US20170080077A1 - Heterologous expression of neisserial proteins - Google Patents

Heterologous expression of neisserial proteins Download PDF

Info

Publication number
US20170080077A1
US20170080077A1 US15/368,435 US201615368435A US2017080077A1 US 20170080077 A1 US20170080077 A1 US 20170080077A1 US 201615368435 A US201615368435 A US 201615368435A US 2017080077 A1 US2017080077 A1 US 2017080077A1
Authority
US
United States
Prior art keywords
protein
polypeptide
lipidated polypeptide
expression
proteins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/368,435
Inventor
Maria Aricò
Maurizio Comanducci
Cesira Galeotti
Vega Masignani
Marzia Monica Giuliani
Mariagrazia Pizza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0004695A external-priority patent/GB0004695D0/en
Priority claimed from GB0027675A external-priority patent/GB0027675D0/en
Application filed by GlaxoSmithKline Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Priority to US15/368,435 priority Critical patent/US20170080077A1/en
Assigned to GLAXOSMITHKLINE BIOLOGICALS SA reassignment GLAXOSMITHKLINE BIOLOGICALS SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVARTIS AG
Assigned to NOVARTIS AG reassignment NOVARTIS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVARTIS VACCINES AND DIAGNOSTICS SRL
Assigned to CHIRON S.R.L. reassignment CHIRON S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARICO, MARIA BEATRICE, PIZZA, MARIAGRAZIA, COMANDUCCI, MAURIZIO, GALEOTTI, CESIRA, GIULIANI, MARZIA MONICA, MASIGNANI, VEGA
Assigned to NOVARTIS VACCINES AND DIAGNOSTICS S.R.L. reassignment NOVARTIS VACCINES AND DIAGNOSTICS S.R.L. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHIRON S.R.L.
Publication of US20170080077A1 publication Critical patent/US20170080077A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • This invention is in the field of protein expression.
  • it relates to the heterologous expression of proteins from Neisseria (e.g. N. gonorrhoeae or, preferably, N. meningitidis ).
  • the 2160 proteins NMB0001 to NMB2160 from Tettelin et al. [ Science (2000) 287:1809-1815] are referred to herein as SEQ4#s 21674326 [see also WO00/66791].
  • protein of the invention refers to a protein comprising:
  • the ‘fragment’ referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more).
  • n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more).
  • the fragment comprises an epitope from one of SEQ#s 14326.
  • Preferred fragments are those disclosed in WO00/71574 and WO01/04316.
  • Preferred proteins of the invention are found in N. meningitidis serogroup B.
  • Preferred proteins for use according to the invention are those of serogroup B N. meningitidis strain 2996 or strain 394198 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N. meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. ‘287’, ‘919’ etc.) may be taken to include that protein from any strain.
  • no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any ‘interference’ from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
  • the method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).
  • This approach is preferably used for the expression, of the following proteins using the native leader peptide: 111, 149, 206, 2254, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050.
  • the suffix ‘L’ used herein in the name of a protein indicates expression in this manner using the native leader peptide.
  • Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
  • ORF25 or ORF40 is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.
  • This approach is particularly suited for expressing lipoproteins.
  • the native leader peptide of a protein of the invention is replaced by that of a different protein.
  • a leader peptide known to drive protein targeting efficiently can be used instead.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
  • the method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • the expressed protein will consist of the replacement leader peptide at the N-tertninus, followed by the protein of the invention minus its leader peptide.
  • the leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an E. coli protein (e.g. the OmpA leader peptide) or an Erwinia carotovora protein (e.g. the PelB leader peptide), for instance.
  • E. coli protein e.g. the OmpA leader peptide
  • Erwinia carotovora protein e.g. the PelB leader peptide
  • a particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in E. coli , improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and ⁇ G287.
  • the leader peptide and N-terminal domains of 961 are also particularly useful.
  • Another useful replacement leader peptide is that of E. coli OmpA. This leader is able to direct membrane localisation of E. coli . It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.
  • leader peptide Another useful replacement leader peptide is MICKYLFSAA. This can direct secretion into culture medium, and is extremely short and active.
  • the use of this leader peptide is not restricted to the expression of Neisserial proteins—it may be used to direct the expression of any protein (particularly bacterial proteins).
  • the native leader peptide of a protein of the invention is deleted.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
  • the method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • the first amino acid of the expressed protein will be that of the mature native protein.
  • This method can increase the levels of expression.
  • expression levels in E. coli are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.
  • the method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.
  • the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).
  • the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
  • the method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.
  • a protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.
  • the method is preferably used for the expression of protein 287.
  • This protein can be notionally split into three domains, referred to as A B & C (see FIG. 5 ).
  • Domain B aligns strongly with IgA proteases
  • domain C aligns strongly with transferrin-binding proteins
  • domain A shows no strong alignment with database sequences.
  • An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
  • a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD ⁇ ABD, ACD, BCD etc, or (c) rearranged e.g. protein ABC ⁇ ACB, CAB etc.
  • These three strategies can be combined with fusion partners is desired.
  • ORF46 has also been notionally split into two domains a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted.
  • An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.
  • Protein 564 has also been split into domains ( FIG. 8 ), as have protein 961 ( FIG. 12 ) and protein 502 (amino acids 28-167 of the MC58 protein).
  • two or more proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.
  • no non-Neisserial fusion partner e.g. GST or poly-His
  • the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).
  • the method will typically involve the steps of obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • the constituent proteins in a hybrid protein according to the invention will be from the same strain.
  • the fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.
  • the method is well suited to the expression of proteins orf1, orf4, orf25, orf40, Orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.
  • Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions ( ⁇ G) forms may be used (e.g. ⁇ G-287, ⁇ GTbp2, ⁇ G741, ⁇ G983 etc.), or truncated forms may be used (e.g. ⁇ 1-287, ⁇ 2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORP46 1-433 , ORF46 433-608 , ORF46, 961c etc.).
  • ⁇ G poly-glycine deletions
  • truncated forms e.g. ⁇ 1-287, ⁇ 2-287 etc.
  • domain-deleted versions e.g. 287B, 287C, 287BC, ORP46 1-433 , ORF46 433-608 , ORF46, 9
  • a hybrid protein comprising 919 and 287 is particularly preferred; (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (1) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (1) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in FIG. 14 .
  • 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a ⁇ G form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).
  • this is preferably from strain 2996 or from strain 394/98.
  • 961 this is preferably at the N-terminus. Domain forms of 961 may be used.
  • proteins of the invention are expressed at a low temperature.
  • Expressed Neisserial proteins may be toxic to E. coli , which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.
  • the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
  • a preferred temperature is around 30° C. This is particularly suited to the expression of 919.
  • Neisserial proteins may be toxic to E. coli . This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used preferably using site-directed mutagenesis.
  • an expressed protein is mutated to reduce or eliminate toxic activity.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.
  • a preferred mutation in 907 is at Glu-117 (e.g. Glu ⁇ Gly); preferred mutations in 919 are at Glu-255 (e.g. Glu ⁇ Gly) and/or Glu-323 (e.g. Glu ⁇ Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu ⁇ Gly), Ser-213 (e.g. Ser ⁇ Gly) and/or Asn-348 (e.g. Asn ⁇ Gly).
  • an alternative vector used to express the protein This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used.
  • the alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.
  • pSM214 may also be used with: ⁇ G287, ⁇ 2-287, ⁇ 3-287, ⁇ 4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and ⁇ G287-Orf46.1.
  • pET-24b Novagen; uses kanamycin resistance
  • pET-24b is preferred for use with: ⁇ G287K, ⁇ 2-287K, ⁇ 3-287K, ⁇ 4-287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, ⁇ G287-919-K, ⁇ G287-Orf46.1-K and ⁇ G287-961-K.
  • a protein is expressed or purified such that it adopts a particular multimeric form.
  • Proteins 287 and 919 may be purified in dimeric forms.
  • Protein 961 may be purified in a 180 kDa oligomeric form (e.g. a tetramer).
  • a protein is expressed as a lipidated protein.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
  • the method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.
  • the C-terminus of a protein of the invention is mutated.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.
  • the method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • the first amino acid of the expressed protein will be that of the mature native protein.
  • the mutation may be a substitution, insertion or, preferably, a deletion.
  • This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46.
  • protein 730 a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.
  • the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
  • the method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.
  • the poly-glycine stretch has the sequence (Gly) n , where n ⁇ 4 (e.g. 5, 6, 7, 8, 9 or more).
  • This stretch is mutated to disrupt or remove the (Gly) n .
  • This may be by deletion (e.g. CGGGGS ⁇ CGGGS, COGS, CGS or CS), by substitution (e.g. CGCGGS ⁇ CGXGGS, CGCXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS ⁇ CGGXGGS, CGXGOGS, etc.
  • Neisserial proteins may be used for any protein (particularly bacterial proteins) to enhance heterologous expression.
  • Neisserial proteins it is particularly suitable for expressing 287, 741, 983 and Thp2.
  • An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
  • the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.
  • the method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a poly-glycine stretch within the protein sequence.
  • the resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • heterologous host Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host.
  • the heterologous host may be prokaryotic or eukaryotic. It is preferably E. coli , but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactarnica, Neisseria cinerea, Mycobateria (e.g. M. tuberculosis ), yeast etc.
  • the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g.
  • compositions for treating or preventing infection due to Neisserial bacteria
  • diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria
  • a reagent which can raise antibodies against Neisserial bacteria for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria
  • a method of treating a patient comprising administering to the patient a therapeutically effective amount of these compositions.
  • the invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of ‘sequence identity’ is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).
  • the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution).
  • “high stringency” conditions eg. 65° C. in a 0.1 ⁇ SSC, 0.5% SDS solution.
  • the invention also provides nucleic acid encoding proteins according to the invention.
  • nucleic acid comprising sequences complementary to those described above (eg, for antisense or probing purposes).
  • Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
  • nucleic acid includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
  • PNA peptide nucleic acids
  • FIG. 1 shows a construct used to express orf1 protein using a heterologous leader peptide.
  • FIG. 2 shows a construct used to express 287 protein using a heterologous leader peptide.
  • FIG. 3A - FIG. 3E show expression data for ORF1.
  • FIG. 3A shows purification of ORF1.
  • FIG. 3B shows Western blot analysis.
  • FIG. 3C shows the results of a bactericidal assay with ORF1.
  • FIG. 3D shows FACS analysis.
  • FIG. 3E shows the results of an ELISA assay.
  • FIG. 4A - FIG. 4E show expression data for protein 961.
  • FIG. 4A shows purification of protein 961.
  • FIG. 4B shows Western blot analysis.
  • FIG. 4C shows the results of a bactericidal assay with protein 961.
  • FIG. 4D shows FACS analysis.
  • FIG. 4E shows the results of an ELISA assay.
  • FIG. 5 shows domains of protein 287.
  • FIG. 6 shows deletions within domain A of protein 287.
  • FIG. 7 shows specific deletions within domain A of protein 287.
  • FIG. 8 shows domains of protein 564.
  • FIG. 9 shows the PhoC reporter gene driven by the 919 leader peptide.
  • FIG. 10A - FIG. 10B show the results obtained using mutants of the 919 leader peptide driving the PhoC reporter.
  • FIG. 10A shows results for control, phoC wt , 9phoC, 9L1a, 9l1d, 9L1f, and 9S1e.
  • FIG. 10B shows results for control, phoC wt , 9phoC, 9S1b, 9S1c, and 9Sli.
  • FIG. 11A - FIG. 11B show insertion mutants of protein 730.
  • FIG. 11A shows 730-C1.
  • FIG. 11B shows 730-C2.
  • FIG. 12 shows domains of protein 961.
  • FIG. 13 shows SDS-PAGE of ⁇ G proteins. Dots show the main recombinant product.
  • FIG. 14A - FIG. 14Z show 26 hybrid proteins according to the invention.
  • FIG. 14A shows ⁇ G287-919.
  • FIG. 14B shows ⁇ G287-953.
  • FIG. 14C shows ⁇ G287-961.
  • FIG. 14D shows ⁇ G287NZ-919,
  • FIG. 14E shows ⁇ G287NZ-953.
  • FIG. 14F shows ⁇ G287NZ-961.
  • FIG. 14G shows ⁇ G983-ORF46.1.
  • FIG. 14H shows ⁇ G983-741.
  • FIG. 14I shows ⁇ G983-961.
  • FIG. 14J shows ⁇ G983-961c.
  • FIG. 14K shows ⁇ G741-961.
  • FIG. 14I shows ⁇ G741-961c.
  • FIG. 14K shows ⁇ G741-961.
  • FIG. 14I shows ⁇ G741-961c.
  • FIG. 14K shows ⁇ G741-961.
  • FIG. 14M shows ⁇ G741-983.
  • FIG. 14N shows ⁇ G741-ORF46.1.
  • FIG. 14O shows ORF46.1-741
  • FIG. 14P shows ORF46.1-961.
  • FIG. 14Q shows ORF46.1-961c.
  • FIG. 14R shows 961-ORF46.1.
  • FIG. 14S shows 961-741.
  • FIG. 14T shows 961-983.
  • FIG. 14U shows 961c-ORF46.1.
  • FIG. 14V shows 961c-741.
  • FIG. 14W shows 961c-983.
  • FIG. 14X shows 961cL-ORF46.1.
  • FIG. 14Y shows 961cL-741.
  • FIG. 14Z shows 961cL-983.
  • Protein 919 from N. meningitidis (serogroup B, strain 2996) has the following sequence:
  • the leader peptide is underlined.
  • Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in E. coli .
  • the protein is a good surface-exposed immunogen.
  • 919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.
  • proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases.
  • Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.
  • the purified proteins 919 untagged , 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J. Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc) n>30 glycan strands.
  • the first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[ 3 H]pimelic acid as substrate.
  • Enzyme (3-10 ⁇ g total) was incubated for 45 minutes at 37° C. in a total volume of 100 ⁇ l comprising 10 mM Tris-maleate (pH 5.5), 10 mM MgCl 2 , 0.2% v/v Triton X-100 and [ 3 H]A 2 pm labelled murein sacculi (about 10000 cpm).
  • the assay mixture was placed on ice for 15 minutes with 100 ⁇ l of 1% w/v N-acetyl-N,N,N-trimethylammonium for 15 minutes and precipitated material pelleted by centrifugation at 10000 g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting.
  • E. coli soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.
  • the second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands.
  • Purified strands, poly(MurNAc-GlcNAc) n>30 labelled with N-acetyl-D-1-[ 3 H]glucosamine were incubated with 3 ⁇ g of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM MgCl 2 and 0.2% v/v Triton X-100 for 30 min at 37° C.
  • the reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10 ⁇ l of 20% v/v phosphoric acid.
  • Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919.
  • the effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5, Over the temperature range 18° C. to 42° C., maximum activity was observed at 37° C.
  • Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column.
  • the major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydronmraminic acid intramolecular bond.
  • This activity may help to explain the toxic effects of 919 when expressed in E. coli.
  • 907-2 also shares homology with E. coli MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.
  • Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van, Asselt et at (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40 kDa MLTB.
  • the catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.
  • 907-2/Slt70 90 100 110 ⁇ 120 130 140 907-2.pep ERRRLLVNIQYESSRAG--LDTQIVLGLIEV E SAFRQYAISGV G AR G LMQVMPFWKNYIG
  • Codon Primers Sequences change 919-E255 for CGAAGACCCCGTC Ggt CTTTTTTTTATG GAA ⁇ Ggt 919-E255 rev GTGCATAAAAAAAAGacCGACGGGGTCT 919-E323 for AACGCCTCGCC Ggt GTTTTGGGTCA GAA ⁇ Ggt 919-E323 rev TTTGACCCAAAACacCGGCGAGGCG 919-D362 for TGCCGGCAGTC Ggt CGGCACTACA GAC ⁇ Ggt 919-D362 rev TAATGTAGTGCCGacCGACTGCGCCG 907-E117 for TGATTGAGGTG Ggt AGCGCGTTCCG GAA ⁇ Ggt 907-E117 rev GGCGGAACGCGCTacCCACCTCAAT Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.
  • PCR was performed using 20 ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:
  • the second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the “Orf4L for” and “919L rev” respectively.
  • PCR have been performed using 200 ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:
  • the second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos “907L for” and “907L rev” as primers.
  • PCR fragments containing each mutation were processed following the standard procedure, digested with NdeI and XhoI restriction enzymes and cloned into pET-21b+ vector. The presence of each mutation was confirmed by sequence analysis.
  • Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.
  • the E255G mutant of 919 shows a 50% reduction in activity; the E3230 mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.
  • 287-GST, 919 untagged and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes.
  • the molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia).
  • the buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HO (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.
  • each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 204.1. Gel filtration was performed with a flow rate of 0.5-2.0 ml/min and the eluate monitored at 280 nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of K av log M r of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.
  • 953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].
  • the 953 sequence was cloned as a full-length gene into pSM214 using the E. coli MM1294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:
  • Recombinant colonies were grown over-night at 37° C. in 4 ml of LB broth containing 20 ⁇ g/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with EcoRI and HindIII. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20 ⁇ g/ml of chloramphenicol and let to grown for 16 hours at 37° C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.
  • Oligos used to clone sequences into pSM-214 vectors were as follows:
  • pET24 vector sequences were cloned and the proteins expressed in pET-24 as described below for pET21.
  • pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.
  • Oligonucleotides used to clone sequences into pET-24b vector were:
  • ORF1 from N. meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:
  • the leader peptide is underlined.
  • ORF1 A polymorphic form of ORF1 is disclosed in WO99/55873.
  • the His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see FIG. 3 ).
  • the protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.
  • ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against. ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.
  • ORF1L was purified as outer membranes, where it is localised.
  • Protein 911 from N. meningitidis (serogroup B, strain MC58) has the following sequence:
  • the leader peptide is underlined.
  • ORF46 protein from N. meningitidis has the following sequence:
  • the leader peptide is underlined.
  • ORF46-2L is expressed at a very low level to E. coli . Removal of its leader peptide (ORF46-2) does not solve this problem.
  • the truncated ORF46.1L form (first 423 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.
  • ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):
  • the hybrid shows equivalent or superior immunological activity.
  • the complete 961 protein from N. meningitidis (serogroup B, strain MC58) has the following sequence:
  • the leader peptide is underlined.
  • the GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed ( FIG. 4 ).
  • the protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.
  • Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of N. meningitidis.
  • Protein 287 from N. meningitidis (serogroup B, strain 2996) has the following sequence;
  • the leader peptide is shown underlined.
  • Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E. coli.
  • ‘287LOrf4’ was constructed by digesting 919LOrf4 with NheI and XhoI.
  • the entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5′-end primer (287LOrf4 for), fused to 287 coding sequence.
  • the 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the NheI and XhoI sites, respectively), digested with NheI and XhoI and ligated to the purified pETOrf4 fragment.
  • His-tagged protein 760 was expressed with and without its leader peptide.
  • the deletion of the signal peptide greatly increased expression levels.
  • the protein could be purified most easily using 2M urea for solubilisation.
  • His-tagged protein 264 was well-expressed using its own signal peptide, and the 30 kDa protein gave positive Western blot results.
  • ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed.
  • Protein 206 was found not to be a lipoprotein.
  • the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides i.e. ‘ORF25L’ and ‘ORF40L’) give better results in the bactericidal assay than the fusion proteins.
  • Proteins 920L and 953L were subjected to N-terminal sequencing, giving HRVWVETAH and ATYKVDEYHANARFAF , respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the proteins are correctly processed and localised by E. coli when expressed from their native leader peptides.
  • the N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA , indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N. gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.
  • Bacteria were harvested by centrifugation in a bench top centrifuge at 2700 g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120 ⁇ l of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000 g for 10 min the supernatant was collected and proteins precipitated by the addition of 1.2 ml cold acetone and left for 1 hour at ⁇ 20° C.
  • Protein was pelleted by centrifugation at 13000 g for 10 min and resuspended in 20-50 ⁇ l (calculated to standardise loading with respect to the final 0.1) of the culture) of 1.0% w/v SDS. An aliquot of 15 ⁇ l was boiled with 5 ⁇ l of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight ⁇ 80° C.
  • the second domain shows homology to IgA proteases
  • the third domain shows homology to transferrin-binding proteins.
  • Each of the three ‘domains’ shows a different degree of sequence conservation between N. meningitidis strains domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in FIG. 7 , and alignments for various strains are disclosed in WO00/66741 (see FIGS. 5 and 15 therein).
  • the three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:
  • the stop codon sequence was omitted in the 3′-end primer sequence.
  • the 5′ primers included the NheI restriction site, and the 3′ primers included a Kiwi as a tail, in order to direct the cloning of each amplified fragment into the expression vector pRT21b4 rising NdeI-XhoI, NheI-XhoI or NdeI-HindIII restriction sites.
  • Immunological data were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
  • the ‘ ⁇ 4’ protein was also made for strain MC58 (‘ ⁇ 4 287MC58-His’; an 203-488).
  • Immunological data were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
  • the mutants are immunologically equivalent or superior.
  • the ‘ ⁇ 1 287-His’ construct of the previous example differs from 287-His and from ‘287 untagged ’ only by a short N-terminal deletion (GGGGGGS).
  • GGGGGGS short N-terminal deletion
  • the deletion of this (Gly) 6 sequence has been shown to have a dramatic effect on protein expression.
  • strain MC58 The protein lacking the N-terminal amino acids up to GGGGGG is called ‘ ⁇ G287’.
  • strain MC58 its sequence (leader peptide underlined) is:
  • ⁇ G287-His ‘ ⁇ G287K’, respectively
  • ⁇ G287-His ‘ ⁇ G287K’, respectively
  • variants of ⁇ G287-His were expressed in E. coli from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.
  • Thp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996. These were cloned in pET vector and expressed in E. coli without the sequence coding for their leader peptides or as “ ⁇ G forms”, both fused to a C-terminal His-tag. In each case, the same effect was seen expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:
  • ⁇ G287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192.
  • ⁇ G287K expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay.
  • ⁇ G287-ORF46.1K may also be expressed in pET-24b.
  • ⁇ G287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:
  • the bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:
  • hybrid proteins with ⁇ G287 at the N-terminus are therefore immunologically superior to simple mixtures, with ⁇ G287-ORF46.1 being particularly effective, even against heterologous strains: ⁇ G287-ORF46.1K may be expressed in pET-24b.
  • ⁇ G983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus:
  • the ⁇ G741-induced anti-bactericidal titre is particularly high against heterologous strain MC58.
  • ⁇ G741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:
  • hybrids of two proteins A & B may be either NH 2 -A-B-COOH or NH 2 -B-A-COOH.
  • the effect of this difference was investigated using protein 287 either C-terminal (in ‘287-His’ form) or N-terminal (in ⁇ G287 form sequences shown above) to 919, 953 and ORF46.1.
  • a panel of strains was used, including homologous strain 2996.
  • FCA was used as adjuvant:
  • Protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.
  • the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer.
  • the 5′ and the 3′ primers used for amplification included a NdeI and a BamHI restriction sites respectively, whereas for the amplification of the 287 gene the 5′ and the 3′ primers included a BamHI and a XhoI restriction sites respectively.
  • the 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the XhoI site at the 3′-end of the 919-His clone in pET21b+.
  • the primers used for amplification of the 287 gene were designed for introducing a SalI restriction site at the 5′- and a XhoI site at the 3′- of the PCR fragment. Since the cohesive ends produced by the SalI and XhoI restriction enzymes are compatible, the 287 PCR product digested with SalI-XhoI could be inserted in the pET21b-919 clone cleaved with XhoI.
  • the ORF46.1-287 hybrid was obtained similarly.
  • the bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:
  • Hybrids 919-519His, ORF97-225His and 225-ORF97His were also tested. These gave moderate ELISA fitres and bactericidal antibody responses.
  • the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in E. coli.
  • the protein ‘564’ is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in FIG. 8 (according to the MC58 sequence):
  • AE004032 HA-like secreted protein [ Xylella fastidiosa ] (33%)
  • AAF68414.1AF237928 putative FHA [ Pasteurella multocisida ] (23%)
  • the b domain showed, moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.
  • the c domain showed good intracellular expression as a GST-fusion, but was insoluble.
  • the d domain showed moderate intracellular expression as a his-tagged product (no purification).
  • the cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion,
  • the level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide.
  • the same result was obtained even after substitution of the T7 promoter with the E. coli Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.
  • mutants were performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 ⁇ g/ml ampicillin, 50 ⁇ g/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green ( FIG. 10 ).
  • mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.
  • MafB-related proteins include 730, ORF46 and ORF29.
  • the 730 protein from MC58 has the following sequence:
  • the leader peptide is underlined.
  • Form A consists of the N-terminal hydrophilic region of the mature protein (aa. 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.
  • Form B extends to the end of the region conserved between serogroups (aa. 28-340). This was purified as an insoluble His-tagged product.
  • C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the protein over-expressed in different clones showed differences in molecular mass.
  • intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic.
  • the OST-fusion of 961 was the best-expressed in Exoli.
  • the protein was divided into domains ( FIG. 12 ).
  • the domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.
  • domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST.
  • clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:
  • E. coli clones expressing different forms of 961 (961, 961-L, 961 ⁇ 1 -L and 961c-L) were used to investigate if the 961 is an adhesin (c.f. YadA).
  • An adhesion assay was performed using (a) the human epithelial cells and (b) E. coli clones after either over-night culture or three hours IPTG induction.
  • 961-L grown over-night (961 ⁇ 1 -L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.
  • 961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.
  • Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol.
  • the dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin.
  • Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia: FPLC Ion Exchange and Chromatofocussing; Principles and Methods . Pharmacia Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.
  • Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E. coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 ⁇ g/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD 550 reached 0.6-08. Expression of recombinant protein was induced with/PTO at a final concentration of 1.0 mM.
  • bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at ⁇ 20° C. All subsequent procedures were performed on ice or at 4° C.
  • cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L
  • bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by by sonication using a Branson Sonifier 450.
  • Disrupted cells were centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH 4 ) 2 SO 4 .
  • the precipitate was sedimented at 8000 g for 30 minutes.
  • the supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH 4 ) 2 SO 4 and the precipitate collected as above.
  • Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight.
  • the periplasmic fraction from E. coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect. Immun.
  • Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia).
  • Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH 2 -terminus (see below).
  • bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at ⁇ 20° C. AU subsequent procedures were performed at 4° C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000 g for 15 min and membranes precipitated by centrifugation at 100000 g (Beckman Ti50, 38000 rpm) for 45 minutes.
  • complete protease inhibitor Boehringer-Mannheim
  • a Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000 g for 45 min and the pellet resuspended in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0 mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000 g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.
  • a single colony harbouring the plasmid of interest was grown overnight at 37° C. in 20 ml of LB/Amp (100 ⁇ g/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30° C. until the OD 550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at ⁇ 20° C. All subsequent procedures were performed on ice or at 4° C.
  • the precipitate was sedimented at 8000 g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight.
  • the dialysate was centrifuged at 13000 g for 20 min and applied to the FPLC resin.
  • the protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.
  • Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of N. meningitidis B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+(Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in ‘untagged’ form (e.g. AG 287K).
  • the leader peptide was omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.
  • the melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:
  • T m1 4( G+C )+2( A+T ) (tail excluded)
  • the melting temperatures of the selected oligonucleotides were usually 65-70° C. for the whole oligo and 50-60° C. for the hybridising region alone.
  • Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0 ml NH 4 OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.
  • Orf1L Fwd CGCGATCC GCTAGC -AAAACAACCGACAAACGG NheI Rev CCCG CTCGAG -TTACCAGCGGTAGCCTA XhoI Orf1 Fwd CTA GCTAGC -GGACACACTTATTTCGGCATC NheI Rev CCCG CTCGAG -TTACCAGCGGTAGCCTAATTTG XhoI Orf1LOmpA Fwd NdeI-(NheI) Rev CCCG CTCGAG - XhoI Orf4L Fwd CGCGGATCC CATATG -AAAACCTTCTTCAAAACC NdeI Rev CCCG CTCGAG -TTATTTGGCTGCGCCTTC XhoI Orf7-1L Fwd GCGGC ATTAAT -ATGTTGAGAAAATTGTTGAAATGG AseI Rev GCGGC CTCGAG -TTATTTTTTCAAAATATATTTGC XhoI Orf9-L
  • the ATG codon is part of the NdeI site used for cloning.
  • the constructs made using NheI as a cloning site at the 5° end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.
  • the standard PCR protocol was as follows: 200 ng of genomic DNA from 2996, MC581000, or BZ232 strains or 10 ng of plasmid DNA preparation of recombinant clones were used as template in the presence of 40 ⁇ M of each oligonucletide primer, 400-800 ⁇ M dNTPs solution, lx PCR buffer (including 1.5 mM NgCl 2 ), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim Expand Long Template).
  • each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (T m1 ). This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (T m2 ). Elongation times, performed at 68° C. or 72° C., varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72° C.
  • the amplified DNA was either loaded directly on a 1% agarose gel.
  • the DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.
  • the purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+.
  • Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H 2 O or 10 mM Tris, pH 8.5.
  • Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QiAquick Gel Extraction Kit.
  • Recombinant plasmid was transformed into competent E. coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37° C. for 3 minutes. This was followed by the addition of 800 ⁇ l LB broth and incubation at 37° C. for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 2000 of the supernatant and plated onto LB ampicillin (100 mg/ml) agar.
  • Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37° C. in 4.0 ml of LB broth+100 ⁇ g/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1 ⁇ g of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.
  • recombinant plasmids were transformed into E. coli strains suitable for expression of the recombinant protein. 1 ⁇ l of each construct was used to transform E. coli BL21-DE3 as described above. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 ⁇ g/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 ⁇ g/ml) in 100 ml flasks, to give an OD 600 between 0.1 and 0.2. The flasks were incubated at 30° C. or at 37° C.
  • OD 600 indicated exponential growth suitable for induction of expression (0.4-0.8 OD). Protein expression was induced by addition of 1.0 mM IPTG. After 3 hours incubation at 30° C. or 37° C. the OD 600 was measured and expression examined. 1.0 ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.
  • Recombinational cloning is based on the recombination reactions that mediate the integration and excision of phage into and from the E. coli genome, respectively.
  • the integration involves recombination of the attP site of the phage DNA within the attB site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by attL and attR sites.
  • the excision recombines attL and attR sites back to attP and attB sites (LR reaction).
  • the integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IHF)] (BP clonase).
  • the excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (His) (LR clonase), Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5 end of the primers used in PCR reactions to amplify Neisserial ORFs.
  • the resulting products were BP cloned into a “Donor vector” containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase.
  • the resulting “Entry clones” contain ORFs flanked by derivatives of the attL site (L1 and L2) and were subcloned into expression “destination vectors” which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in “expression clones” in which ORFs are flanked by B1 and B2 and fused in frame to the GST or His N terminal tags.
  • the E. coli strain used for GATEWAY expression is BL21-SI. Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).
  • OD 550 reached 0.6-0.8.
  • Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4° C. or on ice.
  • the pellet was resuspended in 20 mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final concentration) and incubated for 20 minutes to dissolve inner membrane.
  • Cellular debris was pelleted by centrifugation at 5000 g for 10 min and the supernatant centrifuged at 75000 g for 75 minutes (Beckman Ti50, 33000 rpm). Proteins 0081, and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice.
  • the overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 ⁇ g/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37° C.) until the OD 550 reached 0.6-0.8.
  • Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours.
  • Bacteria were harvested by centrifugation at 8000 g for 15 min at 4° C.
  • the bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4287-His, ⁇ 4287MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly.
  • pellets were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13000 ⁇ g for 30 ruin at 4° C.
  • pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5 and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000 g for 30 min and the supernatant retained.
  • the His-fusion protein was eluted by addition of 700 ⁇ l of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD 280 indicated all the recombinant protein was obtained. 20 ⁇ l aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.
  • Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation.
  • Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v.
  • the proteins were diluted to 200 ⁇ g/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4° C.
  • Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.
  • the acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO 2 .
  • Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD 620 . The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 4000 rpm.
  • the acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO 2 .
  • Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 025% glucose. Bacterial growth was monitored every 30 minutes by following OD 620 . The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm.
  • FACScan Laser Power 15 mW setting
  • FSC-H threshold 92
  • FSC PMT Voltage E 01
  • SSC PMT 474
  • FL-2 PMT 586
  • compensation values 0.
  • N. meningitidis strain 2996 was grown overnight at 37° C. on chocolate agar plates (starting from a frozen stock) with 5% CO 2 . Colonies were collected and used to inoculate 7 ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD 620 of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD 620 reached the value of 0.23-0.24. Bacteria were diluted in 50 mM Phosphate buffer pH 7.2 containing 10 mM MgCl 2 , 10 mM CaCl 2 and 0.5% (w/v) BSA (assay buffer) at the working dilution of 10 5 CFU/ml. The total volume of the final reaction mixture was 50 ⁇ l with 25 ⁇ l of serial two fold dilution of test serum, 12.5 ⁇ l of bacteria at the working dilution, 12.5 ⁇ l of baby rabbit complement (final concentration 25%).
  • Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56° C. for 30′.
  • 10 ⁇ l of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0).
  • the 96-wells plate was incubated for 1 hour at 37° C. with rotation.
  • 7 ⁇ l of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10 ⁇ l of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 1).
  • Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.
  • mice sera diluted 1:200 in washing buffer The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.
  • the OMVs were prepared as follows: N. meningitidis strain 2996 was grown overnight at 37 degrees with 5% CO 2 on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20 mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56° C. for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000 g at the temperature of 4° C.
  • the pellet containing the membranes was resuspended in 2% sarkosyl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes.
  • the suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000 g for 3 hours.
  • the pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard′.
  • Total cell extracts were prepared as follows: N. meningitidis strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.
  • Total lysate, periplasm, supernatant and OMV of E. coli clones expressing different domains of 961 were prepared using bacteria from over-night cultures or after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris 50 mM (pH 8) with polimixine 100 ⁇ g/ml. After 1 hr at room temperature bacteria were centrifuged at 13000 rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2 ⁇ m and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SUS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.
  • Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained, in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15 mM L-glutamin′ e and antibiotics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Alternative and improved approaches to the heterologous expression of the proteins of Neisseria meningitidis and Neisseria gonorrhoeae are disclosed. These approaches typically affect the level of expression, the ease of purification, the cellular localization, and/or the immunological properties of the expressed protein.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 14/244,806, filed Apr. 3, 2014; which is a Continuation of U.S. application Ser. No. 13/340,549, filed Dec. 29, 2011, now U.S. Pat. No. 8,703,914; which is a Divisional of U.S. application Ser. No. 12/825,210, filed Jun. 28, 2010, now U.S. Pat. No. 8,114,960; which is a Divisional of U.S. application Ser. No. 10/220,481, which claims an international filing date of Feb. 28, 2001, now U.S. Pat. No. 7,803,387; which is the National Phase of PCT Application No. PCT/IB2001/000452, filed Feb. 28, 2001; which claims the benefit of GB Application No. 0027675.8, filed Nov. 13, 2000, and GB Application No. 0004695.3, filed Feb. 28, 2000; all of which are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • This invention is in the field of protein expression. In particular, it relates to the heterologous expression of proteins from Neisseria (e.g. N. gonorrhoeae or, preferably, N. meningitidis).
  • SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE
  • The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 303822001_004 SegList.txt, date recorded: Nov. 29, 2016, size: 405 KB).
  • BACKGROUND
  • International patent applications WO99/24578, WO99/36544, WO99/57280 and WO00/22430 disclose proteins from Neisseria meningitidis and Neisseria gonorrhoeae. These proteins are typically described as being expressed in E. coli (i.e. heterologous expression) as either N-terminal GST-fusions or C-terminal His-tag fusions, although other expression systems, including expression in native Neisseria, are also disclosed.
  • It is an object of the present invention to provide alternative and improved approaches for the heterologous expression of these proteins. These approaches will typically affect the level of expression, the ease of purification, the cellular localisation of expression, and/or the immunological properties of the expressed protein.
  • DISCLOSURE Nomenclature Herein
  • The 2166 protein sequences disclosed in WO99/24578, WO99/36544 and WO99/57280 are referred to herein by the following SEQ# numbers:
  • Application Protein sequences SEQ# herein
    WO99/24578 Even SEQ IDs 2-892 SEQ#s 1-446
    WO99/36544 Even SEQ IDs 2-90 SEQ#s 447-491
    WO99/57280 Even SEQ IDs 2-3020 SEQ#s 492-2001
    Even SEQ IDs 3040-3114 SEQ#s 2002-2039
    SEQ IDs 3115-3241 SEQ#s 2040-2166
  • In addition to this SEQ# numbering, the naming conventions used in WO99/24578, WO99/36544 and WO99/57280 are also used (e.g. ‘ORF4’, ‘ORIF40’, ‘ORF40-1’ etc. as used in WO99/24578 and WO99/36544; ‘m919’, ‘g919’ and ‘a919’ etc. as used in WO99/57280).
  • The 2160 proteins NMB0001 to NMB2160 from Tettelin et al. [Science (2000) 287:1809-1815] are referred to herein as SEQ4#s 21674326 [see also WO00/66791].
  • The term ‘protein of the invention’ as used herein refers to a protein comprising:
      • (a) one of sequences SEQ#s 1-4326; or
      • (b) a sequence having sequence identity to one of SEQ#s 1-4326; or
      • (c) a fragment of one of SEQ#s 1-4326.
