JP2005154302A - Method for oxidizing glucide - Google Patents

Method for oxidizing glucide Download PDF

Info

Publication number
JP2005154302A
JP2005154302A JP2003391973A JP2003391973A JP2005154302A JP 2005154302 A JP2005154302 A JP 2005154302A JP 2003391973 A JP2003391973 A JP 2003391973A JP 2003391973 A JP2003391973 A JP 2003391973A JP 2005154302 A JP2005154302 A JP 2005154302A
Authority
JP
Japan
Prior art keywords
catalyst
gold
oxidizing
glucose
gluconic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003391973A
Other languages
Japanese (ja)
Inventor
Toshio Hidaka
敏雄 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003391973A priority Critical patent/JP2005154302A/en
Publication of JP2005154302A publication Critical patent/JP2005154302A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for converting a glucide in excellent productivity by catalytic oxidation exhibiting high yield and selectivity even under a mild condition. <P>SOLUTION: In the method for producing a glucide, a catalyst composed of superfine particle of gold is used. For example, gluconic acid is produced from glucose in a high yield and high selectivity at room temperature under a mild condition of normal pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は金超微粒子を触媒として用いる糖質の酸化方法、及び原料のグルコースを酸化してグルコン酸を製造するに際して当該酸化方法を用いるグルコン酸の製造方法に関する。
グルコン酸又はグルコン酸の脱水によって容易に得られるグルコン酸無水物は、健康食品、食品添加物、凝固剤、洗浄剤等の広範な用途に用いられる有用な化合物である。
The present invention relates to a method for oxidizing saccharides using gold ultrafine particles as a catalyst, and a method for producing gluconic acid using the oxidation method in producing glucose by oxidizing raw material glucose.
Gluconic acid or a gluconic anhydride easily obtained by dehydration of gluconic acid is a useful compound used in a wide range of applications such as health foods, food additives, coagulants, and detergents.

糖質は、エネルギー源としてのみならず、例えば細胞構造の維持や免疫応答などの生命活動に於いて重要な役割を演じている。近年、特に食品分野、医療・医薬分野、農業分野、各種工業分野や環境分野等に於いて、糖質を用いた機能製品の開発が活発に進められており、その応用は多岐に渡り枚挙に暇がないが、技術的な観点からは、特定の単糖類を他の基質に導入するグリコシル化、単糖類のオリゴーマー又はポリマー化、或いはアミノ基、アセチル基、フッ素原子等を糖質に導入する化学変換が基本であり、グルコースの水酸基へのフッ素原子、アミノ基、アセチル基等の導入、或いはホルミル基やヒドロキシメチル基の酸化によるカルボキシル基への変換が典型である。代表的な単糖であるグルコースからは種々の有用物質の製造が試みられている。例えば、グルコースからグルコン酸、グルクロン酸、ビタミンC、デキストラン、セルロース、グルコサミンが製造出来る。また、グルコースとヒドロキノンからは美白効果のあるα−アルブチンが製造可能である(例えば、特許文献1参照)。   Carbohydrates play an important role not only as an energy source but also in life activities such as maintenance of cell structure and immune response. In recent years, functional products using carbohydrates have been actively developed, especially in the fields of food, medicine / pharmaceuticals, agriculture, various industrial fields, and environmental fields. Although there is no time, from a technical point of view, glycosylation that introduces specific monosaccharides into other substrates, oligomerization or polymerization of monosaccharides, or introduction of amino groups, acetyl groups, fluorine atoms, etc. into carbohydrates Chemical conversion is fundamental, and conversion to a carboxyl group by introduction of a fluorine atom, amino group, acetyl group or the like into the hydroxyl group of glucose, or oxidation of a formyl group or a hydroxymethyl group is typical. Production of various useful substances has been attempted from glucose, which is a typical monosaccharide. For example, gluconic acid, glucuronic acid, vitamin C, dextran, cellulose, and glucosamine can be produced from glucose. Further, α-arbutin having a whitening effect can be produced from glucose and hydroquinone (see, for example, Patent Document 1).

