JPH10216518A - Gold alloy catalyst - Google Patents
Gold alloy catalystInfo
- Publication number
- JPH10216518A JPH10216518A JP9027079A JP2707997A JPH10216518A JP H10216518 A JPH10216518 A JP H10216518A JP 9027079 A JP9027079 A JP 9027079A JP 2707997 A JP2707997 A JP 2707997A JP H10216518 A JPH10216518 A JP H10216518A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- alloy
- gold
- catalytic activity
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排ガス浄化用触媒
に関し、特にAuと他金属を合金化することによって触
媒活性が向上し、リーン域における窒素酸化物浄化特性
に優れた金合金触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly to a gold alloy catalyst which has improved catalytic activity by alloying Au with another metal and has excellent nitrogen oxide purifying characteristics in a lean region.
【0002】[0002]
【従来の技術】従来より、自動車等の排ガス浄化用触媒
の触媒成分としては、Pt,Pd,Rh等の貴金属が単
独または組み合わせて用いられており、通常、触媒担体
に担持された構成とされている。最近では、ディーゼル
エンジン排気における酸素が過剰なる雰囲気での窒素酸
化物浄化特性が重要となっている。しかし、既存の排気
ガス浄化触媒では、その浄化に限界があり、この酸素過
剰雰囲気における窒素酸化物の浄化触媒の一つとして、
超微粒子金触媒があげられる。例えば特開昭64−83
513号公報および特開平4−281846号公報に
は、アルカリ土類金属化合物に超微粒子金の固定化法
が、Feの複合金属酸化物に微粒子金を固定化した触媒
が共沈法によって製造されることが、それぞれ開示され
ている。また、特開平7−96187号公報には、酸化
Al、酸化Ti、酸化Znおよび酸化Mgの1種以上か
らなる金属酸化物に微粒子金を固定した触媒が開示され
ている。2. Description of the Related Art Conventionally, noble metals such as Pt, Pd, Rh and the like have been used alone or in combination as a catalyst component of an exhaust gas purifying catalyst for automobiles and the like, and are usually supported on a catalyst carrier. ing. Recently, nitrogen oxide purification characteristics in an atmosphere in which oxygen in a diesel engine exhaust is excessive has become important. However, existing exhaust gas purification catalysts have a limit in their purification, and as one of the purification catalysts for nitrogen oxides in this oxygen-excess atmosphere,
Ultrafine gold catalysts. For example, JP-A-64-83
JP-A-513 and JP-A-4-281846 disclose a method in which ultrafine gold is fixed to an alkaline earth metal compound and a catalyst in which fine gold is fixed to a composite metal oxide of Fe is produced by a coprecipitation method. Are disclosed. Japanese Patent Application Laid-Open No. 7-96187 discloses a catalyst in which fine gold particles are fixed to a metal oxide comprising at least one of Al oxide, Ti oxide, Zn oxide and Mg oxide.
【0003】前記超微粒子金触媒では、10nm以上で
は触媒活性を示さないため、粒子径10nm未満の金粒
子を得る必要があり、前記公報の方法においては、担体
(金属酸化物・金属化合物)上に沈澱する水酸化金やメ
タル金のサイズの制御、および乾燥や熱処理時の粒子成
長を抑制する。そのため、担体(金属酸化物・金属化合
物)の種類によっては、粒子径10nm未満の金粒子を
得ることが困難な場合もある。また、粒子径10nm未
満の金粒子を用いた場合は活性を示すが、超微粒子金触
媒の活性を示すガス空間速度が20000 hr-1と低く大量
の排気ガスを処理するには実用的ではない。また、超微
粒子金触媒では耐熱性が非常に低いといった問題があっ
た。このため、酸素過剰雰囲気における窒素酸化物の浄
化触媒として、微粒子金触媒を比較的簡便な製造工程に
よって製造し、さらに触媒活性を改善する技術開発が望
まれていた。[0003] Since the ultrafine gold catalyst does not show catalytic activity above 10 nm, it is necessary to obtain gold particles having a particle diameter of less than 10 nm. It controls the size of gold hydroxide or metal gold that precipitates, and suppresses particle growth during drying and heat treatment. Therefore, it may be difficult to obtain gold particles having a particle diameter of less than 10 nm depending on the type of the carrier (metal oxide / metal compound). Further, when gold particles having a particle diameter of less than 10 nm are used, the activity is exhibited, but the gas hourly space velocity indicating the activity of the ultrafine gold catalyst is as low as 20,000 hr -1 and is not practical for treating a large amount of exhaust gas. . Further, there is a problem that the heat resistance of the ultrafine gold catalyst is very low. Therefore, as a catalyst for purifying nitrogen oxides in an oxygen-excess atmosphere, there has been a demand for a technique for producing a fine-particle gold catalyst by a relatively simple production process and further improving the catalytic activity.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、従来
の微粒子金担持触媒では、溶液調整等が煩瑣であった
が、これを簡便な工程とするために金と貴金属を含め他
金属との合金化を検討し、さらに必要によって熱処理を
施すことを検討することによって、酸素過剰雰囲気にお
ける窒素酸化物の浄化触媒としての金合金触媒を提供す
ることにある。また、本発明の他の目的は、前記金合金
触媒の粒子表面に化学的に安定な金原子を存在させるこ
とを検討し、硫黄酸化物との反応を生じない酸素過剰雰
囲気における窒素酸化物の浄化触媒としての金合金触媒
を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to prepare a conventional fine-particle gold-supported catalyst, which requires complicated preparation of a solution. An object of the present invention is to provide a gold alloy catalyst as a catalyst for purifying nitrogen oxides in an oxygen-excess atmosphere by examining alloying of the alloy and further conducting heat treatment if necessary. Another object of the present invention is to consider the existence of chemically stable gold atoms on the surface of the particles of the gold alloy catalyst, and to produce nitrogen oxides in an oxygen-excess atmosphere that does not react with sulfur oxides. It is to provide a gold alloy catalyst as a purification catalyst.