  • The degree of ‘sequence identity’ referred to in (b) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). This includes mutants and allelic variants [e.g. see WO00/66741]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence.
  • The ‘fragment’ referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises an epitope from one of SEQ#s 14326. Preferred fragments are those disclosed in WO00/71574 and WO01/04316.
  • Preferred proteins of the invention are found in N. meningitidis serogroup B.
  • Preferred proteins for use according to the invention are those of serogroup B N. meningitidis strain 2996 or strain 394198 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N. meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. ‘287’, ‘919’ etc.) may be taken to include that protein from any strain.
  • Non-Fusion Expression
  • In a first approach to heterologous expression, no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any ‘interference’ from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
  • The method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).
  • This approach is preferably used for the expression, of the following proteins using the native leader peptide: 111, 149, 206, 2254, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050. The suffix ‘L’ used herein in the name of a protein indicates expression in this manner using the native leader peptide.
  • Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
  • Advantageously, it is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.
  • This approach is particularly suited for expressing lipoproteins.
  • Leader-Peptide Substitution
  • In a second approach to heterologous expression, the native leader peptide of a protein of the invention is replaced by that of a different protein. In addition, it is preferred that no fusion partner is used. Whilst using a protein's own leader peptide in heterologous hosts can often localise the protein to its ‘natural’ cellular location, in some cases the leader sequence is not efficiently recognised by the heterologous host. In such cases, a leader peptide known to drive protein targeting efficiently can be used instead.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
  • The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The expressed protein will consist of the replacement leader peptide at the N-tertninus, followed by the protein of the invention minus its leader peptide.
  • The leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an E. coli protein (e.g. the OmpA leader peptide) or an Erwinia carotovora protein (e.g. the PelB leader peptide), for instance.
  • A particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in E. coli, improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and ΔG287. The leader peptide and N-terminal domains of 961 are also particularly useful.
  • Another useful replacement leader peptide is that of E. coli OmpA. This leader is able to direct membrane localisation of E. coli. It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.
  • Another useful replacement leader peptide is MICKYLFSAA. This can direct secretion into culture medium, and is extremely short and active. The use of this leader peptide is not restricted to the expression of Neisserial proteins—it may be used to direct the expression of any protein (particularly bacterial proteins).
  • Leader-Peptide Deletion
  • In a third approach to heterologous expression, the native leader peptide of a protein of the invention is deleted. In addition, it is preferred that no fusion partner is used.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
  • The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.
  • This method can increase the levels of expression. For protein 919, for example, expression levels in E. coli are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.
  • The method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.
  • Domain-Based Expression
  • In a fourth approach to heterologous expression, the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
  • The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.
  • A protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.
  • The method is preferably used for the expression of protein 287. This protein can be notionally split into three domains, referred to as A B & C (see FIG. 5). Domain B aligns strongly with IgA proteases, domain C aligns strongly with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
  • Once a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD→ABD, ACD, BCD etc, or (c) rearranged e.g. protein ABC→ACB, CAB etc. These three strategies can be combined with fusion partners is desired.
  • ORF46 has also been notionally split into two domains a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted. An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.
  • Protein 564 has also been split into domains (FIG. 8), as have protein 961 (FIG. 12) and protein 502 (amino acids 28-167 of the MC58 protein).
  • Hybrid Proteins
  • In a fifth approach to heterologous expression, two or more (e.g. 3, 4, 5, 5 or more) proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.
  • This offers two advantages. Firstly, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Secondly, commercial manufacture is simplified only one expression and purification need be employed in order to produce two separately-useful proteins.
  • Thus the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).
  • The method will typically involve the steps of obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • Preferably, the constituent proteins in a hybrid protein according to the invention will be from the same strain.
  • The fused proteins in the hybrid may be joined directly, or may be joined via a linker peptide e.g. via a poly-glycine linker (i.e. G where n=3, 4, 5, 6, 7, 8, 9, 10 or more) or via a short peptide sequence which facilitates cloning. It is evidently preferred not to join a ΔG protein to the C-terminus of a poly-glycine linker.
  • The fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.
  • The method is well suited to the expression of proteins orf1, orf4, orf25, orf40, Orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.
  • The 42 hybrids indicated by ‘X’ in the following table of form NH2-A-B-COOH are preferred:
  • B
    A ORF46.1 287 741 919 953 961 983
    ORF46.1 X X X X X X
    287 X X X X X X
    741 X X X X X X
    919 X X X X X X
    953 X X X X X X
    961 X X X X X X
    983 X X X X X X
  • Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions (ΔG) forms may be used (e.g. ΔG-287, ΔGTbp2, ΔG741, ΔG983 etc.), or truncated forms may be used (e.g. Δ1-287, Δ2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORP461-433, ORF46433-608, ORF46, 961c etc.).
  • Particularly preferred are: (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (1) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (1) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in FIG. 14.
  • Where 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).
  • Where 287 is used, this is preferably from strain 2996 or from strain 394/98.
  • Where 961 is used, this is preferably at the N-terminus. Domain forms of 961 may be used.
  • Alignments of polymorphic forms of ORF46, 287, 919 and 953 are disclosed in WO00/66741, Any of these polymorphs can be used according to the present invention.
  • Temperature
  • In a sixth approach to heterologous expression, proteins of the invention are expressed at a low temperature.
  • Expressed Neisserial proteins (e.g. 919) may be toxic to E. coli, which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.
  • Thus the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
  • A preferred temperature is around 30° C. This is particularly suited to the expression of 919.
  • Mutations
  • As discussed above, expressed Neisserial proteins may be toxic to E. coli. This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used preferably using site-directed mutagenesis.
  • In a seventh approach to heterologous expression, therefore, an expressed protein is mutated to reduce or eliminate toxic activity.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.
  • The method is preferably used for the expression of protein 907, 919 or 922. A preferred mutation in 907 is at Glu-117 (e.g. Glu→Gly); preferred mutations in 919 are at Glu-255 (e.g. Glu→Gly) and/or Glu-323 (e.g. Glu→Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu→Gly), Ser-213 (e.g. Ser→Gly) and/or Asn-348 (e.g. Asn→Gly).
  • Alternative Vectors
  • In a eighth approach to heterologous expression, an alternative vector used to express the protein. This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used. The alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.
  • This approach is particularly useful for protein 953. Expression and localisation of 953 with its native leader peptide expressed from pSM214 is much better than from the pET vector.
  • pSM214 may also be used with: ΔG287, Δ2-287, Δ3-287, Δ4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and ΔG287-Orf46.1.
  • Another suitable vector is pET-24b (Novagen; uses kanamycin resistance), again using no fusion partners. pET-24b is preferred for use with: ΔG287K, Δ2-287K, Δ3-287K, Δ4-287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, ΔG287-919-K, ΔG287-Orf46.1-K and ΔG287-961-K.
  • Multimeric Form
  • In a ninth approach to heterologous expression, a protein is expressed or purified such that it adopts a particular multimeric form.
  • This approach is particularly suited to protein 953. Purification of one particular multimeric form of 953 (the monomeric form) gives a protein with greater bactericidal activity than other forms (the dimeric form).
  • Proteins 287 and 919 may be purified in dimeric forms.
  • Protein 961 may be purified in a 180 kDa oligomeric form (e.g. a tetramer).
  • Lipidation
  • In a tenth approach to heterologous expression, a protein is expressed as a lipidated protein.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
  • This is particularly useful for the expression of 919, 287, ORF4, 406, 576-1, and ORF25. Polymorphic forms of 919, 287 and ORF4 are disclosed in WO00/66741.
  • The method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.
  • C-Terminal Deletions
  • In an eleventh approach to heterologous expression, the C-terminus of a protein of the invention is mutated. In addition, it is preferred that no fusion partner is used.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.
  • The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.
  • The mutation may be a substitution, insertion or, preferably, a deletion.
  • This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46. For protein 730, a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.
  • Leader Peptide Mutation
  • In a twelfth approach to heterologous expression, the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
  • The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • Poly-Glycine Deletion
  • In a thirteenth approach to heterologous expression, poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.
  • The poly-glycine stretch has the sequence (Gly)n, where n≧4 (e.g. 5, 6, 7, 8, 9 or more). This stretch is mutated to disrupt or remove the (Gly)n. This may be by deletion (e.g. CGGGGS→CGGGS, COGS, CGS or CS), by substitution (e.g. CGCGGS→CGXGGS, CGCXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS→CGGXGGS, CGXGOGS, etc.
  • This approach is not restricted to Neisserial proteins—it may be used for any protein (particularly bacterial proteins) to enhance heterologous expression. For Neisserial proteins, however, it is particularly suitable for expressing 287, 741, 983 and Thp2. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
  • Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.
  • The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a poly-glycine stretch within the protein sequence. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
  • Conversely, the opposite approach (i.e. introduction of poly-glycine stretches) can be used to suppress or diminish expression of a given heterologous protein.
  • Heterologous Host
  • Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host. The heterologous host may be prokaryotic or eukaryotic. It is preferably E. coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactarnica, Neisseria cinerea, Mycobateria (e.g. M. tuberculosis), yeast etc.
  • Vectors etc.
  • As well as the methods described above, the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria, and/or (3) a reagent which can raise antibodies against Neisserial bacteria and (g) a method of treating a patient, comprising administering to the patient a therapeutically effective amount of these compositions.
  • Sequences
  • The invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of ‘sequence identity’ is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).
  • Furthermore, the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under “high stringency” conditions (eg. 65° C. in a 0.1×SSC, 0.5% SDS solution).
  • The invention also provides nucleic acid encoding proteins according to the invention.
  • It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg, for antisense or probing purposes).
  • Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
  • In addition, the term “nucleic acid” includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a construct used to express orf1 protein using a heterologous leader peptide.
  • FIG. 2 shows a construct used to express 287 protein using a heterologous leader peptide.
  • FIG. 3A-FIG. 3E show expression data for ORF1. FIG. 3A shows purification of ORF1.
  • FIG. 3B shows Western blot analysis. FIG. 3C shows the results of a bactericidal assay with ORF1. FIG. 3D shows FACS analysis. FIG. 3E shows the results of an ELISA assay.
  • FIG. 4A-FIG. 4E show expression data for protein 961. FIG. 4A shows purification of protein 961. FIG. 4B shows Western blot analysis. FIG. 4C shows the results of a bactericidal assay with protein 961. FIG. 4D shows FACS analysis. FIG. 4E shows the results of an ELISA assay.
  • FIG. 5 shows domains of protein 287.
  • FIG. 6 shows deletions within domain A of protein 287.
  • FIG. 7 shows specific deletions within domain A of protein 287.
  • FIG. 8 shows domains of protein 564.
  • FIG. 9 shows the PhoC reporter gene driven by the 919 leader peptide.
  • FIG. 10A-FIG. 10B show the results obtained using mutants of the 919 leader peptide driving the PhoC reporter. FIG. 10A shows results for control, phoCwt, 9phoC, 9L1a, 9l1d, 9L1f, and 9S1e. FIG. 10B shows results for control, phoCwt, 9phoC, 9S1b, 9S1c, and 9Sli.
  • FIG. 11A-FIG. 11B show insertion mutants of protein 730. FIG. 11A shows 730-C1.
  • FIG. 11B shows 730-C2.
  • FIG. 12 shows domains of protein 961.
  • FIG. 13 shows SDS-PAGE of ΔG proteins. Dots show the main recombinant product.
  • FIG. 14A-FIG. 14Z show 26 hybrid proteins according to the invention. FIG. 14A shows ΔG287-919. FIG. 14B shows ΔG287-953. FIG. 14C shows ΔG287-961. FIG. 14D shows ΔG287NZ-919, FIG. 14E shows ΔG287NZ-953. FIG. 14F shows ΔG287NZ-961. FIG. 14G shows ΔG983-ORF46.1. FIG. 14H shows ΔG983-741. FIG. 14I shows ΔG983-961. FIG. 14J shows ΔG983-961c. FIG. 14K shows ΔG741-961. FIG. 14I, shows ΔG741-961c. FIG. 14M shows ΔG741-983. FIG. 14N shows ΔG741-ORF46.1. FIG. 14O shows ORF46.1-741, FIG. 14P shows ORF46.1-961. FIG. 14Q shows ORF46.1-961c. FIG. 14R shows 961-ORF46.1. FIG. 14S shows 961-741. FIG. 14T shows 961-983. FIG. 14U shows 961c-ORF46.1. FIG. 14V shows 961c-741. FIG. 14W shows 961c-983. FIG. 14X shows 961cL-ORF46.1. FIG. 14Y shows 961cL-741. FIG. 14Z shows 961cL-983.
  • MODES FOR CARRYING OUT THE INVENTION Example 1—919 and its Leader Peptide
  • Protein 919 from N. meningitidis (serogroup B, strain 2996) has the following sequence:
  • 1 MKKYLFRAALYGLAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
    51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
    101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
    151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
    201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
    251 EDPVELFEMH IGQSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
    301 KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
    351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
    401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
  • The leader peptide is underlined.
  • The sequences of 919 from other strains can be found in FIGS. 7 and 18 of WO00/667411.
  • Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in E. coli. The protein is a good surface-exposed immunogen.
  • Three alternative expression strategies were used for 919:
      • 1) 919 without its leader peptide (and without the mature N-terminal cysteine) and without any fusion partner (‘919untagged’):
  • 1 QSKSIQTFP  QPDTSVINGP DRPVGIPDPA GTTVGGGGAV YTVVPHLSLP
    50 HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV CAQATQFPVH SFQAKQFFER
    100 YETPWQVAGN GSLAGTVTGY YEPVLKGDDR RTAQARFPIY GIPDDFISVP
    150 LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSRFPI TARTTAIKGR
    200 FEGSRELPYH TRNQINGGAL DGKAPILGYA EDPVELFFMH IQGSGRLKTP
    250 SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTSMQGI KAYMRQNPQR
    300 LAEVLGQNPS YIFFRELAGS SNDGPVGALG TPLMGEYAGA VDRHYITLGA
    350 PLFVATAHPV TRKALNRLIM AQDTGSAIKG AVRVDYFWGY GDEAGELAGK
    400 QKTTGYVWQL LPNGMKPEYR P*
        • The leader peptide and cysteine were omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.
      • 2) 919 with its own leader peptide but without any fusion partner (‘919L’); and
      • 3) 919 with the leader peptide (MKTFFKTLSAAALALILAA from ORF4 (‘919LOrf4’).
  •   1 MKTFFKTLSAAALALILAACQSKSIQTFP QPDTSVINGP DRPVGIPDPA
     50 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
    100 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
    150 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
    200 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
    250 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
    300 KLGQTSMQGI KSYMRQNPQR LAEVLGQNTS YIFFRELAGS SNDGPVGALG
    350 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
    400 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P
        • To make this construct, the entire sequence encoding the ORF4 leader peptide was included in the 5′-primer as a tail (primer 919Lorf4 For). A NheI restriction site was generated by a double nucleotide change in the sequence coding for the ORF4 leader (no amino acid changes), to allow different genes to be fused to the ORF4 leader peptide sequence. A stop codon was included in all the T-end primer sequences.
  • All three forms of the protein were expressed and could be purified.
  • The ‘919’ and ‘919LOrf4’ expression products were both lipidated, as shown by the incorporation of [3H]-palmitate label. 919untagged did not incorporate the 3H label and was located intracellularly.
  • 919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.
  • 919untagged gave excellent ELISA titres and high serum bactericidal activity. FACS confirmed its cell surface location.
  • Example 2—919 and Expression Temperature
  • Growth of E. coli expressing the 919LOrf4 protein at 37° C. resulted in lysis of the bacteria. In order to overcome this problem, the recombinant bacteria were grown at 30° C. Lysis was prevented without preventing expression.
  • Example 3—Mutation of 907, 919 and 922
  • It was hypothesised that proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases. Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.
  • The purified proteins 919untagged, 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J. Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc)n>30 glycan strands.
  • The first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[3H]pimelic acid as substrate. Enzyme (3-10 μg total) was incubated for 45 minutes at 37° C. in a total volume of 100 μl comprising 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2, 0.2% v/v Triton X-100 and [3H]A2 pm labelled murein sacculi (about 10000 cpm). The assay mixture was placed on ice for 15 minutes with 100 μl of 1% w/v N-acetyl-N,N,N-trimethylammonium for 15 minutes and precipitated material pelleted by centrifugation at 10000 g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting. E. coli soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.
  • All proteins except 919-His gave positive results in the first assay.
  • The second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands. Purified strands, poly(MurNAc-GlcNAc)n>30 labelled with N-acetyl-D-1-[3H]glucosamine were incubated with 3 μg of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM MgCl2 and 0.2% v/v Triton X-100 for 30 min at 37° C. The reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10 μl of 20% v/v phosphoric acid. Substrate and product were separated by reversed phase HPLC on a Nucleosil 300 C18 column as described by Harz et. al. [Anal. Biochem. (1990) 190:120-128]. The E. coli lytic transglycosylase Mlt A was used as a positive control in the assay. The negative control was performed in the absence of enzyme.
  • By this assay, the ability of 919LOrf4 to hydrolyse isolated glycan strands was demonstrated when anhydrodisaccharide subunits were separated from the oligosaccharide by HPLC.
  • Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919. The effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5, Over the temperature range 18° C. to 42° C., maximum activity was observed at 37° C. The effect of various ions on murein hydrolase activity was determined by performing the reaction in the presence of a variety of ions at a final concentration of 10 mM, Maximum activity was found with Mg2+, which stimulated activity 2.1-fold. Mn2+ and Ca2+ also stimulated enzyme activity to a similar extent while the addition Ni2+ and EDTA had no significant effect. In contrast, both Fe2+ and Zn2+ significantly inhibited enzyme activity. The structures of the reaction products resulting from the digestion of unlabelled E. coli murein sacculus were analysed by reversed-phase HPLC as described by Glauner [Anal. Biochem. (1988) 172:451-464]. Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column. The major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydronmraminic acid intramolecular bond.
  • These results demonstrate experimentally that 919 is a murein hydrolase and in particular a member of the lytic transglycosylase family of enzymes. Furthermore the ability of 922-His to hydrolyse murein sacculi suggests this protein is also a lytic transglycosylase.
  • This activity may help to explain the toxic effects of 919 when expressed in E. coli.
  • In order to eliminate the enzymatic activity, rational mutagenesis was used, 907, 919 and 922 show fairly low homology to three membrane-bound lipidated murein lytic transglycosylases from Exalt:
      • 919 (441aa) is 27.3% identical over 440aa overlap to E. coli MLTA (P46885);
      • 922 (369aa) is 38.7% identical over 310aa overlap to E. coli MLTB (P41052); and
      • 901-2 (207aa) is 26.8% identical over 149aa overlap to E. coli MLTC (P52066).
  • 907-2 also shares homology with E. coli MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.
  • Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van, Asselt et at (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40 kDa MLTB.
  • The catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.
  • In the case of Slt70, mutagenesis studies have demonstrated that even a conservative substitution of the catalytic Glu505 with a glutamine (Gln) causes the complete loss of enzymatic activity. Although Slt35 has no obvious sequence similarity to Slt70, their catalytic domains shows a surprising similarity. The corresponding catalytic residue in MLTB is Glu162.
  • Another residue which is believed to play an important role in the correct folding of the enzymatic cleft, is a well-conserved glycine (Gly) downstream of the glutamic acid. Recently, Terrak et al. [Mol. Microbiol. (1999) 34:350-64] have suggested the presence of another important residue which is an aromatic amino acid located around 70-75 residues downstream of the catalytic glutamic acid.
  • Sequence alignment of Slt70 with 907-2 and of MLTB with 922 were performed in order to identify the corresponding catalytic residues in the MenB antigens.
  • The two alignments in the region of the catalytic domain are reported below:
  • 907-2/Slt70:
     90       100         110      ▾120       130       140
    907-2.pep ERRRLLVNIQYESSRAG--LDTQIVLGLIEVESAFRQYAISGV G AR G LMQVMPFWKNYIG
    ||  |  |  ::   :|  :  : :::: : |||:   : | ||| ||||:||   ::
    slty_ecoli ERFPLAYNDLFKRYTSGKEIPQSYAMAIARQESAWNPKVKSPVGASGLMQIMPGTATHTV
        480       490       500    ▴  510       520       530
                                   GLU505
    922/MLTB
      150       160   ▾   170       180       190       200
    922. pep VAQKYGVPAELIVAVIGIETNY G KNT G SFRVADALATLGFDYPRRAGFFQKELVELLKLA
    : | |||| |:||::||:|| :|:  |: |: ||||||:|:||||| :|: ||  :| :|
    mltb_ecoli AWQVYGVPPEIIVGIIGVETRWGRVMGKTRILDALATLSFNYPRRAEYFSGELETFLLMA
        150       160 ▴     170       180       190       200
                      GLU162
      210       220       230       240       250       260
    922.pep KEEGGDVFAFKGSYAGAMGMPQFMPSS Y RKWAVDYDGDGHRDIWGNVGDVAASVANYMKQ
    ::|  | : :|||:|||||: |||||||:::|||::|||| ::|  | |: :|||||:|
    mltb_ecoli RDEQDDPLNLKGSFAGAMGYGQFMPSSYKQYAVDFSGDGHINLWDPV-DAIGSVANYFKA
        210       220       230       240       250        260
  • From these alignments, it results that the corresponding catalytic glutamate in 907-2 is Glu117, whereas in 922 is Glu164. Both antigens also share downstream glycines that could have a structural role in the folding of the enzymatic cleft (in bold), and 922 has a conserved aromatic residue around 70aa downstream (in bold).
  • In the case of protein 919, no 3D structure is available for its E. coli homologue MLTA, and nothing is known about a possible catalytic residue. Nevertheless, three amino acids in 919 are predicted as catalytic residues by alignment with MLTA:
  • 919/MLTA
    240       250    ▾  260  
    Figure US20170080077A1-20170323-P00001
    Figure US20170080077A1-20170323-P00001
     270 
    Figure US20170080077A1-20170323-P00001
          280      290
    919.pep  ALDGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRI-GYADKNEHPYVSIGRYMADK
     ||: |  ||:|::: :: |:| :|||| :   :|: : : :|| || | | |||: : |:
    mlta_ecoli.p  ALSDKY-ILAYSNSLMDNFIMDVQGSGYIDFGDGSPLNFFSYAGKNGHAYRSIGKVLIDR
              170       180       190       200       210
     300       310        320  ▾    330
    Figure US20170080077A1-20170323-P00001
    Figure US20170080077A1-20170323-P00001
    Figure US20170080077A1-20170323-P00001
       340       ⋄350    ⋄
    919.pep  GYLKLGQTSMQGIKSYMRQNPQ-RLAEVLGQNPSYIFFRELAGSSNDGPV-GALGTPLMG
     | :|  : |||:|: : : : : :: |:| ||||::||:  : :    || || ::||:|
    mlta_ecoli.p  GEVKKEDMSMQAIRHWGETHSEAEVRELLEQNPSFVFFKPQSFA----PVKGASAVPLVG
    220       230       240       250       260           270
       360 ▾      ∘        380            390       400     ⋄⋄410
    919. pep  EYAGAVDRHYITLGAPLFVATAHPVTRKALN-----RLIMAQDTGSAIKGAVRVDYFWGY
     : : | ||  |  |: |:: :    :   :|     ||::| |:|:||||  : | : |
    mlta_ecoli.p  RASVASDRSIIPPGTTLLAEVPLLDNNGKFNGQYELRLMVALDVGGAIKGQ-HFDIYQGI
        280       290       300       310       320        330
            420       ∘
    919.pep  GDEAGELAGKQKTTGYVWQLLP
     | |||: ||  :  | || |
    mlta_ecoli.p  GPEAGHRAGWYNHYGRVWVLKT
         340       350
  • The three possible catalytic residues are shown by the symbol ▾:
    • 1) Glu255 (Asp in MLTA), followed by three conserved glycines (Gly263, Gly265 and Gly272) and three conserved aromatic residues located approximately 7577 residues downstream. These downstream residues are shown by □.
    • 2) Glu323 (conserved in MLTA), followed by 2 conserved glycines Gly347 and Gly355) and two conserved aromatic residues located 84-85 residues downstream (Tyr406 or Phe407). These downstream residues are shown by 0.
    • 3) Asp362 (instead of the expected Glu), followed by one glycine (Gly 369) and a conserved aromatic residue (Trp428). These downstream residues are shown by ∘.
  • Alignments of polymorphic forms of 919 are disclosed in WO00/66741.
  • Based on the prediction of catalytic residues, three mutants of the 919 and one mutant of 907, containing each a single Amino acid substitution, have been generated. The glutamic acids in position 255 and 323 and the aspartic acids in position 362 of the 919 protein and the glutamic acid in position 117 of the 907 protein, were replaced with glycine residues using PCR-based SDM. To do this, internal primers containing a codon change from Glu or Asp to Gly were designed:
  • Codon
    Primers Sequences change
    919-E255 for CGAAGACCCCGTCGgtCTTTTTTTTATG GAA → Ggt
    919-E255 rev GTGCATAAAAAAAAGacCGACGGGGTCT
    919-E323 for AACGCCTCGCCGgtGTTTTGGGTCA GAA → Ggt
    919-E323 rev TTTGACCCAAAACacCGGCGAGGCG
    919-D362 for TGCCGGCGCAGTCGgtCGGCACTACA GAC → Ggt
    919-D362 rev TAATGTAGTGCCGacCGACTGCGCCG
    907-E117 for TGATTGAGGTGGgtAGCGCGTTCCG GAA → Ggt
    907-E117 rev GGCGGAACGCGCTacCCACCTCAAT
    Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.
  • To generate the 919-E255, 919-E323 and 919-E362 mutants, PCR was performed using 20 ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:
      • 1) Orf4L for/919-E255 rev
      • 2) 919-E255 for/919L rev
      • 3) Orf4L far 919-E323 rev
      • 4) 919-E323 for/919L rev
      • 5) Orf4L for/919-D362 rev
      • 6) 919-D362 for/919L rev
  • The second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the “Orf4L for” and “919L rev” respectively.
  • For the mutant 907-E117, PCR have been performed using 200 ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:
      • 7) 907L for/907-E117 rev
      • 8) 907-E117 for/907L rev
  • The second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos “907L for” and “907L rev” as primers.
  • The PCR fragments containing each mutation were processed following the standard procedure, digested with NdeI and XhoI restriction enzymes and cloned into pET-21b+ vector. The presence of each mutation was confirmed by sequence analysis.
  • Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.
  • The E255G mutant of 919 shows a 50% reduction in activity; the E3230 mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.
  • Example 4—Multimeric Form
  • 287-GST, 919untagged and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes. The molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia). The buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HO (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.
  • Additionally each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 204.1. Gel filtration was performed with a flow rate of 0.5-2.0 ml/min and the eluate monitored at 280 nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of Kav log Mr of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.
  • The estimated molecular weights for 287, 919 and 953-His were 73 kDa, 47 kDa and 43 kDa respectively. These results suggest 919 is monomeric while both 287 and 953 are principally dimeric in their nature. In the case of 953-His, two peaks were observed during gel filtration. The major peak (80%) represented a dimeric conformation of 953 while the minor peak (20%) had the expected size of a monomer. The monomeric form of 953 was found to have greater bactericidal activity than the dimer.
  • Example 5—pSM214 and pET-24b Vectors
  • 953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].
  • The 953 sequence was cloned as a full-length gene into pSM214 using the E. coli MM1294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:
  • 953L for/2
    CCGGAATTCTTATGAAAAAAATCATCTTCGCCGC Eco RI
    953L rev/2
    GCCCAAGCTTTTATTGTTTGGCTGCCTCGATT Hind III

    which contain EcoRI and HindIII restriction sites, respectively. The amplified fragment was digested with EcoRI and HindIII and ligated with the pSM214 vector digested with the same two enzymes. The ligated plasmid was transformed into E. coli MM294-1 cells (by incubation in ice for 65 minutes at 37° C.) and bacterial cells plated on LB agar containing 20 μg/ml of chloramphenicol.
  • Recombinant colonies were grown over-night at 37° C. in 4 ml of LB broth containing 20 μg/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with EcoRI and HindIII. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20 μg/ml of chloramphenicol and let to grown for 16 hours at 37° C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.
  • Expression levels were unexpectedly high from the pSM214 plasmid.
  • Oligos used to clone sequences into pSM-214 vectors were as follows:
  • ΔG287 Fwd CCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGA EcoRI
    (pSM-214) Rev GCCCAAGCTT- TCA ATCCTGCTTTTTTGCCG HindIII
    Δ2
     287 Fwd CCGGAATTCTTATG-AGCCAAGATATGGCGGCAGT EcoRI
    (pSM-214) Rev GCCCAAGCTT- TCA ATCCTGCTCTTTTTTGCCG HindIII
    Δ3
     287 Fwd CCGGAATTCTTATG-TCCGCCGAATCCGCAAATCA EcoRI
    (pSM-214 Rev GCCCAAGCTT- TCA ATCCTGCTCTTTTTTGCCG HindIII
    Δ4
     287 Fwd CCGGAATTCTTATG-GGAGGGTTGATTTGGCTAATG EcoRI
    (pSM-214) Rev GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG HindIII
    Orf46.1 Fwd CCGGAATTCTTATG-TCAGATTTGGCAAACGATTCTT EcoRI
    (pSM-214) Rev GCCCAAGCTT-TTACGTATCATATTTCACGTGCTTC HindIII
    ΔG287-Orf46.1 Fwd CCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGA EcoRI
    (pSM-214) Rev GCCCAAGCTT- TTA CGTATCATATTTCACGTGCTTC HindIII
    919 Fwd CCGGAATTCTTATG-CAAAGCAAGAGCATCCAAACCT EcoRI
    (pSM-214) Rev GCCCAAGCTT-TTACGGGCGGTATTCGGGCT HindIII
    961L Fwd CCGGAATTCATATG-AAACACTTTCCATCC EcoRI
    (pSM-214) Rev GCCCAAGCTT- TTA CCACTCGTAATTGAC HindIII
    961 Fwd CCGGAATTCATATG-GCCACAAGCGACGAC EcoRI
    (pSM-214) Rev GCCCAAGCTT- TTA CCACTCGTAATTGAC HindIII
    961c L Fwd CCGGAATTCTTATG-AAACACATTTCCATCC EcoRI
    pSM-214 Rev GCCCAAGCTT- TCA ACCCACGTTGTAAGGTTG HindIII
    961c Fwd CCGGAATTCTTATG-GCCACAAACGACGACG EcoRI
    pSM-214 Rev GCCCAAGCTT- TCA ACCCACGTTGTAAGGTTG HindIII
    953 Fwd CCGGAATTCTTATG-GCCACCTACAAAGTGGACGA EcoRI
    (pSM-214) Rev GCCCAAGCTT-TTATTGTTTGGCTGCCTCGATT HindIII
  • These sequences were manipulated, cloned and expressed as described for 953L.
  • For the pET-24 vector, sequences were cloned and the proteins expressed in pET-24 as described below for pET21. pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.
  • Oligonucleotides used to clone sequences into pET-24b vector were:
  • ΔG 287 K Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC § NheI
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC * XhoI
    Δ2 287 K Fwd CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT§ NheI
    Δ3 287 K Fwd CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA § NheI
    Δ4 287 K Fwd CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§ NheI
    Orf46.1 K Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI
    Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI
    Orf46A K Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI
    Rev CCCGCTCGAG-TTATTCTATGCCTTGTGCGGCAT XhoI
    961 K Fwd CGCGGATCCCATATG-GCCACAAGCGACGACGA NdeI
    (MC58) Rev CCCGCTCGAG- TTA CCACTCGTAATTGAC XhoI
    961a K Fwd CGCGGATCCCATATG-GCCACAAACGACG NdeI
    Rev CCCGCTCGAG- TCA TTTAGCAATATTATCTTTGTTC XhoI
    961b K Fwd CGCGGATCCCATATG-AAAGCAAACAGTGCCGAC NdeI
    Rev CCCGCTCGAG- TTA CCACTCGTAATTGAC XhoI
    961c K Fwd CGCGGATCCCATATG-GCCACAAACGACG NdeI
    Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI
    961cL K Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI
    Rev CCCGCTCGAG- TTA ACCCACGTTGTAAGGT XhoI
    961d K Fwd CGCGGATCCCATATG-GCCACAAACGACG NdeI
    Rev CCCGCTCGAG-TCAGTCTGACACTGTTTTATCC XhoI
    ΔG 287- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    919 K Rev CCCGCTCGAG-TTACGGGCGGTATTCGG XhoI
    ΔG 287- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    Orf46.1 K Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI
    ΔG 287- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    961 K Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI
    *This primer was used as a Reverse primer for all the 287 forms.
    §Forward primers used in combination with the ΔG278 K reverse primer.
  • Example 6—ORF1 and its Leader Peptide
  • ORF1 from N. meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:
  • 1 MKTTDKRTTETHRKAPKTGRIRFSPAYLAICLSFGILPQAWAGHTYFGIN
    51 YQYYRDFAEN KGRFAVGAKD IEVYNKKGEL VGKSMTKAPM IDFSVVSRNG
    101 VAALVGDQYI VSVAHNGGYN NVDFGAEGRN PDQHRFTYKI VKRNNYKAGT
    151 KGHPYGGDYH MPRLHKFVTD AEPVEMTSYM DGRKYIDQNN YPDRVRIGAG
    201 RQYWRSDEDE PNNRESSYHI ASAYSWLVGG NTFAQNGSGG GTVNLGSEKI
    251 KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTG NPYIGKSNGF
    301 QLVRKDWFYD EIFAGDTHSV FYEPRQNGKY SFNDDNNGTG KINAKHEHNS
    351 LPNRLKTRTV QLFNVSLSET AREPVYHAAG GVNSYRPRLN NGENISFIDE
    401 GKGELILTSN INQGAGGLYF QGDFTVSPEN NETWQGAGVH ISEDSTVTWK
    451 VNGVANDRLS KIGKGTLHVQ AKGENQGSIS VGDGTVILDQ QADDKGKKQA
    501 FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGH SLSPHRIQNT
    551 DEGAMIVNHN QDKESTVTIT GNKDIATTGN NNSLDSKKEI AYNGWFGEKD
    601 TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN GNITQTNGKL FFSGRPTPHA
    651 YNELNDHWSQ KEGIPRGEIV WDNDWINRTF KAENFQIKGG QAVVSRNVAK
    701 VKGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTNCVEK TITDDKVIAS
    751 LTKTDISGNV DLADHAHLNL TGLATLNGNL SANGDTRYTV SHNANQNGNL
    801 SLVGNAQATF NQATLNGNTS ASGNASFNLS DHAVQNGSLT LSGNAKANVS
    851 HSALNGNVSL ADKAVFHFES SRFTGQISGG KDTALHLKDS EWTLPSGTEL
    901 GNLNLDNATI TLNSAYRHDA AGAQTGSATD APRRRSRRSR RSLLSVTPPT
    951 SVESRFNTLT VNGKLNGQGT FRFMSELFGY RSDKLKLAES SEGTYTLAVN
    1001 NTGNEPASLE QLTVVEGKDN KPLSENLNFT LQNEHVDAGA WRYQLIRKDG
    1051 EFRLHNPVKE QELSDKLGKA EAKKQAEKDN AQSLDALIAA GRDAVEKTES
    1101 VAEPARQAGG ENVGIMQAEE EKKRVQADKD TALAKQREAE TRPATTAFPR
    1151 ARRARRDLPQ LQPQPQPQPQ RDLISRYANS GLSEFSATLN SVFAVQDELD
    1201 RVPAEDRRNA VWTSGIRDTK HYRSQDFRAY RQQTDLRQIG MQKNLGSGRV
    1251 GILFSHNRTE NTFDDGIGNS ARLAHGAVFG QYGIDRFYIG ISAGAGFSSG
    1301 SLSDGIGGKI RRRVLHYGIQ ARYRAGFGGF GIEPHIGATR YFVQKADYRY
    1351 ENVNIATPGL AFNRYRAGIK ADYSFKPAQH ISITPYLSLS YTDAASGKVR
    1401 TRVNTAVLAQ DFGKTRSAEW GVNAEIKGFT LSLHAAAAKG PQLEAQHSAG
    1451 IKLGYRW*
  • The leader peptide is underlined.
  • A polymorphic form of ORF1 is disclosed in WO99/55873.
  • Three expression strategies have been used for ORF1:
      • 1) ORF1 using a His tag, following WO99/24578 (ORF1-His);
      • 2) ORF1 with its own leader peptide but without any fusion partner (‘ORF1L’); and
      • 3) ORF1 with the leader peptide (MKKTAIAIAVALAGFATVAQA) from E. coli OmpA (‘Orf1LOmpA’):
  • MKKTAIAIAVALAGFATVAQAASAGHTYFGINYQYYRDFAENKGKFAVGA
    KDIEVYNKKGELVGKSMTKAPMIDFSVVSRNGVAALVGDQYIVSVAHNGG
    YNNVDFGAEGRNPDQHRFTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKFV
    TDAEPVEMTSYMDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSY
    HIASAYSWLVGGNTFAQNGSGGGTVNLGSEKIKHSPYGFLPTGGSFGDSG
    SPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTH
    SVFYEPRQNGKYSFNDDNNGTGKINAKHEHNSLPNRLKTRTVQLFNVSLS
    ETAREPVYHAAGGVNSYRPRLNNGENISFIDEGKGELILTSNINQGAGGL
    YFQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLH
    VQAKGENQGSISVGDGTVILDQQADDKGKKQAFSEIGLVSGRGTVQLNAD
    NQFNPDKLYFGFRGGRLDLNGHSLSFHRIQNTDEGAMIVNHNQDKESTVT
    ITGNKDIATTGNNNSLDSKKEIAYNGWFGEKDTTKTNGRLNLVYQPAAED
    RTLLLSGGTNLNGNITQTNGKLFFSGRPTPHAYNHLNDHWSQKEGIPRGE
    IVWDNDWINRTPKAENFQIKGGQAVVSRNVAKVKGDWHLSNHAQAVFGVA
    PHQSHTICTRSDWTGLTNCVEKTITDDKVIASLTKTDISGNVDLADHAHL
    NLTGLATLNGNLSANGDTRYTVSHNATQNGNLSLVGNAQATFNQATLNGN
    TSQSGNASFNLSDHAVQNGSLTLSGNAKANVSHSALNGNVSLADKAVFHF
    ESSRFTGQISGGKDTALHLKDSEWTLPSGTELGNLNLDNATITLNSAYRH
    DAAGAQTGSATDAPRRRSRRSRRSLLSVTPPTSVESRFNTLTVNGKLNGQ
    GTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGK
    DNKPLSENLNFTLQNEHVDAGAWRYQLIRKDGEFRLHNPVKEQELSDKLG
    KAEAKKQAEKDNAQSLDALIAAGRDAVEKTESVAEPARQAGGENVGIMQA
    EEEKKRVQADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPQPQPQ
    PQRDLISRYANSGLSEFSATLNSVFAVQDELDRVFAEDRRNAVWTSGIRD
    TKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRVGILFSHNRTENTFDDGIG
    NSARLAHGAVFGQYGIDRFYIGISAGAGFSSGSLSDGIGGKIRRRVLHYG
    IQARYRAGFGGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYRAG
    IKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSA
    EWGVNAEIKGFTLSLHAAAAKGPQLEAQHSAGIKLGYRW*
        • To make this construct, the clone pET911LOmpA (see below) was digested with the NheI and XhoI restriction enzymes and the fragment corresponding to the vector carrying the OmpA leader sequence was purified (pETLOmpA). The ORF1 gene coding for the mature protein was amplified using the oligonucleotides ORF1-For and ORF1-Rev (including the NheI and XhoI restriction sites, respectively), digested with NheI and XhoI and ligated to the purified pETOmpA fragment (see FIG. 1). An additional AS dipeptide was introduced the NheI site.
  • All three forms of the protein were expressed. The His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see FIG. 3). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.
  • ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against. ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.
  • ORF1L was purified as outer membranes, where it is localised.
  • Example 7—Protein 911 and its Leader Peptide
  • Protein 911 from N. meningitidis (serogroup B, strain MC58) has the following sequence:
  • 1 MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT
    YAVYADFGDI
    51 GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK
    YQFSSDVSAQ
    101 ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN
    LIGKFMTSFA
    151 EKAMDGGNAE KAAE*
  • The leader peptide is underlined.
  • Three expression strategies have been used for 911:
      • 1) 911 with its own leader peptide but without any fusion partner (‘911L’);
      • 2) 911 with the leader peptide from Emil OmpA (‘911LOmpA’).
        • To make this construct, the entire sequence encoding the OmpA leader peptide was included in the 5′-primer as a tail (primer 911LOmpA Forward). A NheI restriction site was inserted between the sequence coding for the OmpA leader peptide and the 911 gene encoding the predicted mature protein (insertion of one amino acid, a serine), to allow the use of this construct to clone different genes downstream the OmpA leader peptide sequence.
      • 3) 911 with the leader peptide (MKYLLPTAAAGLLLAAQPAMA) from Erwinia carotovora PelB (‘911LpelB’).
        • To make this construct, the 5′-end PCR primer was designed downstream from the leader sequence and included the NcoI restriction site in order to have the 911 fused directly to the PelB leader sequence; the 3′-end primer included the STOP codon. The expression vector used was pET22b+(Novagen), which carries the coding sequence for the PelB leader peptide. The NcoI site introduces an additional methionine after the PelB sequence.
  • All three forms of the protein were expressed. ELISA titres were highest using 911L, with 919LOmpA also giving good results.
  • Example 8—ORF46
  • The complete ORF46 protein from N. meningitidis (serogroup B, strain 2996) has the following sequence:
  • 1 LGISRKISLILSILAVCLPMHAHASDLAND SFIRQVLDRQ
    HFEPDKYHL
    51 FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY
    IVRFSDHGHE
    101 VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD
    GYDGPQGGGY
    151 PAPKGARDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH
    NAGSMLTQGV
    201 GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE
    IVGAGDAVQG
    251 ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA
    AIRDWAVQNP
    301 NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG LGGITAHPIK
    RSQGAIALP
    351 KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI
    TSSTVPPSNG
    401 KNVKLADQRH PRTGVPFDGK GFPNFEKHVK YDTKLDIQEL
    SGGGIPKAKP
    451 VSDAKPRWEV DRKLNKLTTR EQVEKNVQEI RNGNKNSNFS
    QHAQLEREIN
    501 KLKSADEINF ADGMGKFTDS MNDKAFSRLV KSVKENGFTN
    PVVEYVEING
    551 KAYIVRGNNR VFAAEYLGRI HELKFKKVDF PVPNTSWKNP
    TDVLNESGNV
    601 KRPRYRSK*
  • The leader peptide is underlined.
  • The sequences of ORF46 from other strains can be found in WO00/66741.
  • Three expression strategies have been used for ORF46:
      • 1) ORF46 with its own leader peptide but without any fusion partner (‘ORF46-2L’);
      • 2) ORF46 without its leader peptide and without any fusion partner (‘ORF46-2’), with the leader peptide omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence:
  • 1 SDLANDSFIR QVLDRQHFEP DGKYHLFGSR GELAERSGHI
    GLGKIQSHQL
    51 GNLMIQQAAI KGNIGYIVRF SDHGHEVHSP FDNHASHSDS
    DEAGSPVDGF
    101 SLYRIHWDGY EHHPADGYDG PQGGGYPAPK GARDIYSYDI
    KGVAQNIRLN
    151 LTDNRSTGQR LADRFHNAGS MLTQGVGDGF KRATRYSPEL
    DRSGNAAEAF
    201 NGTADIVKNI IGAAGEIVGA GDAVQGISEG SNIAVMHGLG
    LLSTENKMAR
    251 INDLADMAQL KDYAAAAIRD WAVQNPNAAQ GIEAVSNIFM
    AAIPIKGIGA
    301 VRGKYGLGGI TAHPIKRSQM GAIALPKGKS AVSDNFADAA
    YAKYPSPYHS
    351 RNIRSNLEQR YGKENITSST VPPSNGKNVK LADQRHPKTG
    VPFDGKGFPN
    401 FEKHVKYDTK LDIQELSGGG IPKAKPVSDA KPRWEVDRKL
    NKLTTREQVE
    451 KNVQEIRNGN KNSNFSQHAQ LEREINKLKS ADEINFADGM
    GKFTDSMNDK
    501 AFSRLVKSVK ENGFTNPVVE YVEINGKAYI VRGNNRVFAA
    EYLGRIHELK
    551 FKKVDFPVPN TSWKNPTDVL NESGNVKRPR YRSK*
      • 3) ORF46 as a truncated protein, consisting of the first 433 amino acids (‘ORF46.1L’), constructed by designing PCR primers to amplify a partial sequence corresponding to as 1-433.
        • A STOP codon was included in the 3′-end primer sequences.
  • ORF46-2L is expressed at a very low level to E. coli. Removal of its leader peptide (ORF46-2) does not solve this problem. The truncated ORF46.1L form (first 423 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.
  • ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):
  • Protein ELISA Bactericidal Ab
    Orf1-Orf46.1-His 850 256
    919-Or146.1-His 12900 512
    919-287-Orf46-His n.d. n.d.
    Orf46.1-287His 150 8192
    Orf46.1-919His 2800 2048
    Orf46.1-287-919His 3200 16384
  • For comparison, ‘triple’ hybrids of ORF46.1, 287 (either as a GST fusion, or in ΔG287 form) and 919 were constructed and tested against various strains (including the homologous 2996 strain) versus a simple mixture of the three antigens. FCA was used as adjuvant
  • 2996 BZ232 MC58 NGH38 F6124 BZ133
    Mixture 8192 256 512 1024 >2048 >2048
    ORF46.1-287- 16384 256 4096 8192 8192 8192
    919his
    ΔG287-919- 8192 64 4096 8192 8192 16384
    ORF46.1his
    ΔG287- 4096 128 256 8192 512 1024
    ORF46.1-
    919his
  • Again, the hybrids show equivalent or superior immunological activity.
  • Hybrids of two proteins (strain 2996) were compared to the individual proteins against various heterologous strains:
  • 1000 MC58 F6124 (MenA)
    ORF46.1-His <4 4096 <4
    ORF1-His 8 256 128
    ORF1-ORF46.1-His 1024 512 1024
  • Again, the hybrid shows equivalent or superior immunological activity.
  • Example 9—Protein 961
  • The complete 961 protein from N. meningitidis (serogroup B, strain MC58) has the following sequence:
  • 1 MSMKHFPAKV LTTAILATFC SGALAATSDD DVKKAATVAI
    VAAYNNGQEI
    51 NGFKAGETIY DIGEDGTITQ KDATAADVEA DDFKGLGLKK
    VVTNLTKTVN
    103 ENKQNVDAKV KAAESEIEKL TTKLADTDAA LADTDAALDE
    TTNALNKLGE
    151 NITTFAEETK TNIVKIDEKL SAVADTVDKH AEAFNDIADS
    LDETNTKADE
    201 AVKTANEAKQ TAEETKQNVD AKVKAAETAA GKAEAAAGTA
    NTAADKAEAV
    251 AAKVTDIKAD LATNKADIAK NSARIDSLDK NVANLRKETR
    QGLAEQAALS
    301 GLFQPYNVGR FNVTAAVGGY KSESAVAIGT GFRFTENFAA
    KAGVAVGTSS
    351 GSSAAYHVGV NYEW*
  • The leader peptide is underlined.
  • Three approaches to 961 expression were used:
      • 1) 961 using a GST fusion, following WO99/57280 (‘GST961’);
      • 2) 961 with its own leader peptide but without any fusion partner (‘961L’); and
      • 3) 961 without its leader peptide and without any fusion partner (‘961untagged’), leader peptide omitted by designing the 5′-end PCR primer downstream from the predicted leader sequence.
  • All three forms of the protein were expressed. The GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed (FIG. 4). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.
  • Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of N. meningitidis.
  • Example 10—Protein 287
  • Protein 287 from N. meningitidis (serogroup B, strain 2996) has the following sequence;
  • 1 MFERSVIAMACIFALSACGG GGGGSPDVKS ADTLSKPAAP
    VVAEKETEVK
    51 EDAPQAGSQG QGAPSTQGSQ DMAAVSAENT GNGGAATTDK
    PKNEDEGPQN
    101 DMPQNSAESA NQTGNNQPAD SSDSAPASNP APANGGSNFG
    RVDLANGVLI
    151 DGPSQNITLT HCKGDSCNGD NLLDEEAPSK SEFENLNESE
    RIEKYKKDGK
    201 SDKFTNLVAT AVQANGTNKY VIIYKDKSAS SSSARFRRSA
    RSRRSLPAEM
    251 PLIPVNQADT LIVDGEAVSL TGHSGNIFAP EGNYRYLTYG
    AEKLPGGSYA
    301 LRVQGEPAKG EMLAGTAVYN GEVLHFHTEN GRPYPTRGRF
    AAKVDFGSKS
    351 VDGIIDSGDD LHMGTQKFKA AIDGNGFKGT WTENGGGDVS
    GRFYGPAGEE
    401 VAGKYSYRPT DAEKGGFGVF AGKKEQD*
  • The leader peptide is shown underlined.
  • The sequences of 287 from other strains can be found in FIGS. 5 and 15 of WO00/66741.
  • Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E. coli.
  • A number of further approaches to expressing 287 in E. coli have been used, including:
      • 1) 287 as a His-tagged fusion (287-His′);
      • 2) 287 with its own leader peptide but without any fusion partner (‘287L’);
      • 3) 287 with the ORF4 leader peptide and without any fusion partner (‘287LOrf4’); and
      • 4) 287 without its leader peptide and without any fusion partner (‘287untagged’):
  • 1 CGGGGGGSPD VKSADTLSKP AAPVVAEKET EVKEDAPQAG
    SQGQGAPSTQ
    51 GSQDMAAVSA ENTGNGGAAT TDKPKNEDEG PQNDMPQNSA
    ESANQTGNNQ
    101 PADSSDSAPA SNPAPANGGS NFGRVDLANG VLIDGPSQNI
    TLTHCKGDSC
    151 NGDNLLDEEA PSKSEFENLN ESERIEKYKK DGKSDKFTNL
    VATAVQANGT
    20 NKYVIIYKDK SASSSSARFR RSARSRRSLP AEMPLIPVNQ
    ADTLIVDGEA
    251 VSLTGHSGNI PAPEGNYRYL TYGAEKLPGG SYALRVQGEP
    AKGEMLAGTA
    301 VYNGEVLHFH TENGRPYPTR GRFAAKVDFG SKSVDGIIDS
    GDDLHMGTQK
    351 FKAAIDGNGF KGTWTENGGG DVSGRFYGPA GEEVAGKYSY
    RPTDAEKGGF
    401 GVFAGKKEQD *
  • All these proteins could be expressed and purified.
  • ‘287L’ and ‘287 LOrf4’ were confirmed as lipoproteins.
  • As shown in FIG. 2, ‘287LOrf4’ was constructed by digesting 919LOrf4 with NheI and XhoI. The entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5′-end primer (287LOrf4 for), fused to 287 coding sequence. The 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the NheI and XhoI sites, respectively), digested with NheI and XhoI and ligated to the purified pETOrf4 fragment.
  • Example 11—Further Non-Fusion Proteins with/without Native Leader Peptides
  • A similar approach was adopted for E. coli expression of further proteins from WO99/24578, WO99/36544 and WO99/57280.
  • The following were expressed without a fusion partner: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 982, and Orf143-1. Protein 117-1 was confirmed as surface-exposed by FACS and gave high ELISA titres.
  • The following were expressed with the native leader peptide but without a fusion partner: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 926, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, OrF91, Orf97-1, Orf119, Orf143.1. These proteins are given the suffix ‘L’.
  • His-tagged protein 760 was expressed with and without its leader peptide. The deletion of the signal peptide greatly increased expression levels. The protein could be purified most easily using 2M urea for solubilisation.
  • His-tagged protein 264 was well-expressed using its own signal peptide, and the 30 kDa protein gave positive Western blot results.
  • All proteins were successfully expressed.
  • The localisation of 593, 121-1, 128-1, 593, 726, and 982 in the cytoplasm was confirmed.
  • The localisation of 920-1L, 953L, ORF9-1L, ORF85-2L, ORF97-1L, 570L, 580L and 664L in the periplasm was confirmed.
  • The localisation of ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed. ORF25L, ORF4L, 406L, 576-1L were all confirmed as being localised in the membrane.
  • Protein 206 was found not to be a lipoprotein.
  • ORF25 and ORF40 expressed with their native leader peptides but without fusion partners, and protein 593 expressed without its native leader peptide and without a fusion partner, raised good anti-bactericidal sera. Surprisingly, the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides (i.e. ‘ORF25L’ and ‘ORF40L’) give better results in the bactericidal assay than the fusion proteins.
  • Proteins 920L and 953L were subjected to N-terminal sequencing, giving HRVWVETAH and ATYKVDEYHANARFAF, respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the proteins are correctly processed and localised by E. coli when expressed from their native leader peptides.
  • The N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA, indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N. gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.
  • Example 12—Lipoproteins
  • The incorporation of palmitate in recombinant lipoproteins was demonstrated by the method of Kraft et. al. [J. Bact. (1998) 180:3441-3447.]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. The culture was diluted to an OD550 of 0.1 in 5.0 ml of fresh medium LB/Amp medium containing 5 μC/ml [3H] palmitate (Amersham). When the OD550 of the culture reached 0.4-0.8, recombinant lipoprotein was induced for 1 hour with IPTG (final concentration 1.0 mM). Bacteria were harvested by centrifugation in a bench top centrifuge at 2700 g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120 μl of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000 g for 10 min the supernatant was collected and proteins precipitated by the addition of 1.2 ml cold acetone and left for 1 hour at −20° C. Protein was pelleted by centrifugation at 13000 g for 10 min and resuspended in 20-50 μl (calculated to standardise loading with respect to the final 0.1) of the culture) of 1.0% w/v SDS. An aliquot of 15 μl was boiled with 5 μl of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight −80° C.
  • Incorporation of the [3H] palmitate label, confirming lipidation, was found for the following proteins: Orf4L, Orf25L, 287L, 287LOrf4, 406.L, 576L, 926L, 919L and 9191, Orf4.
  • Example 13—Domains in 287
  • Based on homology of different regions of 287 to proteins that belong to different functional classes, it was split into three ‘domains’, as shown in FIG. 5. The second domain shows homology to IgA proteases, and the third domain shows homology to transferrin-binding proteins.
  • Each of the three ‘domains’ shows a different degree of sequence conservation between N. meningitidis strains domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in FIG. 7, and alignments for various strains are disclosed in WO00/66741 (see FIGS. 5 and 15 therein).
  • The three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:
      • 287a-MC58 (aa 1-202), 287b-MC58 (aa 203-288), 287c-MC58 (an 311-488).
      • 287a-2996 (aa 1-139), 287b-2996 (aa 140-225), 287c-2996 (aa 250-427).
  • To make these constructs, the stop codon sequence was omitted in the 3′-end primer sequence. The 5′ primers included the NheI restriction site, and the 3′ primers included a Kiwi as a tail, in order to direct the cloning of each amplified fragment into the expression vector pRT21b4 rising NdeI-XhoI, NheI-XhoI or NdeI-HindIII restriction sites.
  • All six constructs could be expressed, but 287b-MC8 required denaturation and refolding for solubilisation.
  • Deletion of domain A is described below (‘Δ4 287-His’).
  • Immunological data (serum bactericidal assay) were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
  • 2996 BZ232 MC58 NGH38 394/98 MenA MenC
    287-His 32000  16 4096 4096 512 8000 16000
    287(B)-His 256 16
    287(C)-His 256  32 512 32 2048 >2048
    287(B-C)-His 64000 128 4096 64000 1024 64000 32000
  • Using the domains of strain MC58, the following results were obtained:
  • MC58 2996 BZ232 NGH38 394/98 MenA MenC
    287-His 4096 32000  16 4096 512 8000 16000
    287(B)-His 128 128  128
    287(C)-His 16 1024 512
    287(B-C)-His 16000 64000 128 64000 512 64000 >8000
  • Example 14—Deletions in 287
  • As well as expressing individual domains, 287 was also expressed (as a C-terminal His-tagged protein) by making progressive deletions within the first domain. These Four deletion mutants of protein 287 from strain 2996 were used (FIG. 6):
      • 1) ‘287-His’, consisting of amino acids 18-427 (i.e. leader peptide deleted);
      • 2) ‘Δ1 287-His’, consisting of amino acids 26-427;
      • 3) ‘Δ2 287-His’, consisting of amino acids 70-427;
      • 4) ‘Δ3 287-His’, consisting of amino acids 107-427; and
      • 5) ‘Δ4 287-His’, consisting of amino acids 140427 (=287-bc).
  • The ‘Δ4’ protein was also made for strain MC58 (‘Δ4 287MC58-His’; an 203-488).
  • The constructs were made in the same way as 287a/b/c, as described above.
  • All six constructs could be expressed and protein could be purified. Expression of 287-His was, however, quite poor.
  • Expression was also high when the C-terminal His-tags were omitted.
  • Immunological data (serum bactericidal assay) were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
  • 2996 BZ232 MC58 NGH38 394/98 MenA MenC
    287-his 32000 16 4096 4096 512 8000 16000
    Δ1 287-His 16000 128 4096 4096 1024 8000 16000
    Δ2 287-His 16000 128 4096 >2048 512 16000 >8000
    Δ3 287-His 16000 128 4096 >2048 512 16000 >8000
    Δ4 287-His 64000 128 4096 64000 1024 64000 32000
  • The same high activity for the Δ4 deletion was seen using the sequence from strain MC58.
  • As well as showing superior expression characteristics, therefore, the mutants are immunologically equivalent or superior.
  • Example 15—Poly-Glycine Deletions
  • The ‘Δ1 287-His’ construct of the previous example differs from 287-His and from ‘287untagged’ only by a short N-terminal deletion (GGGGGGS). Using an expression vector which replaces the deleted serine with a codon present in the Nhe cloning site, however, this amounts to a deletion only of (Gly)6. Thus, the deletion of this (Gly)6 sequence has been shown to have a dramatic effect on protein expression.
  • The protein lacking the N-terminal amino acids up to GGGGGG is called ‘ΔG287’. In strain MC58, its sequence (leader peptide underlined) is:
  •                           
    Figure US20170080077A1-20170323-P00002
    ΔG287
    1 MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP
    VVSEKETEAK
    51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN
    PKNEDEVAQN
    101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP
    ANQPDMANAA
    151 DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA
    SNPAPANGGS
    201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV
    QLKSEFEKLS
    251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK
    PTSFARFRRS
    301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA
    PEGNYRYLTY
    351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE
    NGRPYPTRGR
    401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG
    TWTENGSGDV
    451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
  • ΔG287, with or without His-tag (‘ΔG287-His’ and ‘ΔG287K’, respectively), are expressed at very good levels in comparison with the ‘287-His’ or ‘287untagged’.
  • On the basis of gene variability data, variants of ΔG287-His were expressed in E. coli from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.
  • It was hypothesised that poly-Gly deletion might be a general strategy to improve expression. Other MenB lipoproteins containing similar (Gly)n motifs (near the N-terminus, downstream of a cysteine) were therefore identified, namely Tbp2 (N/v1130460), 741 (NMB 1870) and 983 (NMB1969):
  • TBP2                             
    Figure US20170080077A1-20170323-P00003
    ΔGTbp2
    1 MNNPLVNQAA MVLPVFLLSA CLGGGGSFDL DSVDTEAPRP APKYQDVFSE
    51 KPQAQKDQGG YGFAMRLKRR NWYPQAKEDE VKLDESDWEA TGLPDEPKEL
    101 PKRQKSVIEK VETDSDNNIY SSPYLKPSNH QNGNTGNGIN QPKNQAKDYE
    151 NFKYVYSGWF YKHAKREFNL KVEPKSAKNG DDGYIFYHGK EPSRQLPASG
    201 KITYKGVWHF ATDTKKGQKF REIIQPSKSQ GDRYSGFSGD DGEEYSNKNK
    251 STLTDGQEGY GFTSNLEVDF HNKKLTGKLI RNNANTDNNQ ATTTQYYSLE
    301 AQVTGNRFNG KATATDKPQQ NSETKEHPFV SDSSSLSGGF FGPQGEELGF
    351 RFLSDDQKVA VVGSAKTKDK PANGNTAAAS GGTDAAASNG AAGTSSENGK
    401 LTTVLDAVEL KLGDKEVQKL DNFSNAAQLV VDGIMIPLLP EASESGNNQA
    451 NQGTNGGTAF TRKFDHTPES DKKDAQAGTQ TNGAQTASNT AGDTNGKTKT
    501 YEVEVCCSNL NYLKYGMLTR KNSKSAMQAG ESSSQADAKT EQVEQSMFLQ
    551 GERTDEKEIP SEQNIVYRGS WYGYIANDKS TSWSGNASNA TSGNRAEFTV
    601 NFADKKITGT LTADNRQEAT FTIDGNIKDN GFEGTAKTAE SGFDLDQSNT
    651 TRTPKAYITD AKVQGGFYGP KAEELGGWFA YPGDKQTKNA TNASGNSSAT
    701 VVFGAKRQQP VR*
    741                             
    Figure US20170080077A1-20170323-P00004
    ΔG741
    1 VNRTAFCCLS LTTALILTAC SSGGGGVAAD IGAGLADALT APLDHKDKGL
    51 QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ
    101 IEVDGQLITL ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG KMVAKRQFRI
    151 GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGKI
    201 EHLKSPELNV DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA
    251 QEVAGSAEVK TVNGIRHIGL AAKQ*
    983                                       
    Figure US20170080077A1-20170323-P00004
    ΔG983
    1 MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS
    51 NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPPN
    101 LHTGDFPNPN DAYKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE
    151 LYGRKEHGYN ENYKNYTAYM RKEAPEDGGG KDIEASFDDE AVIETEAKPT
    201 DIRHVKEIGH IDLVSHIIGG RSVDGRPAGG IAPDATLHIM NTNDETKNEM
    251 MVAAIRNAWV KLGERGVRIV NNSFGTTSRA GTADLFQIAN SEEQYRQALL
    301 DYSGGDKTDE GIRLMQQSDY GNLSYHIRNK NMLFIFSTGN DAQAQPNTYA
    351 LLPFYEKDAQ KGIITVAGVD RSGEKFKREM YGEPGTEPLE YGSNHCGITA
    401 MWCLSAPYEA SVRFTRTNPI QIAGTSFSAP IVTGTAALLL QKYPWMSNDN
    451 LRTTLLTTAQ DIGAVGVDSK FGWGLLDAGK AMNGPASFPF GDFTADTKGT
    501 SDIAYSFRND ISGTGGLIKK GGSQLQLHGN NTYTGRTIIE GGSLVLYGNN
    551 KSDMRVETKG ALIYNGAASG GSLNSDGIVY LADTDQSGAN ETVHIKGSLQ
    601 LDGKGTLYTR LGKLLKVDGT AIIGGKLYMS ARGKGAGYLN STGRRVPFLS
    651 AAKIGQDYSF FTNIETDGGL LASLDSVEKT AGSEGDTLSY YVRRGNAART
    701 ASAAAHSAPA GLKHAVEQGG SNLENLMVEL DASESSATPE TVETAAADRT
    751 DMPGIRPYGA TFRAAAAVQH ANAADGVRIF NSLAATVYAD STAAHADMQG
    801 RRLKAVSDGL DHNGTGLRVI AQTQQDGGTW EQGGVEGKMR GSTQTVGIAA
    851 KTGENTTAAA TLGMGRSTWS ENSANAKTDS ISLFAGIRHD AGDIGYLKGL
    901 FSYGRYKNSI SRSTGADEHA EGSVNGTLMQ LGALGGVNVP FAATGDLTVE
    951 GGLRYDLLKQ DAFAEKGSAL GWSGNSLTEG TLVGLAGLKL SQPLSDKAVL
    1001 FATAGVERDL NGRDYTVTGG FTGATAATGK TGARNMPHTR LVAGLGADVE
    1051 FGNGWNGLAR YSYAGSKQYG NHSGRVGVGY RF*
  • Thp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996. These were cloned in pET vector and expressed in E. coli without the sequence coding for their leader peptides or as “ΔG forms”, both fused to a C-terminal His-tag. In each case, the same effect was seen expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:
  • ORF Express. Purification Bact. Activity
    287-His(2996) +/− + +
    ‘287untagged’(2996) +/− nd nd
    ΔG287-His(2996) + + +
    ΔG287K(2996) + + +
    ΔG287-His(MC58) + + +
    ΔG287-His(1000) + + +
    ΔG287-His(BZ232) + + +
    Tbp2-His(MC58) +/− nd nd
    ΔGTbp2-His(MC58) + +
    741-His(MC58) +/− nd nd
    ΔG741-His(MC58) + +
    983-His(2996)
    ΔG983-His(2996) + +
  • SDS-PAGE of the proteins is shown in FIG. 13.
  • ΔG287 and Hybrids
  • ΔG287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192. ΔG287K, expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay. ΔG287-ORF46.1K may also be expressed in pET-24b.
  • ΔG287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:
  • ΔG287-919
    1 ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC
    51 TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG
    101 CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCNG CCAAGATATG
    151 GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA
    201 CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT
    251 CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA
    301 GATTCCGCCC CCGCGTCAAA CCCTCCACCT GCGANAGGCG GTAGCAATTT
    351 TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA
    401 ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTAA
    451 TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC
    501 TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA
    551 ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC
    601 ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC
    651 TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA
    701 ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG
    751 CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA
    801 CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG
    851 AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA
    901 GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG
    951 GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG
    1001 ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC
    1051 GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT
    1101 TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA
    1151 GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC
    1201 AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGATGCCAAA GCAAGAGCAT
    1251 CCAAACCTTT CCGCAACCCG ACACATCCGT CATCAACGCC CCGGACCGGC
    1301 CGGTCGGCAT CCCCGACCCC GCCGGAACGA CGGTCGGCGG CGGCGGGGCC
    1351 GTCTATACCG TTGTACCGCA CCTGTCCCTG CCCCACTGGG CGGCGCAGGA
    1401 TTTCGCCAAA AGCCTGCAAT CCTTCCGCCT CGGCTGCGCC AATTTGAAAA
    1451 ACCGCCAAGG CTGGCAGGAT GTGTGCGCCC AAGCCTTTCA AACCCCCGTC
    1501 CATTCCTTTC AGGCAAAACA GTTTTITGAA CGCTATTTCA CGCCGTGGCA
    1551 GGTTGCAGGC AACGGAAGCC TTGCCGGTAC GGTTACCGGC TATTACGAGC
    1601 CGGTGCTGAA GGGCGACGAC AGGCGGACGG CACAAGCCCG CTTCCCGATT
    1651 TACGGTATTC CCGACGATTT TATCTCCGTC CCCCTGCCTG CCGGTTTGCG
    1701 GAGCGGAAAA GCCCTTGTCC GCATCAGGCA GACGGGAAAA AACAGCGGCA
    1751 CAATCGACAA TACCGGCGGC ACACATACCG CCGACCTCTC CCGATTCCCC
    1801 ATCACCGCGC GCACAACGGC AATCAAAGGC AGGTTTGAAG GAAGCCGCTT
    1851 CCTCCCCTAC CACACGCGCA ACCAAATCAA CGGCGGCGCG CTTGACGGCA
    1901 AAGCCCCGAT ACTCGGTTAC GCCGAAGACC CCGTCGAACT TTTTTTTATG
    1951 CACATCCAAG GCTCGGGCCG TCTGAAAACC CCGTCCGGCA AATACATCCG
    2001 CATCGGCTAT GCCGACAAAA ACGAACATCC CTACGTTTCC ATCGGACGCT
    2051 ATATGGCGGA CAAAGGCTAC CTCAAGCTCG GGCAGACCTC GATGCAGGGC
    2101 ATCAAAGCCT ATATGCGGCA AAATCCGCAA CGCCTCGCCG AAGTTTTGGG
    2151 TCAAAACCCC AGCTATATCT TTTTCCGCGA GCTTGCCGGA AGCAGCAATG
    2201 ACGGTCCCGT CGGCGCACTG GGCACGCCGT TGATGGGGGA ATATGCCGGC
    2251 GCAGTCGACC GGCACTACAT TACCTTGGGC GCGCCCTTAT TTGTCGCCAC
    2301 CGCCCATCCG GTTACCCGCA AAGCCCTCAA CCGCCTGATT ATGGCGCAGG
    2351 ATACCCGCAG CGCGATTAAA GGCGCGGTGC GCGTGGATTA CCACGGGTTA
    2401 TACGGCGACG AAGCCGGCGA ACTTGCCGGC AAACAGAAAA CCACGGGTTA
    2451 CGTCTGGCAG CTCCTACCCA ACGGTATGAA GCCCGAATAC CGCCCGTAAC
    2501 TCGAG
    1 MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM
    51 AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS
    101 DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL
    151 LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI
    201 IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG
    251 HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM LAGTAVYNGE
    301 VLHFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI
    351 DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGFGVFAG
    401 KKEQDGSGGG GCQSKSIQTF PQPDTSVING PDRPVGIPDP AGTTVGGGGA
    451 VYTVVPHLSL PHWAAQDFAK SLQSPRLGCA NLKNRQGWQD VCAQAFQTPV
    501 HSFQAKQFFE RYFTPMQVAG NGSLAGTVTG YYEPVLKGDD RRTAQARFPI
    551 YGIPDDFISV PLPAGLRSGK ALVRIRQTGK NSGTIDNTGG THTADLSRFP
    601 ITARTTAIKG RFEGSRPLPY HTRNQINGGA LDGKAPILGY AEDPVELFFM
    651 HIQGSGRLKT PSGKYIRIGY ADKNEHPYVS IGRYMADKGY LKLGQTSMQG
    701 IKAYMRQNPQ RLAEVLGQNP SYIFFRELAG SSNDGPVGAL GTPLMGEYAG
    751 AVDRHYITLG APLFVATAHP VTRKALNRLI MAQDTGSAIK GAVRVDYFWG
    901 YGDEAGELAG KQKTTGYVWQ LLPNGMKPEY RP*
    ΔG287-953
    1 ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC
    51 TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG
    101 CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG
    151 GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA
    201 CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT
    251 CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA
    301 GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT
    351 TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA
    401 ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA
    451 TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC
    501 TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA
    551 ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC
    601 ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC
    651 TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA
    701 ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG
    751 CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA
    801 CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG
    851 AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAAGGGCGAA
    901 GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG
    951 GTTTGCCGCA AAAGTCGATT TCGGCAGGAA ATCTGTGGAC GGCATTATCG
    1001 ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC
    1051 GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT
    1101 TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA
    1151 GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC
    1201 AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACCT ACAAAGTGGA
    1251 CGAATATCAC GCCAACGCCC GTTTCGCCAT CGACCATTTC AACACCAGCA
    1301 CCAACGTCGG CGGTTTTTAC GGTCTGACCG GTTCCGTCGA GTTCGACCAA
    1351 GCAAAACGCG ACGGTAAAAT CGACATCACC ATCCCCGTTG CCAACCTGCA
    1401 AAGCGGTTCG CAACACTTTA CCGACCACCT GAAATCAGCC GACATCTTCG
    1451 ATGCCGCCCA ATATCCGGAC ATCCGCTTTG TTTCCACCAA ATTCAACTTC
    1501 AACGGCAAAA AACTGGTTTC CGTTGACGGC AACCTGACCA TGCACGGCAA
    1551 AACCGCCCCC GTCAAACTCA AAGCCGAAAA ATTCAACTGC TACCAAAGCC
    1601 CGATGGCGAA AACCGAAGTT TGCGGGGGCG ACTTCAGCAC CACCATCGAC
    1651 CGCACCAAAT GGGGCGTGGA CTACCTCGTT AACGTTGGTA TGACCAAAAG
    1701 CGTCCGCATC GACATCCAAA TCGAGGCAGC CAAACAATAA CTCGAG
    1 MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM
    51 AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS
    101 DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL
    151 LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI
    201 IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG
    251 HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM LAGTAVYNGE
    301 VLHFHTENGR PYPTKGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI
    351 DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGFGVFAG
    401 KKEQDGSGGG GATYKVDEYH ANARFAIDHF NTSTNVGGFY GLTGSVEFDQ
    451 AKRDGKIDIT IPVANLQSGS QHFTDHLKSA DIFDAAQYPD IRFVSTKFNF
    501 NGKKLVSVDG NLTMHGKTAP VKLKAEKFNC YQSPMAKTEV CGGDFSTTID
    551 RTKWGVDYLV NVGMTKSVRI DIQIEAAKQ*
    ΔG287-961
    1 ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC
    51 TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG
    101 CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG
    151 GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA
    201 CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT
    251 CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA
    301 GATTCCGCCC CCGCGTCAAA CGCTGCACCT GCGAATGGCG GTAGCAATTT
    351 TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA
    401 ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA
    451 TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC
    501 TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA
    551 ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC
    601 ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC
    651 TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA
    701 ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG
    751 CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA
    801 CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG
    851 AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA
    901 GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG
    951 GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG
    1001 ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC
    1051 GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT
    1101 TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA
    1151 GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC
    1201 AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACAA ACGACGACGA
    1251 TGTTAAAAAA GCTGCCACTG TGGCCATTGC TGCTGCCTAC AACAATGGCC
    1301 AAGAAATCAA CGGTTTCAAA GCTGGAGAGA CCATCTACGA CATTGATGAA
    1351 GACGGCACAA TTACCAAAAA AGACGCAACT GCAGCCGATG TTGAAGCCGA
    1401 CGACTTTAAA GGTCTGGGTC TGAAAAAAGT CGTGACTAAC CTGACCAAAA
    1451 CCGTCAATGA AAACAAACAA AACGTCGATG CCAAAGTAAA AGCTGCAGAA
    1501 TCTGAAATAG AAAAGTTAAC AACCAAGTTA GCAGACACTG ATGCCGCTTT
    1551 AGCAGATACT GATGCCGCTC TGGATGCAAC CACCAACGCC TTGAATAAAT
    1601 TGGGAGAAAA TATAACGACA TTTGCTGAAG AGACTAAGAC AAATATCGTA
    1651 AAAATTGATG AAAAATTAGA AGCCGTGGCT GATACCGTCG ACAAGCATGC
    1701 CGAAGCATTC AACGATATCG CCGATTCATT GGATGAAACC AACACTAAGG
    1751 CAGACGAAGC CGTCAAAACC GCCAATGAAG CCAAACAGAC GGCCGAAGAA
    1801 ACCAAACAAA ACGTCGATGC CAAAGTAAAA GCTGCAGAAA CTGCAGCAGG
    1851 CAAAGCCGAA GCTGCCGCTG GCACAGCTAA TACTGCAGCC GACAAGGCCG
    1901 AAGCTGTCGC TGCAAAAGTT ACCGACATCA AAGCTGATAT CGCTACGAAC
    1951 AAAGATAATA TTGCTAAAAA AGCAAACAGT GCCGACGTGT ACACCAGAGA
    2001 AGAGTCTGAC AGCAAATTTG TCAGAATTGA TGGTCTGAAC GCTACTACCG
    2051 AAAAATTGGA CACACGCTTG GCTTCTGCTG AAAAATCCAT TGCCGATCAC
    2101 GATACTCGCC TGAACGGTTT GGATAAAACA GTGTCAGACC TGCGCAAAGA
    2151 AACCCGCCAA GGCCTTGCAG AACAAGCCGC GCTCTCCGGT CTGTTCCAAC
    2201 CTTACAACGT GGGTCGGTTC AATGTAACGG CTGCAGTCGG CGGCTACAAA
    2251 TCCGAATCGG CAGTCGCCAT CGGTACCGGC TTCCGCTTTA CCGAAAACTT
    2301 TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC TTCGTCCGGT TCTTCCGCAG
    2351 CCTACCATGT CGGCGTCAAT TACGAGTGGT AACTCGAG
    1 MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM
    51 AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS
    101 DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQINTLTHC KGDSCNGDNL
    151 LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI
    201 IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG
    251 HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM LAGTAVYNGE
    301 VLSFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI
    351 DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGEGVFAG
    401 KKEQDGSGGG GATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE
    451 DGTITKKDAT AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE
    501 SEIEKLTTKL ADTDAALADT DAALDAFTNA LNKLGENITT FAEETKTNIV
    551 KIDEKLEAVA DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE
    601 TKQNVDAKVK AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN
    651 KDNIAKKANS ADVYTREESD SKFVRIDGLN ATTERLDTRL ASAEKSIADH
    701 DTRLNGLDKT VSDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK
    751 SESAVAIGTG FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEW*
  • ELISA Bactericidal
    ΔG287-953-His 3834 65536
    ΔG287-961-His 108627 65536
  • The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:
  • Mixture with 287 Hybrid with ΔG287
    919 32000 128000
    ORF46.1 128 16000
  • Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained:
  • 919 ORF46.1
    Strain Mixture Hybrid Mixture Hybrid
    NGH38 1024 32000 16384
    MC58 512 8192 512
    BZ232 512 512
    MenA (F6124) 512 32000 8192
    MenC (C11) >2048 >2048
    MenC (BZ133) >4096 164000 8192
  • The hybrid proteins with ΔG287 at the N-terminus are therefore immunologically superior to simple mixtures, with ΔG287-ORF46.1 being particularly effective, even against heterologous strains: ΔG287-ORF46.1K may be expressed in pET-24b.
  • The same hybrid proteins were made using New Zealand strain 394198 rather than 2996:
  • ΔG287NZ-919
       1 ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC
      51 CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG
     101 CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG
     151 GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA
     201 CAAACCCAAA AATGAAGACG AGGGGGCCCA AAATGATATG CCGCAAAATG
     251 CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG
     301 CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA
     351 GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG
     401 ACGATCCGTC GGGAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT
     451 ACAAATCAAG CCGAAAACAA TGAAACCGCC GGTTCTCAAA ATCCTGCCTC
     501 TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA
     551 ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG
     601 ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA
     651 AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA
     701 GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC
     751 GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT
     801 CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC
     851 OGTCGAGGCG GTCGCTTCCG GCCGAGATCC CGCTGATTCC CGTCAATCAG
     901 GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC
     951 CGOCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG
    1001 CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT
    1051 TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT
    1101 GGATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG
    1151 CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC
    1201 GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG
    1251 AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG
    1301 GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT
    1351 CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA
    1401 AGAGCAGGAT GGATCCGGAG GAGGAGGATG CCAAAGCAAG AGCATCCAAA
    1451 CCTTTCCGCA ACCCGACACA TCCGTCATCA ACGGCCCGGA CCGGCCGGTC
    1501 GGCATCCCCG ACCCCGCCGG AACGACGGTC GGCGGCGGCG GGGCCGTCTA
    1551 TACCGTTGTA CCGCACCTGT CCCTGCCCCA CTGGGCGGCG CAGGATTTCG
    1601 CCAAAAGCCT GCAATCCTTC CGCCTCGGCT GCGCCAATTT GAAAAACCGC
    1651 CAAGGCTGGC AGGATGTGTG CGCCCAAGCC TTTCAAACCC CCGTCCATTC
    1701 CTTTCAGGCA AAACAGTTTT TTGAACGCTA TTTCACGCCG TGGCAGGTTG
    1751 CAGGCAACGG AAGCCTTGCC GGTACGGTTA CCGGCTATTA CGAGCCGGTG
    1801 CTGAAGGGCG ACGACAGGCG GACGGCACAA GCCCGCTTCC CGATTTACGG
    1851 TATTCCCGAC GATTTTATCT CCGTCCCCCT GCCTGCCGGT TTGCGGAGCG
    1901 GAAAAGCCCT TGTCCGCATC AGGCAGACGG GAAAAAACAG CGGCACAATC
    1951 GACAATACCG GCGGCACACA TACCGCCGAC CTCTCCCGAT TCCCCATCAC 
    2001 CGCGCGCACA ACGOCAATCA AAGGCAGGTT TGAAGGAAGC CGCTTCCTCC
    2051 CCTACCACAC GGGCAACCAA ATCAAGGGCG GCGCGCTTGA CGGCAAAGCC
    2101 CCGATACTCG GTTACGCCGA AGACCCCGTC GAACTTTTTT TTATGCACAT
    2151 CCAAGGCTCG GGCCGTCTGA AAACCCCGTC CGGCAAATAC ATCCGCATCG
    2201 GCTATGCCGA CAAAAAGGAA CATCCCTACG TTTCCATCGG ACGCTATATG
    2251 GCGGACAAAG GCTACCTCAA GCTCGGGCAG ACCTCGATGC AGGGCATCAA
    2301 AGCCTATATG CGOCAAAATC COCAACGCCT CGCCGAAGTT TTOGGTCAAA
    2351 ACCCCAGCTA TATCTTTTTC CGCGAGCTTG CCGGAAGCAG CAATGACGGT
    2401 CCCGTCGGCG CACTGGGCAC GCCGTTGATG GGGGAATATG CCGGCGCAGT
    2451 CGACCGGCAC TACATTACCT TGGGCGCGCC CTTATTTGTC GCCACCGCCC
    2501 ATCCGGTTAC CCGCAAAGCC CTCAACCGCC TGATTATGGC GCAGGATACC
    2551 GGCAGCGCGA TTAAAGGCGC GGTGCGCGTG GATTATTTTT GGGGATACGG
    2601 CGACGAAGCC GGCGAACTTG CCGGCAAACA GAAAACCACG GGTTACGTCT
    2651 GGCAGCTCCT ACCCAACGGT ATCAAGCCCG AATACCGCCC GTAAAAGCTT
       1 MASPDVKSAD TLSKPAAPVV SEKETAAKED APQAGSQGQG APSAQGGQDM
      51 AAVSERNTGN GGAAATDKPK NEDRGAQNDM PQNAADTDSL TPNHTPASNM
     101 PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG
     151 TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL
     201 THCKGDSCSG NNFLDEEVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV
     251 GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP AEMPLIPVNQ
     301 ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP
     351 SKGEMLAGTA VYNGEVLHPH TENGRPSPSR GRFAAKVDFG SKSVDGIIDS
     401 GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA GEEVAGKYSY
     451 RPTDAEKGGF GVFAGKKEQD GSGGGGCQSK SIQTFPQPDT SVINGPDRPV
     501 GIPDPAGTTV GGGGAVYTVV PHLSLPHWAA QDFAKSLQSF RLGCANLKNR
     551 QGWQDVCAQA FQTPVHSFQA KQFFERYFTP WQVAGNGSLA GTVTGYYEPV
     601 LKGDDRRTAQ ARFPIYGIPD DFISVPLPAG LRSGKALVRI RQTGKNSGTI
     651 DNTGGTHTAD LSRFPITART TAIKGRFRGS RFLPYHTRNQ INGGALDGKA
     701 PILGYAEDPV ELFFMHIQGS GRLKTPSGKY IRIGYADKNE HPYVSIGRYM
     751 ADKGYLKLGQ TSMQGIKAYM RQNPQRLAEV LGQNPSYIFF RELAGSSNDG
     801 PVGALGTPLM GEYAGAVDRH YITLGAPLFV ATAHPVTRKA LNRLIMAQDT
     851 GSAIKGAVRV DYFWGYGDEA GKLAGKQKTT GYVWQLLPNG MKPEYRP*
    ΔG287NZ-953
       1 ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC
      51 CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG
     101 CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG
     151 GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA
     201 CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG 
     251 CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG
     301 CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA
     351 GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG
     401 ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT
     451 ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC
     501 TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA
     551 ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG
     601 ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA
     651 AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA
     701 GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC
     751 GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT
     801 CTTTTATAAA CCTAAACCCA CTTCAATTGC GCGATTTAGG CGTTCTGCAC
     851 GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG
     901 GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC
     951 CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG
    1001 CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT
    1051 TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT
    1101 GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG
    1151 CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC
    1201 GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG
    1251 AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG
    1301 GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT
    1351 CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA
    1401 AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACCTACAAA GTGGACGAAT
    1451 ATCACGCCAA CGCCCGTTTC GCCATCGACC ATTTCAACAC CAGCACCAAC
    1501 GTCGGCGGTT TTTACGGTCT GACCGGTTCC GTCGAGTTCG ACCAAGCAAA
    1551 ACGCGACGGT AAAATCGACA TCACCATCCC CGTTGCCAAC CTGCAAAGCG
    1601 GTTC CAACA CTTTACCGAC CACCTGAAAT CAGCCGACAT CTTCGATGCC
    1651 GCCCAATATC CGGACATCCG CTTTGTTTCC ACCAANTTCA ACTTCAACGG
    1701 CAAAAAACTG GTTTCCGTTG ACGGCAACCT GACCATGCAC GGCAAAACCG
    1751 CCCCCGTCAA ACTCAAAGCC GAAAAATTCA ACTGCTACCA AAGCCCGATG
    1801 GCGAAAACCG AAGTTTGCGG CGGCGACTTC AGCACCACCA TCGACCGCAC
    1651 CAAATGGGGC GTGGACTACC TCGTTAACGT TGGTATGACC AAAAGCGTCC
    1901 GCATCGACAT CCAAATCGAG GCAGCCAAAC AATAAAAGCT T
       1 MASPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG APSAQGGQDM
      51 AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNM
     101 PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG
     151 TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL
     201 THCKGDSCSG NNFLDEEVQL KSEPEKLSDA DKISNYKKDG KNDGKNDKFV
     251 GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP AEMPLIPVNQ
     301 ADTLIVDGEA VSLTGHSGNI FAPEGNYKYL TYGAEKLPGG SYALRVQGEP
     351 SKGEMLAGTA VYNGEVLEFH TDNGRPSPSR GRFAAKVDFG SKSVDGIIES
     401 GDGLENGTQK FKAAIDGNGF KGTWTENGGG CUSGKEYGPA GEEVAGKYSY
     451 APTDAEKGGF GVFACKKEQD GSGGGGATYK VDEYHANARF AIDHFNTSTN
     501 VGGFYGLTGS VEFDQAKRDG KIDITIPVAN LQSGSQEFTD HLKSADIFDA
     551 AQYPDIRFVS TKENFNGALL VSVDGNLTMH GKTAPVKLKA ERFNCYOSPM
     601 AKTEVCGGDF STTIDRTKWG VDYLVNVGMT KSVRIDIQIE AAKQ*
    ΔG287N2-961
       1 ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC
      51 CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG
     101 CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG
     151 GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA
     201 CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG
     251 CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG
     301 CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGcCOGGG AATCGGAGCA
     351 GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG
     401 ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT
     451 ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC
     501 TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA
     551 ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG
     601 ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA
     651 AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA
     701 GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC
     751 GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT
     801 CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC
     851 GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG
     901 GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC
     951 CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG
    1001 CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT
    1051 TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT
    1101 GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG
    1151 CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC
    1201 GGCGAIGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG
    1251 AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG
    1301 GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT
    1351 CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA
    1401 AGAGCAGGAT GGATCCGGAC GAGGAGGAGC CACAAACGAC GACGATGTTA
    1451 AAAAAGCTGC GACTGTGGCC ATTGCTGCTG CCTACAACAA TGGCCAAGAA
    1501 ATCAACGGTT TCAAAGCTGG AGAGACCATC TACGACATTG ATGAAGACGG
    1551 CACAATTACC AAAAAAGACG CAACTGCAGC CGATGTTGAA GCCGACGACT
    1601 TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA CTAACCTGAC CAAAACCGTC
    1651 AATGAAAACA AACAAAACGT CGATGCCAAA GTAAAAGCTG CAGAATCTGA
    1701 AATAGAAAAG TTAACAACCA AGTTAGCAGA CACTGATGCC GCTTTAGCAG
    1752 ATACTGATGC CGCTCTGGAT GCAACCACCA ACGCCTTGAA TAAATTGGGA
    1801 GAAAATATAA CGACATTTGC TGAAGAGACT AAGACAAATA TCGTAAAAAT
    1851 TGATGAAAAA TTAGAAGCCG TGGCTGATAC CGTCGACAAG CATGCCGAAG
    1901 CATTCAACGA TATCGCCGAT TCATTGGATG AAACCAACAC TAAGGCAGAC
    1951 GAAGCCGTCA AAACCGCCAA TGAAGCCAAA CAGACGGCCG AAGAAACCAA
    2001 ACAAAACGTC GATGCCAAAG TAAAAGCTGC AGAAACTGCA GCAGGCAAAG
    2051 CCGAAGCTGC CGCTGGCACA GCTAATACTG CAGCCGACAA GGCCGAAGCT
    2101 GTCGCTGCAA AAGTTACCGA CATCAAAGCT GATATCGCTA CGAACAAAGA
    2151 TAATATTGCT AAAAAAGCAA ACAGTGCCGA CGTGTACACC AGAGAAGAGT
    2201 CTGACAGCAA ATTTGTCAGA ATTGATGGTC TGAACGCTAC TACCGAAAAA
    2251 TTGGACACAC GCTTGGCTTC TGCTGAAAAA TCCATTGCCG ATCACGATAC
    2301 TCGCCTGAAC GGTTTGGATA AAACAGTGTC AGACCTGCGC AAAGAAACCC
    2351 GCCAAGGCCT TGCAGAACAA GCCGCGCTCT CCGGTCTGTT CCAATCTTAC
    2401 AACGTGGOTC GGTTCAATGT AACGGCTGCA GTCGGCGGCT ACAAATCCGA
    2451 ATCGGCAGTC GCCATCGGTC CCGGCTTCCG CTTTACCGAA AACTTTGCCG
    2501 CCAAAGCAGG CGTGGCAGTC GGCACTTCGT CCGGTTCTTC CGCAGCCTAC
    2551 CATGTCGGCG TCAATTACGA GTGGTAAAAG CTT
       1 MAWPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG APSAQGGQDM
      51 AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNM
     101 PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG
     151 TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL
     201 THCKGDSCSG NNFLDEEVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV
     251 GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP AEMPLIPVNQ
     301 ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP
     351 SKGEMLAGTA SYNGEVLHFH TENGRPSPSR GRFAAKVDFG SKSVDGIIDS
     401 GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA GKKVAGKYSY
     451 RPTDAEKGGF GVFAGKKEQD GSGGGGATND DDVKKAATVA IAAAYNNGQE
     501 INGFKAGETI YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV
     551 NENKONVDAK VKAAESEIEK LTTKLADTDA ALADTDAALD ATTNALNKLG
     601 ENITTFAEET KTNIVKIDER LEAVADTVDK HAEAFNDIAD SLDETNTKAD
     651 EAVKTANEAK QTAEETKQNV DAKVKAAETA AGKADAAAGT ANTAADKAEA
     701 VAAKVTDZKA DIATNKDNIA KKANSADVYT REESDSKEVR IDGLNATTEK
     751 LDTRLASAEK SIADHDTELN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY
     801 NVGRFNVTAA VGGYKSESAV AIGTGFRFTE NFAAKAGVAV GTSSGSSAAY
     851 HVGVNYEW*
  • ΔG983 and Hybrids
  • Bactericidal titres generated in response to ΔG983 (His-fusion) were measured against various strains, including the homologous 2996 strain:
  • 2996 NGH38 BZ133
    ΔG983 512 128 128
  • ΔG983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus:
  • ΔG983-ORF46.1
       1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
      51 CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
     101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
     151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
     201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
     251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
     301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
     351 GTATGGCAGA AAAOAACACG GCTATAACGA AAATTACAAA AACTATACGG
     401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA
     451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA
     501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA
     551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
     601 GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
     651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
     701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
     751 CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
     801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA
     851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
     901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
     951 ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG
    1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
    1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
    1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
    1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
    1201 ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT
    1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
    1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
    1351 CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
    1401 CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
    1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
    1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
    1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
    1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
    1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
    1701 GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG
    1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG
    1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
    1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG
    1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
    1951 GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
    2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC
    2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAAGTGGA TGCCTCCGAA
    2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
    2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
    2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
    2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
    2301 CCGCCTGAAA GoCGTATCGO ACGGGTTGGA CCACAACGGC ACGGGTCTGC
    2351 GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT
    2401 GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
    2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
    2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
    2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
    2601 CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
    2651 AACATGCGGA AGGCAGCGTC AAGGGCACGC TGATGCAGCT GGGCGCACTG
    2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
    2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA
    2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
    2851 CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
    2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA
    2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
    3001 AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
    3651 CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC
    3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAC
    3151 GGTGGCGGAG GCACTGGATC CTCAGATTTG GCAAACGATT CTTTTATCCG
    3201 GCAGGTTCTC GACCGTCAGC ATTTCGAACC CGACGGGAAA TACCACCTAT
    3251 TCGGCAGCAG GGGGGAACTT GCCGAGCGCA GCGGCCATAT CGGATTGGGA
    3301 AAAATACAAA GCCATCAGTT GGGCAACCTG ATGATTCAAC AGGCGGCCAT
    3351 TAAAGGAAAT ATCGGCTACA TTGTCCGCTT TTCCGATCAC GGGCACGAAG
    3401 TCCATTCCCC CTTCGACAAC CATGCCTCAC ATTCCGATTC TGATGAAGCC
    3451 GGTAGTCCCG TTGACGGATT TAGCCTTTAC CGCATCCATT GGGACGGATA
    3501 CGAACACCAT CCCGCCGACG GCTATGACGG GCCACAGGGC GGCGGCTATC
    3551 CCGCTCCCAA AGGCGCGAGG GATATATACA GCTACGACAT AAAAGGCGTT
    3601 GCCCAAAATA TCCGCCTCAA CCTGACCGAC AACCGCAGCA CCGGACAACG
    3651 GCTTGCCGAC CGTTTCCACA ATGCCGGTAG TATGCTGACG CAAGGAGTAG
    3701 GCGACGGATT CAAACGCGCC ACCCGATACA GCCCCGAGCT GGACAGATCG
    3751 GGCAATGCCG CCGAAGCCTT CAACGGCACT GCAGATATCG TTAAAAACAT
    3801 CATCGGCGCG GCAGGAGAAA TTGTCGGCGC AGGCGATGCC GTGCAGGGCA
    3851 TAAGCGAAGG CTCAAACATT GCTGTCATGC ACGGCTTGGG TCTGCTTTCC
    3901 ACCGAAAACA AGATGGCGCG CATCAACGAT TTGGCAGATA TGGCGCAACT
    3951 CAAAGACTAT GCCGCAGCAG CCATCCGCGA TTGGGCAGTC CAAAACCCCA
    4001 ATGCCGCACA AGGCATAGAA GCCGTCAGCA ATATCTTTAT GGCAGCCATC
    4051 CCCATCAAAG GGATTGGAGC TGTTCGGGGA AAATACGGCT TGGGCGGCAT
    4101 CACGGCACAT CCTATCAAGC GGTCGCAGAT GGGCGCGATC GCATTGCCGA
    4151 AAGGGAAATC CGCCGTCAGC GACAATTTTG CCGATGCGGC ATACGCCAAA
    4201 TACCCGTCCC CTTACCATTC CCGAAATATC CGTTCAAACT TGGAGCAGCG
    4251 TTACGGCAAA GAAAACATCA CCTCCTCAAC CGTGCCGCCG TCAAACGGCA
    4301 AAAATGTCAA ACTGGCAGAC CAACGCCACC CGAAGACAGG CGTACCGTTT
    4351 GACGGTAAAG GGTTTCCGAA TTTTGAGAAG CACGTGAAAT ATGATACGCT
    4401 CGAGCACCAC CACCACCACC ACTGA
       1 MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD
      51 VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLIULKPAIE AGYTGRGVEV
     101 GIVDTGESVG SISPPELYGR KEHGYNENYK NYTAYMRKEA PEDGGGKDIE
     151 ASFDDEAVIE TEAKPTDIRH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD
     201 ATLHINNTND ETKNDMMVAA IRNAWVKLGE RGVRIVNNSF GTTSRAGTAD
     251 LFQIANSEEQ YRQALIPYSG GDKTDEGIRL MINSDYGNLS YHIRNKNMLF
     301 IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKREMYGEP
     351 GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG
     401 TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG
     451 PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ LQLHGNNTYT
     501 GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN SDGIVYLADT
     551 DQSGANETVE IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK
     601 GAGYLNSTGR RVPFLSAAKI GQDYSFETNI ETDGGLLASL DSVEKTAGSE
     651 GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDASE
     701 SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIENSLA
     751 ATVYADSTAA HADMQGRRLK AVSGGLOHNG TGLRVIAQTQ QDGGTWEQGG
     801 VEGKMRGSTQ TVGIAAKTGE NTTAAATIGM GRSTWSENSA NAKTDSISLF
     851 AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NGTLMQLGAL
     901 GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG
     951 LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGRTGAR
    1001 NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLD
    1051 GGGGTGSSDL ANDSFIRQVL DRQHFEPDGK YHLFGSRGEL AERSGHIGLG
    1101 KIQSHQLGNL MIQQAAIKGN IGYIVRFSDH GHEVHSPFDN HASHSDSDEA
    1151 GSPVDGESLY RIHWDGYEHH PADGYDGPQG GGYPAPKGAR DTYSYDIKGV
    1201 AQMIRLNLTD NRSTGQRLAD REHMAGSMLT QGVGDGFKRA TRYSPELDRS
    1251 GNAAFAENGT ADIVKNIIGA AORTVGAGDA VQGISEGSNI AVMHGLGLLS
    1301 TENKMARDID LADMAQLKDY AAAAIRDWAV QNPNAAQGIE AVSNIFMAAI
    1351 PIKGIGAVRG KYGLGGITAH PIKRSQHGAI ALPKGKSAVS DATADAAYAK
    1401 YPSPYHSRNI RSNLEQRYGK ENITSSTVPP SNGKNVKLAD QRSPKTGVPF
    1451 DGKGFPNFEK HVKYDTLEHH HHHH*
    ΔG983-741
       1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
      51 CASCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
     101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
     151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
     201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
     251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
     301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
     351 GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG
     401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGAGATTGAA
     451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAACCAA AGCCGACGGA
     501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA
     551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
     601 GGGACGCTAC AGATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
     651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
     701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
     751 CTTTTCCAAh TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
     801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA
     851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
     901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
     951 ATTGCCATTT TATGAAAAAG ACGCTUAAAA AGGCATTATC ACAGTCGCAG
    1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
    1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
    1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
    1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
    1201 ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT
    1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
    1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
    1351 CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
    1401 CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
    1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
    1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
    1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
    1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
    1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
    1701 GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG
    1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG
    1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGAGC
    1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG
    1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
    1951 GGCGACACGC TGTCCTATTA TGTCCCTCGC GGCAATGCGG CACGGACTGC
    2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGANC
    2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA
    2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
    2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
    2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
    2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
    2301 CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
    2351 GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT
    2401 GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
    2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTCGGCATG GGACGCAGCA
    2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
    2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
    2601 CTCCTACGGA CGcTACAAAA AGAGCATCAG CCGCAGCACC GGTGCGGACG
    2651 AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
    2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
    2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA
    2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
    2851 CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
    2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA
    2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
    3001 AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
    3051 cGGCAACGGC TGGAACGGCT TGGCACCTTA CAGCTACGCC GGTTCCAAAC
    3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG
    3151 GGATCCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG GGCTTGccGA
    3201 TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA
    3251 CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT GGCGGCACAA
    3301 GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT
    3351 GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG
    3401 ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA
    3451 AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA
    3501 GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG
    3551 CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA
    3601 TATCGCGGGA COGCGTTCGG TTCAGACGAT GcCGGCGGAA AACTGAcCTA
    3651 CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA
    3701 AATCGcCAGA ACTCAATGTC GACCTGGCCO CCGCCGATAT CAAGCCGGAT
    3751 GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA
    3801 GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAACC CAGGAAGTTG
    3851 CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA TATCGGCCTT
    3901 GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA
       1 MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD
      51 VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPATE AGYTGRGVEV
     101 GIVDTGESVG SISFPELYGR KEHGYNENYK NTTAYMRKEA PEDGGGKDIE
     151 ASFDDEAVIE TRARPTDIRM VREIGHIDLV SHIIGGRSVD GRPAGGIAPD
     201 ATLHINETED ETKNEMMVAA IRNAWVKLGE RGVRIVENSF GTTSRAGTAD
     251 LFQIANSBEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF
     301 IFSTGEDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KYKEDIYGEP
     351 GTEPLEYGSN MCGITAMWCL SAFYEASVRF TRTNPIQIAG TSFSAPIVTG
     401 TAALLLQKYP WESNDNARTT LLTTAQDIGA VGVDSKFGWG LLDAGRAMNG
     451 pASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLARRGGSQ LQLHGENTYT
     501 GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN SDGIVYLADT
     551 DQSGANETVH IKGSLQLDGK GTLYTRDGKL LKVDGTAIIG GKLYMSARGK
     601 GAGYLNSTGR RVFASSAAKI GODYSFFTET ETDGGLLASL DSVEKTAGSE
     651 GDTLSYYVRR GNAARTASAA ANSAPAGLKH AVEQGGSNLE NLMVELDASE
     701 SRATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIFESLA
     751 ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ QDGGTWEQGG
     801 VEGEMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF
     851 AGIRHDAGDI GYLKGLPSTO RYKNSISRST GADEHAEGSV NGTLMQLGAL
     901 GGVEVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG
     951 LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR
    1001 NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNMSG RVGVGYRFLE
    1051 GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR KNEKLKLAAQ
    1101 GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ IEVDGQLITL ESGEFQVYKQ
    1151 SHSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF DKLPEGGRAT
    1201 YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD
    1251 GKRHAVISGS VLYNQARKGS YSLGIFGGKA QEVAGSAEVK TVNGIRHIGL
    1301 AAKQLEHBEH HH*
    ΔG983-961
       1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
      51 CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
     101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
     151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
     201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
     251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
     301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
     351 GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG
     401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA
     451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA
     501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA
     551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
     601 GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
     651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
     701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG GACTGCCGAC
     751 CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA
     801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA
     851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
     901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
     951 ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG
    1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
    1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
    1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
    1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
    1201 ACGGCGGCTC TGCTGCTOCA GAAATACCCG TGGATGAGCA ACGACAACCT
    1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG
    1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
    1351 CCCGCGTCGT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
    1401 CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA
    1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
    1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
    1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
    1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
    1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
    1701 GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG
    1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGG ACGCGGCAAG
    1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
    1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG
    1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
    1951 GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
    2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC
    2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTOGA TGCCTCCGAA
    2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
    2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
    2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
    2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
    2301 CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
    2351 GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCOGT
    2401 GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
    2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
    2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
    2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
    2601 CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
    2651 AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
    2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
    2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA
    2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA GTGAAGGCAC GCTGGTCGGA
    2851 CTCGCGGGTC TGAAGCTGTG GCAACCCTTG AGCGATAAAG CCGTCCTGTT
    2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA
    2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
    3001 AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
    3051 CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC
    3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG
    3151 OGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC
    3201 TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG
    3251 GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT
    3301 ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAAGG
    3351 TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA
    3401 ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAA
    3451 AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG CAGATACTGA
    3501 TGCCGCTCTG GATGCAACCA CCAACGCCTT GAATAAATTG GGAGAAAATA
    3551 TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA
    3601 AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA
    3651 CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG
    3701 TCAAAACCGC CAATGAAGCC AAACAGACGG COGAAGAAAC CAAACAAAAC
    3751 GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC
    3801 TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG
    3851 CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT
    3901 GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG
    3951 CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA
    4001 CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG
    4051 AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGG
    4101 CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG
    4151 GTCGGTTCAA TGTAACGGCT GCAGTCGGCG GCTACAAATC CGAATCGGCA
    4201 GTCGCCATCG GTACCGGCTT CCGCTTTACC GAAAACTTTG CCGCCAAAGC
    4251 AGGCGTGGCA GTCGGCACTT CGTCCGGTTC TTCCGCAGCC TACCATGTCG
    4301 GCGTCAATTA CGAGTGGCTC GAGCACCACC ACCACCACCA CTGA
       1 MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD
      51 VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLEPAIE AGYTGRGVEV
     101 GIVDTGESVG SISPPELYGR KEHGYNENYK NYTAYMPEZA PEDGCCKDIE
     151 ASFDDEAVIE TEAKPTDIRH VREIGHIDLV SHIIGGRSVD GRPAGGIAPD
     201 ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF GTTSRAGTAD
     251 LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNENMLF
     301 IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKREMYGEP
     351 GTEPLEYGSN MCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG
     401 TAALLLQKYP WNSNDNIATT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG
     451 PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ LQLBGENTYT
     501 GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN SDGIVYLADT
     551 DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYEEARGK
     601 GAGYLNSTGR RVPFLSAAKX GQDYSFFTNI ETDGGLLASL DSVERTAGSE
     651 GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLEVELDASE
     701 SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIPNSLA
     751 ATVYADSTAA EADMQGRELK AVSDGLDHNG TGLEVIAQTQ QDGGTWEQGG
     801 VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF
     851 AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NGTLMQLGAL
     901 GGVNVPFAAT GDLTVEGGLR YDLLKOGAFA EKGSALGWSG NSLTEGTING
     951 LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVIGGFTGA TAATGKTGAR
    1001 NNEHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE
    1051 GGGGTGSATN DMINKKAATV AIAAAYNNGQ EINGFRAGET IYDIDEDGTI
    1101 TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA KQTAEETKQN
    1151 KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE TKTNIVKIDE
    1201 KLEAVADTVD KHAEAFNDIA DSLDETNTKA DENVETANBA KQTAEETKQN
    1251 VrAFVEAAET AAGKASAAAG TANTAADKAE AVAAKVTDIK ADIATNKDNI
    1301 AKKANSADVY TREESDSKFV RIDGLNATTE KLDTPIASAE KSIADHDTRL
    1351 NGLDKTVSDL RKETRQGLAE QAALSGLFQP YNtTG1NVTA AVGGYKSESA
    1401 VAIGTGFRFT ENFAAKAGVA VGTSSGSSAA YHVGVNYEWL EHHHHHH*
    ΔG983-961c
       1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA
      51 CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA
     101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC
     151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT
     201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
     251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA
     301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT
     351 GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG
     401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA
     451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA
     501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA
     551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT
     601 GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT
     651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC
     701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC
     751 CTTTTCCAAA TAGCCAATTC GGAGGAGCAC TACCGCCAAG CGTTGCTCGA
     801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA
     851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC
     901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT
     951 ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG
    1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG
    1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT
    1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA
    1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
    1201 ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT
    1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGGGTGG
    1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA
    1351 CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC
    1401 CGATATTGCC TACTCcTTCc GTAACGACAT TTCAGGCACG GGCGGCCTGA
    1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG
    1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA
    1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG
    1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
    1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT
    1701 GGACGGCAAA GGTACGCTGT ACACACGTTT CTGAAAGTGG CTGAAAGTGG
    1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGcAAG
    1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC
    1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGAcG
    1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA
    1951 GGCGACACGc TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC
    2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC
    2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA
    2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA
    2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG
    2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC
    2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG
    2301 CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC
    2351 GCGTCATCGC GCAAACCCAA CAGGACGOTG GAACGTGGGA ACAGGGCGGT
    2401 GITGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA
    2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA
    2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT
    2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT
    2601 CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG
    2651 AACATGCGGA ACGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG
    2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG
    2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA
    2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA
    2851 CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT
    2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA
    2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC
    3001 ATTATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT
    3051 CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC
    3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG
    3151 GGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC
    3201 TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG
    3251 GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT
    3301 ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAAGG
    3351 TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA
    3401 ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAA
    3451 AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG CAGATACTGA
    3501 TGCCGCTCTG GATGCAACCA CCAACGCCTT GAATAAATTG GOAGAAAATA
    3551 TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA
    3601 AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA
    3651 CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG
    3701 TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC CAAACAAAAC
    3751 GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC
    3801 TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG
    3851 CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT
    3901 GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG
    3951 CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA
    4001 CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG
    4051 AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGG
    4101 CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG
    4151 GTCTCGAGCA CCACCACCAC CACCACTGA
       1 MTSAPDFNAG GTGIGSNSRA TTARSAAVSY AGIKNEMCKD RSMLCAGRDD
      51 VAVTDRDAKI NAPPPNLMTG DFPNPNDAYK NLINLEPAIR AGYTGRGVEV
     101 GIVDTGESVG SISFPELYGR KERGYNENYK NYTAYMRKEA PEDGGGKDIE
     151 ASFDDEAVIE TEARPTDIRM VRE/GHIDLV SHIIGGRSVD GRPAGGIAPD
     201 ATLHIMNTND ETRNEMMVAA IENAWVKLGR RGVRIVNNSF GTTSRAGTAD
     251 LFQIANSKEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNRNMLF
     301 IFSTGNDAQA QPNTYALLPF YERDAQRGII TVAGVDRSGE KFKREMYGEP
     351 GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG
     401 TAALLDQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGRAMNG
     451 PASFPFGDFT ADTRGTSDLA YSERNDISGT GGLIKKGGSQ LQLHGNNTYT
     501 GKTIIEGGSL VLYGNNKSDM RVETRGALIY NGAASGGSLN SDGIVYLADT
     551 DQSGANETVH IKGSLQLDGK GTLYTRLGRL LKVDGTAIIG GRLYMSARGR
     601 GAGYLNSTGR RVPFLSAAKI GODYSFETNI ETDGGLLASL DSVERTAGSE
     651 GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDASE
     701 SSATFETVET AAADRTDMPG IRPYGATFRA AAAVQMANAA DGVRIENSLA
     751 ATVYADSTAA HADMQGRRLK AVSDGMOHNG TGLRVIAQTQ QDGGTWEQGG
     801 VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF
     851 AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NOTLMQLGAL
     901 GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG
     951 LAGLKLSOPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGRTGAR
    1001 NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE
    1051 GGGGTGSATN DDDVKKAATV AIAAAYNNGQ EINGFKAGET IYDIDEDGTI
    1101 TKKDATAADV EADDFKGLGL KKVVTNATET VNENKQNVDA KVKAAESEIE
    1151 RLTTKLADTD AALADTDAAL DATTNALNKL GENITTFARE TKTNIVRIDE
    1201 RLRAVADTVD KHAEAFNDIA DSLDETNTKA DEAVRTANRA KQTAEETKQN
    1251 VDAKVRAAET AAGRAEAAAG TANTAADKAE AVAAKVTDIK ADIATNK1N1
    1301 AKKANSADVY TREESDSKEV RIDGLNATTE KIDTRIASAE KSIADHDTRL
    1351 NGLDKTVSDL RKETRQGLAE QAALSGLFQP INVGLEHHHH HH*
  • ΔG741 and Hybrids
  • Bactericidal litres generated in response to ΔG741 (His-fusion) were measured against various strains, including the homologous 2996 strain:
  • 2996 MC58 NGH38 F6124 BZ133
    ΔG741 512 131072 >2048 16384 >2048
  • As can be seen, the ΔG741-induced anti-bactericidal titre is particularly high against heterologous strain MC58.
