(hydroxymethyl)furaldehyde to industrial derivatives, purification of the derivatives, and industrial uses therefor
US20060182681A1 (en) 2004-12-28 2006-08-17 Fortum Oyj Catalytic materials and method for the preparation thereof
US8142527B2 (en) 2005-03-21 2012-03-27 Ben-Gurion University Of The Negev Research And Development Authority Production of diesel fuel from vegetable and animal oils
US7781191B2 (en) 2005-04-12 2010-08-24 E. I. Du Pont De Nemours And Company Treatment of biomass to obtain a target chemical
CN101160409B (en) 2005-04-12 2013-04-24 纳幕尔杜邦公司 Process for biomass treatment for obtaining fermentable sugars
DE602006013810D1 (en) 2005-04-22 2010-06-02 Mitsubishi Chem Corp DERIVED FROM BIOMASSER SOURCES OF POLYESTER AND MANUFACTURING METHOD THEREFOR
CA2605672A1 (en) 2005-05-02 2006-11-09 University Of Utah Research Foundation Processes for catalytic conversion of lignin to liquid bio-fuels
US20060264684A1 (en) 2005-05-19 2006-11-23 Petri John A Production of diesel fuel from biorenewable feedstocks
CN101300356A (en) 2005-09-09 2008-11-05 基因组股份公司 Methods and organisms for the growth-coupled production of succinate
US7608689B2 (en) 2005-09-30 2009-10-27 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
JP2007145736A (en) 2005-11-25 2007-06-14 Canon Inc Manufacturing method of 5-hydroxymethylfurfural
US7459597B2 (en) 2005-12-13 2008-12-02 Neste Oil Oyj Process for the manufacture of hydrocarbons
US7678950B2 (en) 2005-12-16 2010-03-16 Conocophillips Company Process for converting carbohydrates to hydrocarbons
JP5377975B2 (en) 2005-12-21 2013-12-25 ヴァイレント エナジー システムズ インク. Catalyst and method for producing oxygen-containing compound
US7829035B2 (en) 2006-01-19 2010-11-09 Massachusetts Institute Of Technology Oxidation catalyst
US7682811B2 (en) 2006-01-27 2010-03-23 University Of Massachusetts Systems and methods for producing biofuels and related materials
KR100723394B1 (en) 2006-02-07 2007-05-30 삼성에스디아이 주식회사 Non-pyrophoric catalyst for water-gas shift reaction and method of producing the same
US20070215484A1 (en) 2006-03-15 2007-09-20 Peterson Otis G Electrochemical conversion of polyalcohols to hydrocarbons
US20070219397A1 (en) 2006-03-15 2007-09-20 Battelle Memorial Institute Method for conversion of beta-hydroxy carbonyl compounds
JP4804187B2 (en) 2006-03-28 2011-11-02 キヤノン株式会社 Method for producing furan-2,5-dicarboxylic acid
US7572925B2 (en) 2006-06-06 2009-08-11 Wisconsin Alumni Research Foundation Catalytic process for producing furan derivatives in a biphasic reactor
HUE056210T2 (en) 2006-06-09 2022-02-28 Albemarle Netherlands Bv Catalytic hydrodeoxygenation of an oxygenate feedstock
US7994347B2 (en) 2006-06-09 2011-08-09 Battelle Memorial Institute Hydroxymethylfurfural reduction methods and methods of producing furandimethanol
US7939681B2 (en) 2006-08-07 2011-05-10 Battelle Memorial Institute Methods for conversion of carbohydrates in ionic liquids to value-added chemicals
WO2008021054A2 (en) 2006-08-07 2008-02-21 The University Of Montana Method for the preparation of organic acids via oxidization using nitric acid
US20090250653A1 (en) 2006-08-07 2009-10-08 Kiely Donald E Hydroxycarboxylic Acids and Salts
CA2661531C (en) 2006-08-18 2014-06-17 Iogen Energy Corporation Method of obtaining an organic salt or acid from an aqueous sugar stream
CN100537511C (en) 2006-08-30 2009-09-09 中国石油天然气股份有限公司 Method and equipment for producing dimethyl adipate by continuous esterification
US20080103340A1 (en) 2006-10-27 2008-05-01 Archer-Daniels-Midland Company Applications of biobased glycol compositions
US7700788B2 (en) 2006-10-31 2010-04-20 Battelle Memorial Institute Hydroxymethyl furfural oxidation methods
DK2087033T3 (en) 2006-10-31 2020-03-16 Bio Tec Env Llc Chemical additives to make polymeric materials biodegradable
US20080223519A1 (en) 2006-12-06 2008-09-18 Locko George A Polyamide polyols and polyurethanes, methods for making and using, and products made therefrom
US20080206562A1 (en) 2007-01-12 2008-08-28 The Regents Of The University Of California Methods of generating supported nanocatalysts and compositions thereof
ES2817876T3 (en) 2007-03-08 2021-04-08 Virent Inc Synthesis of liquid fuels from oxygenated hydrocarbons
KR101366388B1 (en) 2007-03-08 2014-02-24 바이렌트, 아이엔씨. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
WO2008144514A2 (en) 2007-05-17 2008-11-27 Massachusetts Institute Of Technology Polyol-based polymers
US20090018300A1 (en) 2007-07-11 2009-01-15 Archer-Daniels-Midland Company Monomers and polymers from bioderived carbon
US7947483B2 (en) 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
EP2033958A1 (en) 2007-09-07 2009-03-11 Furanix Technologies B.V Hydroxymethylfurfural ethers from sugars and di- and triols
US7385081B1 (en) 2007-11-14 2008-06-10 Bp Corporation North America Inc. Terephthalic acid composition and process for the production thereof
JP5775305B2 (en) 2007-11-15 2015-09-09 ザ ユニバーシティー オブ モンタナ Hydroxy polyamide gel former
CN103555643B (en) 2008-03-27 2016-08-10 基因组股份公司 For producing the microorganism of adipic acid and other compounds
US8075642B2 (en) 2008-04-14 2011-12-13 Wisconsin Alumni Research Foundation Single-reactor process for producing liquid-phase organic compounds from biomass
DE102008037065A1 (en) * 2008-08-08 2010-02-11 Clariant International Ltd. Process for the preparation of aryl polyglycolcarboxylic acids by direct oxidation
CN101486639B (en) 2009-02-18 2012-01-04 南京林业大学 Novel method for synthesizing mixed glucose derivative
CN101695657B (en) * 2009-10-27 2012-10-10 北京大学 Method for producing lactic acid by using glycerin and special catalyst for production of lactic acid by using glycerin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Niu et al. (Biotechnol. Prog., 2002, 18, 201-211) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829439B2 (en) * 2018-08-28 2020-11-10 Hyundai Motor Company Method for producing adipamide as intermediate for production of raw material for bio-based nylon