【0005】[0005]
【課題を解決するための手段】上記の目的は、Auと下
記に示す金属Mから選ばれる1種または2種以上の元素
で構成される金合金触媒であって、Auと金属Mとの重
量比がAu/M=1/9〜9/1であり、かつ合金中の
Au固溶量が20〜80重量%であることを特徴とする
金合金触媒によって達成される。 M:Pt、Pd、Ag、Cu、Ni また、上記の目的は、前記触媒合成後、500〜120
0℃の温度範囲において熱処理して製造されることを特
徴とする金合金触媒によっても達成される。さらに、上
記の目的は、前記触媒合成後、500〜1200℃の温
度範囲で、かつ還元雰囲気で熱処理して製造されること
を特徴とする金合金触媒によっても達成される。The object of the present invention is to provide a gold alloy catalyst comprising Au and one or more elements selected from the following metals M, wherein the weight of Au and metal M is The gold alloy catalyst is characterized in that the ratio is Au / M = 1/9 to 9/1 and the amount of Au solid solution in the alloy is 20 to 80% by weight. M: Pt, Pd, Ag, Cu, Ni The above-mentioned object is also achieved after the catalyst synthesis,
It is also achieved by a gold alloy catalyst characterized by being produced by heat treatment in a temperature range of 0 ° C. Further, the above object is also attained by a gold alloy catalyst which is produced by heat-treating in a temperature range of 500 to 1200 ° C. and in a reducing atmosphere after the synthesis of the catalyst.
【0006】[0006]
【発明の実施の形態】本発明の第1発明では、Auと金
属Mが合金化するので、触媒活性種としての機能が、そ
の金属元素の固溶によって相乗化し向上する。その中
で、Auは、触媒活性種の基本的主要元素を占める。金
属元素MであるPt、Pd、Ag、Cu、Niの群は、
それ自身が触媒活性種として機能し、Auと全率固溶と
して任意の割合で固溶する元素である。Auと金属元素
Mが合金(固溶体)を形成すると、合金粒子径が10n
m以上でも良好な触媒活性を示す。これは、Auおよび
金属元素Mの相乗効果により触媒活性が向上するためと
考えられる。BEST MODE FOR CARRYING OUT THE INVENTION In the first invention of the present invention, since Au and metal M are alloyed, the function as a catalytically active species is synergistically improved by the solid solution of the metal element. Among them, Au occupies a fundamental main element of the catalytically active species. A group of Pt, Pd, Ag, Cu, and Ni, which are metal elements M,
It is an element that functions as a catalytically active species by itself and forms a solid solution with Au at an arbitrary ratio as a solid solution. When Au and the metal element M form an alloy (solid solution), the alloy particle diameter becomes 10n.
Even at m or more, good catalytic activity is exhibited. This is probably because the synergistic effect of Au and the metal element M improves the catalytic activity.
【0007】前記金属元素Mとして、上記のAuと全率
固溶する元素以外にも、Auの固溶度が大きい元素であ
る、例えば、Cr、Fe、Mg、Mnをその固溶限範囲
内で選択してもよい。後述の実施例に示されるように、
この時の触媒活性向上の効果は、触媒中のAu量と金属
元素Mの合計量が、重量比でAu/M=1/9〜9/1
の範囲にある時に現れる。これが、1/9未満の場合、
Au量が少なく金属元素Mの触媒活性の向上が小さくな
り、所望の効果が得られない。もし、Au/Mが9/1
を越える場合は、金属元素Mの量が少なくAuによる触
媒活性の向上が小さくなるため、効果が得られないと考
えられる。さらに、好ましくはAu/Mの範囲は、3/
7〜7/3である。As the metal element M, in addition to the above-described elements which are completely soluble with Au, elements having a high solubility of Au, for example, Cr, Fe, Mg, and Mn are within the solid solubility limit. May be selected. As shown in the examples below,
The effect of improving the catalytic activity at this time is that the total amount of Au and the metal element M in the catalyst is Au / M = 1/9 to 9/1 by weight ratio.
Appears when it is in the range. If this is less than 1/9,
The amount of Au is small and the improvement in the catalytic activity of the metal element M is small, and the desired effect cannot be obtained. If Au / M is 9/1
In the case of exceeding the value, it is considered that the effect cannot be obtained because the amount of the metal element M is small and the improvement of the catalytic activity by Au becomes small. Further, preferably, the range of Au / M is 3 /
7 to 7/3.