この中、グルコン酸はグルコースの発酵法(例えば、特許文献2参照)、パラジウム、白金触媒等を用いる空気酸化(例えば、特許文献3,4、非特許文献1,2参照)、臭素或いは次亜臭素酸等による化学的な酸化等によって製造される(例えば、非特許文献3参照)。商業的には、アスペルギルスやグルコノバクテロ属の微生物による発酵法が成功を収めている。しかし、発酵法は微生物の増殖時間、及びグルコン酸への転化時間からなる全体の生産時間が数日と長い事、グルコースの一部が微生物の増殖に消費されてしまううえ培養菌体を反応後除去する必要があり精製に手間が掛かる欠点がある。   Among these, gluconic acid is glucose fermentation (see, for example, Patent Document 2), air oxidation using palladium, a platinum catalyst, etc. (see, for example, Patent Documents 3 and 4, Non-Patent Documents 1 and 2), bromine or hypochlorous acid It is manufactured by chemical oxidation with bromic acid or the like (see, for example, Non-Patent Document 3). Commercially, fermentation using microorganisms of the genus Aspergillus or Gluconobacter has been successful. However, the fermentation method has a long production time of several days consisting of the growth time of microorganisms and the conversion time to gluconic acid, and a part of glucose is consumed for the growth of microorganisms. There is a drawback in that it needs to be removed and takes time for purification.

一方、化学法は、発酵法に比べて反応時間が短く生産性が高い利点を有するが、収率が充分ではなく不純物が多い場合が一般的であり、反応の選択性を改善し化学法の欠点を解決する試みが成されている(例えば、特許文献5,6参照)。特許文献5の方法は、酸化触媒としてパラジウムとビスマスからなる活性炭担持触媒を用いたもので、グルコースを50℃で1時間、酸化した場合の選択率は99%を超えると記載されている。また特許文献6の方法は、ビスマス、パラジウム、及び白金を活性炭に担持させた触媒を用いるもので、選択率は98%に達すると記載されている。このように、従来に比べて酸素酸化反応の選択性が改善され、生産性の向上が期待できるが、何れの場合も触媒成分として2乃至3種類の複数の金属原子を用いる必要があり、その為に触媒調製に手間を要し、しかも反応成績が安定しない問題や繰り返しの使用により選択性が低下する問題があるため、単一な金属原子からなる酸化触媒の提供が望まれてきた。
特開平5−176785号公報 特公昭33−7620号公報 特公昭60−92239号公報 特公昭62−228098号公報 特開平2−72137号公報 特開平10−180094号公報 Chemistry of Organic Fluorine CompoundsII, Monograph1, American Chem. Society, 1995, p.187 Busch, DRP 702729, (1939), DRP/DRBP Org. Chem.: 3 1320 Heyns Heinemann, JLACBF, Justus Liebigs Ann. Chem., 558 (1947) 190 Ruff, CHBEAM, Chem. Ber.,32 (1899),2274
On the other hand, the chemical method has the advantage that the reaction time is shorter and the productivity is higher than the fermentation method, but the yield is not sufficient and there are many impurities, and the selectivity of the reaction is improved and the chemical method is improved. Attempts have been made to solve the drawbacks (see, for example, Patent Documents 5 and 6). The method of Patent Document 5 uses an activated carbon-supported catalyst composed of palladium and bismuth as an oxidation catalyst, and it is described that the selectivity when glucose is oxidized at 50 ° C. for 1 hour exceeds 99%. Further, the method of Patent Document 6 uses a catalyst in which bismuth, palladium, and platinum are supported on activated carbon, and it is described that the selectivity reaches 98%. As described above, the selectivity of the oxygen oxidation reaction is improved as compared with the conventional case, and an improvement in productivity can be expected. However, in any case, it is necessary to use two or three kinds of metal atoms as a catalyst component. Therefore, it takes time to prepare the catalyst, and there is a problem that the reaction results are not stable and a problem that the selectivity is lowered by repeated use. Therefore, it has been desired to provide an oxidation catalyst composed of a single metal atom.
JP-A-5-176785 Japanese Patent Publication No.33-7620 Japanese Patent Publication No. 60-92239 Japanese Examined Patent Publication No. 62-228098 JP-A-2-72137 Japanese Patent Laid-Open No. 10-180094 Chemistry of Organic Fluorine Compounds II, Monograph1, American Chem. Society, 1995, p.187 Busch, DRP 702729, (1939), DRP / DRBP Org. Chem .: 3 1320 Heyns Heinemann, JLACBF, Justus Liebigs Ann. Chem., 558 (1947) 190 Ruff, CHBEAM, Chem. Ber., 32 (1899), 2274

本発明の目的は、穏和な条件に於いても高い収率と選択性を示す触媒的な酸化による生産性に優れた糖質の転換方法を提供することにある。   An object of the present invention is to provide a method for converting a carbohydrate having excellent productivity by catalytic oxidation, which exhibits high yield and selectivity even under mild conditions.

本発明者等は、上記課題を解決する為に鋭意検討を重ねた結果、近年、触媒作用が確認されているナノサイズの金超微粒子(例えば、特開平10−180094号公報参照)を触媒に用いると、グルコースから、室温、常圧下の穏和な条件に於いても酸化反応が容易に進行し、高選択的にグルコン酸が生成する事、また触媒を繰り返し使用しても活性低下が小さい事を見出して本発明を成すに至った。即ち本発明は、以下の(1)から(5)に示すナノサイズの金超微粒子を触媒として用いる糖質の酸化方法、及び当該酸化方法を用いて原料のグルコースからグルコン酸を製造する方法に関する。
(1)金超微粒子を触媒として用いることを特徴とする糖質の酸化方法。
(2)金超微粒子の透過型電子顕微鏡(TEM)観察による一次粒子径が10nm以下である、(1)に記載の糖質の酸化方法。
(3)金超微粒子をシリカ、チタニア、ジルコニア、又は活性炭に担持した触媒を用いる、(1)又は(2)に記載の糖質の酸化方法。
(4)糖質が単糖、オリゴ糖、多糖、又はこれらの誘導体である、(1)から(3)の何れかに記載の糖質の酸化方法。
(5)原料のグルコースを酸化してグルコン酸を製造するに際して、(1)から(4)の何れかに記載の金超微粒子を触媒とする糖質の酸化方法を用いるグルコン酸の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have used nano-sized gold ultrafine particles (for example, see JP-A-10-180094), which have recently been confirmed to have a catalytic action, as catalysts. When used, the oxidation reaction easily proceeds from glucose even under mild conditions at room temperature and normal pressure, and gluconic acid is produced with high selectivity, and the activity decrease is small even when the catalyst is repeatedly used. As a result, the present invention has been achieved. That is, the present invention relates to a saccharide oxidation method using the nano-sized ultrafine gold particles shown in the following (1) to (5) as a catalyst, and a method for producing gluconic acid from glucose as a raw material using the oxidation method. .
(1) A method for oxidizing a carbohydrate, characterized by using ultrafine gold particles as a catalyst.
(2) The carbohydrate oxidation method according to (1), wherein the primary particle diameter of the gold ultrafine particles observed by a transmission electron microscope (TEM) is 10 nm or less.
(3) The method for oxidizing a saccharide according to (1) or (2), wherein a catalyst in which gold ultrafine particles are supported on silica, titania, zirconia, or activated carbon is used.
(4) The method for oxidizing a saccharide according to any one of (1) to (3), wherein the saccharide is a monosaccharide, an oligosaccharide, a polysaccharide, or a derivative thereof.
(5) A method for producing gluconic acid using the saccharide oxidation method using gold ultrafine particles as a catalyst according to any one of (1) to (4) when gluconic acid is produced by oxidizing glucose as a raw material.

本発明によれば単一元素からなり、調製が簡便で、比較的安価な金触媒を用いて、穏和な条件下に糖質、特にグルコースを選択的に酸化する事が出来る。また、触媒寿命も長いのでグルコン酸の生産性が高く、工業的な意義は大である。   According to the present invention, a saccharide, particularly glucose, can be selectively oxidized under mild conditions using a gold catalyst that is composed of a single element, is easy to prepare, and is relatively inexpensive. Further, since the catalyst life is long, the productivity of gluconic acid is high, and the industrial significance is great.

本発明で用いる触媒は、TEMで観察した一次粒子径が10nm以下の金超微粒子である。目的の反応に用いるには、一次粒子径が10nm以下である事が好ましく、特に1から5nmのものが好ましい。一次粒子径が10nm以上の場合、反応の選択性や活性が低下するので好ましくない。この様な一次粒子径を有する金粒子は公知の方法で調製する事が出来るが、例えば塩化白金酸の水溶液と遷移金属の水溶液を炭酸ナトリウム溶液中に滴下して得られる沈殿物を、洗浄、乾燥、焼成する方法(M. Haruta et al., J. Catal., 115, 301(1989))や活性炭を水に懸濁し、塩化金酸の水溶液を加熱した後にホルムアルデヒドで還元する含浸法(G. J. Hutchings et al., Chem. Commun., 2002, 696)等の方法が適用できる。またマイクロ波を利用すると簡単にナノサイズの粒子を得る事が出来る。   The catalyst used in the present invention is gold ultrafine particles having a primary particle diameter of 10 nm or less as observed by TEM. For use in the intended reaction, the primary particle diameter is preferably 10 nm or less, and particularly preferably 1 to 5 nm. When the primary particle diameter is 10 nm or more, the selectivity and activity of the reaction are lowered, which is not preferable. Gold particles having such a primary particle diameter can be prepared by a known method. For example, a precipitate obtained by dropping an aqueous solution of chloroplatinic acid and an aqueous solution of a transition metal into a sodium carbonate solution is washed, Drying and calcination (M. Haruta et al., J. Catal., 115, 301 (1989)) or impregnation method in which activated carbon is suspended in water, an aqueous solution of chloroauric acid is heated and then reduced with formaldehyde (GJ Hutchings et al., Chem. Commun., 2002, 696) can be applied. In addition, nano-sized particles can be easily obtained using microwaves.