Also Published As

Publication number Publication date
US20160075676A1 (en) 2016-03-17
JP2013533798A (en) 2013-08-29
US20100317823A1 (en) 2010-12-16
EP2579981A1 (en) 2013-04-17
US8669397B2 (en) 2014-03-11
CN102971074A (en) 2013-03-13
CN102971074B (en) 2019-01-04
DK2579981T3 (en) 2023-06-26
EP2579981B1 (en) 2023-06-07
PL2579981T3 (en) 2023-11-06
JP5882309B2 (en) 2016-03-09
SG186205A1 (en) 2013-01-30
EP4241881A3 (en) 2023-11-22
US9156766B2 (en) 2015-10-13
AU2010355259A1 (en) 2013-01-10
BR112012031494A2 (en) 2016-11-01
AU2010355259B2 (en) 2016-05-26
WO2011155964A1 (en) 2011-12-15
US20140256982A1 (en) 2014-09-11
FI2579981T3 (en) 2023-06-20
EP4241881A2 (en) 2023-09-13
ES2949379T3 (en) 2023-09-28
US9434709B2 (en) 2016-09-06
BR112012031494B1 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
US9434709B2 (en) Production of adipic acid and derivatives from carbohydrate-containing materials
CA2764116C (en) Production of adipic acid and derivatives from carbohydrate-containing materials
US8669393B2 (en) Adipic acid compositions
US9174911B2 (en) Production of glutaric acid and derivatives from carbohydrate-containing materials
EP2440515A1 (en) Production of adipic acid and derivatives from carbohydrate-containing materials
CA2791500C (en) A process for preparing an adipic acid composition
CA2972533C (en) Production of glutaric acid and derivatives from carbohydrate-containing materials
EP2697202B1 (en) Production of caprolactam from carbohydrate-containing materials

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENNOVIA INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOUSSIE, THOMAS R.;DIAS, ERIC L.;FRESCO, ZACHARY M.;AND OTHERS;REEL/FRAME:041353/0828

Effective date: 20100315

AS Assignment

Owner name: PACIFIC WESTERN BANK, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:RENNOVIA INC.;REEL/FRAME:044703/0960

Effective date: 20171208

AS Assignment

Owner name: RENNOVIA INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PACIFIC WESTERN BANK;REEL/FRAME:044946/0264

Effective date: 20180215

AS Assignment

Owner name: ARCHER-DANIELS-MIDLAND COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RENNOVIA INC.;REEL/FRAME:045385/0614

Effective date: 20180215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION