LV10857B - Method for producing of glucaric acid (saccharic acid) - Google Patents

Method for producing of glucaric acid (saccharic acid) Download PDF

Info

Publication number
LV10857B
LV10857B LV931387A LV931387A LV10857B LV 10857 B LV10857 B LV 10857B LV 931387 A LV931387 A LV 931387A LV 931387 A LV931387 A LV 931387A LV 10857 B LV10857 B LV 10857B
Authority
LV
Latvia
Prior art keywords
acid
mol
glucose
oxidation
glucaric
Prior art date
Application number
LV931387A
Other languages
Latvian (lv)
Other versions
LV10857A (en
Inventor
Tamara Stelmaha
Irina Grigorjeva
Sergejs Trusovs
Original Assignee
Univ Rigas Tehniska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Rigas Tehniska filed Critical Univ Rigas Tehniska
Priority to LV931387A priority Critical patent/LV10857B/en
Publication of LV10857A publication Critical patent/LV10857A/en
Publication of LV10857B publication Critical patent/LV10857B/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The offered invention refers to a method of obtaining glucuronic acid. The method provides for the catalytic oxidising of glucose in a liquid phase with oxygen or air, which can be used in the pharmaceutical and food industry as well as for manufacturing plastics. Oxidising is done at 60-70 degrees C in chloric acid solution (5-6 mol/l) in the presence of sulfolane or acetic acid anhydride (24-37 percents of volume). Solvent salt of nitrous acid (0.1-0.25 mol/l) shall be used as a catalyst agent.

Description

Glukārskābes (cukurskābes) iegūšanas metode.Method of production of glucaric acid (sugar acid).

Izgudrojums attiecas uz glukārskābes iegūšanas metodi ar skābekli katalitiski oksidē.jot glikozi. Glukārskābe Ir vērtīga izejviela farmaceitiskajai un pārtikas rūpniecībai, kā ari sintētisko polimēru materiālu iegūšanai.The present invention relates to a process for the production of glucaric acid by catalytic oxidation of oxygen with glucose. Glucaric Acid A valuable raw material for the pharmaceutical and food industries as well as for the production of synthetic polymeric materials.

Ir zināma glukārskābes iegūšanas metode oksidējot glikozi ar koncentrētu slāpekļskābi paaugstinātā temperatūrā (KIliani H., Ber.,1923, B.56, S.2012; USA Pat.N 2809989, kl.260-528, 1957).There is a known method for obtaining glucaric acid by oxidizing glucose with concentrated nitric acid at elevated temperature (KIliani H., Ber., 1923, B.56, S.2012; USA Pat.N. 2809989, cl. 260-528, 1957).

Minētas metodes trūkums ir lieli ekoloģiski bīstamās slāpekļskābes daudzumi, kuru izmanto sintēzē, kā ari neliels gala produkta iznākums.The disadvantage of this method is the high amount of ecologically hazardous nitric acid used in the synthesis and the low yield of the final product.

Piesakāmajai visanaloģiskākā metode ir - ar zināmu glikozes oksidēšanās procesu ar gaisu vai skābekli ūdens šķīdumos pie pH 5 - 9,6 un temperatūras 50 C. Kā kataiizātoru izmanto uz aktivētas ogles uznestu platīnu (10%), pie tam oksidējamas vielas un katalizātora attiecība ir 1:0,23· Procesu veic, intensīvi maisot šķīdumu 12,5 stundās. Produkta - glukārskābes monokālija sāls gala iznākums ir 54% (USA Pat. N 2472168, kl.260-528, 1949).The most analogous method to be applied is - with known glucose oxidation process with air or oxygen in aqueous solutions at pH 5 - 9.6 and temperature 50 C. Platinum (10%) on activated charcoal is used as the catalyst, and the ratio of oxidizable substance to catalyst is 1. : 0.23 · The process is performed with vigorous stirring of the solution for 12.5 hours. The final yield of the product, monopotassium salt of glucaric acid, is 54% (USA Pat. N 2472168, cl. 260-528, 1949).

Sis metodes trūkumi ir: pirmkārt, dārga katalizātora izmantošana, otrkārt, mazs glikozes oksidēšanās procesa ātrums, treškārt - neliels produkta iznākums .The disadvantages of this method are, firstly, the expensive use of a catalyst, secondly, the low rate of glucose oxidation, and thirdly the low yield of the product.

Piesakāmā Izgudrojuma mērķis ir procesa intensificēšana un palētināšana, kā ari produkta iznākuma palielināšana.The object of the present invention is to intensify and slow down the process and to increase the yield of the product.

Mērķi sasniedz - oksidējot glikozi ar skābekli līdz glukārskābei kā katallzātoru Izmanto jebkuru slāpekļa paskābes ūdeni šķīstošu sāli, izņemot KNO^, piem., NaNC^ (0,1 - 0,25 mol/1), daudzkārt lētāku un pieejamāku salīdzinājumā ar platīnu. Oksidēšanu veic ar skābekli vai gaisu hlorskābes (HCIO^, 5 _ 6 mol/1) klātbūtnē ar sulfolāna vai etiķskābes anhidrida piedevu (24 - 37 tilp. %%) pie temperatūras 60 - 70θ0.The goal is achieved by oxidizing glucose with oxygen to glucaric acid as a catalyser Any water soluble salt of nitric acid is used, except KNO ^, e.g. NaNC ^ (0.1-0.25 mol / l), many times cheaper and more affordable than platinum. The oxidation is carried out with oxygen or air in the presence of hydrochloric acid (HCl 2, 5 - 6 mol / l) with an addition of sulfolane or acetic anhydride (24 - 37 vol%) at a temperature of 60 - 70θ0.

Ir zināms, ka monosaharldos (tai skaitā ari glikozē) visvieglāk oksidējama ir aldehidgrupa. Tāda tipa oksidācijas gaitaļveidojas glukonskābe. Ja glikozes molekulā notiek ari primāras spirta grupas oksidēšana lidz karboksilgrupai, veidojas glukārskābe.It is known that monosaccharides (including glucose) are the most readily oxidizable aldehyde group. Gluconic acid is formed during this type of oxidation. When the glucose molecule also undergoes oxidation of the primary alcohol group to the carboxyl group, glucaric acid is formed.

Glikozes oksidēšanu var novest līdz glukonskābei, apturot oksidēšanas procesu tad, kad oksidējamā sistēma ir uzņēmusi tādu skābekļa daudzumu, kas atbilst tieši reakcijas stehiometrijai glikoze - glukonskābe (uz 1 mol glikozes 0,5 mol 0^), vai ari veicot oksidēšanu mazāk skābos šķīdumos (3-4 mol/1 HCIO^).Oxidation of glucose can be led to gluconic acid by stopping the oxidation process when the oxidizing system has absorbed an amount of oxygen that corresponds directly to the stoichiometry of the reaction with glucose-gluconic acid (per mol of glucose 0.5 mol 0 ^), or by oxidizing in less acidic solutions ( 3-4 mol / L HCl HC).

Glukārskābi var iegūt, oksidāciju turpinot, līdz sistēma uzņem 1,5 mol uz 1 mol glikozes.Glucaric acid can be obtained by continuing oxidation until the system absorbs 1.5 mol per 1 mol glucose.

Nav zināma giukārskābes iegūšanas metode glikozes oksidēšanas ceļā skābos šķīdumos, izmantojot kā katalizātoru slāpekļa paskābes ūdeni šķīstošos sāļus etiķskābes anhidrlda vai sulfolāna klātbūtnē.There is no known method for obtaining glucaric acid by oxidizing glucose in acidic solutions using water-soluble salts of nitric acid in the presence of acetic anhydride or sulfolane.

Piemērs 1. Oksidēšanu veic termostatātā stikla reaktorā, kurš iestiprināts mehāniskā kratītājā. Reaktora tilpums ir sadalīts ar starpsieniņu, kura novērš kontaktu starp substrātu un katalizātoru pirms reakcijas sākuma. Vienā reaktora pusē ievieto nātrija nitrīta šķīdumu ar koncentrāciju 0,25 mol/1, otrā pusē - glikoze - 1 mol/1 (0,9 g), hlorskābe 6 mol/1 un sulfolāns 24% tilp.(no kopējā šķīduma tilpuma). Kopējā oksidējamā šķīduma tilpums sastāda 5 ml. Reaktoru savieno ar gāzes bireti, uzpildītu ar skābekli. Oksidēšanu veic pie atmosfēras spiediena, sakratot reaktoru ar frekvenci 12 s-’'- un pie temteratūras 70°CExample 1. Oxidation is carried out in a thermostated glass reactor mounted on a mechanical shaker. The volume of the reactor is divided by a baffle, which prevents contact between the substrate and the catalyst before the reaction begins. Place one side of the reactor at a concentration of 0.25 mol / l sodium nitrite, the other side glucose 1 mol / l (0.9 g), 6 mol / l hydrochloric acid and 24% v / v sulfolane (based on the total volume of the solution). The total volume of the oxidisable solution is 5 ml. The reactor is connected to a gas burette filled with oxygen. Oxidation is carried out at atmospheric pressure by shaking the reactor at 12 s - '' - and at a temperature of 70 ° C.

Oksidēšanas procesu aptur, kad sistēmas uzņemtā skābekļa daudzums atbilst giukārskābes rašanās stehiometrijai.The oxidation process is stopped when the amount of oxygen uptake by the system is consistent with the stoichiometry of glucuric acid formation.

Giukārskābes iznākumu nosaka ar gāzes hromatogrāfijas metodi, analizējot iegūtos produktus trimetilsililesteru veidā. Procesa selektīvitāte pēc glukārskābes - 10%, iznākums - 92%, procesa ilgums - 45 min.The yield of glucaric acid is determined by gas chromatography, analyzing the products obtained in the form of trimethylsilyl esters. Process selectivity for glucaric acid - 10%, yield - 92%, process duration - 45 min.

Iegūtās giukārskābes struktūru apstiprina KMR spektroskopijas un elementanalizes dati.The structure of the obtained glucaric acid is confirmed by NMR spectroscopy and elemental analysis.

No reakcijas šķīduma glukārskābi izdala monokālija sāls veidā, iznākums 74%. (npaKTHKyM no χμμηη yrjieBo.qoB / ĪTo,n, pejļ. D.A.EfoaHOBa - 2 Η3β., nepepatf. w nonojiH. - M. ,BHCin.niKOJia,IS73. ,c.27.).Glucaric acid is liberated from the reaction solution as a monopotassium salt, yield 74%. (npaKTHKyM no χμμηη yrjieBo.qoB / ĪTo, n, pejl. D.A.EfoaHOBa - 2 Η3β., nepepatf. w nonojiH. - M., BHCin.niKOJia, IS73., c.27.).

Piemēri 2-9· Procesus veic lldzigi kā piemērā 1, izmainot parametrus (sk.tabulu) .Glikozes koncentrācija visos piemēros - 1 mol/1.Examples 2-9 · Proceed as in Example 1, changing the parameters (see table). The glucose concentration in all examples is 1 mol / l.

Tabulas dati ļauj secināt, ka temperatūras paaugstināšana, kā ari skābes koncentrācijas palielināšana paātrina oksidēšanas procesu (piem. 1,3 un 1,2). Katalizātora koncentrācijas palielināšana ari veicina procesa paātrināšanu, (piem. 5,6,7), lldzigi ietekmē sulfolāna daudzuma palielināšana (piem. 3,5)· Aizstājot sulfolānu ar etiķskābes anhidridu novēro nelielu procesa ātruma samazināšanos (piem.1,4). Etiķskābes daudzums procesa ātrumu neiespaido (piem. 4,9).The data in the table lead to the conclusion that increasing the temperature as well as increasing the acid concentration accelerates the oxidation process (eg 1,3 and 1,2). Increasing the concentration of the catalyst also contributes to the acceleration of the process (eg 5,6,7), but also has the effect of increasing the amount of sulfolane (eg 3,5). The speed of the process is not affected by the amount of acetic acid (eg 4.9).

Skābekļa parciālā spiediena lielums procesa kinētiku un produkta iznākumu neiespaido, tas nozīmē, ka oksidēt var gan ar skābekli, gan ar gaisu.The magnitude of the partial pressure of oxygen does not influence the kinetics of the process and the yield of the product, which means that oxidation can occur with both oxygen and air.