更に、Au−Zr合金を酸化処理してAu−ZrOを得るアモルファス合金法(M. Shibata et al., Chem. Lett., 1985, 1605)、 金チオールクラスターを形成させた後、ゾル−ゲル法によってチタニアに金を組み込む金チオールクラスター法(J. J. Pietron et al., Nano Lett. 2, 545(2002))が適用出来る他、塩化金酸の水溶液に水酸化ナトリウム水溶液を滴下し、担体を加える化学的表面固定化法、金錯体のCVD法(所謂、気相グラフティング法)や金ホスフィン錯体析出法(液相グラフティング法)等も利用できる。 Furthermore, an amorphous alloy method (M. Shibata et al., Chem. Lett., 1985, 1605) for obtaining Au—ZrO 2 by oxidizing Au—Zr alloy, and after forming gold thiol clusters, sol-gel In addition to the gold thiol cluster method (JJ Pietron et al., Nano Lett. 2, 545 (2002)), which incorporates gold into titania by the method, sodium hydroxide aqueous solution is added dropwise to an aqueous solution of chloroauric acid, and a carrier is added. A chemical surface immobilization method, a gold complex CVD method (so-called gas phase grafting method), a gold phosphine complex precipitation method (liquid phase grafting method), and the like can also be used.

金超微粒子は、通常、適当な担体に担持して用いる。この目的に適した担体として、例えば、一般的な無機酸化物類、或いは活性炭が好ましい。具体的には、シリカ、アルミナ、チタニア、ジルコニア、カルシア、マグネシア、イットリア等が挙げられる。取り分け好ましいのは、活性炭、またはナノサイズのカーボンであるカーボンナノチューブやカーボンナノホーン、シリカ、チタニア、ジルコニア、イットリア等である。   The gold ultrafine particles are usually used by being supported on a suitable carrier. As a carrier suitable for this purpose, for example, general inorganic oxides or activated carbon is preferable. Specific examples include silica, alumina, titania, zirconia, calcia, magnesia, yttria and the like. Particularly preferred are activated carbon or carbon nanotubes or carbon nanohorns which are nano-sized carbon, silica, titania, zirconia, yttria and the like.

担体に担持する金原子の量は、0.01重量%以上である事が好ましい。通常、0.5から5重量%を担持して用いるがさらに担持可能であれば5重量%以上を用いても特に支障は無い。また活性や選択性等に悪影響がなければ、金以外の原子種が含まれても良く、金と共に用いられる原子として、例えば、Pd、Bi等が挙げられる。   The amount of gold atoms carried on the support is preferably 0.01% by weight or more. Usually, 0.5 to 5% by weight is supported and used, but if it can be supported, there is no particular problem even if 5% by weight or more is used. If there is no adverse effect on activity, selectivity, etc., atomic species other than gold may be included, and examples of atoms used with gold include Pd and Bi.

酸化反応の基質としては、ヒドロキシメチル基又はホルミル基を含む糖質であれば良く、例えば、グルコース、フコース、N−アセチルグルコサミン、N−アセチルガラクトサミン、N−アセチルノイラミン酸、エリトロース、トレオース、リボース、アラビノース、キシロース、アロース、リキソース、アルトロース、マンノース、グロース、イドース、ガラクトース、タロース、プシコース、フルクトース、ソルボース、タガトース、不飽和結合を有するヘキサエノース等の不飽和糖、アピオースの様な分岐糖、デオキシ糖、アミノ糖、チオ糖や縮合糖、単糖無水物等の各種誘導体である単糖類、或いは他の糖類単位とグリコシド結合をしたマルトース、ショ糖、ラクトース等の二糖類を含む単糖が二から数個程度結合したオリゴ糖類、デンプン、グリコーゲン、セルロース等の多糖類、これら糖類がタンパク質や脂質等と結合した複合糖質、核酸塩基と結合したヌクレオシドやリボ核酸、デオキシリボ核酸等の糖誘導体がヒドロキシメチル基若しくはホルミル基を有する場合であれば使用できる。グルコン酸の製造に限ればグルコースが基質として特に好ましい。基質グルコースは、D体、L体、ラセミ体のいずれでも良く、これらの混合物であっても良い。   The substrate for the oxidation reaction may be a carbohydrate containing a hydroxymethyl group or a formyl group. For example, glucose, fucose, N-acetylglucosamine, N-acetylgalactosamine, N-acetylneuraminic acid, erythrose, threose, ribose , Arabinose, xylose, allose, lyxose, altrose, mannose, gulose, idose, galactose, talose, psicose, fructose, sorbose, tagatose, unsaturated sugars such as hexaenos with unsaturated bonds, branched sugars such as apiose, deoxy There are two monosaccharides including disaccharides such as sugars, amino sugars, thio sugars, condensed sugars, monosaccharide anhydrides, and other monosaccharides, or disaccharides such as maltose, sucrose, and lactose that are linked to other saccharide units. From about several oligosaccharides, When polysaccharides such as open air, glycogen, and cellulose, complex carbohydrates in which these sugars are bound to proteins and lipids, and sugar derivatives such as nucleosides, ribonucleic acids, and deoxyribonucleic acids bound to nucleobases have a hydroxymethyl group or a formyl group Can be used. Glucose is particularly preferred as a substrate if it is limited to the production of gluconic acid. The substrate glucose may be any of D-form, L-form, racemate, or a mixture thereof.