【0008】さらに、触媒活性向上の効果は、合金中の
Au固溶量が重量%で、20〜80%の範囲にある時に
現れる。この固溶量は、触媒合成後の熱処理によって制
御できる。この固溶量が、20重量%未満の場合、合金
粒子表面のAu原子数が少なくなるため、アンサンブル
効果(異種の隣接原子の相互作用による)等が小さくな
り効果が得られないと考えられる。さらに、好ましいA
u固溶量の範囲は、40〜70重量%である。次に、第
2発明では、触媒合成後、500〜1200℃の温度範
囲で熱処理を行うことにより、触媒活性向上の効果が促
進される。これは、合金粒子中をAu原子と金属Mが拡
散して、Au原子と金属元素Mが均一に分散した合金粒
子となり、アンサンブル効果等が大きくなるため、ま
た、合金を形成していないAu粒子と金属元素Mが合金
になるためと考えられる。Further, the effect of improving the catalytic activity appears when the amount of Au solid solution in the alloy is in the range of 20 to 80% by weight. This amount of solid solution can be controlled by heat treatment after catalyst synthesis. When the amount of the solid solution is less than 20% by weight, the number of Au atoms on the surface of the alloy particles is reduced, so that the ensemble effect (due to the interaction between different types of adjacent atoms) and the like are reduced, and the effect cannot be obtained. Further, preferred A
The range of the amount of solid solution is 40 to 70% by weight. Next, in the second invention, the effect of improving the catalyst activity is promoted by performing a heat treatment in a temperature range of 500 to 1200 ° C. after the synthesis of the catalyst. This is because the Au atoms and the metal M diffuse in the alloy particles to form alloy particles in which the Au atoms and the metal element M are uniformly dispersed, thereby increasing the ensemble effect and the like. It is considered that the metal element M becomes an alloy.
【0009】この熱処理の温度が500℃未満では、拡
散が十分に起こらないため触媒活性向上の効果が現れな
い。また、1200℃を越える温度では、合金粒子が粗
大化して触媒活性が劣化する。そのため、好ましくは8
00〜1000℃で、熱処理時間は、2〜10時間であ
る。第3発明では、前記熱処理として、すなわち触媒合
成後、還元雰囲気で熱処理を行うことにより、触媒活性
向上の効果が促進される。これは、合金粒子表面にAu
原子が増え、配位効果(表面に原子差が生じ、原子状態
の差によって活性が良くなる効果)等が大きくなるため
と考えられる。また、本発明の金合金触媒では、従来、
担体の表面に排ガス中に存在するS、O2 を吸着し、担
体自体の触媒活性が劣化する被毒性の点においても、合
金粒子表面に化学的に安定な金原子が存在し、硫黄酸化
物と反応し難いため耐被毒性は向上する。以下に本発明
についてさらに実施例に基づいてさらに詳述する。If the temperature of the heat treatment is lower than 500 ° C., the diffusion does not sufficiently occur, so that the effect of improving the catalytic activity does not appear. If the temperature exceeds 1200 ° C., the alloy particles become coarse and the catalytic activity deteriorates. Therefore, preferably 8
At a temperature of 00 to 1000 ° C., the heat treatment time is 2 to 10 hours. In the third invention, the effect of improving the catalyst activity is promoted by performing the heat treatment in the reducing atmosphere after the catalyst synthesis, that is, after the catalyst synthesis. This is because the Au
This is presumably because the number of atoms increases, and the coordination effect (an effect in which an atomic difference occurs on the surface and the activity is improved due to the difference in atomic state) increases. Further, in the gold alloy catalyst of the present invention, conventionally,
At the poisoning point where S and O 2 present in the exhaust gas are adsorbed on the surface of the carrier and the catalytic activity of the carrier itself is deteriorated, chemically stable gold atoms are present on the surface of the alloy particles and sulfur oxide Poor poisoning resistance is improved because it is difficult to react with. Hereinafter, the present invention will be described in more detail based on examples.
【0010】[0010]
実施例1 本実施例では、HAuCl4 (4.9×10-4mol/
l)およびPd(NO 3 )3 (8.4×10-3mol/
l)を含む水溶液にγ−Al2 O3 粉末を添加し、3時
間攪拌した後、大気中で120℃×24時間の乾燥を行
った。乾燥後、大気中で500℃×2時間の熱処理を行
い、重量比でAu:Pd=1:9、AuとPdの合計量
(担持量)が2重量%のAu−Pd合金/Al2 O3 触
媒Aを得た。 Example 1 In this example, HAuClFour(4.9 × 10-Fourmol /
l) and Pd (NO Three)Three(8.4 × 10-3mol /
l) containing γ-AlTwoOThreeAdd the powder, 3 o'clock
After stirring for 120 minutes, drying was performed at 120 ° C for 24 hours in air.
Was. After drying, heat treatment was performed at 500 ° C for 2 hours in air.
Au: Pd = 1: 9 by weight ratio, total amount of Au and Pd
Au-Pd alloy / Al with 2% by weight (loading amount)TwoOThreeTouch
Medium A was obtained.
【0011】次に、HAuCl4 およびPd(NO3 )
3 の濃度を変え、同様の方法にて表1に示す組成のAu
−Pd合金/Al2 O3 触媒を得た。なお、合金粒子径
はXRD(X線回折)を、組成分析は蛍光X線を用い
た。また、Au固溶量は、XRDにより測定した格子定
数より計算により求めた。なお、粒子径が5nm未満と
あるのは、X線回折装置の測定限界以下の合金粒子であ
ることを示す。そのため、格子定数が測定不可で、固溶
量が計算できなかった。Next, HAuCl 4 and Pd (NO 3 )
3 was changed, and Au having the composition shown in Table 1 was obtained in the same manner.
It was obtained -Pd alloy / Al 2 O 3 catalyst. In addition, XRD (X-ray diffraction) was used for the alloy particle diameter, and fluorescent X-ray was used for the composition analysis. The amount of Au solid solution was determined by calculation from the lattice constant measured by XRD. It should be noted that a particle diameter of less than 5 nm indicates that the alloy particle is smaller than the measurement limit of the X-ray diffractometer. Therefore, the lattice constant could not be measured, and the amount of solid solution could not be calculated.
【0012】[0012]
【表1】 [Table 1]
【0013】表1に示す触媒を、表2に示すガス組成を
用いて、ガス空間速度150,000 h-1にて触媒活性を評価
した。評価方法は、各触媒床温度を500℃まで上昇さ
せ、400℃、300℃、200℃と段階的に温度を低
下させて、各温度で定常状態での浄化率を測定した。こ
の時の浄化率の定義は下記のとおりである。 浄化率=〔(入ガス濃度−出ガス濃度)/入ガス濃度〕
×100The catalysts shown in Table 1 were evaluated for catalytic activity at a gas hourly space velocity of 150,000 h -1 using the gas compositions shown in Table 2. In the evaluation method, each catalyst bed temperature was raised to 500 ° C., and the temperature was gradually reduced to 400 ° C., 300 ° C., and 200 ° C., and the purification rate in a steady state was measured at each temperature. The definition of the purification rate at this time is as follows. Purification rate = [(incoming gas concentration-outgoing gas concentration) / incoming gas concentration]
× 100
【0014】[0014]
【表2】 [Table 2]
【0015】得られた結果を表3に示す。Table 3 shows the obtained results.
【0016】[0016]
【表3】 [Table 3]
【0017】表3から、本発明であるNo. 10〜17
は、優れた触媒活性を示している。比較例のNo. 18は
Au固溶量が多いため、No. 19はAu固溶量が少ない
ため、No. 20、21は、合金でないため、本発明と比
べて触媒活性が劣ることがわかる。From Table 3, it can be seen that Nos. 10 to 17 of the present invention were used.
Shows excellent catalytic activity. No. 18 of the comparative example has a large amount of Au solid solution, No. 19 has a small amount of Au solid solution, and Nos. 20 and 21 are not alloys, so that the catalytic activity is inferior to that of the present invention. .
【0018】実施例2 本実施例では、HAuCl4 (4.9×10-4mol/
l)およびPt(NO 2 )2 (NH3 )2 (4.6×1
0-3mol/l)を含む水溶液にγ−Al2 O 3 粉末を
添加し、3時間攪拌した後、大気中で120℃×24時
間の乾燥を行った。乾燥後、大気中で500℃×2時間
の熱処理を行い、重量比でAu:Pt=1:9、Auと
Ptの合計量(担持量)が2重量%のAu−Pt合金/
Al2 O 3 触媒Jを得た。次に、HAuCl4 およびP
t(NO2 )2 (NH3 )2 の濃度を変え、同様の方法
にて表4に示す組成のAu−Pt合金/Al2 O3 触媒
を得た。Embodiment 2 In this embodiment, HAuClFour(4.9 × 10-Fourmol /
l) and Pt (NO Two)Two(NHThree)Two(4.6 × 1
0-3mol / l) containing γ-AlTwoO ThreePowder
Add, stir for 3 hours, then in air at 120 ° C for 24 hours
Drying was performed during the period. After drying, 500 ° C x 2 hours in air
Is performed, and Au: Pt = 1: 9 by weight ratio and Au
Au-Pt alloy whose total amount (support amount) of Pt is 2% by weight /
AlTwoO ThreeCatalyst J was obtained. Next, HAuClFourAnd P
t (NOTwo)Two(NHThree)TwoChange the concentration of
Au—Pt alloy / Al having the composition shown in Table 4TwoOThreecatalyst
I got
【0019】[0019]
【表4】 [Table 4]
【0020】なお、合金粒子径はXRD(X線回折)
を、組成分析は蛍光X線を用いた。また、Au固溶量
は、XRDにより測定した格子定数より計算により求め
た。なお、粒子径が5nm未満とあるのは、X線回折装
置の測定限界以下の合金粒子であることを示す。そのた
め、格子定数が測定不可で、固溶量が計算できなかっ
た。表4に示す触媒を、表2に示すガス組成を用いて、
ガス空間速度150,000 h-1にて触媒活性を評価した。な
お、評価方法は実施例1と同様である。得られた結果を
表5に示す。The alloy particle size is determined by XRD (X-ray diffraction)
X-ray fluorescence was used for the composition analysis. The amount of Au solid solution was determined by calculation from the lattice constant measured by XRD. It should be noted that a particle diameter of less than 5 nm indicates that the alloy particle is smaller than the measurement limit of the X-ray diffractometer. Therefore, the lattice constant could not be measured, and the amount of solid solution could not be calculated. The catalysts shown in Table 4 were prepared using the gas compositions shown in Table 2,
The catalytic activity was evaluated at a gas space velocity of 150,000 h -1 . The evaluation method is the same as that of the first embodiment. Table 5 shows the obtained results.
【0021】[0021]
【表5】 [Table 5]
【0022】表5から、本発明であるNo. 28〜30
は、優れた触媒活性を示している。比較例のNo. 31、
32はAu固溶量が多いため、No. 33は、合金でない
ため、本発明と比べて触媒活性が劣ることがわかる。From Table 5, it can be seen that Nos. 28 to 30 of the present invention
Shows excellent catalytic activity. No. 31 of the comparative example,
No. 32 has a large amount of Au solid solution, and No. 33 is not an alloy, so it can be seen that the catalytic activity is inferior to that of the present invention.
【0023】実施例3 本実施例では、表6に示す原料を含む水溶液にγ−Al
2 O3 粉末を添加し、3時間攪拌した後、大気中で12
0℃×24時間の乾燥を行った。乾燥後、大気中で50
0℃×2時間の熱処理を行い、重量比でAu:Pd=
1:2、AuとPdの合計量(担持量)が2重量%のA
u−Pd合金/Al2 O3 触媒(表6に示す)を得た。Example 3 In this example, γ-Al was added to an aqueous solution containing the raw materials shown in Table 6.
After adding 2 O 3 powder and stirring for 3 hours, 12
Drying was performed at 0 ° C. × 24 hours. After drying, 50
A heat treatment at 0 ° C. × 2 hours is performed, and Au: Pd =
1: 2, A in which the total amount (supporting amount) of Au and Pd is 2% by weight
was obtained u-Pd alloy / Al 2 O 3 catalyst (shown in Table 6).
【0024】[0024]
【表6】 [Table 6]
【0025】次に、表6に示す触媒を、大気中で(50
0〜1000℃)×5時間熱処理を施した後、表2に示
すガス組成を用いて、ガス空間速度150,000 h-1にて触
媒活性を評価した。なお、評価方法は実施例1と同様で
ある。得られた結果を表7に示す。Next, the catalyst shown in Table 6 was used in the atmosphere (50
(0 to 1000 ° C.) × 5 hours, and then the catalytic activity was evaluated at a gas hourly space velocity of 150,000 h −1 using the gas composition shown in Table 2. The evaluation method is the same as that of the first embodiment. Table 7 shows the obtained results.
【0026】[0026]
【表7】 [Table 7]
【0027】表7から、本発明であるNo. 42〜47
は、触媒活性がさらに向上している。比較例のNo. 48
は熱処理温度が低く拡散が十分に起きていないため、N
o. 49は熱処理温度が高く粒成長が起きたため、熱処
理の効果が現れていない。From Table 7, it can be seen that Nos. 42 to 47 of the present invention
Has further improved catalytic activity. No. 48 of Comparative Example
Has a low heat treatment temperature and does not sufficiently diffuse,
In the case of o. 49, the effect of the heat treatment was not exhibited because the heat treatment temperature was high and grain growth occurred.
【0028】実施例4 本実施例では、表1に示す触媒B,D,F,H,Iおよ
び表4に示すK,N,Oを、水素8000ppm(窒素バラン
ス) の雰囲気中で500℃×2時間の還元処理を施した
後、表2に示すガス組成を用いて、ガス空間速度150,00
0 h-1にて触媒活性を評価した。なお、評価方法は実施
例1と同様である。得られた結果を表8に示す。Example 4 In this example, catalysts B, D, F, H and I shown in Table 1 and K, N and O shown in Table 4 were mixed at 500 ° C. in an atmosphere of 8000 ppm hydrogen (nitrogen balance). After the reduction treatment for 2 hours, the gas space velocity was 150,00 using the gas composition shown in Table 2.
The catalytic activity was evaluated at 0 h -1 . The evaluation method is the same as that of the first embodiment. Table 8 shows the obtained results.
【0029】[0029]
【表8】 [Table 8]
【0030】表8から、本発明であるNo. 50〜52
は、触媒活性がさらに向上している。比較例のNo. 5
3、56はAu固溶量が多いため、No. 54、55、5
7は、合金でないため、還元処理の効果が現れていない
ことがわかる。From Table 8, it can be seen that Nos. 50 to 52 according to the present invention were used.
Has further improved catalytic activity. No. 5 of Comparative Example
Nos. 3 and 56 have a large amount of Au solid solution.
7 is not an alloy, so that the effect of the reduction treatment is not exhibited.
【0031】[0031]
【発明の効果】本発明では、金と合金化する金属元素
は、自体が触媒活性種として機能し、Auと全率固溶す
る金属であり、これとの相乗効果によってさらに触媒活
性が向上する。また、合金粒子表面に化学的に安定な金
原子が存在し、硫黄酸化物と反応し難いため、耐被毒性
が向上する。そのため、リーン域における窒素酸化物浄
化特性に優れ、さらに製造工程が比較的簡便なため、触
媒製造の低コスト化がはかれる。According to the present invention, the metal element which forms an alloy with gold itself functions as a catalytically active species and is a metal which forms a solid solution with Au, and the catalytic activity is further improved by a synergistic effect with this. . Further, since chemically stable gold atoms are present on the surface of the alloy particles and hardly react with sulfur oxides, the poisoning resistance is improved. Therefore, the nitrogen oxide purification characteristics in the lean region are excellent, and the production process is relatively simple, so that the production cost of the catalyst can be reduced.
フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/36 102B 104A Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 53/36 102B 104A
Claims (3)
種または2種以上の元素で構成される金合金触媒であっ
て、Auと金属Mとの重量比がAu/M=1/9〜9/
1であり、かつ合金中のAu固溶量が20〜80重量%
であることを特徴とする金合金触媒。 M:Pt、Pd、Ag、Cu、Ni1. A metal selected from Au and a metal M shown below.
A gold alloy catalyst composed of one or more kinds of elements, wherein the weight ratio of Au to metal M is Au / M = 1/9 to 9 /
1 and the amount of Au solid solution in the alloy is 20 to 80% by weight
A gold alloy catalyst, characterized in that: M: Pt, Pd, Ag, Cu, Ni
〜1200℃の温度範囲において熱処理して製造される
ことを特徴とする金合金触媒。2. The method according to claim 1, wherein after the catalyst synthesis, 500
A gold alloy catalyst, which is produced by heat treatment in a temperature range of -1200 ° C.
〜1200℃の温度範囲で、かつ還元雰囲気で熱処理し
て製造されることを特徴とする金合金触媒。3. The method according to claim 1, wherein after the catalyst synthesis,
A gold alloy catalyst which is produced by heat treatment in a temperature range of up to 1200 ° C. and in a reducing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9027079A JPH10216518A (en) | 1997-02-10 | 1997-02-10 | Gold alloy catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9027079A JPH10216518A (en) | 1997-02-10 | 1997-02-10 | Gold alloy catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10216518A true JPH10216518A (en) | 1998-08-18 |
Family
ID=12211082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9027079A Pending JPH10216518A (en) | 1997-02-10 | 1997-02-10 | Gold alloy catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10216518A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999032223A1 (en) * | 1997-12-22 | 1999-07-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas cleaning catalyst, process for producing the same, and exhaust gas cleaning method |
US6362129B1 (en) | 1999-04-08 | 2002-03-26 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying an exhaust gas |
JP2006198490A (en) * | 2005-01-19 | 2006-08-03 | Mitsubishi Heavy Ind Ltd | Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method |
WO2008117941A1 (en) * | 2007-03-28 | 2008-10-02 | Heesung Catalysts Corporation | Doc catalyst employing pd-au for improving diesel oxidation activity |
JP2009001901A (en) * | 2007-06-19 | 2009-01-08 | Afton Chemical Corp | Nanoalloy in emissions control after-treatment system |
JP2011056379A (en) * | 2009-09-09 | 2011-03-24 | Toyota Motor Corp | Exhaust gas purifying catalyst and method of manufacturing the same |
CN102015075A (en) * | 2008-05-09 | 2011-04-13 | 约翰逊马西有限公司 | Exhaust system for lean-burn internal combustion engine comprising Pd-Au-alloy catalyst |
WO2012108061A1 (en) | 2011-02-07 | 2012-08-16 | Toyota Jidosha Kabushiki Kaisha | Nox purification catalyst |
WO2012108060A1 (en) | 2011-02-07 | 2012-08-16 | Toyota Jidosha Kabushiki Kaisha | NOx PURIFICATION CATALYST |
WO2012160708A1 (en) | 2011-05-24 | 2012-11-29 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system |
WO2012160709A1 (en) | 2011-05-24 | 2012-11-29 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system |
WO2013121636A1 (en) | 2012-02-15 | 2013-08-22 | トヨタ自動車株式会社 | Catalyst system for exhaust gas purification utilizing base metals, and controlling method therefor |
JP2013533798A (en) * | 2010-06-11 | 2013-08-29 | レノビア・インコーポレイテッド | Catalysts comprising platinum and gold nanoparticles and their use for the oxidation of glucose and methods for preparing such catalysts |
WO2013137469A1 (en) * | 2012-03-16 | 2013-09-19 | エム・テクニック株式会社 | Solid gold-nickel alloy nanoparticles and production method thereof |
JP2014032914A (en) * | 2012-08-06 | 2014-02-20 | Toyota Motor Corp | Air electrode for metal air battery and metal air battery |