  • ΔG741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:
  • ΔG741-961
       1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
      51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
     101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
     151 TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT
     201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
     251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
     301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
     351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CANAGCGGGC GAACATACAT
     401 CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
     451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
     501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
     551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
     601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC
     651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
     701 TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
     751 GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA
     801 AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA
     851 ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA
     901 ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA
     951 AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG
    1001 AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA
    1051 GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC
    1101 TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA
    1151 ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT
    1201 GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT
    1251 CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGAAG
    1301 CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA
    1351 AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA
    1401 AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG
    1451 CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT
    1501 ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA
    1551 CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG
    1601 ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA CGATACTCGC
    1651 CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA
    1701 AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG
    1751 TOGGTCGOTT CAATGTAACG GCTGCAGTCG GCGGCTACAA ATCCGAATCG
    1801 GCAGTCGCCA TCGGTACCGG CTTCCGCTTT ACCGAAAACT TTGCCGCCAA
    1851 AGCAGGCGTG GCAGTCGGCA CTTCGTCCGG TTCTTCCGCA GCCTACCATG
    1901 TCGGCGTCAA TTACGAGTGG CTCGAGCACC ACCACCACCA CCACTGA
       1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT
      51 YGNGDSLNTG KGENDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL
     101 TAFQTEQIQD SEHSGGHVAK RQPRIGDIAG EHTSFDKLPE GGEATYRGTA
     151 FGSDDAGGEL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA
     201 VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAARQL
     251 EGGGGTGSAT NDDDVKKAAT VAIAAAYANG QEINGFKAGE TIYDIDEDGT
     301 ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNENKQNVD AEVKAAESEI
     351 EKLTTKLADT DAALADTDAA LDATTNALNK AGZNITTFAM ETKTNIVKID
     401 EKLEAVADTV DKEAEAFNDI ADSLDETNTK ADEAVKTANE AEQTARETKQ
     451 NVDAKVKAAE TAAGKARAAA GTANTAADKA EAVAAKVTDI KADTATNKDN
     501 ZAKKANSADV YTREESDSKF VRIDGLNATT EKLDTRLASA EKSIADEDTE
     551 LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGRFNVT AAVGGYKSES
     601 AVAIGTGFRF TENFAAKAGV AVGTSSGSSA AYEVGVNYEW LHHHHHH*
    ΔG741-961c
       1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
      51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
     101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
     151 TATGGAAACG GTGACAGCCT CAATACGGGC.AAATTGAAGA ACGACAAGGT
     201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGSG CAGCTCATTA
     251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
     301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
     351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT
     401 CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
     451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
     501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
     551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
     601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC
     651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
     701 TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
     751 GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA
     801 AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA
     851 ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA
     901 ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA
     951 AGGTCTOGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG
    1001 AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA
    1051 GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC
    1101 TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA
    1151 ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT
    1201 GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT
    1251 CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGARG
    1301 CCGICAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA
    1351 AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA
    1401 AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG
    1451 CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT
    1501 ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA
    1551 CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG
    1601 ACACACGCTT GGCTTCTGCT GA.AAAATCCA TTGCCGATCA CGATACTCGC
    1651 CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA
    1701 AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG
    1751 TGGGTCTCGA GCACCACCAC CACCACCACT GA
       1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DOSVEKNEKL KLAAQGAEKT
      51 YGNGDSLNTG KLENDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL
     101 TAFQTEQKID SEHGGKMVAK RQFRIGDIAG EHTSFDELPE GGRATYRGTA
     151 FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA
     201 VTSGSVLYNQ AEKGSYSLGX FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL
     251 EGGGGTGSAT NDDDVKKAAT VAGAAAYNNG QEINGFKAGE TIYDIDEDGT
     301 ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNMNYQNVD AKVKAAESEI
     351 EKLTTKLADT DAALADTDAA LDATTNALNX LGENITTFAE ETKTNIVKID
     401 EKLENVADTV DKHAEAFNDI ADSLDETNTX ADEANTTANE AIMTAEETIM
     451 NVDAKVKAAE TAAGKAEAAA GTANTAADKA EAVAAKVTDI KADIATNKDN
     501 IAKKANSADV YTRFZSDSKF VRIDGLNATT EXADTRLASA EKSIADHDTR
     551 LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGLEHHH HHH*
    ΔG741-983
       1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
      51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
     101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
     151 TATGGAAACG GTGACABCCT CAATACGGGC AAATTGAAGA ACGACAAGGT
     201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
     251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
     301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
     351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT
     401 CTTTIGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
     451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
     501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTIGAAATCG CCAGAACTCA
     551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
     601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC
     651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
     701 TGAAKACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
     751 GAGGGATCCG GCGGAGGCGG CACTTCTGCG CCCGACTTCA ATGCAGGCGG
     801 TACCGGTATC GGCAGCAACA GCAGAGCAAC AACAGCGAAA TCAGCAGCAG
     851 TATCTTACGC CGGTATCAAG AACGAAATGT GCAAAGACAG AAGCATGCTC
     901 TGTGCCGGTC GGGATGACGT TGCGGTTACA GACAGGGATG CCAAAATCAA
     951 TGCCCCCCCC CCGAATCTGC ATACCGGAGA CTTTCCAAAC CCAAATGACG
    1001 CATACAAGAA TTTGATCAAC CTCAAACCTG CAATTGAAGC AGGCTATACA
    1051 GGACGCGGGG TAGAGGTAGG TATCGTCGAC ACAGGCGAAT CCGTCGGCAG
    1101 CATATCCTTT CCCGAACTGT ATGGCAGAAA AGAACACGGC TATAACGAAA
    1151 ATTACAAAAA CTATACGGCG TATATGCGGA AGGAAGCGCC TGAAGACGGA
    1201 GGCGGTAAAG ACATTGAAGC TTCTTTCGAC GATGAGGCCG TTATAGAGAC
    1251 TGAAGCAAAG CCGACGGATA TCCGCCACGT AAAAGAAATC GGACACATCG
    1301 ATTTGGTCPC CCATATTATT GGCGGGCGTT CCGTGGACGG CAGACCTGCA
    1351 GGCGGTATTG CGCCCGATGC GACGCTACAC ATAATGAATA CGAATGATGA
    1401 AACCAAGAAC GAAATGATGG TTGCAGCCAT CCGCAATGCA TGGGTCAAGC
    1451 TGGGCGAACG TGGCGTGCGC ATCGTCAATA ACAGTTTTGG AACAACATCG
    1501 AGGGCAGGCA CTGCCGACCT TTTCCAAATA GCCAATTCGG AGGAGCAGTA
    1551 CCGCCAAGCG TTGCTCGACT ATTCCGGCGG TGATAAAACA GACGAGGGTA
    1601 TCCGCCTGAT GCAACAGAGC GATTACGGCA ACCTGTCCTA CCACATCCGT
    1651 AATAAAAACA TGCTTTTCAT CTTTTCGACA GGCAATGACG CACAAGCTCA
    1701 GCCCAACACA TATGCCCTAT TGCCATTTTA TGAAAAAGAC GCTCAAAAAG
    1751 GCATTATCAC AGTCGCAGGC GTAGACCGCA GTGGAGAAAA GTTCAAACGG
    1801 GAAATGTATG GAGAACCGGG TACAGAACCG CTTGAGTATG GCTCCAACCA
    1851 TTGCGGAATT ACTGCCATGT GGTGCCTGTC GGCACCCTAT GAAGCAAGCG
    1901 TCCGTTTCAC CCGTACAAAC CCGATTCAAA TTGCCGGAAC ATCCTTTTCC
    1951 GCAcCCATcG TAACCGGCAC GGeGGcTCTG CTGCTGCAGA AATACCCGTG
    2001 GATGAGCAAC GACAACCTGC GTACCACGTT GCTGACGACG GCTCAGGACA
    2051 TCGGTGCAGT CGGCGTGGAC AGCAAGTTCG GCTGGGGACT GCTGGATGCG
    2101 GGTAAGGCCA TGAACGGACC CGCGTCCTTT CCGTTCGGCG ACTTTACCGC
    2151 CGATACGAAA GGTACATCCG ATATTGCCTA CTCCTTCCGT AACGACATTT
    2201 CAGGCACGGG CGGCCTGATC AAAAAAGGCG GCAGCCAACT GCAAcTGCAC
    2251 GGCAACAACA CCTATACGGG CAAAACCATT ATCGAAGGCG GTTCGCTGGT
    2301 GTTGTACGGC AACAACAAAT CGGATATGCG CGTCGAAACC AAAGGTGCGC
    2351 TGATTTATAA CGGGGCGGCA TCCGGCGGCA GCCTGAACAG CGACGGCATT
    2401 GTcTATCTGG cAGATACCGA CCAATCCGGC GCAAACGAAA CCGTACACAT
    2451 cAAAGGCAGT cTGCAGcTGG ACGGCAAAGG TACGCTGTAC ACACGTTTGG
    2501 GCAAACTGCT GAAAGTGGAC GGTACGGCGA TTATCGGCGG CAAGCTGTAC
    2551 ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG
    2601 TGIICCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
    2651 CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA
    2701 AAAACAGCGG GCAGTGAAGG cGACACGCTG TCCTATTATG TCCGTCGCGG
    2751 CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
    2801 TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
    2851 GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
    2901 GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT
    2951 TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC
    3001 ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA
    3051 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
    3101 ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
    3151 ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC
    3201 CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
    3251 TGGGCATGGG AcGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
    3301 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG
    3351 CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC
    3401 GcAGCAcCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA cGocAGGCTG
    3451 ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG
    3501 AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG
    3551 CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGOGGCAA CAGCCTCACT
    3601 GAAGGCACGC TGGTCGGACT CGCGGGTCPG AAGCTGTCGC AACCCTTGAG
    3651 CGATAAAGCC GTCCTGTTTG CAACGGGGGG CGTGGAACGC CACCTGAACG
    3701 GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC
    3751 GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT
    3801 GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
    3851 GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA
    3901 GGCTACCGGT TCCTCGAGCA CCACCACCAC CACCACTGA
       1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT
      51 YGNGDSLNTG KTANDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL
     101 TAFQTEQIQD SEHSGKEVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA
     151 FGSDDAGGKL TTTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRRA
     201 VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL
     251 EGSGGGGTsA pDFNAGGTGI GSNSRATTAX SAAVSYAGIK NEMCKDRSML
     301 CAGRDDVAVT DRDAKINAPP PNGHTGDFPN PNDAYKNLIN LKPAIRAGYT
     351 GRGVEVGIVD TGESVGSISF PRLYGRKEHG YNENYKNyTA YMRREAPEDG
     401 GGKDIEASPD DEAVIETEAK PTDIREVREI GHIDLVSHII GGRSVDGRPA
     451 GGIAPDATLH IMNTNDETKN EMMVAAIRNA WVKLGERGVR IVNNSPGTTS
     501 RAGTADLFQI ANSEEQYRQA LLDYSGGDKT DEGIRLMQQS DYGNLSYHIR
     551 NKNMLFIPST GNDAQAQPNT YALLPFYEKD AQKGIITVAG VDRSGEKFKR
     601 EMyGEPGTER LEYGSNHCGI TAMWCLSAPY EASVRFTRTN PIQIAGTSPS
     651 APIVTGTAAL LLQKYPWMSN DNLRTTLLTT AQDIGAVGVD SKFGWGGLDA
     701 GRAMNGPASF PFGDPTADTK GTSDIAYSFR NDISGTGGLI KRQGSQLQGH
     751 GNNTYTGRTI IEGGSLVLYG NNKSDQRVET KGALIYNGAA SGGSLNSDGI
     801 VYLADTDQSG ANETVHIKGS LQLDGKGTLY TRLGKLLKVD GTAIIGGKLY
     851 MSARGKGAGY GNSTGRRVPP LSAAKIGQDY SFFTNIETDG GGLASLDSVE
     901 KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLEHAVEQ GGSNLENLKV
     951 ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR
    1001 IFNSLAATVY ADSTAAHADM QGRRLRAVSD GLDHNGTGLR VIAQTQQDGG
    1051 TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANAKT
    1101 DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL
    1151 MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT
    1201 EGTLVGLAGL RLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT
    1251 GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSRQ YGNHSGRVGV
    1301 GYRFLEHHHH HH*
    ΔG741-ORF46.1
       1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC
      51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG
     101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT
     151 TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT
     201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA
     251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA
     301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT
     351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT
     401 CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG
     451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC
     501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA
     551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC
     601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC
     651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG
     701 TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC
     751 GACGGTGGCG GAGGCACTGG ATCCTCAGAT TTGGCAAACG ATTCTTTTAT
     901 CCGGCAGGTT CTCGACCGTC AGCATTTCGA ACCCGACGGG AAATACCACC
     851 TATTCGGCAG CAGGGGGGAA CTTGCCGAGC GCAGCGGCCA TATCGGATTG
     901 GGAAAAATAC AAAGCCATCA GTTGGGCAAC CTGATGATTC AACAGGCGGC
     951 CATTAAAGGA AATATCGGCT ACATTGTCCG CTTTTCCGAT CACGGGCACG
    1001 AAGTCCATTC CCCCTTCGAC AACCATGCCT CACATTCCGA TTCTGATGAA
    1051 GCCGGTAGTC CCGTTGACGG ATTTAGCCTT TACCGCATCC ATTGGGACGG
    1101 ATACGAACAC CATCCCGCCG ACGGCTATGA CGGGCCACAG GGCGGCGGCT
    1151 ATCCCGCTCC CAAAGGCGCG AGGGATATAT ACAGCTACGA CATAAAAGGC
    1201 GTTGCCCAAA ATATCCGCCT CAACCTGACC GACAACCGCA GCACCGGACA
    1251 ACGGCTTGCC GACCGTTTCC ACAATGCCGG TAGTATGCTG ACGCAAGGAG
    1302 TAGGCGACGG ATTCAAACGC GCCACCCGAT ACAGCCCCGA GCTGGACAGA
    1351 TCGGGCAATG CCGCCGAAGC CTTCAACGGC ACTGCAGATA TCGTTAAAAA
    1401 CATCATCGGC GCGGCAGGAG AAATTGTCGG CGCAGGCGAT GCCGTGCAGG
    1451 GCATAAGGGA AGGCTCAAAC ATTGCTGTCA TGCACGGCTT GGGTCTGCTT
    1501 TCCACCGAAA ACAAGATGGC GCGCATCAAC GATTTGGCAG ATATGGCGCA
    1551 ACTCAAAGAC TATGCCGCAG CAGCCATCCG CGATTGGGCA GTCCAAAACC
    1601 CCAATGCCGC ACAAGGCATA GAAGCCGTCA GCAATATCTT TATGGCAGCC
    1651 ATCCCCATCA AAGGGATTGG AGCTGTTCGG GGAAAATACG GCPTGGGCG
    1701 CATCACGGCA CATCCTATCA AGCGGTCGCA GATGGGCGCG ATCGCATTGC
    1751 CGAAAGGGAA ATCCGCCGTC AGCGACAATT TTGCCGATGC GGCATACGCC
    1801 AAATACCCGT CCCCTTACCA TTCCCGAAAT ATCCGTTCAA ACTTGGAGCA
    1851 GCGTTACGGC AAAGAAAACA TCACCTCCTC AACCGTGCCG CCGTCAAACG
    1901 GCAAAAATGT CAAACTGGCA GACCAACGCC ACCCGAAGAC AGGCGTACCG
    1951 TTTGACGGTA AAGGGTTTCC GAATTTTGAG AAGCACGTGA AATATGATAC
    2001 GCTCGAGCAC CACCACCACC ACCACTGA
       1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT
      51 YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL
     101 TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA
     151 FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA
     201 VISGSVLYNQ ABEGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL
     251 DGGGGTGSSD LANDSFIRQV LDRQHFEPDG EYELFGSRGE LAERSGHIGL
     301 GKIQSHQLGN LMIQQAAIKG NIGYIVRFSD HGHEVHSPFD NHASHSDSDE
     351 AGSPVDGFSL YRIHWDGYER HPADGYDGPQ GGGYPAPKGA RDIYSYDIKG
     401 VAQNIKANLT DNRSTGQRLA DRFHNAGSML TQGVGDGFKR ATRYSPELDR
     451 SGNAAEAFNG TADIVKNIIG AAGEIVGAGD AVQGISEGSN IAVMHQLGLL
     501 STENKMARIN DIADMAQLKD YAAAAIRDWA VQNPNAAQGI EAVSNIFMAA
     551 IPIKGIGAVR GKYGLGGITA HPIKRSQMGA IALPKGKSAV SDNFADAAYA
     601 KYPSPYHSRN IRSNLEQRYG KENITSSTVP PSNGKNVKLA DQRHPKTGVP
     651 FDGKGFPNFE KHVKYDTLEH HHHHH*
  • Example 16—C-Terminal Fusions (‘Hybrids’) with 287/ΔG287
  • According to the invention, hybrids of two proteins A & B may be either NH2-A-B-COOH or NH2-B-A-COOH. The effect of this difference was investigated using protein 287 either C-terminal (in ‘287-His’ form) or N-terminal (in ΔG287 form sequences shown above) to 919, 953 and ORF46.1. A panel of strains was used, including homologous strain 2996. FCA was used as adjuvant:
  • 287 & 919 287 & 953 287 & ORF46.1
    Strain ΔG287-919 919-287 ΔG287-953 953-287 ΔG287-46.1 46.1-287
    2996 128000 16000 65536 8192 16384 8192
    BZ232 256 128 128 <4 <4 <4
    1000 2048 <4 <4 <4 <4 <4
    MC58 8192 1024 16384 1024 512 128
    NGH38 32000 2048 >2048 4096 16384 4096
    394/98 4096 32 256 128 128 16
    MenA (F6124) 32000 2048 >2048 32 8192 1024
    MenC (BZ133) 64000 >8192 >8192 <16 8192 2048
  • Better bactericidal titres are generally seen with 287 at the N-terminus m the ΔG form)
  • When fused to protein 961 [NH2-ΔG287-961-COOH sequence shown above], the resulting protein is insoluble and must be denatured and renatured for purification. Following renaturation, around 50% of the protein was found to remain insoluble. The soluble and insoluble proteins were compared, and much better bactericidal titres were obtained with the soluble protein (FCA as adjuvant):
  • 2996 BZ232 MC58 NGH38 F6124 BZ133
    Soluble 65536 128 4096 >2048 >2048 4096
    Insoluble 8192 <4 <4 16 n.d. n.d.
  • Titres with the insoluble form were, however, improved by using alum adjuvant instead:
  • Insoluble 32768 128 4096 >2048 >2048 2048
  • Example 17—N-Terminal Fusions ‘Hybrids’) to 287
  • Expression of protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.
  • As an alternative to using GST as an N-terminal fusion partner, 287 was placed at the C-terminus of protein 919 (‘919-287’), of protein 953 (‘953-287’), and of proteins ORF46.1 (‘ORF46.1-287’). In both cases, the leader peptides were deleted, and the hybrids were direct in-frame fusions.
  • To generate the 953-287 hybrid, the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer. For the 953 gene, the 5′ and the 3′ primers used for amplification included a NdeI and a BamHI restriction sites respectively, whereas for the amplification of the 287 gene the 5′ and the 3′ primers included a BamHI and a XhoI restriction sites respectively. In this way a sequential directional cloning of the two genes in pET21b+, using NdeI-BamHI (to clone the first gene) and subsequently BamHI-XhoI (to clone the second gene) could be achieved.
  • The 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the XhoI site at the 3′-end of the 919-His clone in pET21b+. The primers used for amplification of the 287 gene were designed for introducing a SalI restriction site at the 5′- and a XhoI site at the 3′- of the PCR fragment. Since the cohesive ends produced by the SalI and XhoI restriction enzymes are compatible, the 287 PCR product digested with SalI-XhoI could be inserted in the pET21b-919 clone cleaved with XhoI.
  • The ORF46.1-287 hybrid was obtained similarly.
  • The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:
  • Mixture with 287 Hybrid with 287
    919 32000 16000
    953 8192 8192
    ORF461 128 8192
  • Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained for 919-287 and 953-287:
  • 919 953 ORF46.1
    Strain Mixture Hybrid Mixture Hybrid Mixture Hybrid
    MC58 512 1024 512 1024 1024
    NGH38 1024 2048 2048 4096 4096
    BZ232 512 128 1024 16
    MenA (F6124) 512 2048 2048 32 1024
    MenC (C11) >2048 n.d. >2048 n.d. n.d.
    MenC (BZ133) >4096 >8192 >4096 <16 2048
  • Hybrids of ORF46.1 and 919 were also constructed. Best results (four-fold higher titre) were achieved with 919 at the N-terminus.
  • Hybrids 919-519His, ORF97-225His and 225-ORF97His were also tested. These gave moderate ELISA fitres and bactericidal antibody responses.
  • Example 18—the Leader Peptide from ORF4
  • As shown above, the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in E. coli.
  • Example 19—Domains in 564
  • The protein ‘564’ is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in FIG. 8 (according to the MC58 sequence):
  • Domain
    A B C D
    Amino Acids 79-360 361-731 732-2044 2045-2073
  • These domains show the following homologies:
      • Domain A shows homology to other bacterial toxins:
  • gb|AAG03431.1|AE004443_9 probable hemagglutinin
    [Pseudomonas aeruginosa] (38%)
    gb|AAC31981.1|(139897) HecA
    [Pectobacterium chrysanthemi] (45%)
    emb|CAA36409.1|(X52156) filamentous hemagglutinin
    [Bordetella pertussis] (31%)
    gb|AAC79757.1|(AF057695) large supernatant protein1
    [Haemophilus ducreyi] (26%)
    gb|AAA25657.1|(M30186) HpmA precursor
    [Proteus mirabilis] (29%)
      • Domain B shows no homology, and is specific to 564.
      • Domain C shows homology to:
  • gb|AAF84995.1|AE004032 HA-like secreted protein
    [Xylella fastidiosa] (33%)
    gb|AAG05850.1|AE004673 hypothetical protein
    [Pseudomonas aeruginosa] (27%)
    gb|AAF68414.1AF237928 putative FHA
    [Pasteurella multocisida] (23%)
    gb|AAC79757.1|(AF057695) large supernatant protein1
    [Haemophilus ducreyi] (23%)
    pir||S21010 FHA B precursor
    [Bordetella pertussis] (20%)
      • Domain D shows homology to other bacterial toxins:
        • gb|AAF84995.1|AE004032_14 HA-like secreted protein [Xylella fastidiosa] (29%)
  • Using the MC58 strain sequence, good intracellular expression of 564ab was obtained in the form of GST-fusions (no purification) and his-tagged protein; this domain-pair was also expressed as a lipoprotein, which showed moderate expression in the outer membrane/supernatant fraction.
  • The b domain showed, moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.
  • The c domain showed good intracellular expression as a GST-fusion, but was insoluble. The d domain showed moderate intracellular expression as a his-tagged product (no purification). The cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion,
  • Good bactericidal assay titres were observed using the c domain and the be pair.
  • Example 20—the 919 Leader Peptide
  • The 20mer leader peptide from 919 is discussed in example 1 above:
      • MKKYLFRAAL YGIAAAYLAA
  • As shown in example 1, deletion of this leader improves heterologous expression, as does substitution with the ORF4 leader peptide. The influence of the 919 leader on expression was investigated by fusing the coding sequence to the PhoC reporter gene from Morganella morganii [Thaller et al. (1994) Microbiology 140:1341-1350]. The construct was cloned in the pET21-b plasmid between the NdeI and XhoI sites (FIG. 9):
  •   1 MKKYLFRAALYGIAAAILAA AIPAGNDATT KPDLYYLKNE QAIDSLKLLP
     51 PPPEVGSIQF LNDQAMYEKG RMLRNTERGK QAQADADLAA GGVATAFSGA
    101 FGYPITEKDS PELYELLTNM IEDAGDLATR SAKEHYMRIR PFAFYGTETC
    151 NTKDQKKLST NGSYPSGHTS IGWATALVLA EVNPANQDAI LERGYQLGQS
    201 RVICGYHWQS DVDAARIVGS AAVATLHSDP AFQAQLAKAK QEFAQKSQK*
  • The level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide. The same result was obtained even after substitution of the T7 promoter with the E. coli Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.
  • In order to investigate if the results observed were due to some peculiarity of the 919 signal peptide nucleotide sequence (secondary structure formation, sensitivity to RNAases, etc.) or to protein instability induced by the presence of this signal peptide, a number of mutants were generated. The approach used was a substitution of nucleotides of the 919 signal peptide sequence by cloning synthetic linkers containing degenerate codons. In this way, mutants were obtained with nucleotide and/or amino acid substitutions.
  • Two different linkers were used, designed to produce mutations in two different regions of the 919 signal peptide sequence, in the first 19 base pairs (L1) and between bases 20-36 (S1).
  • L1:
    5′ T ATG AAa/g TAc/t c/tTN TTt/c a/cGC GCC GCC CTG
    TAC GGC ATC GCC GCC GCC ATC CTC GCC GCC GCG ATC CC
    3′
    S1:
    5′ T ATG AAA AAA TAC CTA TTC CGa/g GCN GCN c/tTa/g
    TAc/t GGc/g ATC GCC GCC GCC ATC CTC GCC GCC CCC ATC
    CC
     3′
  • The alignment of some of the mutants obtained is given below.
  • L1 mutants:
    9L1-a ATGAAGAAGTACCTTTTCAGCGCCGCC---------------------------------
    9L1-e ATGAAATAATACTTTTTCCGCGCCGCC---------------------------------
    9L1-d ATGAAAAAATACTTTTTCCGCGCCGCC---------------------------------
    9L1-f ATGAAAAAATATCTCTTTAGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC
    919sp ATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC
    9L1a MKKYLFSAA--------
    9L1e MKKYFFRAA--------
    9L1d MKKYFFRAA--------
    9L1f MREYLFSAALYGIAAAILAA
    919sp MKKYLFRAALYGIAAAILAA (i.e. native signal peptide)
    S1 mutants:
    9S1-e ATGAAAAAATACCTATTC..................ATCGCCGCCGCCATCCTCGCCGCC
    9S1-c ATGAAAAAATACCTATTCCGAGCTGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC
    9S1-b ATGAAAAAATACCTATTCCGGGCCGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC
    9S1-i ATGAAAAAATACCTATTCCGGGCGGCTTTGTACGGGATCGCCGCCGCCATCCTCGCCGCC
    919sp ATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC
    9S1e MKKYLF......IAAAILAA
    9S1c MKKYLFRAAQYGIAAAILAA
    9S1b MKKYLFRAAQYGIAAAILAA
    9S1i MKKYLFRAALYGIAAAIIAA
    919sp MKKYLFRAALYGIAAAILAA
  • As shown in the sequences alignments, most of the mutants analysed contain in-frame deletions which were unexpectedly produced by the host cells.
  • Selection of the mutants was performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 μg/ml ampicillin, 50 μg/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green (FIG. 10).
  • A quantitative analysis of PhoC produced by these mutants was carried out in liquid medium using pNPP as a substrate for PhoC activity. The specific activities measured in cell extracts and supernatants of mutants grown in liquid medium for 0, 30, 90, 180 min. were:
  • Cell Extracts
  • 0 30 90 180
    control 0.00 0.00 0.00 0.00
    9phoC 1.11 1.11 3.33 4.44
    9S1e 102.12 111.00 149.85 172.05
    9L1a 206.46 111.00 94.35 83.25
    9L1d 5.11 4.77 4.00 3.11
    9L1f 27.75 94.35 82.14 36.63
    9S1b 156.51 111.00 72.15 28.86
    9S1c 72.15 33.30 21.09 14.43
    9S1i 156.51 83.25 55.50 26.64
    phoCwt 194.25 180.93 149.85 142.08
  • Supernatants
  • 0 30 90 180
    control 0.00 0.00 0.00 0.00
    9phoC 0.33 0.00 0.00 0.00
    9S1e 0.11 0.22 0.44 0.89
    9L1a 4.88 5.99 5.99 7.22
    9L1d 0.11 0.11 0.11 0.11
    9L1f 0.11 0.22 0.11 0.11
    9S1b 1.44 1.44 1.44 1.67
    9S1c 0.44 0.78 0.56 0.67
    9S1i 0.22 0.44 0.22 0.78
    phoCwt 34.41 43.29 87.69 177.60
  • Some of the mutants produce high amounts of PhoC and in particular, mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.
  • Example 21—C-Terminal Deletions of Maf-Related Proteins
  • MafB-related proteins include 730, ORF46 and ORF29.
  • The 730 protein from MC58 has the following sequence:
  •   1 VKPLRRLTNLLAACAVAAAALIQPALAADL AQDPFITDNA QRQHYEPGGK
     51 YHLFGDPRGS VSDRTGKINV IQDYTHQMGN LLIQQANING TIGYHTRFSG
    101 HGHEEHAPFD NHAADSASEE KGNVDEGFTV YRLNWEGHEH HPADAYDGPK
    151 GGNYPKPTGA RDEYTYHVNG TARSIKLNPT DTRSIRQRIS DNYSNLGSNF
    201 SDRADEANRK MFEHNAKLDR WGNSMEFING VAAGALNPFI SAGEALGIGD
    251 ILYGTRYAID KAAMRNIAPL PAEGKFAVIG GLGSVAGFEK NTREAVDRWI
    301 QENPNAAETV EAVFNVAAAA KVAKLAKAAK PGKAAVSGDF ADSYKKKLAL
    351 SDSARQLYQN AKYREALDIH YEDLIRRKTD GSSKFINGRE IDAVTNDALI
    401 QAKRTISAID KPKNFLNQKN RKQIKATIEA ANQQGKRAEF WFKYGVHSQV
    451 KSYIESKGGI VXTGLGD*
  • The leader peptide is underlined.
  • 730 shows similar features to ORF46 (see example 8 above):
      • as for Orf46, the conservation of the 730 sequence among MenB, MenA and gonococcus is high (>80%) only for the N-terminal portion. The C-terminus, from ˜340, is highly divergent.
      • its predicted secondary structure contains a hydrophobic segment spanning the central region of the molecule (aa. 227-247).
      • expression of the full-length gene in E. coli gives very low yields of protein. Expression from tagged or untagged constructs where the signal peptide sequence has been omitted has a toxic effect on the host cells. In other words, the presence of the full-length mature protein in the cytoplasm is highly toxic for the host cell while its translocation to the periplasm (mediated by the signal peptide) has no detectable effect on cell viability. This “intracellular toxicity” of 730 is particularly high since clones for expression of the leaderless 730 can only be obtained at very low frequency using a recA genetic background (E. coli strains: HB101 for cloning; HMS174(DE3) for expression).
  • To overcome this toxicity, a similar approach was used for 730 as described in example 8 for ORF46. Four C-terminal truncated forms were obtained, each of which is well expressed. All were obtained from intracellular expression of His-tagged leaderless 730.
  • Form A consists of the N-terminal hydrophilic region of the mature protein (aa. 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.
  • Form B extends to the end of the region conserved between serogroups (aa. 28-340). This was purified as an insoluble His-tagged product.
  • The C-terminal truncated forms named C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the protein over-expressed in different clones showed differences in molecular mass. Sequencing of two of the clones revealed that in both cases integration of an E. coli IS sequence had occurred within the sequence coding for the C terminal region of 730. The two integration events have produced in-frame fusion with 1 additional codon in the case of C1, and 12 additional codons in the case of C2 (FIG. 11). The resulting “mutant” forms of 730 have the following sequences:
  • 730-C1 (due to an IS1 insertion-fig. 11A)
      1 MADLAQDPFI TDMAQRQHYE PGGKYHLFGD PRGSVSDRTG KINVIQDYTH
     51 QMGNLLIQQA NINGTIGYET RFSGEGHEEM APFDNHAADS ASEEKGNVDE
    101 GFTVYRLNWE GHEHMPADAY DGPKGGNYPK PTGARDEYTY HVNGTARSIK
    151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEENA KLDRWGNSME
    201 FINGVAAGAL NPFISAGEAL GIGDEDYGTR YAIDKAAMRN IAPLPAEGKF
    251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV AAAAKVAKLA
    301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA DDIEYEDLIK
    351 RKTDGSSKFI NGREIDAVTN DALIQAR*
  • The additional amino acid produced by the insertion is underlined.
  • 730-C2 (due to an IS5 insertion-Fig. 11B)
      1 MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG KINVIQDYTH
     51 QMGNLLIQQA NINGTIGYHT RFSGHGHEEH APFDNEAADS ASEEKGNVDE
    101 GFTVYRLNWE GBEHHPADAY DGPKGGNYPK PTGARDEYTY HVNGTARSIK
    151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA KLDRWGNSME
    201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMEN IAPLPAEGKE
    251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV AAAAKVAKLA
    301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA LGKVRISGEI
    351 LLG*
  • The additional amino acids produced by the insertion are underlined.
  • In conclusion, intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic. These data suggest that the “intracellular toxicity” of 730 is associated with the C-terminal 65 amino acids of the protein.
  • Equivalent truncation of ORF29 to the first 231 or 368 amino acids has been performed, using expression with or without the leader peptide (amino acids 1-26; deletion gives cytoplasmic expression) and with or without a His-tag.
  • Example 22—Domains in 961
  • As described in example 9 above, the OST-fusion of 961 was the best-expressed in Exoli. To improve expression, the protein was divided into domains (FIG. 12).
  • The domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.
  • These domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST. Exalt: clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:
  • Total lysate Periplasm Supernatant OMV
    (Western (Western (Western SDS-
    Blot) Blot) Blot) PAGE
    961 (o/n)
    961 (IPTG) +/−
    961-L (o/n) + +
    961-L (IPTG) + +
    961c-L (o/n)
    961c-L (IPTG) + + +
    961Δ1-L (o/n)
    961Δ1-L (IPTG) + +
  • The results show that in E. coli:
      • 961-L is highly expressed and localized on the outer membrane. By western blot analysis two specific bands have been detected: one at ˜45 kDa (the predicted molecular weight) and one at ˜180 kDa, indicating that 961-L can form oligomers. Additionally, these aggregates are more expressed in the over-night culture (without IPTG induction). OMV preparations of this clone were used to immunize mice and serum was obtained. Using overnight culture (predominantly by oligomeric form) the serum was bactericidal; the IPTG-induced culture (predominantly monomeric) was not bactericidal.
      • 961Δ1-L (with a partial deletion in the anchor region) is highly expressed and localized on the outer membrane, but does not form oligomers;
      • the 961c-L (without the anchor region) is produced in soluble form and exported in the supernatant.
  • Titres in ELISA and in the serum bactericidal assay using His-fusions were as follows:
  • ELISA Bactericidal
    961a (aa 24-268) 24397 4096
    961b (aa 269-405) 7763 64
    961c-L 29770 8192
    961c (2996) 30774 >65536
    961c (MC58) 33437 16384
    961d 26069 >65536
  • E. coli clones expressing different forms of 961 (961, 961-L, 961Δ1-L and 961c-L) were used to investigate if the 961 is an adhesin (c.f. YadA). An adhesion assay was performed using (a) the human epithelial cells and (b) E. coli clones after either over-night culture or three hours IPTG induction. 961-L grown over-night (961Δ1-L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.
  • 961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.
  • Example 23—Further Hybrids
  • Further hybrid proteins of the invention are shown below (see also FIG. 14). These are advantageous when compared to the individual proteins:
  • ORF46.1-741
       1 ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA
      51 GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC
     101 TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG
     151 TTGGGCAACC TGATGANTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA
     201 CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA
     251 ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA
     301 TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA
     351 CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA
     401 GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC
     451 AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA
     501 CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG
     551 CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC
     601 TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA
     651 AATTGTCGGC GCAGGCGATG CCGTGCAGOG CATAAGCGAA GGCTCAAACA
     701 TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG
     751 CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC
     801 AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG
     851 AAGCCGTCAG CAATATCTTT ATGGCASCCA TCCCCATCAA AGGGATTGGA
     901 GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA
     951 GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA
    2001 GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT
    1051 TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT
    1101 CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG
    1151 ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG
    1201 AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GGGGTGGTGT
    1251 CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA TGCACTAACC GCACCGCTCG
    1301 ACCATAAAGA CAAAGGTTTG CAGTCTTTGA CGCTGGATCA GTCCGTCAGG
    1351 AAAAACGAGA AACTGAAGCT GGCGGCACAA GGTGCGGAAA AAACTTATGG
    1401 AAACGGTGAC AGCCTCAATA CGGGCAAATT GAAGAACGAC AAGGTCAGCC
    1451 GTTTCGACTT TATCCGCCAA ATCGAAGTGG ACGGGCAGCT CATTACCTTG
    1501 GAGAGTGGAG AGTTCCAAGT ATACAAACAA AGCCATTCCG CCTTAACCGC
    1551 CTTTCAGACC GAGCAAATAC AAGATTCGGA GCATTCCGGG AAGATGGTTG
    1601 CGAAACGCCA GTTCAGAATC GGCGACATAG CGGGCGAACA TACATCTTTT
    1651 GACAAGCTTC CCGAAGGCGG CAGGGCGACA TATCGCGGGA CGGCGTTCGG
    1701 TTCAGACGAT GCCGGCGGAA AACTGACCTA CACCATAGAT TTCGCCGCCA
    1751 AGCAGGGAAA CGGCAAAATC GAACATTTGA AATCGCCAGA ACTCAANGTC
    1801 GACCTGGCCG CCGCCGATAT CAAGCCGGAT GGAAAACGCC ATGCCGTCAT
    1851 CAGCGGTTCC GTCCTTTACA ACCAAGCCGA GAAAGGCAGT TACTCCCTCG
    1901 GTATCTTTGG CGGAAAAGCC CAGGAAGTTG CCGGCAGCGC GGAAGTGAAA
    1951 ACCGTAAACG GCATACGCCA TATCGGCCTT GCCGCCAAGC AACTCGAGCA
    2001 CCACCACCAC CACCACTGA
       1 MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSHQ
      51 AGNIMIQQAA IKGNIGY1VR FSDHGERVHS PFDNHASHSD SDEAGSPVDG
     101 FSLYRIHWDG YEHHPAEGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIRL
     151 NATDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE LDRSGNAAEA
     201 FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL GLLSTFMKKA
     251 RINDLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MAAIPEKGIG
     301 AVRGKYGIGG ITAEPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH
     351 SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP
     401 NFEKHVKYDT GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR
     451 KNERLKLAAQ GAEKTYGNGD SLNTGKLKND KVSREDFIRQ IEVEGQLITL
     501 ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF
     551 DKLPEGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGEI EHLKSPELNV
     601 DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSAEVK
     651 TVNGIRHIGL AAKQLEHHHH HH*
    ORF46.1-961
       1 ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA
      51 GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC
     101 TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG
     151 TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA
     201 CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA
     251 ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA
     301 TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA
     351 CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA
     401 GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC
     451 AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA
     501 CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG
     551 CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC
     601 TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAaA
     651 AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA
     701 TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG
     751 CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC
     801 AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCTTAG
     851 AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA
     901 GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA
     951 GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA
    1001 GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT
    1051 TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT
    1101 CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG
    1151 ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG
    1201 AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC
    1251 CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG
    1301 CCTACAACAA IGGCCAAGAA ATCAACGGTT TCAAAGCTGG AGAGACCATC
    1351 TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC
    1401 CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA
    1451 CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAA
    1501 GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA
    1551 CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA
    1601 ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT
    1651 AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC
    1701 CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT TCATTGGATG
    1751 AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA
    1801 CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC
    1851 AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG
    1901 CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT
    1951 GATANCGCTA CGAACAANGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA
    2001 CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC
    2051 TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA
    2101 TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC
    2151 AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT
    2201 CCGGTCTGTT CCAACCTTAC AACGTGGGTC GGTTCAATGT AACGGCTGCA
    2251 GTCGGCGGCT ACAAATCCGA ATCGGCAGTC GCCATCGGTA CCGGCTTCCG
    2301 CTTTACCGAA AACTTTGCCG CCAAAGCAGG CGTGGCAGTC GGCACTTCGT
    2351 CCGGTTCTTC CGCAGCCTAC CATGTCGGCG TCAATTACGA GTGGCTCGAG
    2401 CACCACCACC ACCACCACTG A
       1 MSDLANDSFI RQVLDRQHFE PDGKYHAFGS RGELAERSGH IGLGK1QSHQ
      51 LGNLMIQQAA IKGNIGYIVR FSDHGREVHS PFDNEASRSD SDEAGSPVDG
     101 FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQMIRL
     151 NLTDNRSTGQ RLADRFRNAG SMLTQGVGDG PKRATRYSPE LDRSGMAAFA
     201 FNGTADIVKM IIGAAGEIVG AGDAVQGISE GSNIAVMHGL GLLSTENKMA
     251 EINDLADMAQ LKDYAAAA1R DWAVQNPNAA QGIFAVSNIF MAAIPIKGIG
     301 AVRGKYGLGG ITAHPIKRSQ NGAIALPKGK SAVSDNFADA AYAKYPSPYR
     351 SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP
     401 NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE INGFKAGETI
     451 YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV NENKQNVDAK
     501 VKAAESEIEK LTTKLADTDA ALADTDAALD ATTMALNKLG ENITTFARET
     551 KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD EAVKTANEAK
     601 QTARKTKQNV DAKVKAASTA AGKAEAAAGT ANTAADKAEA VAAKVTDTKA
     651 DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTEK LDTRLASAEK
     701 SIADHDTRLN GLDKTVHDLR KETRQGLAEQ AALSGLFQVY NVGRFNVTAA
     751 VGGYKSESAV AIGTGFRFTE NFAAKAGVAV GTSSGSSAAY
     801 HEHHHH*
    ORF46.1-961c
       1 ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA
      51 GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC
     101 TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG
     151 TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAPAGGAA ATATCGGCTA
     201 CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA
     251 ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGAOGGA
     301 TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA
     351 CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA
     401 GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC
     451 AACCTGACCG ACAACCGCAG CACCGGACAA CGGCPTGCCG ACCGTTTCCA
     501 CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG
     551 CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC
     601 TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA
     651 AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA
     701 TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG
     751 CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC
     801 AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG
     851 AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATAGGA
     901 GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA
     951 GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA
    1001 GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT
    1051 TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT
    1101 CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG
    1151 ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG
    1201 AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC
    1251 CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG
    1301 CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTGG AGAGACCATC
    1351 TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC
    1401 CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA
    1451 CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAA
    1501 GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA
    1551 CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA
    1601 ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT
    1651 AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC
    1701 CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT TCATTGGATG
    1751 AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA
    1801 CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC
    1851 AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG
    1901 CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT
    1951 GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA
    2001 CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC
    2051 TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA
    2101 TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC
    2151 AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT
    2201 CCGGTCTGTT CCAACCTTAC AACGTGGGTC TCGAGCACCA CCACCACCAC
    2251 CACTGA
       1 MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSEQ
      51 LGNLMIQQAA IKGNIGYIVR FSDHGREVHS PFDNHASHSD SDEAGSPVDG
     101 FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIRL
     151 NLTDNRSTGQ RLADRFHNAG SNLTQGVGDG FKRATRYSPE LDRSGMAAEA
     201 FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVNEGL GLLSTENKMA
     251 RINDLADNAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MAAIPIKGIG
     301 AVRGKYGAGG ITAHPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH
     351 SRNIRSNLBQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP
     401 NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE INGFKAGETI
     451 YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV NENKQNVDAK
     501 VKAAESEIMK LTTKLADTDA ALADTDAALD ATTNALNKLG HNITTFAEET
     551 KTNrVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD HAVKTANEAK
     601 QTAFETKQNV DAKVKAAETA AGKAFAAAGT ANTAADKAHA VAAKVTDIKA
     651 DIATNEDNIA KKANSADVYT REESDSKFVR IDGLNATTEK LDTRLASAEK
     701 SIADHDTRLN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY NVGLEHHHHH
     751 H*
    961-ORF46.1
       1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
      51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
     101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
     151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
     201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
     251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
     301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
     351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
     401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
     451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
     501 GGATCAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
     551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
     601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
     651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
     701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
     751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
     801 TCGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
     851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
     901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
     951 GCTCTCCGGT CTGITCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG
    1001 CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCCGC
    1051 TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC
    1101 TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG
    1151 GATCCGGAGG AGGAGGATCA GATTTGGCAA ACGATTCTTT TATCCGGCAG
    1201 GTTCTCGACC GTCACCATTT CGAACCCGAC GGGAAATACC ACCTATTCGG
    1251 CAGCAGGGGG GAACTTGCCG AGCGCAGCGG CCATATCGGA TTGGGAAAAA
    1301 TACAAAGCCA TCAGTTGGGC AACCTGATGA TTCAACAGGC GGCCATTAAA
    1351 GGAAATATCG GCTACATTGT CCGCTTTTCC GATCACGGGC ACGAAGTCCA
    1401 TTCCCCCTTC GACAACCATG CCTCACATTC CGATTCTGAT GAAGCCGGTA
    1451 GTCCCGTTGA CGGATTTAGC CTTTACCGCA TCCATTGGGA CGGATACGAA
    1501 CACCATCCCG CCGACGGCTA TGACGGGCCA CAGGGCGGCG GCTATCCCGC
    1551 TCCCAAAGGC GCGAGGGATA TATACAGCTA CGACATAAAA GGCGTTGCCC
    1601 AAAATATCCG CCTCAACCTG ACCGACAACC GCAGCACCGG ACAACGGCTT
    1651 GCCGACCGTT TCCACAATGC CGGTAGTATG CTGACGCAAG GAGTAGGCGA
    1701 CGGATTCAAA CGCGCCACCC GATACAGCCC CGAGCTGGAC AGATCGGGCA
    1751 ATGCCGCCGA AGCCTTCAAC GGCACTGCAG ATATCGTTAA AAACATCATC
    1801 GGCGCGOCAG GAGAAATTGT CGGCGCAGGC GATGCCGTGC AGGGCATAAG
    1851 CGAAGGCTCA AACATTGCTG TCATGCACGG CTTGGGTCTG CTTTCCACCG
    1901 AAAACAAGAT GGCGCGCATC AACGATTTGG CAGATATGGC GCAACTCAAA
    1951 GACTATGCCG CAGCAGCCAT CCGCGATIGG GCAGTCCAAA ACCCCAATGC
    2001 CGCACAAGGC ATAGAAGCCG TCAGCAATAT CTTTATGGCA GCCATCCCCA
    2051 TCAAAGGGAT TGGAGCTGTT CGGGGAAAAT ACGGCTTGGG CGGCATCACG
    2101 GCACATCCTA TCAAGCGGTC GCAGATGGGC GCGATCGCAT TGCCGAAAGG
    2151 GAAATCCGCC GTCAGCGACA ATTTTGCCGA TGCGGCATAC GCCAAATACC
    2201 CGTCCCCTTA CCATTCCCGA AATATCCGTT CAAACTTGGA GCAGCGTTAC
    2251 GGCAAAGAAA ACATCACCTC CTCAACCGTG CCGCCGTCAA ACGGCAAAAA
    2301 TGTCAAACTG GCAGACCAAC GCCACCCGAA GACAGGCGTA CCGTTTGACG
    2351 GTAAAGGGTT TCCGAATTTT GAGAAGCACG TGAAATATGA TACGCTCGAG
    2401 CACCACCACC ACCACCACTG A
       1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
      51 AADVEADDEK GLGLKKVVTN LTKTVNEMKQ NVDAKVKAAE SEIEKLTTEL
     101 ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
     151 DTVDEHAEAF NDIADSLDET DTKADEAVKT ANMAKQTAEE TRODVDAKVE
     201 AAETAAGEAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIARKANS
     251 ADVYTREESD SKPVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
     301 VMDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG
     351 FRFTENFAAK AGVAVGTSSG SSANYHVGVN YEWGSGGGGS DLANDSFIRQ
     401 VADRQWEEPD GKYELFGSRG ELAERSGHIG LGKIQSHQLG NLMIQQAAIK
     451 GNIGYIVRFS DHGEEVHSPF DNHASHSDSD EAGSPVDGFS LYRIHWDGYE
     501 EMPADGYDGP QGGGYPAPKG ARDIYSYDIK GVAQNIRLNL TDNRSTGQRL
     551 ADRFMNAGSM LTQGVGDGEK RATRYSPELD RSGNAAEAFN GTADIVENII
     601 GAAGEIVGAG DAVQGISEGS NIAVMHGLGL LSTENKMARI NDLADMAQLK
     651 DYAAAAIRDW AVQNPNAAQG IEAVSNIFMA AIPIKGIGAV RGKYGLGGIT
     701 AHPIKRSQMG AIALPKGKSA VSDNFADAAY AKYPSPYHSR NIRSNLEQRY
     751 GRMNITSSTV PPSNGKNVKL ADQRHPKTGV PEDGKGFPNE EKHVKYDTLE
     801 HHHHHH*
    961-741
       1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
      51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGCTPTCAAA GCTGGAGAGA
     101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
     151 GCAGCCGATG TTGAAGCCGA CGACTITAAA GGTCTGGGTC TGAAAAAAGT
     201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
     251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
     301 GCAGACACTG ATGCCGCITT AGCAGATACT GATGCCGCTC TGGATGCAAC
     351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
     401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
     451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
     501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
     551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
     601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
     651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
     701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
     751 GCCGACGTGT ACACCAGAGA AGASTCTGAC AGCAAATTTG TCAGAATTGA
     801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
     851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
     901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
     951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG
    1001 CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC
    1051 TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC
    1101 TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG
    1151 GATCCGGAGG GGGTGGTGTC GCCGCCGACA TCGGTGCGGG GCTTGCCGAT
    1201 GCACTAACCG CACCGCTCGA CCATAAAGAC AAAGGTTTGC AGTCTTTGAC
    1251 GCTGGATCAG TCCGTCAGGA AAAACGAGAA ACTGAAGCTG GCGGCACAAG
    1301 GTGCGOAAAA AACTTATGGA AACGGTGACA GCCTCAATAC GGGCAAATTG
    1351 AAGAACGACA AGGTCAGCCG TTTCGACTTT ATCCGCCAAA TCGAAGTGGA
    1401 CGGGCAGCTC ATTACCTTGG AGAGTGGAGA GTTCCAAGTA TACAAACAAA
    1451 GCCATTCCGC CTTAACCGCC TTTCAGACCG AGCAAATACA AGATTCGGAG
    1501 CATTCCGGGA AGATGGTTGC GAAACGCCAG TTCAGAATCG GCGACATAGC
    1551 GGGCGAACAT ACATCTTTTG ACAAGCTTCC CGAADGCGGC AGGGCGACAT
    1601 ATCGCGGGAC GGCGTTCGGT TCAGACGATG CCGGCGGAAA ACTGACCTAC
    1651 ACCATAGATT TCGCCGCCAA GCAGGGAAAC GGCAAAATCG AACATTTGAA
    1701 ATCGCCAGAA CTCAATGTCG ACCTGGCCGC CGCCGATATC AAGCCGGATG
    1751 GAAAACGCCA TGCCGTCATC AGCGGTTCCG TCCTTTACAA CCAAGCCGAG
    1801 AAAGGCAGTT ACTCCCTCGG TATCTTTGGC GGAAAAGCCC AGGAAGTTGC
    1851 CGGCAGCGCG GAAGTGAAAA CCGTAAACGG CATACGCCAT ATCGGCCTTG
    1901 CCGCCAAGCA ACTCGAGCAC CACCACCACC ACCACTGA
       1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
      51 AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL
     101 ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
     151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK
     201 AAETAAGKAE AAAGTANTAA DRAEAVAAKV TDIKADIATN KDNIAKKANS
     251 ADVYTREESD SKETRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
     301 VSDLEXETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG
     351 FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGV AADIGAGLAD
     401 ALTAPLDHKD KGLQSINLOQ SVRKNEKLKL AAQGAEKTYG NGDSLNTGKL
     451 KNDKVSRFDF IRQIEVDGQL ITLESGEFQV YKQSHSALTA FQTEQIQDSE
     501 HSGKMVAKRQ FRIGDIAGEH TSFDKLPEGG RATYRGTAFG SDDAGGKLTY
     551 TIDFAAKQGN GKIEHLKSPE LNVDLAAADI KPDGKEHAVI SGSVINNQAE
     601 KGSYSLGIFG GRAZEVAGSA EVKTVNGIRH IGLAAKQLEH HHHHH*
    961-983
       1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
      51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
     101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
     151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
     201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
     251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
     301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
     351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
     401 AGACTAAGAC AAATATCGTA AAAANTGATG AAAAATTAGA AGCCGTGGCT
     451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
     501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
     551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
     601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
     651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
     701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
     751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
     801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
     851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGANAAAACA
     901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
     951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG
    1001 CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC
    1051 TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC
    1101 TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG
    1151 GATCCGGCGG AGGCGGCACT TCTGCGCCCG ACTTCAATGC AGGCGGTACC
    1201 GGTATCGGCA GCAACAGCAG AGCAACAACA GCGAAATCAG CAGCAGTATC
    1251 TTACGCCGGT ATCAAGAACG AAATGTGCAA AGACAGAAGC ATGCTCTGTG
    1301 CCGGTCGGGA TGACGTTGCG GTTACAGACA GGGATGCCAA AATCAATGCC
    1351 CCCCCCCCGA ATCTGCATAC CGGAGACTTT CCAAACCCAA ATGACGCATA
    1401 CAAGAATTTG ATCAACCTCA AACCTGCAAT TGAAGCAGGC TATACAGGAC
    1451 GCGGGGTAGA GGTAGGTATC GTCGACACAG GCGAATCCGT CGGCAGCATA
    1501 TCCTTTCCCG AACTGTATGG CAGAAAAGAA CACGGCTATA ACGAAAATTA
    1551 CAAAAACTAT ACGGCGTATA TGCGGAAGGA AGCGCCTGAA GACGGAGGCG
    1601 GTAAAGACAT TGAAGCTTCT TTCGACGATG AGGCCGTTAT AGAGACTGAA
    1651 GCAAAGCCGA CGGATATCCG CCACGTAAAA GAAATCGGAC ACATCGATTT
    1701 GGTCTCCCAT ATTATTGGCG GGCGTTCCGT GGACGGCAGA CCTGCAGGCG
    1751 GTATTGCGCC CGATGCGACG CTACACATAA TGAATACGAA TGATGAAACC
    1801 AAGAACGAAA TGATGGTTGC AGCCANCCGC AATGCATGGG TCAAGCTGGG
    1851 CGAACGTGGC GTGCGCATCG TCAATAACAG TTTTGGAACA AGATCGAGGG
    1901 CAGGCACTGC CGACCTTTTC CAAATAGCCA ATTCGGAGGA GCAGTACCGC
    1951 CAAGCGTTGC TCGACTATTC CGGCGGTGAT AAAACAGACG AGGGTATCCG
    2001 CCTGATGCAA CAGAGCGATT ACGGCAACCT GTCCTACCAC ATCCGTAATA
    2051 AAAACATGCT TTTCATCTTT TCGACAGGCA ATGACGCACA AGCTCAGCCC
    2101 AACACATATG CCCTATTGCC ATTTTATGAA AAAGACGCTC AAAAAGGCAT
    2151 TATCACAGTC GCAGGCGTAG ACCGCAGTGG AGAAAAGTTC AAACGGGAAA
    2201 TOTATGGAGA ACCGGGTACA GAACCGCTTG AGTATGGCTC CAACCATTGC
    2251 GGAATTACTG CCATGTGGTG CCTGTCGGCA CCCTATGAAG CAAGCGTCCG
    2301 TTTCACCCGT ACAAACCCGA TTCAAATTGC CGGAACATCC TTTTCCGCAC
    2351 CCATCGTAAC CGGCACGGCG GCTCTGCTGC TGCAGAAATA CCCGTGGATG
    2401 AGCAACGACA ACCTGCGTAC CACGTTGCTG ACGACGGCTC AGGACATCGG
    2451 TGCAGTCGGC GTGGACAGCA AGTTCGGCTG GGGACTGCTG GATGCGGGTA
    2501 AGGCCATGAA CGGACCCGCG TCCTTTCCGT TCGGCGACTT TACCGCCGAT
    2551 ACGAAAGGTA CATCCGATAT TGCCTACTCC TTCCGTAACG ACATTTCAGG
    2601 CACGGGCGGC CTGATCAAAA AAGGCGGCAG CCAACTGCAA CTGCACGGCA
    2651 ACAACACCTA TACGGGCAAA ACCATTATCG AAGGCGGTTC GCTGGTGTTG
    2701 TACGGCAACA ACAAATCGGA TATGCGCGTC GAAACCAAAG GTGCGCTGAT
    2751 TTATAACGGG GCGGCATCCG GCGGCAGCCT GAACAGCGAC GGCATTGTCT
    2801 ATCTGGCAGA TACCGACCAA TCCGGCGCAA ACGAAACCGT ACACATCAAA
    2851 GGCAGTCTGC AGCTGGACGG CAAAGGTACG CTGTACACAC GTTTGGGCAA
    2901 ACTGCTGAAA GTGGACGGTA CGGCGATTAT CGGCGGCAAG CTGTACATGT
    2951 CGGCACGCGG CAAGGGGGCA GGCTATCTCA ACAGTACCGG ACGACGTGTT
    3001 CCCTTCCTGA GTGCCGCCAA AATCGGGCAG GATTATTCTT TCTTCACAAA
    3051 CATCGAAACC GACGGCGGCC TGCTGGCTTC CCTCGACAGC GTCGAAAAAA
    3101 CAGCGGGCAG TGAAGGCGAC ACGCTGTCCT ATTATGTCCG TCGCGGCAAT
    3151 GCGGCACGGA CTGCTTCGGC AGCGGCACAT TCCGCGCCCG CCGGTCTGAA
    3201 ACACGCCGTA GAACAGGGCG GCAGCAATCT GGAAAACCTG ATGGTCGAAC
    3251 TGGATGCCTC CGAATCATCC GCAACACCCG AGACGGTTGA AACTGCGGCA
    3301 GCCGACCGCA CAGATATGCC GGGCATCCGC CCCTACGGCG CAACTTTCCG
    3351 CGCAGCGGCA GCCGTACAGC ATGCGAATGC CGCCGACGGT GTACGCATCT
    3401 TCAACAGTCT CGCCGCTACC GTCTATGCCG ACAGTACCGC CGCCCATGCC
    3451 GATATGCAGG GACGCCGCCT GAAAGCCGTA TCGGACGGGT TGGACCACAA
    3501 CGGCACGGGT CTGCGCGTCA TCGCGCAAAC CCAACAGGAC GGTGGAACGT
    3551 GGGAACAGGG CGGTGTTGAA GGCAAAATGC GCGGCAGTAC CCAAACCGTC
    3601 GGCATTGCCG CGAAAACCGG CGAAAATACG ACAGCAGCCG CCACACTGGG
    3651 CATGGGACGC AGCACATGGA GCGAAAACAG TGCAAATGCA AAAACCGACA
    3701 GCATTAGTCT GTTTGCAGGC ATACGGCACG ATGCGGGCGA TATCGGCTAT
    3751 CTCAAAGGCC TGTTCTCCTA CGGACGCTAC AAAAACAGCA TCAGCCGCAG
    3801 CACCGGTGCG GACGAACATG CGGAAGGCAG CGTCAACGGC ACGCTGATGC
    3851 AGCTGGGCGC ACTGGGCGGT GTCAACGTTC CGTTTGCCGC AACGGGAGAT
    3901 TTGACGGTCG AAGGCGGTCT GCGCTACGAC CTGCTCAAAC AGGATGCATT 
    3951 CGCCGAAAAA GGCAGTGCTT TGGGCTGGAG CGGCAACAGC CTCACTGAAG
    4001 GCACGCTGGT CGGACTCGCG GGTCTGAAGC TGTCGCAACC CTTGAGCGAT
    4051 AAAGCCGTCC TGTTTGCAAC GGCGGGCGTG GAACGCGACC TGAACGGACG
    4101 CGACTACACG GTAACGGGCG GCTTTACCGG CGCGACTGCA GCAACCGGCA
    4151 AGACGGGGGC ACGCAATATG CCGCACACCC GTCTGGTTGC CGGCCTGGGC
    4201 GCGGATGTCG AATTCGGCAA CGGCTGGAAC GGCTTGGCAC GTTACAGCTA
    4251 CGCCGOTTCC AAACAGTACG GCAACCACAG CGGACGAGTC GGCGTAGGCT
    4301 ACCGGTTCCT CGAGCACCAC CACCACCACC ACTGA
       1 MATNDDDVKK AAIVATAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
      51 AADVEADDFK GLGLKKVVTN IRKTVNENKQ NVDAKVKAAB SEEEKIRTKL
     101 ADTDAALADT DAALDATTNA INKLGENITT FASETETNIV KIDEKLEAVA
     151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTASE TXQNVDAKVK
     201 AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS
     251 ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
     301 VSDLREETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG
     351 FRPTENFAAK AGVAVGTSSG SSAAYINGVN YEWGSGGGGT SAPDFNAGGT
     401 GIGSNSRATT AKSAAVSYAG IKNEMCKDRS MDCAGRDDVA VTDRDAKINA
     451 PPPNLHTGDF PNPNDAYKNL INLKPAIEAG YTGRGVEVGI VDTGESVGSI
     501 SFPELYGRKE HGYNENYKNY TAYMRKEAPE DGGGKDIEAS FDDEAVIETE
     551 AKPTDIRSVK EIGRIDLVSH IIGGRSVDGR PAGGIAPDAT LHIENTNDET
     601 KNEMMVAAIR NAWVKLGERG VRIVANSFGT TSRAGTADLF QIANSEEQYR
     651 QALLDYSGGD KTDEGIRLMQ QSDYGELSYM IRNKNELFIF STGEDAQAQF
     701 NTYALLPFYE KDAQKGIITV AGVDRSGEKF KREMYGEPGT EPLEYGSNMC
     751 GITAMWCLSA PYEASVRFTR TNPIQIAGTS FSAPIVTGTA ALLLQKYPWM
     801 SEDNLRTTLL TTAQDIGAVG VDSKFGWGLL DAGKAYXGPA SFPFGDFTAD
     851 TKGTSDLAYS FRNDISGTGG LIKKGGSQLQ LHGNNTITGR TIIEGGSLVL
     901 YGNNKSDMRV ETKGALIYNG AASGGSLNSD GIVTLADTDQ SGANETVHIK
     951 GSWILDGKGT LYTRLGKLLK VDGTAIIGGK LYMSARGEGA GYLNSTGRKV
    1001 PFLSAAKIGQ DYSFFTNIET DGGLLASLDS VEKTAGSEGD TLSTYVRRGN
    1051 AARTASAAAM SAPAGLKHAV EQGGSNLENL NVELDASESS ATPETVETAA
    1101 ADRTDMPGIR PYGATFRAAA AVQHANAADG VRIFNSLAAT VYADSTAAHA
    1151 DMQGRRLKAV SDGLDHNGTG LRVIAQTQQD GGTWEQGGVE GKERGSTQTV
    1201 GIAAKTGENT TAAATLGMGR STWSENSANA KTDSISLFAG IRHDAGDIGY
    1251 LKGLFSYGRY KNSISRSTGA DKHAEGSVNG TLMQLGALGG VIMPFAATGD
    1301 LTVEGGLRYD LLKQDAFAEK GSALGWSGNS LTEGTLVGLA GLKLSULSD
    1351 KAVLFATAGV ERDLNGRDYT VTGGFTGATA ATGKTGARNM PHTRLVAGLG
    1401 ADVEFGNGWN GLARYSYAGS KQYGNMSGRV GVGYRFLEEH HHHH*
    961c-ORF46.1
       1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
      51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
     101 CCATCTACGA CATTGATGAA GACGGCACAA TTAcCAAAAA AGACGCAACT
     151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
     201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
     251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
     301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
     351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
     401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
     451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
     501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
     551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
     601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
     651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACcGACATCA
     701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
     751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
     801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
     851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
     901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
     951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGAGGAG
    1001 GATCAGATTT GGCAAACGAT TCTTTTATCC GGCAGGTTCT CGACCGTCAG
    1051 CATTTCGAAC CCGACGGGAA ATACCACCTA TTCGGCAGCA GGGGGGAACT
    1101 TGCCGAGCGC AGCGGCCATA TCGGATTGGG AAAAATACAA AGCCATCAGT
    1151 TGGGCAACCT GATGATTCAA CAGGCGGCCA TTAAAGGAAA TATCGGCTAC
    1201 ATTGTCCGCT TTTCCGATCA CGGGCACGAA GTCCATTCCC CCTTCGACAA
    1251 CCATGCCTCA CATTCCGATT CTGATGAAGC CGGTAGTCCC GTTGACGGAT
    1301 TTAGCCTTTA CCGCATCCAT TGGGACGGAT ACGAACACCA TCCCGCCGAC
    1351 GGCTATGACG GGCCACAGGG CGGCGGCTAT CCCGCTCCCA AAGGCGCGAG
    1401 GGATATATAC AGCTACGACA TAAAAGGCGT TGCCCAAAAT ATCCGCCTCA
    1451 ACCTGACCGA CAACCGCAGc ACCGGACAAC GGCTTGCCGA CCGTTTCCAC
    1501 AATGCCGGTA GTATGCTGAC GCAAGGAGTA GGCGACGGAT TCAAACGCGC
    1551 CACCCGATAC AGCCCCGAGC TGGACAGATC GGGCAATGCC GCCGAAGCCT
    1601 TCAACGGCAC TGCAGATATC GTTAAAAACA TCATCGGCGC GGCAGGAGAA
    1651 ATTGTCGGCG CAGGCGATGC CGTGCAGGGC ATAAGCGAAG GCTCAAACAT
    1701 TGCTGTCATG CACGGCTTGG GTCTGCTTTC CACCGAAAAC AAGATGGCGC
    1751 GCATAAACGA TTTGGCAGAT ATGGCGCAAC TCAAAGACTA TGcCGCAGCA
    1801 GCCATCCGCG ATTGGGCAGT CCAAAACCCC AATGCCGCAC AAGGCATAGA
    1851 AGCCGTCAGC AATATCTTTA TGGCAGCCAT CCCCATCAAA GGGATTGGAG
    1901 CTGTTCGGGG AAAATACGGC TTGGGCGGCA TCACGGCACA TCCTATCAAG
    1951 CGGTCGCAGA TGGGCGCGAT CGCATTGCCG AAAGGGAAAT CCGCCGTCAG
    2001 CGACAATTTT GCCGATGCGG CATACGCCAA ATACCCGTCC CCTTACCATT
    2051 CCOGAAATAT CCGTTCAAAC TTGGAGCAGC GTTACGGCAA AGAAAACATC
    2101 ACCTCCTCAA CCGTGCCGCC GTCAAACGGC AAAAATGTCA AACTGGCAGA
    2151 CCAACGCCAC CCGAAGACAG GCGTACCGTT TGACGGTAAA GGGTTTCCGA
    2201 ATTTTGAGAA GCACGTGAAA TATGATACGC TCGAGCACCA CCACCACCAC
    2251 CACTGA
       1 MATNDDEVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
      51 AADVEADDFK GIGLENVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL
     101 ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA
     151 NDIADSLDET NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK
     201 AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS
     251 ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
     301 VSDAREETRQ GLAEQAALSG LFQPYNVGGS GGGGSDLAND SFIRQVLDRQ
     351 HFEPDGKYDL FGSRGELAER SGHIGLGKIQ SHQLGNLNIQ QAAIKGNIGY