該触媒は固定床に充填して、或いは反応液中に添加、共存させて反応を行う。反応は、回分式、半回分式、或いは連続方式での実施が可能であり、通常の熱反応、或いはマイクロ波及び/又はマイクロ波近傍の電磁波の照射下に反応を行う事も出来る。反応温度は、室温から150℃以下で実施する事が好ましく、特に室温から100℃の温度範囲が好ましい。酸化には空気または酸素を用いる。当該ガスは常圧、又は加圧下に導入して反応を行うが、通常は常圧下のバブリングで行う事が安全上望ましい。   The catalyst is charged in a fixed bed or added to and coexisted in the reaction solution. The reaction can be carried out in a batch system, a semi-batch system, or a continuous system, and the reaction can also be performed under normal thermal reaction or irradiation with microwaves and / or electromagnetic waves in the vicinity of the microwaves. The reaction temperature is preferably from room temperature to 150 ° C. or less, particularly preferably from room temperature to 100 ° C. Air or oxygen is used for the oxidation. The gas is introduced at normal pressure or under pressure to carry out the reaction. Usually, bubbling under normal pressure is preferred for safety.

以下に本発明を実施例によってさらに詳しく説明する。但し、本発明はこれらの実施例のみに限定されるものでは無い。
[分析条件]:グルコースの酸化生成物は、キャピラリー電気泳動法を用いて以下の条件で分析を行った。
キャピラリー:Fused Silica 50μm×72cm
バッファー:HP Basic Anion Buffer(部品番号5064-8209)
電圧:−25KV
温度:20℃
Detector Signal 350 nm, 20 nm; Reference 275 nm, 10 nm
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to only these examples.
[Analysis conditions]: The oxidation products of glucose were analyzed under the following conditions using capillary electrophoresis.
Capillary: Fused Silica 50μm × 72cm
Buffer: HP Basic Anion Buffer (part number 5064-8209)
Voltage: -25KV
Temperature: 20 ° C
Detector Signal 350 nm, 20 nm; Reference 275 nm, 10 nm

参考例1.金超微粒子触媒1の調製
滴下漏斗、還流菅、温度計を備えた500mlの4つ口フラスコに活性炭(クラレコール、(株)クラレ製)4gを仕込み、クエン酸ナトリウム2gを水300mlに溶かした水溶液を加えて、10分間攪拌した。滴下漏斗に水50mlと0.1M塩化金酸水溶液2mlを混ぜた水溶液を入れ、30分かけて滴下した。滴下終了後、さらに30分間攪拌した。次いで、0.1M水酸化ナトリウム水溶液40mlと水10mlを混ぜた水溶液を30分間で滴下、30分間攪拌した。ホルムアルデヒド液(37%濃度)2gと水50mlを混ぜた水溶液を30分で滴下し、滴下終了後、70℃迄加温した。その温度でさらに10分攪拌した。攪拌を止めて室温まで放冷し、ろ過した。200mlの水で2回洗浄し、90℃で5時間乾燥して金超微粒子触媒1(3.68g)を得た。この触媒の金の担持量は1wt%であり、TEM観察による金粒子の一次粒子径は8nmであった。
Reference Example 1 Preparation of gold ultrafine catalyst 1 4 g of activated carbon (Kuraray Coal, Kuraray Co., Ltd.) was charged in a 500 ml four-necked flask equipped with a dropping funnel, a reflux tank and a thermometer, and 2 g of sodium citrate was dissolved in 300 ml of water. The aqueous solution was added and stirred for 10 minutes. An aqueous solution prepared by mixing 50 ml of water and 2 ml of a 0.1 M chloroauric acid aqueous solution was added to the dropping funnel and added dropwise over 30 minutes. After completion of dropping, the mixture was further stirred for 30 minutes. Next, an aqueous solution obtained by mixing 40 ml of a 0.1 M aqueous sodium hydroxide solution and 10 ml of water was added dropwise over 30 minutes and stirred for 30 minutes. An aqueous solution obtained by mixing 2 g of formaldehyde solution (37% concentration) and 50 ml of water was added dropwise over 30 minutes, and after completion of the addition, the mixture was heated to 70 ° C. The mixture was further stirred at that temperature for 10 minutes. Stirring was stopped, the mixture was allowed to cool to room temperature, and filtered. It was washed twice with 200 ml of water and dried at 90 ° C. for 5 hours to obtain an ultrafine gold catalyst 1 (3.68 g). The amount of gold supported on this catalyst was 1 wt%, and the primary particle diameter of the gold particles as observed by TEM was 8 nm.

参考例2.金超微粒子触媒2の調製
文献(Preparation of Catalysts VI, 227)に準じて行った。4つ口フラスコに、純水200ml、0.05Mの塩化金酸水溶液1ml、0.1Mの水酸化ナトリウム水溶液20mlを入れてpHを11とした。液温を70℃に於いて10分間攪拌した後にチタニア(日本アエロジル(株)製P25)を2g加え、2時間攪拌した。室温まで冷却し、遠心分離機で固液分離した。沈殿を充分に乾燥し、400℃で3時間焼成した。青紫色のチタニア担持金超微粒子触媒2(1.34g)が得られた。金の担持量は1wt%であり、TEM観察による金粒子の一次粒子径は9nmであった。
Reference Example 2 It carried out according to the preparation literature (Preparation of Catalysts VI, 227) of the gold ultrafine particle catalyst 2 . A four-necked flask was charged with 200 ml of pure water, 1 ml of 0.05 M chloroauric acid aqueous solution, and 20 ml of 0.1 M sodium hydroxide aqueous solution to adjust the pH to 11. After stirring the liquid temperature at 70 ° C. for 10 minutes, 2 g of titania (Nippon Aerosil Co., Ltd. P25) was added and stirred for 2 hours. After cooling to room temperature, solid-liquid separation was performed with a centrifuge. The precipitate was fully dried and calcined at 400 ° C. for 3 hours. Blue-violet titania-supported gold ultrafine particle catalyst 2 (1.34 g) was obtained. The amount of gold supported was 1 wt%, and the primary particle diameter of the gold particles as observed by TEM was 9 nm.

実施例1
スターラーチップを入れた100mlの4つ口フラスコにグルコース1.8gと金超微粒子触媒1(0.197g)を入れて(基質:金=1000:1)、10mlの水でグルコースを溶解した。別の容器に水酸化ナトリウム0.4gを水10mlに溶かし、4つ口フラスコ反応器に添加した。酸素を1気圧でバブリングし、600rpmで攪拌しながら反応を開始した。室温で1時間反応を行った後、触媒を含む懸濁液を遠心分離した。上澄みを0.45μmのメンブレンフィルターでろ過し、生成物を分析した。その結果、グルコース転化率100%、グルコン酸の選択率99%であった。
Example 1
Glucose was dissolved in 10 ml of water by putting 1.8 g of glucose and gold ultrafine particle catalyst 1 (0.197 g) in a 100 ml four-necked flask containing a stirrer chip (substrate: gold = 1000: 1). In a separate container, 0.4 g of sodium hydroxide was dissolved in 10 ml of water and added to the 4-neck flask reactor. Oxygen was bubbled at 1 atmosphere, and the reaction was started while stirring at 600 rpm. After reacting for 1 hour at room temperature, the suspension containing the catalyst was centrifuged. The supernatant was filtered through a 0.45 μm membrane filter and the product was analyzed. As a result, the glucose conversion was 100% and the selectivity for gluconic acid was 99%.

実施例2
触媒として金超微粒子触媒2を用いた以外は実施例1と同様にして反応を行った。室温1時間で転化率99%、グルコン酸選択率99%となった。
Example 2
The reaction was performed in the same manner as in Example 1 except that the ultrafine gold catalyst 2 was used as the catalyst. The conversion was 99% and gluconic acid selectivity was 99% at room temperature for 1 hour.

比較例1
触媒として、5%の活性炭担持Pdを用い、基質に対してPdを1000:1の割合で添加した以外は実施例1と同様に行った。その結果、グルコース転化率20%、グルコン酸選択率20%であった。
Comparative Example 1
The same procedure as in Example 1 was performed except that 5% activated carbon-supported Pd was used as a catalyst and Pd was added at a ratio of 1000: 1 with respect to the substrate. As a result, the glucose conversion was 20% and the gluconic acid selectivity was 20%.