JP5582484B1 (en) * | 2013-12-20 | 2014-09-03 | 田中貴金属工業株式会社 | Medical alloy and method for producing the same |
US9079167B2 (en) | 2011-02-07 | 2015-07-14 | Toyota Jidosha Kabushiki Kaisha | NOx purification catalyst |
US9084988B2 (en) | 2011-02-07 | 2015-07-21 | Toyota Jidosha Kabushiki Kaisha | NOX purification catalyst |
US9174911B2 (en) | 2009-06-13 | 2015-11-03 | Rennovia Inc. | Production of glutaric acid and derivatives from carbohydrate-containing materials |
EP2982432A1 (en) * | 2014-08-08 | 2016-02-10 | Toyota Jidosha Kabushiki Kaisha | Nox storage reduction catalyst and production method thereof |
US9770705B2 (en) | 2010-06-11 | 2017-09-26 | Rennovia Inc. | Oxidation catalysts |
-
1997
- 1997-02-10 JP JP9027079A patent/JPH10216518A/en active Pending
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999032223A1 (en) * | 1997-12-22 | 1999-07-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas cleaning catalyst, process for producing the same, and exhaust gas cleaning method |
US6440378B1 (en) | 1997-12-22 | 2002-08-27 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gases, a method of producing the same, and a method of purifying exhaust gases |
US6362129B1 (en) | 1999-04-08 | 2002-03-26 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying an exhaust gas |
JP2006198490A (en) * | 2005-01-19 | 2006-08-03 | Mitsubishi Heavy Ind Ltd | Exhaust gas cleaning catalyst, its manufacturing method and exhaust gas cleaning method |
WO2008117941A1 (en) * | 2007-03-28 | 2008-10-02 | Heesung Catalysts Corporation | Doc catalyst employing pd-au for improving diesel oxidation activity |
KR100865362B1 (en) | 2007-03-28 | 2008-10-24 | 희성촉매 주식회사 | Diesel Oxidation Catalyst employing Pd-Au for improving diesel oxidation activity |
JP2009001901A (en) * | 2007-06-19 | 2009-01-08 | Afton Chemical Corp | Nanoalloy in emissions control after-treatment system |
CN102015075A (en) * | 2008-05-09 | 2011-04-13 | 约翰逊马西有限公司 | Exhaust system for lean-burn internal combustion engine comprising Pd-Au-alloy catalyst |
JP2011519725A (en) * | 2008-05-09 | 2011-07-14 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Exhaust system for lean burn internal combustion engine with PD-AU alloy catalyst |
US8551411B2 (en) | 2008-05-09 | 2013-10-08 | Johnson Matthey Public Limited Company | Exhaust system for lean-burn internal combustion engine comprising Pd-Au-alloy catalyst |
US9434709B2 (en) | 2009-06-13 | 2016-09-06 | Rennovia Inc. | Production of adipic acid and derivatives from carbohydrate-containing materials |
US9174911B2 (en) | 2009-06-13 | 2015-11-03 | Rennovia Inc. | Production of glutaric acid and derivatives from carbohydrate-containing materials |
US9156766B2 (en) | 2009-06-13 | 2015-10-13 | Rennovia Inc. | Production of adipic acid and derivatives from carbohydrate-containing materials |
JP2011056379A (en) * | 2009-09-09 | 2011-03-24 | Toyota Motor Corp | Exhaust gas purifying catalyst and method of manufacturing the same |
US9770705B2 (en) | 2010-06-11 | 2017-09-26 | Rennovia Inc. | Oxidation catalysts |
US9808790B2 (en) | 2010-06-11 | 2017-11-07 | Rennovia Inc. | Processes for the manufacturing of oxidation catalysts |
US10807074B2 (en) | 2010-06-11 | 2020-10-20 | Archer-Daniels-Midland Company | Oxidation catalysts |
JP2013533798A (en) * | 2010-06-11 | 2013-08-29 | レノビア・インコーポレイテッド | Catalysts comprising platinum and gold nanoparticles and their use for the oxidation of glucose and methods for preparing such catalysts |
US11596927B2 (en) | 2010-06-11 | 2023-03-07 | Archer-Daniels-Midland Company | Oxidation catalysts |
CN103370122A (en) * | 2011-02-07 | 2013-10-23 | 丰田自动车株式会社 | NOX purification catalyst |
WO2012108061A1 (en) | 2011-02-07 | 2012-08-16 | Toyota Jidosha Kabushiki Kaisha | Nox purification catalyst |
JP2014512250A (en) * | 2011-02-07 | 2014-05-22 | トヨタ自動車株式会社 | NOx purification catalyst |
WO2012108060A1 (en) | 2011-02-07 | 2012-08-16 | Toyota Jidosha Kabushiki Kaisha | NOx PURIFICATION CATALYST |
US9079167B2 (en) | 2011-02-07 | 2015-07-14 | Toyota Jidosha Kabushiki Kaisha | NOx purification catalyst |
US9084988B2 (en) | 2011-02-07 | 2015-07-21 | Toyota Jidosha Kabushiki Kaisha | NOX purification catalyst |
JP2014515691A (en) * | 2011-05-24 | 2014-07-03 | トヨタ自動車株式会社 | Exhaust gas purification device |
US20140305105A1 (en) * | 2011-05-24 | 2014-10-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system |
WO2012160708A1 (en) | 2011-05-24 | 2012-11-29 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system |