     401 IVRFSDHGHE VHSPFDNHAS HSDSDEAGSP VDGESLYRIE WEGYESHPAD
     451 GYDGPQGGGY PAPKGARDZY SYDIKGVAQN IRLNLTDNRS TGORLADRFH
     501 NAGEKLTQGV GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE
     551 IVGAGDAVQG ISEGSNIAVM HGLGLASTEN KMARINDLAD MAQLKDYAAA
     601 AIRDWAVQNP NAAQGIEAVS NIEMAAIPIK GIGAVRGEYG LGGITAHPIK
     651 RSQMGAIALP KGKSAVSDNF ADANYAKYPS PYRSRNIRSN LEQRYGKENI
     701 TSSTVPPSNG KNVKLADQRH PKTGVPFDGK GFPNFEEHVK YDTLEREEHM
     751 H*
    961c-741
       1 ATGGCCACAA ACGACGACGA TGTTAAAAAR GCTGCCACTG TGGCCATTGC
      51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
     101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
     151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
     201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
     251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
     301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
     351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
     401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
     451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
     501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
     551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
     601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
     651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
     701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
     751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
     901 TGGTCTGAAC GCTACTACCG APAAATTGGA CACACGCTTG GCTTCTGCTG
     851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
     901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
     951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGGGGTG
    1001 GTGTCGCCGC CGACATCGGT GCGGGGCTTG CCGATGCACT AACCGCACCG
    1051 CTCGACCATA AAGACAAAGG TTTGCAGTCT TTGACGCTGG ATCAGTCCGT
    1101 CAGGAAAAAC GAGAAACTGA AGCTGGCGGC ACAAGGTGCG GAAAAAACTT
    1151 ATGGAAACGG TGACAGCCTC AATACGGGCA AATTGAAGAA CGACAAGGTC
    1201 AGCCGTTTCG ACTTTATCCG CCAAATCGAA GTGGAGGGGC AGCTCATTAC
    1251 CTTGGAGAGT GGAGAGTTCC AAGTATACAA ACAAAGCCAT TCCGCCTTAA
    1301 CCGCCTTTCA GACCGAGCAA ATACAAGATT CGGAGCATTC CGGGAAGATG
    1351 GTTGCGAAAC GCCAGTTCAG AATCGGCGAC ATADCGGGCG AACATACATC
    1401 TTTTGACAAG CTTCCCGAAG GCGGCAGGGC GACATATCGC GGGACGGCGT
    1451 TCGGTTCAGA CGATGCCGGC GGAAAACTGA CCTACACCAT AGATTTCGCC
    1501 GCCAAGCAGG GAAACGGCAA AATCGAACAT TTGAAATCGC CAGAACTCAA
    1551 TGTCGACCTG GCCGCCGCCG ATATCAAGCC GGATGGAAAA CGCCATGCCG
    1601 TCATCAGCGG TTCCGTCCTT TACAACCAAG CCGAGAAAGG CAGTTACTCC
    1651 CTCGGTATCT TTGGCGGAAA AGCCCAGGAA GTTGCCGGCA GCGCGGAAGT
    1701 GAAAACCGTA AACGGCATAC GCCATATCGG CCTTGCCGCC AAGCAACTCG
    1751 AGCACCACCA CCACCACCAC TGA
       1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT
      51 AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKATTKL
     101 ADTDAALADT DAALDATTNA LNXLGENITT FASETKTNIV KIDEKLEAVA
     151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAKE TKQNVQAKVX
     201 AAHTAAGXAE AAAGTANTAA DKAENVAAKV TDIKADIATN KDNIAKKMRS
     251 ADVYTREESD SXFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT
     301 VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGVAADIG AGLADALTAP
     351 LDERDXGLQS LTLDQSVRXN FKLKLAAQGA EKTYGNGDSL NTGKLKNDKV
     401 SRFDFIRQIE VDGQLITLES GEFQVYXQSE SALTAFQTEQ TQGSERSGEM
     451 VAKROFRIGD IAGEHTSFDK LPEGGRATYR GTAFGSDDAG GKLTYTIDFA
     501 AKQGNGKIEH LKSPELNVDL AAADIXPDGK RHAVISGSVL YNQAEKGSYS
     551 LGIEGGKAQE VAGSAHVXTV NGIRHIGLAA KQLEIMEEHH *
    961c-983
       1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC
      51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA
     101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT
     151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT
     201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG
     251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA
     301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC
     351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG
     401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT
     451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT
     501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG
     551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA
     601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA
     651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA
     701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT
     751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA
     801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG
     851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
     901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC
     951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGCGGAGGCG
    1001 GCACTTCTGC GCCCGACTTC AATGCAGGCG GTACCGGTAT CGGCAGCAAC
    1051 AGCAGAGCAA CAACAGCGAA ATCAGCAGCA GTATCTTACG CCGGTATCAA
    1101 GAACGAAATG TGCAAAGACA GAAGCATGCT CTGTGCCGGT CGGGATGACG
    1151 TTGCGGTTAC AGACAGGGAT GCCAAAATCA ATGCCCCCCC CCCGAATCTG
    1201 CATACCGGAG ACTTTCCAAA CCCAAATGAC GCATACAAGA ATTTGATCAA
    1251 CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG
    1301 GTATCGTCGA CACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG
    1351 TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA ACTATACGGC
    1401 GTATATGCGG AAGGAAGCGC CTGAAGACGG AGGCGGTAAA GACATTGAAG
    1451 CTTCTTTCGA CGATGAGGCC GTTATAGAGA CTGAAGCAAA GCCGACGGAT
    1501 ATCCGCCACG TAAAAGAAAT CGGACACATC GATTTGGTCT CCCATATTAT
    1551 TGGCGGGCGT TCCGTGGACG GCAGACCTGC AGGCGGTATT GCGCCCGATG
    1601 CGACGCTACA CATAATGAAT ACGAATGATG AAACCAAGAA CGAAATGATG
    1651 GTTGCAGCCA TCCGCAATGC ATGGGTCAAG CTGGGCGAAC GTGGCGTGCG
    1701 CATCGTCAAT AACAGTTTTG GAACAACATC GAGGGCAGGC ACTGCCGACC
    1751 TTTTCCAAAT AGCCAATTCG GAGGAGCAGT ACCGCCAAGC GTTGCTCGAC
    1801 TATTCCGGCG GTGATAAAAC AGACGAGGGT ATCCGCCTGA TGCAACAGAG
    1851 CGATTACGGC AACCTGTCCT ACCACATCCG TAATAAAAAC ATGCTTTTCA
    1901 TCTTTTCGAC AGGCAATGAC GCACAAGCTC AGCCCAACAC ATATGCCCTA
    1951 TTGCCATTTT ATGAAAAAGA CGCTCAAAAA GGCATTATCA CAGTCGCAGG
    2001 CGTAGACCGC AGTGGAGAAA AGTTCAAACG GGAAATGTAT GGAGAACCGG
    2051 GTACAGAACC GCTTGAGTAT GGCTCCAACC ATTGCGGAAT TACTGCCATG
    2101 TGGTGCCTGT CGGCACCCTA TGAAGCAAGC GTCCGTTTCA CCCGTACAAA
    2151 CCCGATTCAA ATTGCCGGAA CATCCTTTTC CGCACCCATC GTAACCGGCA
    2201 CGGCGGCTCT GCTGCTGCAG AAATACCCGT GGATGAGCAA CGACAACCTG
    2251 CGTACCACGT TGCTGACGAC GGCTCAGGAC ATCGGTGCAG TCGGCGTGGA
    2301 CAGCAAGTTC GGCTGGGGAC TGCTGGATGC GGGTAAGGCC ATGAACGGAC
    2351 CCGCGTCCTT TCCGTTCGGC GACTTTACCG CCGATACGAA AGGTACATCC
    2401 GATATTGCCT ACTCCTTCCG TAACGACATT TCAGGCACGG GCGGCCTGAT
    2451 CAAAAAAGGC GGCAGCCAAC TGCAACTGCA CGGCAACAAC ACCTATACGG
    2501 GCAAAACCAT TATCGAAGGC GGTTCGCTGG TGTTGTACGG CAACAACAAA
    2551 TCGGATATGC GCGTCGAAAC CAAAGGTGCG CTGATTTATA ACGGGGCGGC
    2601 ATCCGGCGGC AGCCTGAACA GCGACGGCAT TGTCTATCTG GCAGATACCG
    2651 ACCAATCCGG CGCAAACGAA ACCGTACACA TCAAAGGCAG TCTGCAGCTG
    2701 GACGGCAAAG GTACGCTGTA CACACGTTTG GGCAAACTGC TGAAAGTGGA
    2751 CGGTACGGCG ATTATCGGCG GCAAGCTGTA CATGTCGGCA CGCGGCAAGG
    2801 G3GCAGGCPA TCTCAACAGT ACCGGACGAC GTGTTCCCTT CCTGAGTGCC
    2851 GCCAAAATCG GGCAGGATTA TTCTTTCTTC ACAAACATCG AAACCGACGG
    2901 CGGCCTGCTG GCTTCCCTCG ACAGCGTCGA AAAAACAGCG GGCAGTGAAG
    2951 GCGACACGCT GTCCTATTAT GTCCGTCGCG GCAATGCGGC ACGGACTGCT
    3001 TCGGCAGCGG CACATTCCGC GCCCGCCGGT CTGAAACACG CCGTAGAACA
    3051 GGGCGGCAGC AATCTGGAAA ACCTGATGGT CGAACTGGAT GCCTCCGAAT
    3101 CATCCGCAAC ACCCGAGACG GTTGAAACTG CGGCAGCCGA CCGCACAGAT
    3151 ATGCCGGGCA TCCGCCCCTA CGGCGCAACT TTCCGCGCAG CGGCAGCCGT
    3201 ACAGCATGCG AATGCCGCCG ACGGTGTACG CATCTTCAAC AGTCTCGCCG
    3251 CTACCGTCTA TGCCGACAGT ACCGCCGCCC ATGCCGATAT GCAGGGACGC
    3301 CGCCTGAAAG CCGTATCGGA CGGGTTGGAC CACAACGGCA CGGGTCTGCG
    3351 CGTCATCGCG CAAACCCAAC AGGACGGTGG AACGTGGGAA CAGGGCGGTG
    3401 TTGAAGOCAA AATGCGCCGC AGTACCCAAA CCGTCGGCAT TGCCGCGAAA
    3451 ACCGGCGAAA ATACGACAGC AGCCGCCACA CTGGGCATGG GACGCAGCAC
    3501 ATGGAGCGAA AACAGTGCAA ATGCAAAAAC CGACAGCATT AGTCTGTTTG
    3551 CAGGCATACG GCACGATGCG GGCGATATCG GCTATCTCAA AGGCCTGTTC
    3601 TCCTACGGAC GCTACAAAAA CAGCATCAGC CGCAGCACCG GTGCGGACGA
    3651 ACATGCGGAA GGCAGCGTCA ACGGCACGCT GATGCAGCTG GGCGCACTGG
    3701 GCGGTGTCAA CGTTCCGTTT GCCGCAACGG GAGATTTGAC GGTCGAAGGC
    3751 GGTCTGCGCT ACGACCTGCT CAAACAGGAT GCATTCGCCG AAAAAGGCAG
    3801 TGCTTTGGGC TGGAGCGGCA ACAGCCTCAC TGAAGGCACG CTGGTCGGAC
    3851 TCGCGGGTCT GAAGCTGTCG CAACCCTTGA GCGATAAAGC CGTCCTGTTT
    3901 GCAACGGCGG GCGPGOAACG CGACCTGAAC GGACGCGACT ACACGGTAAC
    3951 GGGCGGCTTT ACCGGCGCGA CTGCAGCAAC CGGCAAGACG GGGGCACGCA
    4001 ATATGCCGCA CACCCGTCTG GTTGCCGGCC TGGGCGCGGA TGTCGAATTC
    4051 GGCAACGGCT GGAACGGCTT GGCACGTTAC AGCTACGCCG GTTCCAAACA
    4101 GTACGGCAAC CACAGCGGAC GAGTCGGCGT AGGCTACCGG TTCCTCGAGC
    4151 ACCACCACCA CCACCACTGA
       1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITEKDAT
      51 AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKI
     101 ADTDAALADT DAALDATTNA LNKLGENITT PAEETKTNIV KIDEKLEAVA
     151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAKE TKQNVDAKVK
     201 AARTAAGNAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS
     251 ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSLADH DTRLNGLDKT
     301 VSDLRKETRQ GLAEQAALSG LFQPYVVGGS GGGGTSAPDF NAGGTGIGSN
     351 SRATTAKSAA VSYAGIKNEM CEDRSELCAG RDDVAVTDRD AKINAPPPNL
     401 HIGDFPNFND AYKNLINLKP AIKAGYTGEG VEVGIVDTGE SVGSISFPEL
     451 YGRKEHGYNE NYKNYTAYER KEAPEDGGGK DIEASFDDEA VIETEAKPTD
     501 IRHVKEIGHI DLVSHIIGGR SVDGRPAGGI APDATLHIMN TNDETKNEMM
     551 VAAIRNAAWK LGERGVRIVN NSFGTTSRAG TADLFQIANS EEQYRQALLD
     601 YSGGDKTDEG IRLMQQSDYG NLSYMIRNKN MLFIFSTGAM AQAQPNTYAL
     651 LPFYEKDAQK GIITVAGVDR SGEKFKREMY GEPGTEPLEY GSNECGITAK
     701 WCLSAFYEAS VRFTWFATIQ IAGTSFSAPI VTGTAALLLQ KYPWMSNDNL
     751 RTTLLTTAQD IGAVGVDSKF GWGLIZAGKA MNGPASFPFG DFTADTKGTS
     901 DIAYSFRNDI SGTGGLIKKG GSQLQAHGNN TYTGKTIIEG GSLVLYGNNK
     951 SDERVETKGA LIYNGAASGG SLNSDGIVYL ADTDQSGANE TVHIKGSLQL
     901 DGKGTLYTRL GRIZKVDGTA IIGGKLYMSA RGKGAGYLNS TGRRVPFLSA
     951 AKIGQDYSFF TNIETDGGLL ASLDSVEKTA GSEGDTLSYY VRRGNAARTA
    1001 SAAAHSAPAG LKHAVEQGGS NLENLMVELD ASESSATPET VETAAADRTD
    1051 MPGIRPYGAT FRAAAAVQHA NAADGVRIFN SLAATVYADS TAARADMQGR
    1101 RLKAVSDGLD HNGTGLRVIA QTQQDGGTWE QGGVEGEHRG STQTVGIAAK
    1151 TGENTTAAAT LGMGRSTWSE NSANAKTDSI SLFAGIREDA GDIGYLKGLF
    1201 SYGRYKNSIS RSTGADEHAE GSVNGTLMQL GALGGVNVPF AATGDLTVEG
    1251 GLRYDLLKQD ARARKGSALG WSGNSLTEGT LVGLAGLKLS QPDSDKAVLF
    1301 ATAGVERDLN GRDYTVTGGF TGATAATGKT GARNMPHTRL VAGLGADVEF
    1351 GNGWNGLARY SYAGSKQYGN RSGRVGVGYR FLEHHHHHH*
    961cL-ORF46.1
       1 ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT
      51 CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG
     101 CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT
     151 TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC
     201 CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC
     251 TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC
     301 AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA
     351 GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG
     401 CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA
     451 ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA
     501 ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG
     551 ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC
     601 AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT
     651 CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG
     701 CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA
     751 AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC
     801 TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA
     851 AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA
     901 CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA
     951 CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC
    1001 TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT
    1051 GGATCCGGAG GAGGAGGATC AGATTTGGCA AACGATTCTT TTATCCGGCA
    1101 GGTTCTCGAC CGTCAGCATT TCGAACCCGA CGGGAAATAC CACCTATTCG
    1151 GCAGCAGGGG GGAACTTGCC GAGCGCAGCG GCCATATCGG ATTGGGAAAA
    1201 ATACAAAGCC ATCAGTTGGG CAACCTGATG ATTCAACAGG CGGCCATTAA
    1251 AGGAAATATC GGCTACATTG TCCGCTTTTC CGATCACGGG CACGAAGTCC
    1301 ATTCCCCCTT CGACAACCAT GCCTCACATT CCGATTCTGA TGAAGCCGGT
    1351 AGTCCCGTTG ACGGATTTAG CCTTTACCGC ATCCATTGGG ACGGATACGA
    1401 ACACCATCCC GCCGACGGCT ATGACGGGCC ACAGGGCGGC GGCTATCCCG
    1451 CTCCCAAAGG CGCGACGGAT ATATACACCT ACGACATAAA AGGCGTTGCC
    1501 CAAAATATCC GCCTCAACCT GACCGACAAC CGCAGCACCG GACAACGGCT
    1551 TGCCGACCGT TTCCACAATG CCGGTAGTAT GCTGACGCAA GGAGTAGGCG
    1601 ACGGATTCAA ACGCGCCACC CGATACAGCC CCGAGCTGGA CAGATCGGGC
    1651 AATGCCGCCG AACCCTTCAA CGGCACTGCA GATATCGTTA AAAACATCAT
    1701 CGGCGCGGCA GGAGAAATTG TCGGCGCAGG CGATGCCGTG CAGGGCATAA
    1751 GCGAAGGCTC AAACATTGCT GTCATGCACG GCTTGGGTCT GCATTCCACC
    1801 GAAAACAAGA TGGCGCGCAT CAACGATTTG GCAGATATGG CGCAACTCAA
    1851 AGACTATGCC GCAGCAGCCA TCCGCGATTG GGCAGTCCAA AACCCCAATG
    1901 CCGCACAAGG CATAGAAGCC GTCAGCAATA TCTTTATGGC AGCCATCCCC
    1951 ATCAAAGGGA TTGGAGCTGT TCGGGGAAAA TACGGCTTGG GCGGCATCAC
    2001 GGCACATCCT ATCAAGCGGT CGCACATGGG CGCGATCGCA TTGCCGAAAG
    2051 GGAAATCCGC CGTCAGCGAC AATTTTGCCG ATGCGGCATA CGCCAAATAC
    2101 CCGTCCCCTT ACCATTCCCG AAATATCCGT TCAAACTTGG AGCAGCGTTA
    2151 CGGCAAAGAA AACATCACCT CCTCAACCGT GCCGCCGTCA AACGGCAAAA
    2201 ATGTCAAACT GGCAGACCAA CGCCACCCGA AGACAGGCGT ACCGTTTGAC
    2251 GGTAAAGGGT TTCCGAATTT TGAGAAGCAC GTGAAATATG ATACGTAACT
    2301 CGAG
       1 MKHEPSKVAT TAILATFCSG ALAATNDDDV KKAATVAIAK AYNNGQEING
      51 FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNATKTVNEN
     101 KQNVDAKVKA AESEIEMATT KLADTDAALA DTDAALDATT NALNKLGENI
     151 TTFAEETKTN IVEIDEKLEA VADTVDKHAE AFNDIADSLD ETNTKADEAV
     201 KTANEAKQTA EETYQNVDAK VKAAETAAGK AEAAAGTANT AADKAEAVAA
     251 KVTDIKADIA TNKDNIAKKA NSADVYTREE SDSKEVRIDG ANATTEKLDT
     301 RLASAEKSIA DRDTRANGLD KTVGDARKET RQGLAEQAAL SGLFQPYNVG
     351 GSGGGGSDLA NDSFIRQVAD RQHFEPDGKY ELFGSRGELA ERSGHIGLGK
     401 IQSHQAGNLM IQQAAIKGNI GYIVRESDHG REVHSPFDNH ASHSDSDEAG
     451 SPVDGFSLYR IHWDGYEHHP ADGYDGFQGG GYPAPKGARD IYSYDIKGVA
     501 QNIRDNLTDN RSTGQRLADR FENAGSKLTQ GVGDGFKRAT RYSPELDRSG
     551 NAAEAFNGTA DIVKNIIGAA GEIVGAGDAV QGISEGSNIA VHHGLGLAST
     601 ENKNARINDA ADHAQLYDYA AAAIRDWAVQ NPNAAQGIEA VSNIFMAAIP
     651 IKGIGAVRGK YGLGGITAHP IKRSQMGAIA APKGKEAVSD NFADAAYAKY
     701 PSPYHSRNIR SNLEQRYGKE NITSSTVPPS NGENVKLADQ RHPKTGVPFD
     751 GEGFPNFEKR VKYDT*
    961cL-741
       1 ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT
      51 CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG
     101 CCACTGTGGC CATTGCTGCT GCCTACAACK ATGGCCAAGA AATCAACGGT
     151 TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC
     201 CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC
     251 TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC
     301 AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA
     351 GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG
     401 CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA
     451 ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA
     501 ATTAGAAGCC GTCGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG
     551 ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC
     601 AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT
     651 CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG
     701 CCGCTGCCAC ACCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA
     751 AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC
     801 TAAAAATGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA
     851 AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA
     901 CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA
     951 CCGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC
    1001 TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGCGT
    1051 GGATCCGGTG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA
    1101 TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA
    1151 CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT GGCGGCACAA
    1201 GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT
    1251 GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG
    1301 ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA
    1351 AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA
    1401 GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG
    1451 CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA
    1501 TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA AACTGACCTA
    1551 CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA
    1601 AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT CAAGCCGGAT
    1651 GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA
    1701 GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC CACGAAGTTG
    1751 CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA TATCGGCCTT
    1801 GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA
       1 MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA ANNNGQEING
      51 FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN
     101 KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NAINKLGENI
     151 TTFAEETKTN IVKIDEKLEA VADTVDKRAE AFNDIADSLD ETNTKADEAV
     201 KTANEKKQTA EETKQNVDAK VFAAETAAGY AFAAAGTANT AADKAEAVAA
     251 KVTDIKADIA TNYDNIAKKA NSADVYTREE SDSKFVRIDG LNATTEKLDT
     301 RLASAEKSIA DEDTRINGLD KTVSDLRKET RQGLAEQAAL SGLFQPYVVG
     351 QSGCCGVAAD IGAGLADALT APLDEKDKGL QSLTLDQSVR KNEKLKLAAQ
     401 GAEKTYGNGD SLNTGKLKND KVSREDFIRQ IEVDGQLITL ESGMFQVYKQ
     451 SMSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF DKLPEGGRAT
     501 YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD
     551 GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSAEVK TVNGIRHIGL
     601 AAKQLEHHHH HH*
    961cL-883
       1 ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT
      51 CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG
     101 CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT
     151 TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC
     201 CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGOTC
     251 TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC
     301 AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA
     351 GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG
     401 CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA
     451 ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA
     501 ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG
     551 ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC
     601 AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT
     651 CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG
     701 CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA
     751 AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC
     801 TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA
     851 AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA
     901 CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA
     951 CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC
    1001 TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT
    1051 GGATCCGGCG GAGGCGGCAC TTCTGCGCCC GACTTCAATG CAGGCGGTAC
    1101 CGGTATCGGC AGCAACAGCA GAGCAACAAC AGCGAAATCA GCAGCAGTAT
    1151 CTTACGCCGG TATCAAGAAC GAAATGTGCA AAGACAGAAG CATGCTCTGT
    1201 GCCGGTCGGG ATGACGTTGC GGTTACAGAC AGGGATGCCA AAATCAATGC
    1251 CCCCCCCCCG AATCTGCATA CCGGAGACTT TCCAAACCCA AATGACGCAT
    1301 ACAAGAATTT GATCAACCTC AAACCTGCAA TTGAAGCAGG CTATACAGGA
    1351 CGCGGGGTAG AGGTAGGTAT CGTCGACACA GGCGAATCCG TCGGCAGCAT
    1401 ATCCTTTCCC GAACTGTATG GCAGAAAAGA ACACGGCTAT AACGAAAATT
    1451 ACAAAAACTA TACGGCGTAT ATGCGGAAGG AAGCGCCTGA AGACGGAGGC
    1501 GGTAAAGACA TTGAAGCTTC TTTCGACGAT GAGGCCGTTA TAGAGACTGA
    1551 AGCAAAGCCG ACGGATATCC GCCACGTAAA AGAAATCGGA CACATCGATT
    1601 TGGTCTCCCA TATTATTGGC GGGCGTTCCG TGGACGGCAG ACCTGCAGGC
    1651 GaTATTGCGC CCGATGCGAC GCTACACATA ATGAATACGA ATGATGAAAC
    1701 CAAGAACGAA ATGATGGTTG CAGCCATCCG CAATGCATGG GTCAAGCTGG
    1751 GCGAACGTGG CGTGCGCATC GTCAATAACA GTTTTGGAAC AACATCGAGG
    1801 GCAGGCACTG CCGACCTTTT CCAAATAGCC AATTCGGAGG AGCAGTACCG
    1851 CCAAGCGTTG CTCGACTATT CCGGCGGTGA TAAAACAGAC GAGGGTATCC
    1901 GCCTGATGCA ACAGAGCGAT TACGGCAACC TGTCCTACCA CATCCGTAAT
    1951 AAAAACATGC TTTTCATCTT TTCGACAGGC AATGACGCAC AAGCTCAGCC
    2001 CAACACATAT GCCCTATTGC CATTTTATGA AAAAGACGCT CAAAAAGGCA
    2051 TTATCACAGT CGCAGGCGTA GACCGCAGTG GAGAAAAGTT CAAACGGGAA
    2101 ATGTATGGAG AACCGGGTAC AGAACCGCTT GAGTATGGCT CCAACCATTG
    2151 CGGAATTACT GCCATGTGGT GCCTGTCGGC ACCCTATGAA GCAAGCGTCC
    2201 GTTTCACCCG TACAAACCCG ATTCAAATTG CCGGAACATC CTTTTCCGCA
    2251 CCCATCGTAA CCGGCACGGC GGCTCTGCTG CTGCAGAAAT ACCCGTGGAT
    2301 GAGCAACGAC AACCTGCGTA CCACGTTGCT GACGACGGCT CAGGACATCG
    2351 GTGCAGTCGG CGTGGACAGC AAGTTCGGCT GGGGACTGCT GGATGCGGGT
    2401 AAGGCCATGA ACGGACCCGC GTCCTTTCCG TTCGGCGACT TTACCGCCGA
    2451 TACGAAAGGT ACATCCGATA TTGCCTACTC CTTCCGTAAC GACATTTCAG
    2501 GCACGGGCGG CCTGATCAAA AAAGGCGGCA GCCAACTGCA ACTGCACGGC
    2551 AACAACACCT ATACGGGCAA AACCATTATC GAAGGCGGTT CGCTGGTGTT
    2601 GTACGGCAAC AACAAATCGG ATATGCGCGT CGAAACCAAA GGTGCGCTGA
    2651 TTTATAACGG GGCGGCATCC GGCGGCAGCC TGAACAGCGA CGGCATTGTC
    2701 TATCTGGCAG ATACCGACCA ATCCGGCGCA AACGAAACCG TACACATCAA
    2751 AGGCAGTCTG CAGCTGGACG GCAAAGGTAC GCTGTACACA CGTTTGGGCA
    2801 AACTGCTGAA AGTGGACGGT ACGGCGATTA TCGGCGGCAT GCTGTACATG
    2851 TCGGCACGCG GCAAGGGGGC AGGCTATCTC AACAGTACCG GACGACGTGT
    2901 TCCCTTCCTG AGTGCCGCCA AAATCGGGCA GGATTATTCT TTCTTCACAA
    2951 ACATCGAAAC CGACGGCGGC CTGCTGGCTT CCCTCGACAG CGTCGAAAAA
    3001 ACAGCGGGCA GTGAAGGCGA CACGCTGTCC TATTATGTCC GTCGCGGCAA
    3051 TGCGGCACGG ACTGCTTCGG CAGCGGCACA TTCCGCGCCC GCCGGTCTGA
    3101 AACACGCCGT AGAACAGGGC GGCAGCAATC TGGAAAACCT GATGGTCGAA
    3151 CrGGATGCCT CCGAATCATC CGCAACACCC GAGACGGTTG AAACTGCGGC
    3201 AGCCGACCGC ACAGATATGC CGGGCATCCG CCCCTACGGC GCAACTTTCC
    3251 GCGCAGCOGC AGCCGTACAG CATGCGAATG CCGCCGACGG TGTACGCATC
    3301 TTCAACAGTC TCGCCGCTAC CGTCTATGCC GACAGTACCG CCGCCCATGC
    3351 CGATATGCAG GGACGCCGCC TGAAAGCCGT ATCGGACGGG TTGGACCACA
    3401 ACGGCACGGG TCTGCGCGTC ATCGCGCAAA CCCAACAGGA CGGTGGAACG
    3451 TGGGAACAGG GCGGTGTTGA AGGCAAAATG CGCGGCAGTA CCCAAACCGT
    3501 CGGCATTGCC GCGAAAACCG GCGAAAATAC GACAGCAGCC GCCACACTGG
    3551 GCATGGGACG CAGCACATGG AGCGAAAACA GTQCAAATGC AAAAACCGAC
    3601 AGCATTAGTC TGTTTGCAGG CATACGGCAC GATGCGGGCG ATATCGGCTA
    3651 TCTCAAAGGC CTGTTCTCCT ACGGACGCTA CAAAAACAGC ATCAGCCGCA
    3701 GCACCGGTGC GGACGAACAT GCGGAAGGCA GCGTCAACGG CACGCTGATG
    3751 CAGCTGGGCG CACTGGGCGG TGTCAACGTT CCGTTTGCCG CAACGGGAGA
    3801 TTTGACGGTC GAAGGCGGTC TGCGCTACGA CCTGCTCAAA CAGGATGCAT
    3851 TCGCCGAAAA AGGCAGTGCT TTGGGCTGGA GCGGCAACAG CCTCACTGAA
    3901 GGCACGCTGG TCGGACTCGC GGGTCTGAAG CTGTCGCAAC CCTTGAGCGA
    3951 TAAAGCCGTC CTGTTTGCAA CGGCGGGCGT GGAACGCGAC CTGAACGGAC
    4001 GCGACTACAC GGTAACGGGC GGCTTTACCG GCGCGACTGC AGCAACCGGC
    4051 AAGACGGGGG CACGCAATAT GCCGCACACC CGTCTGGTTG CCGGCCTGGG
    4101 CGCGGATGTC GAATTCGGCA ACGGCTGGAA CGGCTTGGCA CGTTACAGCT
    4151 ACGCCGGTTC CAAACAGTAC GGCAACCACA GCGGACGAGT CGGCGTAGGC
    4201 TACCGGTTCT GACTCGAG
       1 MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA AYNNGQEING
      51 FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN
     101 KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NALNKLGENI
     151 TTFABETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD ETNTKADRAV
     201 KTANEAKQTA EETKQNVDAK VKAABTAAGK AFAAAGTANT AADKARAVAA
     251 KVTDIKADIA TNKDNIAKKA NSADVYTRBE SDSKFVRIEG LNATTEKLDT
     301 RDASAEKSIA DHDTRLNGLD KTVSDLRKET RQGLAEQAAL SGLFQPYNVG
     351 GSGGGGTSAP DFNAGGTGIG SNSRATTAKS ANVSYAGIKN EFKKDRSELC
     401 AGRDDVAVTD RDAKTNAPPP NLHTGDFPNP NDAYENDINL KPAIRAGYTG
     451 RGVEVGIVDT GESVGSISFP ELYGRKBHGY NENYKNYTAY MRKEAPEDGG
     501 GKDIEASFDD EAVIETRAKP TDIRHVKEIG RIDLVSHIIG GRSVDGRPAG
     551 GIAPDATLHI MNTNDRTXNE EEVAAIRNAW VKLGERGVRI VNNSFGTTSR
     601 AGTADLFQIA NSEEQYRQAL LDYSGGDKTD EGIRLMQQSD YGNL5YH1RN
     651 KNMDFIFSTG NDAQAQPNTY ALLPFYEKDA QKGIITVAGV DRSGEKFKRB
     701 MYGSPGTRPL RYGSNHCGIT AMWCLSAPYE ASVRPTRTNP IQIAGTSFSA
     751 PIVTGTAALL LQXYPWRSND NLRTTLLTTA QDIGAVGVDS KPGWGLLDAG
     801 KAMNGPASFP FGDFTADTKG TSDIAYSFRN DISGTGGLIK KGGSQLQLHQ
     851 NNTYTGKTII EGGSLVLYGN NKSDMRVETK GALIYNGAAS GGSLNSDGIV
     901 YLADTDQSGA NETVHIKGSL QLDGKGTLYT RLGKLLKVDG TAIIGGKLMY
     951 SARGKGAGYL NSTGRRVPFL SAAKIGQDYS FFTNIETDOG LLASLDSVEK
    1001 TAGSEGDTLS YYVRRGNAAR TASAAAHSAP AGLKHAVEQG GSNLENLMVE
    1051 LDASESSATP ETVETAAADR TDMPGIRPYG ATFRAAAAVQ HANAADGVRI
    1101 FNSLAATVYA DSTAAHADMQ GRRLKAVSDG LDHNGTGLRV IAQTQQDGGT
    1151 WEQGGVEGKM RGSTQTVGIA AKTGERPTAA ATLGMGRSTW SENSANAKTD
    1201 SISLFAGIRH DAGDIGYLKG LFSYGRYKNS ISRSTGADEH AEGSVNGTLM
    1251 QLGALGGVNV PFAATGDLTV EGGLRYDLLK QDAFAEKGSA LGWSGNSLTE
    1301 GTLVGLAGLR LSQPLSDKAV LFATAGVERD LNGRDYTVTG GRTGATAATG
    1351 KTGARNMPHT RLVAGLGADV EFGNGWNGLA RYSYAGSKQY GNHSGRVGVG
    1401 YRF*
  • It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. For instance, the use of proteins from other strains is envisaged [e.g. see WO00/66741 for polymorphic sequences for ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953].
  • EXPERIMENTAL DETAILS FPLC Protein Purification
  • The following table summarises the FPLC protein purification that was used:
  • Protein PI Column Buffer pH Protocol
    121.1untagged 6.23 Mono Q Tris 8.0 A
    128. 1untagged 5.04 Mono Q Bis-Tris propane 6.5 A
    406.1L 7.75 Mono Q Diethanolamine 9.0 B
    576.1L 5.63 Mono Q Tris 7.5 B
    593untagged 8.79 Mono S Hepes 7.4 A
    726untagged 4.95 Hi-trap S Bis-Tris 6.0 A
    919untagged 10.5(-leader) Mono S Bicine 8.5 C
    919Lorf4 10.4(-leader) Mono S Tris 8.0 B
    920L 6.92(-leader) Mono Q Diethanolamine 8.5 A
    953L 7.56(-leader) Mono S MES 6.6 D
    982untagged 4.73 Mono Q Bis-Tris propane 6.5 A
    919-287 6.58 Hi-trap Q Tris 8.0 A
    953-287 4.92 Mono Q Bis-Tris propane 6.2 A
  • Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia: FPLC Ion Exchange and Chromatofocussing; Principles and Methods. Pharmacia Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.
  • The letter in the ‘protocol’ column refers to the following:
  • FPLC-A:
  • Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E. coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-08. Expression of recombinant protein was induced with/PTO at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed on ice or at 4° C. For cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L, bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by by sonication using a Branson Sonifier 450. Disrupted cells were centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes. The supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH4)2SO4 and the precipitate collected as above. Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight. The periplasmic fraction from E. coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect. Immun. (1974) 10:1010-1017] and dialysed against the appropriate ion-exchange buffer. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH2-terminus (see below).
  • FPLC-B:
  • These proteins were purified from the membrane fraction of E. coli, Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium. Clones 406.1L and 919LOrf4 were grown at 30° C. and Orf25L and 576.1L at 37° C. until the OD550 reached 0.6-0.8. In the case of 919LOrf4, growth at 30° C. was essential since expression of recombinant protein at 37° C. resulted in lysis of the cells. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. AU subsequent procedures were performed at 4° C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000 g for 15 min and membranes precipitated by centrifugation at 100000 g (Beckman Ti50, 38000 rpm) for 45 minutes. A Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000 g for 45 min and the pellet resuspended in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0 mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000 g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.
  • FPLC-C:
  • Identical to FPLC-A, but purification was from the soluble fraction obtained after permeabilising E. coli with polymyxin B, rather than after cell disruption.
  • FPLC-D:
  • A single colony harbouring the plasmid of interest was grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. When necessary cells were stored at −20° C. All subsequent procedures were performed on ice or at 4° C. Cells were resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol, complete protease inhibitor (Boehringer-Mannheim) and disrupted using a Branson Sonifier 450. The sonicate was centrifuged at 8000 g for 30 rain to sediment unbroken cells and inclusion bodies. The recombinant protein was precipitated from solution between 35% v/v and 70% v/v saturation by the addition of 3.9M (NH4)2SO4. The precipitate was sedimented at 8000 g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight. The dialysate was centrifuged at 13000 g for 20 min and applied to the FPLC resin. The protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.
  • Cloning Strategy and Oligonucleotide Design
  • Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of N. meningitidis B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+(Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in ‘untagged’ form (e.g. AG 287K).
  • Where a protein was expressed without a fusion partner and with its own leader peptide (if present), amplification of the open reading frame (ATG to STOP codons) was performed.
  • Where a protein was expressed in ‘untagged’ form, the leader peptide was omitted by designing the 5′-end amplification primer downstream from the predicted leader sequence.
  • The melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:

  • T m1=4(G+C)+2(A+T) (tail excluded)

  • T m2=64.9+0.41(% GC)−600/N (whole primer)
  • The melting temperatures of the selected oligonucleotides were usually 65-70° C. for the whole oligo and 50-60° C. for the hybridising region alone.
  • Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0 ml NH4OH, and deprotected by 5 hours incubation at 56° C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.