実施例3
触媒回収した後、実施例1に記載の反応を、10回繰り返した。触媒の活性低下は殆ど見られずグルコース転化率99%、グルコン酸転化率99%であった。
Example 3
After recovering the catalyst, the reaction described in Example 1 was repeated 10 times. Almost no decrease in the activity of the catalyst was observed, and the glucose conversion was 99% and the gluconic acid conversion was 99%.

Claims (5)

金超微粒子を触媒として用いることを特徴とする糖質の酸化方法。   A method for oxidizing a carbohydrate, characterized by using gold ultrafine particles as a catalyst. 金超微粒子の透過型電子顕微鏡(TEM)観察による一次粒子径が10nm以下である、請求項1に記載の糖質の酸化方法。   The method for oxidizing a carbohydrate according to claim 1, wherein the primary particle diameter of the gold ultrafine particles observed with a transmission electron microscope (TEM) is 10 nm or less. 金超微粒子をシリカ、チタニア、ジルコニア、又は活性炭に担持した触媒を用いる、請求項1又は2に記載の糖質の酸化方法。   The method for oxidizing a saccharide according to claim 1 or 2, wherein a catalyst in which gold ultrafine particles are supported on silica, titania, zirconia, or activated carbon is used. 糖質が単糖、オリゴ糖、多糖、又はこれらの誘導体である、請求項1から3の何れかに記載の糖質の酸化方法。   The method for oxidizing a saccharide according to any one of claims 1 to 3, wherein the saccharide is a monosaccharide, an oligosaccharide, a polysaccharide, or a derivative thereof. 原料のグルコースを酸化してグルコン酸を製造するに際して、請求項1から4の何れかに記載の金超微粒子を触媒とする糖質の酸化方法を用いるグルコン酸の製造方法。   A method for producing gluconic acid using the method for oxidizing carbohydrates using gold ultrafine particles as a catalyst according to any one of claims 1 to 4 in producing gluconic acid by oxidizing raw material glucose.
JP2003391973A 2003-11-21 2003-11-21 Method for oxidizing glucide Pending JP2005154302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391973A JP2005154302A (en) 2003-11-21 2003-11-21 Method for oxidizing glucide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391973A JP2005154302A (en) 2003-11-21 2003-11-21 Method for oxidizing glucide

Publications (1)

Publication Number Publication Date
JP2005154302A true JP2005154302A (en) 2005-06-16

Family

ID=34718828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391973A Pending JP2005154302A (en) 2003-11-21 2003-11-21 Method for oxidizing glucide

Country Status (1)

Country Link
JP (1) JP2005154302A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055888A (en) * 2005-07-25 2007-03-08 Sumitomo Chemical Co Ltd FINE alpha-ALUMINA PARTICLE
WO2008095629A1 (en) * 2007-02-03 2008-08-14 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Carbon-supported gold catalyst, processes for its production and use for oxidation of organic compounds
WO2008148549A2 (en) * 2007-06-05 2008-12-11 Dsm Ip Assets B.V. Novel reaction with a gold catalyst
JP2009502491A (en) * 2005-08-05 2009-01-29 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Supported gold catalyst
JP2009220017A (en) * 2008-03-17 2009-10-01 Tokyo Metropolitan Univ Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
US8021451B2 (en) 2005-07-25 2011-09-20 Sumitomo Chemical Company, Limited Fine α-alumina particle
JP2013533798A (en) * 2010-06-11 2013-08-29 レノビア・インコーポレイテッド Catalysts comprising platinum and gold nanoparticles and their use for the oxidation of glucose and methods for preparing such catalysts
JP2013253073A (en) * 2012-02-17 2013-12-19 Japan Advanced Institute Of Science & Technology Hokuriku Method for producing d-glucosamic acid or its analogue, and catalyst composition therefor
US9174911B2 (en) 2009-06-13 2015-11-03 Rennovia Inc. Production of glutaric acid and derivatives from carbohydrate-containing materials
JPWO2014038504A1 (en) * 2012-09-04 2016-08-08 国立研究開発法人産業技術総合研究所 Catalyst carrier comprising gold nanoparticles and method for producing the same
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
KR20180021791A (en) * 2015-06-25 2018-03-05 다이나믹 푸드 잉그리다이언츠 코포레이션 Preparation method of 2,4-dihydroxybutyric acid