TabulaTable

Nr. P· k. No. P · k. Slāpekļa paskābes sāls Nitric acid salt Pi edevas daudzums, tilp. %% Volume of food, vol. %% HC1O4, konc. mol/1HClO 4 , conc. mol / l t°,C t ° C Oksid. laiks min. Branches. time min Glukārskābes iznāk. Glucaric acid comes out. For- mula For- mule Konc. mol/1 Conc. mol / l Sili- etiķ. fo- anh. Laris Silicone vinegar. fo- anh. Larry GSH GSH Monokālija sāls veidā In the form of monopotassium salt 1. 1. NaNO2 NaNO 2 0,25 0.25 24 24th 6 6th 70 70 45 45 92 92 74 74 2. 2. NaNO2 NaNO 2 0,25 0.25 35 35 5 5 70 70 70 70 84 84 67 67 3- 3- NaN02 NaNO 2 0,25 0.25 24 24th 6 6th 60 60 112 112 93 93 74 74 4. 4. NaNO2 NaNO 2 0,25 0.25 24 24th 6 6th 70 70 105 105 89 89 '70 '70 5- 5- NaNO2 NaNO 2 0,25 0.25 37 37 6 6th 60 60 73 73 93 93 71 71 6. 6th NaNO2 NaNO 2 0,20 0.20 37 37 6 6th 60 60 105 105 92 92 72 72 7. 7th NaNO2 NaNO 2 0,10 0.10 37 37 6 6th 60 60 105 105 85 85 67 67 8. 8th NaNO2 NaNO 2 0,25 0.25 35 35 5 5 60 60 105 105 78 78 60 60 9. 9th NaNO2 NaNO 2 0,25 0.25 37 37 6 6th 70 70 105 105 89 89 69 69 10. 10th Mg(NO2)2 Mg (NO 2 ) 2 0,15 0.15 37 37 6 6th 70 70 105 105 87 87 68 68 11. 11th Zn(NO£)2 Zn (NO £ ) 2 0,15 0.15 24 24th 6 6th 70 70 52 52 91 91 72 72

Oksidēšanas procesa veikšana pie temperatūras un skābes koncentrācijas, kuri zemāki par pieteikumā norādītiem, rada ievērojamu procesa ātruma samazināšanos, kā ari glikozes oksidēšanas apstāšanos pie glukonskābes. Ja temperatūra un skābes koncentrācija ir augstāki par pieteikumā norādītajiem, notiek organisko savienojumu destrukcija.Carrying out the oxidation process at temperatures and acid concentrations lower than those stated in the application results in a significant reduction in the process rate as well as the stopping of glucose oxidation at gluconic acid. Organic compounds are destroyed at temperatures and acid concentrations higher than those specified in the application.

Salīdzinot ar zināmo metodi, ši metode ļauj palētināt procesu, pateicoties lētāka un pieejamāka katalizatora - slāpekļa paskābes sāls maisījuma ar HCIO^, sulfolānu vai etiķskābes anhidrldu - izmantošanai. Vienlaikus process ievērojami paātrinās (45 min. pret 12,5 st.) un pieaug produkta Iznākums (74% pret 54%).Compared to the known method, this method allows the process to be slowed down due to the use of a cheaper and more affordable catalyst: a mixture of nitric acid with HCl 2, sulfolane or acetic anhydride. At the same time, the process speeds up significantly (45 mins to 12.5 hrs) and the product Yield increases (74% versus 54%).

Claims (1)

IZGUDROJUMA FORMULAINVENTION FORMULA Glukārskābes (cukurskābes) iegūšanas metode katalitiski oksidējot glikozi ar gaisu vai skābekii skābos ūdens šķīdumos paaugstinātā temperatūrā, atšķiras ar to, ka kā katalizātoru izmanto slāpekļa paskābes ūdeni šķīstošo sāli, piem. nātrija nitrītu ar koncentrāciju 0,1-0,25 mol/1, bet oksidēšanas procesu veic hiorskābes šķīdumā (5-6 mol/1) sulfolāna vai etiķskābes anhldrlda (20—37% tilp.) klātbūtnē 6θ-7ΟθΟ temperatūrā.The process for the preparation of glucaric acid (sugar) by catalytic oxidation of glucose with air or oxygen in aqueous acidic solutions at elevated temperature is characterized in that the water-soluble salt of nitric acid is used as a catalyst, e.g. sodium nitrite at a concentration of 0,1 to 0,25 mol / l but the oxidation process is carried out in a solution of chloric acid (5 to 6 mol / l) in the presence of sulpholane or acetic anhydride (20-37% v / v) at 6θ to 7ΟθΟ.
LV931387A 1993-12-28 1993-12-28 Method for producing of glucaric acid (saccharic acid) LV10857B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LV931387A LV10857B (en) 1993-12-28 1993-12-28 Method for producing of glucaric acid (saccharic acid)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LV931387A LV10857B (en) 1993-12-28 1993-12-28 Method for producing of glucaric acid (saccharic acid)