WO2012160709A1 (en) | 2011-05-24 | 2012-11-29 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system |
WO2013121636A1 (en) | 2012-02-15 | 2013-08-22 | トヨタ自動車株式会社 | Catalyst system for exhaust gas purification utilizing base metals, and controlling method therefor |
US9517434B2 (en) | 2012-02-15 | 2016-12-13 | Toyota Jidosha Kabushika Kaisha | Catalyst system for exhaust gas purification utilizing base metals, and controlling method therefor |
KR20140138294A (en) * | 2012-03-16 | 2014-12-03 | 엠. 테크닉 가부시키가이샤 | Solid gold-nickel alloy nanoparticles and production method thereof |
US11229949B2 (en) | 2012-03-16 | 2022-01-25 | M. Technique Co., Ltd. | Solid gold-nickel alloy nanoparticle |
WO2013137469A1 (en) * | 2012-03-16 | 2013-09-19 | エム・テクニック株式会社 | Solid gold-nickel alloy nanoparticles and production method thereof |
US10035186B2 (en) | 2012-03-16 | 2018-07-31 | M. Technique Co., Ltd. | Solid gold-nickel alloy nanoparticles and production method thereof |
JPWO2013137469A1 (en) * | 2012-03-16 | 2015-08-03 | エム・テクニック株式会社 | Solid gold-nickel alloy nanoparticles and method for producing the same |
JP2017186675A (en) * | 2012-03-16 | 2017-10-12 | エム・テクニック株式会社 | Solid gold nickel alloy nanoparticle and method for producing the same |
CN104203456A (en) * | 2012-03-16 | 2014-12-10 | M技术株式会社 | Solid gold-nickel alloy nanoparticles and production method thereof |
JP2014032914A (en) * | 2012-08-06 | 2014-02-20 | Toyota Motor Corp | Air electrode for metal air battery and metal air battery |
JP5582484B1 (en) * | 2013-12-20 | 2014-09-03 | 田中貴金属工業株式会社 | Medical alloy and method for producing the same |
CN105917012A (en) * | 2013-12-20 | 2016-08-31 | 田中贵金属工业株式会社 | Alloy for medical use, and method for producing same |
KR20160099670A (en) * | 2013-12-20 | 2016-08-22 | 다나카 기킨조쿠 고교 가부시키가이샤 | Alloy for medical use, and method for producing same |
US10883162B2 (en) | 2013-12-20 | 2021-01-05 | Tanaka Kikinzoku Kogyo K.K. | Alloy for medical use, and method for producing same |
US11345986B2 (en) | 2013-12-20 | 2022-05-31 | Tanaka Kikinzoku Kogyo K.K. | Alloy for medical use, and method for producing same |
WO2015093064A1 (en) * | 2013-12-20 | 2015-06-25 | 田中貴金属工業株式会社 | Alloy for medical use, and method for producing same |
JP2016036783A (en) * | 2014-08-08 | 2016-03-22 | トヨタ自動車株式会社 | NOx OCCLUSION REDUCTION TYPE CATALYST AND MANUFACTURING METHOD THEREFOR |
EP2982432A1 (en) * | 2014-08-08 | 2016-02-10 | Toyota Jidosha Kabushiki Kaisha | Nox storage reduction catalyst and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10216518A (en) | Gold alloy catalyst | |
JP3903598B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
EP0525677A1 (en) | Exhaust gas purifying catalyst and method of preparing the same | |
DE60205061D1 (en) | Noble metal-supported supported catalyst and process for its preparation | |
JP2005185956A (en) | Powdered catalyst, exhausted gas purification catalyst, and production method of powdered catalyst | |
CN113751023B (en) | Bimetallic-based catalyst for low-temperature high-selectivity catalytic oxidation of ammonia, preparation method and application thereof | |
US20140194280A1 (en) | Nox purification catalyst | |
EP1611952A1 (en) | Catalyst produced by using multi-element metal colloid | |
JP2000515058A (en) | Oxidation catalyst | |
JP3777696B2 (en) | Metal fine particle supported oxide catalyst | |
EP1516855B1 (en) | Cerium-zirconium composite metal oxide with a cerium oxide core surrounded by zirconium oxide | |
JP2003277060A (en) | Cerium-zirconium compound metallic oxide | |
JP4655436B2 (en) | Method for treating exhaust gas purification catalyst | |
EP2926900A1 (en) | Method for producing catalyst for exhaust gas removal, and catalyst obtained by said production method | |
JP3436425B2 (en) | Exhaust gas purification catalyst carrier and exhaust gas purification catalyst | |
JP4329607B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP3222184B2 (en) | Method for producing exhaust gas purifying catalyst | |
JP4056775B2 (en) | Method for modifying composite metal particles | |
JP4779271B2 (en) | catalyst | |
JP2004033989A (en) | Exhaust gas treatment catalyst | |
JP2003181293A (en) | Exhaust gas cleaning catalyst | |
JP2001205087A (en) | Catalyst for cleaning exhaust gas | |
JPH06210175A (en) | Catalyst for purification of exhaust gas and its production | |
JPH08173811A (en) | Catalyst for purification of exhaust gas and its production | |
JP2006026557A (en) | Alloy catalyst and method of preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050614 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060627 |