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021451B2 (en) 2005-07-25 2011-09-20 Sumitomo Chemical Company, Limited Fine α-alumina particle
JP2007055888A (en) * 2005-07-25 2007-03-08 Sumitomo Chemical Co Ltd FINE alpha-ALUMINA PARTICLE
JP2009502491A (en) * 2005-08-05 2009-01-29 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Supported gold catalyst
US8329613B2 (en) 2005-08-05 2012-12-11 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Supported gold catalyst
US20100137637A1 (en) * 2007-02-03 2010-06-03 Alireza Haji Begli Carbon-supported gold catalyst
WO2008095629A1 (en) * 2007-02-03 2008-08-14 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Carbon-supported gold catalyst, processes for its production and use for oxidation of organic compounds
WO2008148549A3 (en) * 2007-06-05 2009-03-12 Dsm Ip Assets Bv Novel reaction with a gold catalyst
JP2010529061A (en) * 2007-06-05 2010-08-26 ディーエスエム アイピー アセッツ ビー.ブイ. Novel reaction using gold catalyst
US20100217017A1 (en) * 2007-06-05 2010-08-26 Werner Bonrath Novel reaction with a gold catalyst
WO2008148549A2 (en) * 2007-06-05 2008-12-11 Dsm Ip Assets B.V. Novel reaction with a gold catalyst
US8383837B2 (en) 2007-06-05 2013-02-26 Dsm Ip Assets B.V. Reaction with a gold catalyst
JP2009220017A (en) * 2008-03-17 2009-10-01 Tokyo Metropolitan Univ Method of dispersing and fixing gold fine particle on carrier, and material obtained by this method
US9174911B2 (en) 2009-06-13 2015-11-03 Rennovia Inc. Production of glutaric acid and derivatives from carbohydrate-containing materials
US9434709B2 (en) 2009-06-13 2016-09-06 Rennovia Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US9156766B2 (en) 2009-06-13 2015-10-13 Rennovia Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
JP2013533798A (en) * 2010-06-11 2013-08-29 レノビア・インコーポレイテッド Catalysts comprising platinum and gold nanoparticles and their use for the oxidation of glucose and methods for preparing such catalysts
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
US9808790B2 (en) 2010-06-11 2017-11-07 Rennovia Inc. Processes for the manufacturing of oxidation catalysts
US10807074B2 (en) 2010-06-11 2020-10-20 Archer-Daniels-Midland Company Oxidation catalysts
US11596927B2 (en) 2010-06-11 2023-03-07 Archer-Daniels-Midland Company Oxidation catalysts
JP2013253073A (en) * 2012-02-17 2013-12-19 Japan Advanced Institute Of Science & Technology Hokuriku Method for producing d-glucosamic acid or its analogue, and catalyst composition therefor
JPWO2014038504A1 (en) * 2012-09-04 2016-08-08 国立研究開発法人産業技術総合研究所 Catalyst carrier comprising gold nanoparticles and method for producing the same
KR20180021791A (en) * 2015-06-25 2018-03-05 다이나믹 푸드 잉그리다이언츠 코포레이션 Preparation method of 2,4-dihydroxybutyric acid
KR102643377B1 (en) 2015-06-25 2024-03-04 다이나믹 푸드 잉그리다이언츠 코포레이션 Method for producing 2,4-dihydroxybutyric acid

Similar Documents

Publication Publication Date Title
RU2345059C2 (en) Method of selective carbohydrates oxidation using gold-based catalysts on carrier
Mirescu et al. A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts
JP2005154302A (en) Method for oxidizing glucide
Thielecke et al. Selective oxidation of carbohydrates with gold catalysts: Continuous-flow reactor system for glucose oxidation
US8329613B2 (en) Supported gold catalyst
CN101679189B (en) Novel reaction with a gold catalyst
Johnson et al. Methyl α-D-fructofuranoside: Synthesis and conversion into carboxylates
US20130052708A1 (en) Method for conversion of carbohydrate polymers to chemical products using cerium oxide catalyst
CN106008617B (en) Tn antigen and its synthesis technology
WO2006112426A1 (en) Process for producing biphenyltetracarboxylic acid
TWI784687B (en) Stabilized acyclic saccharide composite and method for stabilizing acyclic saccharides and applications thereof
Franz Aerobic Oxidation of Arabinose–Glucose Mixtures over Gold Nanoparticles
KR20230119689A (en) High-purity hydroxycarboxylic acid composition and method for producing the same
CN116987136A (en) Preparation method of uridine trisodium triphosphate and product thereof
GB2388368A (en) Production of tartaric acid
JPH01283296A (en) Production of 1-thioglycoside derivative
HU211111B (en) Process for producing mannit by stereoselective hydrogenation on glas-supported copper-catalyst with the controlled pore volume
JP2016124837A (en) Method for producing butadiene and metal oxide catalyst for use in the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110