Publications (2)

Publication Number Publication Date
LV10857A LV10857A (en) 1995-10-20
LV10857B true LV10857B (en) 1996-08-20

Family

ID=19735684

Family Applications (1)

Application Number Title Priority Date Filing Date
LV931387A LV10857B (en) 1993-12-28 1993-12-28 Method for producing of glucaric acid (saccharic acid)

Country Status (1)

Country Link
LV (1) LV10857B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501989B2 (en) 2009-06-13 2013-08-06 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8669393B2 (en) 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
US8785683B2 (en) 2009-06-13 2014-07-22 Rennovia, Inc. Production of glutaric acid and derivatives from carbohydrate-containing materials
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501989B2 (en) 2009-06-13 2013-08-06 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8785683B2 (en) 2009-06-13 2014-07-22 Rennovia, Inc. Production of glutaric acid and derivatives from carbohydrate-containing materials
US8927768B2 (en) 2009-06-13 2015-01-06 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US9156766B2 (en) 2009-06-13 2015-10-13 Rennovia Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US9174911B2 (en) 2009-06-13 2015-11-03 Rennovia Inc. Production of glutaric acid and derivatives from carbohydrate-containing materials
US9434709B2 (en) 2009-06-13 2016-09-06 Rennovia Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US8669393B2 (en) 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
US9808790B2 (en) 2010-06-11 2017-11-07 Rennovia Inc. Processes for the manufacturing of oxidation catalysts
US10807074B2 (en) 2010-06-11 2020-10-20 Archer-Daniels-Midland Company Oxidation catalysts
US11596927B2 (en) 2010-06-11 2023-03-07 Archer-Daniels-Midland Company Oxidation catalysts

Also Published As

Publication number Publication date
LV10857A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
EP1631537A1 (en) Method for selective carbohydrate oxidation using supported gold catalysts
EP2046712B1 (en) Removing permanganate-reducing impurities from acetic acid
LV10857B (en) Method for producing of glucaric acid (saccharic acid)
US4728630A (en) Rhodium on carbon catalyst
US3790662A (en) Palladium compositions suitable as oxidation catalysts
AU689101B2 (en) Method and device for producing monocarboxylic acids from carbohydrates, carbohydrate derivatives or primary alcohols
CN108620095B (en) Composite catalyst and application thereof in synthesis of glyceraldehyde
JP2000506868A (en) Method for oxidizing di, tri, oligo and polysaccharides to polyhydroxycarboxylic acids
JPH04221339A (en) Production of (poly)oxyethylene alkyl ether acetic acid
FR2633615A1 (en) PROCESS FOR THE INDUSTRIAL MANUFACTURE OF AQUEOUS GLYOXYLIC ACID SOLUTIONS
FI84073B (en) SACKAROSTRIKARBOXYLSYRA OCH DESS SALTER, FOERFARANDE FOER DERAS FRAMSTAELLNING OCH DERAS ANVAENDNING.
SU641872A3 (en) Method of obtaining butendioldiacetates
CH641140A5 (en) METHOD FOR PRODUCING A SALT OF PYRUVINIC ACIDS.
RU94037588A (en) Method of butadiene hydroxycarbonylation
JPH1129601A (en) Production of tricarboxy polysaccharide by nitrogen dioxide
JP2552513B2 (en) Method for oxidizing (poly) oxyethylene alkyl ether compound
US3883585A (en) Process for purifying and stabilizing aqueous alkali metal salt solutions of sorbic acid
SU263492A1 (en) METHOD FOR OBTAINING COMPLEX PENYL AIR
EP0597298A1 (en) Process for producing alpha-hydroxyisobutyramide
JPS5872531A (en) Preparation of carbonyl compound
JPS59205343A (en) Production of monosaccharide oxide
JPS62265243A (en) Production of 1,4-cyclohexadione
JPS59225140A (en) Preparation of calcium gluconate
SU883054A1 (en) Method of preparing sodium 1,2-isopropylidene-d-gluconate
SU1740368A1 (en) Method of 3,@@@,5,@@@-tetra-tert-butyl-4,@@@-diphenoquinone synthesis