  • Restriction
    Sequences site
    Orf1L Fwd CGCGATCCGCTAGC-AAAACAACCGACAAACGG NheI
    Rev CCCGCTCGAG-TTACCAGCGGTAGCCTA XhoI
    Orf1 Fwd CTAGCTAGC-GGACACACTTATTTCGGCATC NheI
    Rev CCCGCTCGAG-TTACCAGCGGTAGCCTAATTTG XhoI
    Orf1LOmpA Fwd NdeI-(NheI)
    Rev CCCGCTCGAG- XhoI
    Orf4L Fwd CGCGGATCCCATATG-AAAACCTTCTTCAAAACC NdeI
    Rev CCCGCTCGAG-TTATTTGGCTGCGCCTTC XhoI
    Orf7-1L Fwd GCGGCATTAAT-ATGTTGAGAAAATTGTTGAAATGG AseI
    Rev GCGGCCTCGAG-TTATTTTTTCAAAATATATTTGC XhoI
    Orf9-L Fwd GCGGCCATATG-TTACCTAACCGTTTCAAAATGT Ndel
    Rev GCGGCCTCGAG-TTATTTCCGAGGTTTTCGGG XhoI
    Orf23L Fwd CGCGGATCCCATATG-ACACGCTTCAAATATTC NdeI
    Rev CCCGCTCGAG-TTATTTAAACCGATAGGTAAA XhoI
    Orf25-1 His Fwd CGCGGATCCCATATG-GGCAGGGAAGAACCGC NdeI
    Rev GCCCAAGCTT-ATCGATGGAATAGCCGCG HindIII
    Orf29-1 b-His- Fwd CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG NheI
    (MC58) Rev CCCGCTCGAG-TTTGTCTAAGTTCCTGATAT XhoI
    CCCGCTCGAG-ATTCCCACCTGCCATC
    Orf29-1 b-L Fwd CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT NheI
    (MC58) Rev CCCGCTCGAG-TTAATTCCCACCTGCCATC XhoI
    Orf29-1 c-His Fwd CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT NheI
    (MC58) Rev CCCGCTCGAG-TTGGACGATGCCCGCGA XhoI
    Orf29-1 c-L Fwd CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT NheI
    (MC58) Rev CCCGCTCGAG-TTATTGGACGATGCCCGC XhoI
    Orf25L Fwd CGCGGATCCCATATG-TATCGCAAACTGATTGC NdeI
    Rev CCCGCTCGAG-CTAATCGATGGAATAGCC XhoI
    Orf37L Fwd CGCGGATCCCATATG-AAACAGACAGTCAAATG NdeI
    Rev CCCGCTCGAG-TCAATAACCCGCCTTCAG XhoI
    Orf38L Fwd CGCGGATCCCATATG- NdeI
    TTACGTTTGACTGCTTTAGCCGTATGCACC
    Rev CCCGCTCGAG- XhoI
    TTATTTTGCCGCGTTAAAAGCGTCGGCAAC
    Orf40L Fwd CGCGGATCCCATATG-AACAAAATATACCGCAT NdeI
    Rev CCCGCTCGAG-TTACCACTGATAACCGAC XhoI
    Orf40.2-His Fwd CGCGGATCCCATATG-ACCGATGACGACGATTTAT NdeI
    Rev GCCCAAGCTT-CCACTGATAACCGACAGA HindIII
    Orf40.2L Fwd CGCGGATCCCATATG-AACAAAATATACCGCAT NdeI
    Rev GCCCAAGCTT-TTACCACTGATAACCGAC HindIII
    Orf46-2L Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI
    Rev CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC XhoI
    Orf46-2 Fwd GGGAATTCCATATG-TCAGATTTGGCAAACGATTCTT NdeI
    Rev CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC XhoI
    Orf46.1L Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI
    Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI
    orf46. Fwd GGGAATTCCATATGCACGGAAATATGATACGAAG BamHI-NdeI
    (His-GST) Rev CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC XhoI
    rf46.1-His Fwd GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT NdeI
    Rev CCCGCTCGAGCGTATCATATTTCACGTGC XhoI
    orf46.2-His Fwd GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT NdeI
    Rev CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC XhoI
    Orf65-1-(His/ Fwd CGCGGATCCCATATG-CAAAATGCGTTCAAAATCCC BamHI-NdeI
    GST) (MC58) Rev CGCGGATCCCATATG-AACAAAATATACCGCAT XhoI
    CCCGCTCGAG-TTTGCTTTCGATAGAACGG
    Orf2-1L Fwd GCGGCCATATG-GTCATAAAATATACAAATTTGAA NdeI
    Rev GCGGCCTCGAG-TTAGCCTGAGACCTTTGCAAATT XhoI
    Orf76-1L Fwd GCGGCCATATG-AAACAGAAAAAAACCGCTG NdeI
    Rev GCGGCCTCGAG-TTACGGTTTGACACCGTTTTC XhoI
    Orf83.1L Fwd CGCGGATCCCATATG-AAAACCCTGCTCCTC NdeI
    Rev CCCGCTCGAG-TTATCCTCCTTTGCGGC XhoI
    Orf85-2L Fwd GCGGCCATATG-GCAAAAATGATGAAATGGG NdeI
    Rev GCGGCCTCGAG-TTATCGGCGCGGCGGGCC XhoI
    Orf91L Fwd GCGGCCATATGAAAAAATCCTCCCTCATCA NdeI
    (MC58) Rev GCGGCCTCGAGTTATTTGCCGCCGTTTTTGGC XhoI
    Orf91-His Fwd GCGGCCATATGGCCCCTGCCGACGCGGTAAG NdeI
    (MC580 Rev GCGGCCTCGAGTTTGCCGCCGTTTTTGGCTTTC XhoI
    Orf97-1L Fwd GCGGCCATATG-AAACACATACTCCCCCTGA NdeI
    Rev GCGGCCTCGAG-TTATTCGCCTACGGTTTTTTG XhoI
    Orf119L Fwd GCGGCCATATGATTTACATCGTACTGTTTC NdeI
    (MC58) Rev GCGGCCTCGAGTTAGGAGAACAGGCGCAATGC XhoI
    Orf119-His Fwd GCGGCCATATGTACAACATGTATCAGGAAAAC NdeI
    (MC58) Rev GCGGCCTCGAGGGAGAACAGGCGCAATGCGG XhoI
    Orf137.1 (His- Fwd CGCGGATCCGCTAGCTGCGGCACGGCGGG BamHI-NdeI
    GST) (MC58) Rev CCCGCTCGAGATAACGGTATGCCGCCAG XhoI
    Orf143-1L Fwd CGCGGATCCCATATG-GAATCAACACTTTCAC NdeI
    Rev CCCGCTCGAG-TTACACGCGGTTGCTGT XhoI
    008 Fwd CGCGGATCCCATATG-AACAACAGACATTTTG NdeI
    Rev CCCGCTCGAG-TTACCTGTCCGGTAAAAG XhoI
    050-1(48) Fwd CGCGGATCCGCTAGC-ACCGTCATCAAACAGGAA NheI
    Rev CCCGCTCGAG-TCAAGATTCGACGGGGA XhoI
    105 Fwd CGCGGATCCCATATG-TCCGCAAACGAATACG NdeI
    Rev CCCGCTCGAG-TCAGTGTTCTGCCAGTTT XhoI
    111L Fwd CGCGGATCCCATATG-CCGTCTGAAACACG NdeI
    Rev CCCGCTCGAG-TTAGCGGAGCAGTTTTTC XhoI
    117-1 Fwd CGCGGATCCCATATG-ACCGCCATCAGCC NdeI
    Rev CCCGCTCGAG-TTAAAGCCGGGTAACGC XhoI
    121-1 Fwd GCGGCCATATG-GAAACACAGCTTTACATCGG NdeI
    Rev GCGGCCTCGAG-TCAATAATAATATCCCGCG XhoI
    122-1 Fwd GCGGCCATATG-ATTAAAATCCGCAATATCC NdeI
    Rev GCGGCCTCGAG-TTAAATCTTGGTAGATTGGATTTGG XhoI
    128-1 Fwd GCGGCCATATG-ACTGACAACGCACTGCTCC NdeI
    Rev GCGGCCTCGAG-TCAGACCGCGTTGTCGAAAC XhoI
    148 Fwd CGCGGATCCCATATG-GCGTTAAAAACATCAAA NdeI
    Rev CCCGCTCGAG-TCAGCCCTTCATACAGC XhoI
    149.1L Fwd CCCGCTCGAG-TCAGCCCTTCATACAGC XhoI
    (MC58) Rev GCGGCATTAATGGCACAAACTACACTCAAACC AseI
    149.1His Fwd GCGGCATTAATGCATGAAACTGAGCAATCGGTGG AseI
    (MC58) Rev GCGGCCTCGAGAAACTTCACGTTCACGCCGCCGGTAAA XhoI
    205 (His-GST) Fwd CGCGGATCCCATATGGGCAAATCCGAAAATACG BamHI-NdeI
    (MC58) Rev CCCGCTCGAGATAATGGCGGCGGCGG XhoI
    206L Fwd CGCGGATCCCATATG-TTTCCCCCCGACAA NdeI
    Rev CCCGCTCGAG-TCATTCTGTAAAAAAAGTATG XhoI
    214 (His-GST) Fwd CGCGGATCCCATATGCTTCAAAGCGACAGCAG BamHI-NdeI
    (MC58) Rev CCCGCTCGAGTTCGGATTTTTGCGTACTC XhoI
    216 Fwd CGCGGATCCCATATG-GCAATGGCAGAAAACG NdeI
    Rev CCCGCTCGAG-CTATACAATCCGTGCCG XhoI
    225-1L Fwd CGCGGATCCCATATG-GATTCTTTTTTCAAACC NdeI
    Rev CCCGCTCGAG-TCAGTTCAGAAAGCGGG XhoI
    235L Fwd CGCGGATCCCATATG-AAACCTTTGATTTTAGG NdeI
    Rev CCCGCTCGAG-TTATTTGGGCTGCTCTTC XhoI
    243 Fwd CGCGGATCCCATATG-GTAATCGTCTGGTTG NdeI
    Rev CCCGCTCGAG-CTACGACTTGGTTACCG XhoI
    247-1L Fwd GCGGCCATATG-AGACGTAAAATGCTAAAGCTAC NdeI
    Rev GCGGCCTCGAG-TCAAAGTGTTCTGTTTGCGC XhoI
    264-His Fwd GCCGCCATATG-TTGACTTTAACCCGAAAAA NdeI
    Rev GCCGCCTCGAG-GCCGGCGGTCAATACCGCCCGAA XhoI
    270 (His-GST) Fwd CGCGGATCCCATATGGCGCAATGCGATTTGAC BamHI-NdeI
    (MC58) Rev CCCGCTCGAGTTCGGCGGTAAATGCCG XhoI
    274L Fwd GCGGCCATATG-GCGGGGCCGATTTTTGT NdeI
    Rev GCGGCCTCGAG-TTATTTGCTTTCAGTATTATTG XhoI
    283L Fwd GCGGCCATATG-AACTTTGCTTTATCCGTCA NdeI
    Rev GCGGCCTCGAG-TTAACGGCAGTATTTGTTTAC XhoI
    285-His Fwd CGCGGATCCCATATGGGTTTGCGCTTCGGGC BamHI
    Rev GCCCAAGCTTTTTTCCTTTGCCGTTTCCG HindIII
    286-His Fwd CGCGGATCCCATATG-GCCGACCTTTCCGAAAA NdeI
    (MC58) Rev CCCGCTCGAG-GAAGCGCGTTCCCAAGC XhoI
    286L Fwd CGCGGATCCCATATG-CACGACACCCGTAC NdeI
    Rev CCCGCTCGAG-TTAGAAGCGCGTTCCCAA XhoI
    287L Fwd CTAGCTAGC-TTTAAACGCAGCGTAATCGCAATGG NheI
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    287 Fwd CTAGCTAGC-GGGGGCGGCGGTGGCG NheI
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    287LOrf4 Fwd CTAGCTAGCGCTCATCCTCGCCGCC- NheI
    TGCGGGGGCGGCGGT
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    287-fu Fwd CGGGGATCC-GGGGGCGGCGGTGGCG BamHI
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    287-His Fwd CTAGCTAGC-GGGGGCGGCGGTGGCG NheI
    Rev CCCGCTCGAG-ATCCTGCTCTTTTTTGCC* XhoI
    287-His Fwd CTAGCTAGC-TGCGGGGGCGGCGGTGGCG NheI
    (2996) Rev CCCGCTCGAG-ATCCTGCTCTTTTTTGCC XhoI
    Δ1 287-His Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC§ NheI
    Δ2 287-His Fwd CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT§ NheI
    Δ3 287-His Fwd CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA§ NheI
    Δ4 287-His Fwd CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§ NheI
    Δ4 287MC58-His Fwd CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG§ NheI
    287a-His Fwd CGCCATATG-TTTAAACGCAGCGTAATCGC NdeI
    Rev CCCGCTCGAG-AAAATTGCTACCGCCATTCGCAGG XhoI
    287b-His Fwd CGCCATATG-GGAAGGGTTGATTTGGCTAATGG NdeI
    287b-2996-His Rev CCCGCTCGAG-CTTGTCTTTATAAATGATGACATATTTG XhoI
    287b-MC58-His Rev CCCGCTCGAG-TTTATAAAAGATAATATATTGATTGATTCC XhoI
    287c-2996-His Fwd CGCGCTAGC-ATGCCGCTGATTCCCGTCAATC§ NheI
    ′287untagged, Fwd CTAGCTAGC-GGGGGCGGCGGTGGCG NheI
    (2996) Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    ΔG287-His* Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    Rev CCCGCTCGAG-ATCCTGCTCTTTTTTGCC XhoI
    ΔG287K (2996) Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    ΔG 287-L Fwd CGCGGATCCGCTAGC- NheI
    TTTGAACGCAGTGTGATTGCAATGGCTTGTATTTTTGCC
    CTTTCAGCCTGT TCGCCCGATGTTAAATCGGCG
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    ΔG 287-Orf4L Fwd CGCGGATCCGCTAGC- NheI
    AAAACCTTCTTCAAAACCCTTTCCGCCGCCGCACTCGCG
    CTCATCCTCGCCGCCTGC TCGCCCGATGTTAAATCG
    Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    292L Fwd CGCGGATCCCATATG-AAAACCAAGTTAATCAAA NdeI
    Rev CCCGCTCGAG-TTATTGATTTTTGCGGATGA XhoI
    308-1 Fwd CGCGGATCCCATATG-TTAAATCGGGTATTTTATC NdeI
    Rev CCCGCTCGAG-TTAATCCGCCATTCCCTG XhoI
    401L Fwd GCGGCCATATG-AAATTACAACAATTGGCTG NdeI
    Rev GCGGCCTCGAG-TTACCTTACGTTTTTCAAG XhoI
    406L Fwd CGCGGATCCCATATG-CAAGCACGGCTGCT NdeI
    Rev CCCGCTCGAG-TCAAGGTTGTCCTTGTCTA XhoI
    502-1L Fwd CGCGGATCCCATATG-ATGAAACCGCACAAC NdeI
    Rev CCCGCTCGAG-TCAGTTGCTCAACACGTC XhoI
    502-A Fwd CGCGGATCCCATATGGTAGACGCGCTTAAGCA BamHI-NdeI
    (His-GST) Rev CCCGCTCGAGAGCTGCATGGCGGCG XhoI
    503-1L Fwd CGCGGATCCCATATG-GCACGGTCGTTATAC NdeI
    Rev CCCGCTCGAG-CTACCGCGCATTCCTG XhoI
    519-1L Fwd GCGGCCATATG-GAATTTTTCATTATCTTGTT NdeI
    Rev GCGGCCTCGAG-TTATTTGGCGGTTTTGCTGC XhoI
    525-1L Fwd GCGGCCATATG-AAGTATGTCCGGTTATTTTTC NdeI
    Rev GCGGCCTCGAG-TTATCGGCTTGTGCAACGG XhoI
    529-(His/GST) Fwd CGCGGATCCGCTAGC-TCCGGCAGCAAAACCGA BamHI-NdeI
    (MC58) Rev GCCCAAGCTT-ACGCAGTTCGGAATGGAG HindIII
    552L Fwd GCCGCCATATGTTGAATATTAAACTGAAAACCTTG NdeI
    Rev GCCGCCTCGAGTTATTTCTGATGCCTTTTCCC XhoI
    556L Fwd GCCGCCATATGGACAATAAGACCAAACTG NdeI
    Rev GCCGCCTCGAGTTAACGGTGCGGACGTTC XhoI
    557L Fwd CGCGGATCCCATATG-AACAAACTGTTTCTTAC NdeI
    Rev CCCGCTCGAG-TCATTCCGCCTTCAGAAA XhoI
    564ab-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI
    (MC58) CAAGGTATCGTTGCCGACAAATCCGCACCT
    Rev CCCGCTCGAG- XhoI
    AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT
    564abL Fwd CGCGGATCCCATATG- NdeI
    (MC58) AACCGCACCCTGTACAAAGTTGTATTTAACAAACATC
    Rev CCCGCTCGAG- XhoI
    TTAAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT
    564b-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI
    (MC58) ACGGGAGAAAATCATGCGGTTTCACTTCATG
    Rev CCCGCTCGAG- XhoI
    AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT
    564c-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI
    (MC58) GTTTCAGACGGCCTATACAACCAACATGGTGAAATT
    Rev CCCGCTCGAG- XhoI
    GCGGTAACTGCCGCTTGCACTGAATCCGTAA
    564bc-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI
    (MC58) ACGGGAGAAAATCATGCGGTTTCACTTCATG
    Rev CCCGCTCGAG- XhoI
    GCGGTAACTGCCGCTTGCACTGAATCCGTAA
    564d-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI
    (MC58) CAAAGCAAAGTCAAAGCAGACCATGCCTCCGTAA
    Rev CCCGCTCGAG- XhoI
    TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG
    GTCCCC
    564cd-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI
    (MC58) GTTTCAGACGGCCTATACAACCAACATGGTGAAATT
    Rev CCCGCTCGAG- XhoI
    TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG
    GTCCCC
    570L Fwd GCGGCCATATG-ACCCGTTTGACCCGCG NdeI
    Rev GCGGCCTCGAG-TCAGCGGGCGTTCATTTCTT XhoI
    576-1L Fwd CGCGGATCCCATATG-AACACCATTTTCAAAATC NdeI
    Rev CCCGCTCGAG-TTAATTTACTTTTTTGATGTCG XhoI
    580L Fwd GCGGCCATATG-GATTCGCCCAAGGTCGG NdeI
    Rev GCGGCCTCGAG-CTACACTTCCCCCGAAGTGG XhoI
    583L Fwd CGCGGATCCCATATG-ATAGTTGACCAAAGCC NdeI
    Rev CCCGCTCGAG-TTATTTTTCCGATTTTTCGG XhoI
    593 Fwd GCGGCCATATG-CTTGAACTGAACGGACT NdeI
    Rev GCGGCCTCGAG-TCAGCGGAAGCGGACGATT XhoI
    650 (His-GST) Fwd CGCGGATCCCATATGTCCAAACTCAAAACCATCG BamHI-NdeI
    (MC58) Rev CCCGCTCGAGGCTTCCAATCAGTTTGACC XhoI
    652 Fwd GCGGCCATATG-AGCGCAATCGTTGATATTTTC NdeI
    Rev GCGGCCTCGAG-TTATTTGCCCAGTTGGTAGAATG XhoI
    664L Fwd GCGGCCATATG-GTGATACATCCGCACTACTTC NdeI
    Rev GCGGCCTCGAG-TCAAAATCGAGTTTTACACCA XhoI
    726 Fwd GCGGCCATATG-ACCATCTATTTCAAAAACGG NdeI
    Rev GCGGCCTCGAG-TCAGCCGATGTTTAGCGTCCATT XhoI
    741-His Fwd CGCGGATCCCATATG-AGCAGCGGAGGGGGTG NdeI
    (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI
    ΔG741-His Fwd CGCGGATCCCATATG-GTCGCCGCCGACATCG NdeI
    (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI
    686-2-(His/GST) Fwd CGCGGATCCCATATG-GGCGGTTCGGAAGGCG BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-TTGAACACTGATGTCTTTTCCGA XhoI
    719-(His/GST) Fwd CGCGGATCCGCTAGC-AAACTGTCGTTGGTGTTAAC BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-TTGACCCGCTCCACGG XhoI
    730-His Fwd GCCGCCATATGGCGGACTTGGCGCAAGACCC NdeI
    (MC58) Rev GCCGCCTCGAGATCTCCTAAACCTGTTTTAACAATGCCG XhoI
    730A-His Fwd GCCGCCATATGGCGGACTTGGCGCAAGACCC NdeI
    (MC58) Rev GCGGCCTCGAGCTCCATGCTGTTGCCCCAGC XhoI
    730B-His Fwd GCCGCCATATGGCGGACTTGGCGCAAGACCC NdeI
    (MC58) Rev GCGGCCTCGAGAAAATCCCCGCTAACCGCAG XhoI
    741-His Fwd CGCGGATCCCATATG-AGCAGCGGAGGGGGTG NdeI
    (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI
    ΔG741-His Fwd CGCGGATCCCATATG-GTCGCCGCCGACATCG NdeI
    (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI
    743 (His-GST) Fwd CGCGGATCCCATATGGACGGTGTTGTGCCTGTT BamHI-NdeI
    Rev CCCGCTCGAGCTTACGGATCAAATTGACG XhoI
    757 (His-GST) Fwd CGCGGATCCCATATGGGCAGCCAATCTGAAGAA BamHI-NdeI
    (MC58) Rev CCCGCTCGAGCTCAGCTTTTGCCGTCAA XhoI
    759-His/GST Fwd GGCGGATCCGCTAGC-TACTCATCCATTGTCCGC BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-CCAGTTGTAGCCTATTTG XhoI
    759L Fwd CGCGGATCCGCTAGC-ATGCGCTTCACACACAC NdeI
    (MC58) Rev CCCGCTCGAG-TTACCAGTTGTAGCCTATTT XhoI
    760-His Fwd GCCGCCATATGGCACAAACGGAAGGTTTGGAA NdeI
    Rev GCCGCCTCGAGAAAACTGTAACGCAGGTTTGCCGTC XhoI
    769-His Fwd GCGGCCATATGGAAGAAACACCGCGCGAACCG NdeI
    (MC58) Rev GCGGCCTCGAGAACGTTTTATTAAACTCGAC XhoI
    907L Fwd GCGGCCATATG-AGAAAACCGACCGATACCCTA NdeI
    Rev GCGGCCTCGAG-TCAACGCCACTGCCAGCGGTTG XhoI
    911L Fwd CGCGGATCCCATATG-AAGAAGAACATATTGGAATTTTGGGTCGGACTG NdeI
    Rev CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG XhoI
    911LOmpA Fwd GGGAATTCCATATGAAAAAGACAGCTATCGCGATTGCA NdeI-(NheI)
    GTGGCACTGGCTGGTTTCGCTACCGTAGCGCAGGCCGC
    TAGC-GCTTTCCGCGTGGCCGGCGGTGC
    Rev CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG XhoI
    911LPelB Fwd CATGCCATGG-CTTTCCGCGTGGCCGGCGGTGC NcoI
    Rev CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG XhoI
    913-His/GST Fwd CGCGGATCCCATATG-TTTGCCGAAACCCGCC BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-AGGTTGTGTTCCAGGTTG XhoI
    913L Fwd CGCGGATCCCATATG-AAAAAAACCGCCTATG NdeI
    (MC58) Rev CCCGCTCGAG-TTAAGGTTGTGTTCCAGG XhoI
    916L Fwd CGCGGATCCCATATG-AAAAAATACCTATTCCGC NdeI
    Rev CCCGCTCGAG-TTACGGGCGGTATTCGG XhoI
    919 Fwd CGCGGATCCCATATG-CAAAGCAAGAGCATCCAAA NdeI
    Rev CCCGCTCGAG-TTACGGGCGGTATTCGG XhoI
    919L Orf4 Fwd GGGAATTCCATATGAAAACCTTCTTCAAAACCCTTTCCG NdeI-(NheI)
    CCGCCGCGCTAGCGCTCATCCTCGCCGCC-
    TGCCAAAGCAAGAGCATC
    Rev CCCGCTCGAG-TTACGGGCGGTATTCGGGCTTCATACCG XhoI
    (919)-287 Fwd CGCGGATCCGTCGAC-TGTGGGGGCGGCGGTGGC SalI
    fusion Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI
    920-1L Fwd GCGGCCATATG-AAGAAAACATTGACACTGC NdeI
    Rev GCGGCCTCGAG-TTAATGGTGCGAATGACCGAT XhoI
    925-His/GST Fwd ggggacaagtttgtacaaaaaagcaggctTGCGGCAAGGATGCCGG attB1
    (MC58)GATE Rev ggggaccactttgtacaagaaagctgggtCTAAAGCAACAATGCCGG attB2
    926L Fwd CGCGGATCCCATATG-AAACACACCGTATCC NdeI
    Rev CCCGCTCGAG-TTATCTCGTGCGCGCC XhoI
    927-2-(His/GST) Fwd CGCGGATCCCATATG-AGCCCCGCGCCGATT BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-TTTTTGTGCGGTCAGGCG XhoI
    932-His/GST Fwd ggggacaagtttgtacaaaaaagcaggctTGTTCGTTTGGGGGATTTAA attB1
    (MC58)GATE ACCAAACCAAATC
    935 (His-GST) Fwd CGCGGATCCCATATGGCGGATGCGCCCGCG BamHI-NdeI
    (MC58) Rev CCCGCTCGAGAAACCGCCAATCCGCC XhoI
    936-1L Rev ggggaccactttgtacaagaaagctgggtTCATTTTGTTTTTCCTTCTTCT attB2
    CGAGGCCATT
    Fwd CGCGGATCCCATATG-AAACCCAAACCGCAC NdeI
    Rev CCCGCTCGAG-TCAGCGTTGGACGTAGT XhoI
    953L Fwd GGGAATTCCATATG-AAAAAAATCATCTTCGCCG NdeI
    Rev CCCGCTCGAG-TTATTGTTTGGCTGCCTCGAT XhoI
    953-fu Fwd GGGAATTCCATATG-GCCACCTACAAAGTGGACG NdeI
    Rev CGGGGATCC-TTGTTTGGCTGCCTCGATTTG BamHI
    954 (His-GST) Fwd CGCGGATCCCATATGCAAGAACAATCGCAGAAAG BamHI-NdeI
    (MC58) Rev CCCGCTCGAGTTTTTTCGGCAAATTGGCTT XhoI
    958-His/GST Fwd ggggacaagtttgtacaaaaaagcaggctGCCGATGCCGTTGCGG attB1
    (MC58)GATE Rev ggggaccactttgtacaagaaagctgggtTCAGGGTCGTTTGTTGCG attB2
    961L Fwd CGCGGATCCCATATG-AAACACTTTCCATCC NdeI
    Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI
    961 Fwd CGCGGATCCCATATG-GCCACAAGCGACGAC NdeI
    Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI
    961 c (His/GST) Fwd CGCGGATCCCATATG-GCCACAAACGACG BamHI-NdeI
    Rev CCCGCTCGAG-ACCCACGTTGTAAGGTTG XhoI
    961 c-(His/GST) Fwd CGCGGATCCCATATG-GCCACAAGCGACGACGA BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-ACCCACGTTGTAAGGTTG XhoI
    961 c-L Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI
    Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI
    961 c-L Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI
    (MC58) Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI
    961d (His/GST) Fwd CGCGGATCCCATATG-GCCACAAACGACG BamHI-NdeI
    Rev CCCGCTCGAG-GTCTGACACTGTTTTATCC XhoI
    961 Δ1-L Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI
    Rev CCCGCTCGAG-TTATGCTTTGGCGGCAAAG XhoI
    fu 961-... Fwd CGCGGATCCCATATG-GCCACAAACGACGAC NdeI
    Rev CGCGGATCC-CCACTCGTAATTGACGCC BamHI
    fu 961-... Fwd CGCGGATCCCATATG-GCCACAAGCGACGAC NdeI
    (Mc58) Rev CGCGGATCC-CCACTCGTAATTGACGCC BamHI
    fu
     961 c-... Fwd CGCGGATCCCATATG-GCCACAAACGACGAC NdeI
    Rev CGCGGATCC-ACCCACGTTGTAAGGTTG BamHI
    fu
     961 c-L-... Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI
    Rev CGCGGATCC-ACCCACGTTGTAAGGTTG BamHI
    fu (961)- Fwd CGCGGATCC-GGAGGGGGTGGTGTCG BamHI
    741 (MC58)-His Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI
    fu (961)-983- Fwd CGCGGATCC-GGCGGAGGCGGCACTT BamHI
    His Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI
    fu (961)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI
    Orf46.1-His TCAGATTTGGCAAACGATTC
    Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI
    fu (961 c-L)- Fwd CGCGGATCC-GGAGGGGGTGGTGTCG BamHI
    741 (MC58) Rev CCCGCTCGAG-TTATTGCTTGGCGGCAAG XhoI
    fu (961 c-L)- Fwd CGCGGATCC-GGCGGAGGCGGCACTT BamHI
    983 Rev CCCGCTCGAG-TCAGAACCGGTAGCCTAC XhoI
    fu (961c-L)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI
    Orf46.1 TCAGATTTGGCAAACGATTC
    Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI
    961-(His/GST) Fwd CGCGGATCCCATATG-GCCACAAGCGACGACG BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI
    961 ΔA-His Fwd CGCGGATCCCATATG-GCCACAAACGACGAC NdeI
    Rev CCCGCTCGAG-TGCTTTGGCGGCAAAGTT XhoI
    961a-(His/GST) Fwd CGCGGATCCCATATG-GCCACAAACGACGAC BamHI-NdeI
    Rev CCCGCTCGAG-TTTAGCAATATTATCTTTGTTCGTAGC XhoI
    961b-(His/GST) Fwd CGCGGATCCCATATG-AAAGCAAACCGTGCCGA BamHI-NdeI
    Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI
    961-His/GSTGATE Fwd ggggacaagtttgtacaaaaaagcaggctGCAGCCACAAACGACGACG attB1
    ATGTTAAAAAAGC
    Rev ggggaccactttgtacaagaaagctggggTTACCACTCGTAATTGACGC attB2
    CGACATGGTAGG
    982 Fwd GCGGCCATAG-GCAGCAAAAGACGTACAGTT NdeI
    Rev GCGGCCTCGAG-TTACATCATGCCGCCCATACCA XhoI
    983-His Fwd CGCGGATCCGCTAGC-TTAGGCGGCGGCGGAG NheI
    (2996) Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI
    ΔG983-His Fwd CCCCTAGCTAGC-ACTTCTGCGCCCGACTT NheI
    (2996) Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI
    983-His Fwd CGCGGATCCGCTAGC-TTAGGCGGCGGCGGAG NheI
    Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI
    ΔG983-His Fwd CGCGGATCCGCTAGC-ACTTCTGCGCCCGACTT NheI
    Rev CCCGCTCGAG-GAACCGTAGCCTACG XhoI
    983L Fwd CGCGGATCCGCTAGC- NheI
    CGAACGACCCCAACCTTCCCTACAAAAACTTTCAA
    Rev CCCGCTCGAG-TCAGAACCGACGTGCCAAGCCGTTC XhoI
    987-His Fwd GCCGCCATATGCCCCCACTGGAAGAACGGACG NdeI
    (MC48) Rev GCCGCCTCGAGTAATAAACCTTCTATGGGCAGCAG XhoI
    989-(His/GST) Fwd CGCGGATCCCATATG-TCCGTCCACGCATCCG BamHI-NdeI
    (MC58) Rev CCCGCTCGAG-TTTGAATTTGTAGGTGTATTG XhoI
    989L Fwd CGCGGATCCCATATG-ACCCCTTCCGCACT NdeI
    (MC58) Rev CCCGCTCGAG-TTATTTGAATTTGTAGGTGTAT XhoI
    CrgA-His Fwd CGCGGATCCCATATG-AAAACCAATTCAGAAGAA NdeI
    (MC58) Rev CCCGCTCGAG-TCCACAGAGATTGTTTCC XhoI
    PilC1-ES Fwd GATGCCCGAAGGGCGGG XhoI
    (MC58) Rev GCCCAAGCTT-TCAGAAGAAGACTTCACGC
    PilC1-His Fwd CGCGGATCCCATATG-CAAACCCATAAATACGCTATT NdeI
    (MC58) Rev GCCCAAGCTT-GAAGAAGACTTCACGCCAG HindIII
    Δ1PilC1-His Fwd CGCGGATCCCATATG-GTCTTTTTCGACAATACCGA NdeI
    (MC58) Rev GCCCAAGCTT- HindIII
    PilC1L Fwd CGCGGATCCCATATG-AATAAAACTTTAAAAAGGCGG NdeI
    (MC58) Rev GCCCAAGCTT-TCAGAAGAAGACTTCACGC HindIII
    ΔGTbp2-His Fwd CGCGAATCCCATATG-TTCGATCTTGATTCTGTCGA NdeI
    (MC58) Rev CCCGCTCGAG-TCGCACAGGCTGTTGGCG XhoI
    Tbp2-His Fwd CGCGAATCCCATATG-TTGGGCGGAGGCGGCAG NdeI
    (MC58) Rev CCCGCTCGAG-TCGCACAGGCTGTTGGCG XhoI
    Tbp2-His Fwd CGCGAATCCCATATG-TTGGGCGGAGGCGGCAG NdeI
    (MC58) Rev CCCGCTCGAG-TCGCACGGCTGTTGGCG XhoI
    NMB0109- Fwd CGCGGATCCCATATG-GCAAATTTGGAGGTGCGC BamHI-NdeI
    (His/GST) Rev CCCGCTCGAG-TTCGGAGCGGTTGAAGC XhoI
    (MC58)
    NMB0109L Fwd CGCGGATCCCATATG-CAACGTCGTATTATAACCC NdeI
    (MC58) Rev CCCGCTCGAG-TTATTCGGAGCGGTTGAAG XhoI
    NMB0207- Fwd CGCGGATCCCATATG- BamHI-NdeI
    (His/GST) GGCATCAAAGTCGCCATCAACGGCTAC
    (MC58) Rev CCCGCTCGAG-TTTGAGCGGGCGCACTTCAAGTCCG XhoI
    NMB0462- Fwd CGCGGATCCCATATG-GGCGGCAGCGAAAAAAAC BamHI-NdeI
    (His/GST) Rev CCCGCTCGAG-GTTGGTGCCGACTTTGAT XhoI
    (MC58)
    NMB0623- Fwd CGCGGATCCCATATG-GGCGGCGGAAGCGATA BamHI-NdeI
    (His/GST) Rev CCCGCTCGAG-TTTGCCCGCTTTGAGCC XhoI
    (MC58)
    NMB0625 (His- Fwd CGCGGATCCCATATGGGCAAATCCGAAAATACG BamHI-NdeI
    GST)(MC58) Rev CCCCGCTCGAGCATCCCGTACTGTTTCG XhoI
    NMB0634 Fwd ggggacaagtttgtacaaaaaagcaggctCCGACATTACCGTGTACAAC attB1
    (His/GST) GGCCAACAAAGAA
    (MC58) Rev ggggaccactttgtacaagaaagctgggtCTTATTTCATACCGGCTTGCT attB2
    CAAGCAGCCGG
    NMB0776- Fwd ggggacaagtttgtacaaaaaagcaggctGATACGGTGTTTTCCTGTAA attB1
    His/GST AACGGACAA
    (MC58)GATE Rev ggggaccactttgtacaagaaagctgggtCTAGGAAAAATCGTCATCGT attB2
    TGAAATTCCC
    NMB1115- Fwd ggggacaagtttgtacaaaaaagcaggctATGCACCCCATCGAAACC attB1
    His/GST Rev ggggaccactttgtacaagaaagctggggtCTAGTCTTGCAGTGCCTC attB2
    (MC58)GATE
    NMB1343- Fwd CGCGGATCCCATATG- BamHI-NdeI
    (His/GST) GGAAATTTCTTATATAGAGGCATTAG XhoI
    (MC58) Rev CCCGCTCGAG-
    GTTAATTTCTATCAACTCTTTAGCAATAAT
    NMB1369 Fwd CGCGGATCCCATATGGCCTGCCAAGACGACA BamHI-NdeI
    (His-GST) Rev CCCGCTCGAGCCGCCTCCTGCCGAAA XhoI
    (MC58)
    NMB1551 Fwd CGCGGATCCCATATGGCAGAGATCTGTTTGATAA BamHI-NdeI
    (His-GST) Rev CCCGCTCGAGCGGTTTTCCGCCCAATG XhoI
    (MC58)
    NMB1899 Fwd CGCGGATCCCATATGCAGCCGGATACGGTC BamHI-NdeI
    (His-GST) Rev CCCGCTCGAGAATCACTTCCAACACAAAAT XhoI
    (MC58)
    NMB2050- Fwd CGCGGATCCCATATG-TGGTTGCTGATGAAGGGC BamHI-NdeI
    (His/GST) Rev CCCGCTCGAG-GACTGCTTCATCTTCTGC XhoI
    (MC58)
    NMB2050L Fwd CGCGGATCCCATATG-GAACTGATGACTGTTTTGC NdeI
    (MC58) Rev CCCGCTCGAG-TCAGACTGCTTCATCTTCT XhoI
    NMB2159- Fwd CGCGGATCCCATATG- BamHI-NdeI
    (His/GST) AGCATTAAAGTAGCGATTAACGGTTTCGGC
    (MC58) Rev CCCGCTCGAG- XhoI
    GATTTTGCCTGCGAAGTATTCCAAAGTGCG
    fu-ΔG287...- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    His Rev CGGGGATCC-ATCCTGCTCTTTTTTGCCGG BamHI
    fu-(ΔG287)- Fwd CGCGGATCCGGTGGTGGTGGT- NheI
    919-His CAAAGCAAGAGCATCCAAACC BamHI
    Rev CCCAAGCTT-TTCGGGCGGTATTCGGGCTTC
    fu-(ΔG287)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI
    953-His Rev GCCACCTACAAAGTGGAC
    GCCCAAGCTT-TTGTTTGGCTGCCTCGAT HindIII
    fu-(ΔG287)- Fwd CGCGGATCCGGTGGTGGTGGT-ACAAGCGACGACG BamHI
    961-His Rev GCCCAAGCTT-CCACTCGTAATTGACGCC HindIII
    fu-(ΔG287)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI
    Orf46.1-His TCAGATTTGGCAAACGATTC
    Rev CCCAAGCTT-CGTATCATATTTCACGTGC HindIII
    fu-(ΔG287- Fwd CCCAAGCTTGGTGGTGGTGGTGGT- HindIII
    919)-Orf46.1- Rev TCAGATTTGGCAAACGATTC
    His CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI
    fu-(ΔG287- Fwd CCCAAGCTTGGTGGTGGTGGTGGT- HindIII
    Orf46.1)- Rev CAAAGCAAGAGCATCCAAACC
    His CCCGCTCGAG-CGGGCGGTATTCGGGCTT XhoI
    fu ΔG287 Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI
    (394.98)-... Rev CGGGGATCC-ATCCTGCTCTTTTTTGCCGG BamHI
    fu Orf1- Fwd CGCGGATCCGCTAGC-GGACACACTTATTTCGGCATC NheI
    (Orf46.1)- Rev CGCGGATCC-CCAGCGGTAGCCTAATTTGAT
    His
    fu (Orf1)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI
    Orf46.1-His Rev TCAGATTTGGCAAACGATTC
    CCCAAGCTT-CGTATCATATTTCACGTGC HindIII
    fu (919)- Fwd1 GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAG SalI
    Orf46.1-His Fwd2 GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC
    Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI
    fu orf46-... Fwd GGAATTCCATATGTCAGATTTGGCAAACGATTC NdeI
    Rev CGCGGATCCCGTATCATATTTCACGTGC BamHI
    Fu (orf46)- Fwd CGGGGATCCGGGGGCGGCGGTGGCG BamHI
    287-His Rev CCCAAGCTTATCCTGCTCTTTTTTGCCGGC HindIII
    Fu (orf46)- Fwd CGCGGATCCGGTGGTGGTGGTCAAAGCAAGAGCATCCA BamHI
    919-His AACC
    Rev CCCAAGCTTCGGGCGGTATTCGGGCTTC HindIII
    Fu (orf46-919)- Fwd CCCCAAGCTTGGGGGCGGCGGTGGCG HindIII
    287-His Rev CCCGCTCGAGATCCTGCTCTTTTTTGCCGGC XhoI
    Fu (orf46- Fwd CCCAAGCTTGGTGGTGGTGGTGGTCAAAGCAAGAGCAT HindIII
    287)-919-His CCAAACC
    Rev CCCGCTCGAGCGGGCGGTATTCGGGCTT XhoI
    (ΔG741)-961c- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI
    His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG
    Rev CCCGCTCGAG-ACCCAGCTTGTAAGGTTG XhoI
    (ΔG741)-961- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI
    His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG
    Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI
    (ΔG741)-983- Fwd GCGGCCTCGAG- XhoI
    His Rev GGATCCGGCGGAGGCGGCACTTCTGCG
    CCCGCTCGAG-GAACCGGTAGCCTACG XhoI
    (ΔG741)- Fwd1 GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC SalI
    orf46.1-His Fwd2 GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA
    Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI
    (ΔG983)- Fwd GCGGCCTCGAG-GGATCCGGAGGGGGTGGTGTCGCC XhoI
    741(MC58)- Rev CCCGCTCGAG-TTGCTTGGCGGCAAG XhoI
    His
    (ΔG983)- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI
    961c-His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG XhoI
    Rev CCCGCTCGAG-ACCCAGCTTGTAAGGTTG XhoI
    (ΔG983)- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI
    961-His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG XhoI
    Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI
    (ΔG983)- Fwd1 GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC XhoI
    Orf46.1-His Fwd2 GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA SalI
    Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI
    *This primer was used as a Reverse primer for all the C terminal fusions of 287 to the His-tag.
    §Forward primers used in combination with the 287-His Reverse primer.
    NB-All PCR reactions use strain 2996 unless otherwise specified (e.g. strain MC58)
  • In all constructs starting with an ATG not followed by a unique NheI site, the ATG codon is part of the NdeI site used for cloning. The constructs made using NheI as a cloning site at the 5° end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.
  • Preparation of Chromosomal DNA Templates N. meningitidis strains 2996, MC58, 394.98, 1000 and BZ232 (and others) were grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% w/v sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8) After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml of lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 μg/ml Proteinase K), and the suspension incubated at 37° C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation. The pellet was washed once with 70% (v/v) ethanol and redissolved in 4.0 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The DNA concentration was measured by reading OD260.
  • PCR Amplification
  • The standard PCR protocol was as follows: 200 ng of genomic DNA from 2996, MC581000, or BZ232 strains or 10 ng of plasmid DNA preparation of recombinant clones were used as template in the presence of 40 μM of each oligonucletide primer, 400-800 μM dNTPs solution, lx PCR buffer (including 1.5 mM NgCl2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim Expand Long Template).
  • After a preliminary 3 minute incubation of the whole mix at 95° C., each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (Tm1). This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (Tm2). Elongation times, performed at 68° C. or 72° C., varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72° C.
  • The amplified DNA was either loaded directly on a 1% agarose gel. The DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.
  • Digestion of PCR Fragments and of the Cloning Vectors
  • The purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H2O or 10 mM Tris, pH 8.5. Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QiAquick Gel Extraction Kit.
  • Cloning
  • The fragments corresponding to each gene, previously digested and purified, were ligated into pET21b+, pET22b+ or pET-24b+. A molar ratio of 3:1 fragment/vector was used with T4 DNA ligase in the ligation buffer supplied by the manufacturer.
  • Recombinant plasmid was transformed into competent E. coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37° C. for 3 minutes. This was followed by the addition of 800 μl LB broth and incubation at 37° C. for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 2000 of the supernatant and plated onto LB ampicillin (100 mg/ml) agar.
  • Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37° C. in 4.0 ml of LB broth+100 μg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1 μg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.
  • Expression
  • After cloning each gene into the expression vector, recombinant plasmids were transformed into E. coli strains suitable for expression of the recombinant protein. 1 μl of each construct was used to transform E. coli BL21-DE3 as described above. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 μg/ml), incubated at 37° C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, to give an OD600 between 0.1 and 0.2. The flasks were incubated at 30° C. or at 37° C. in a gyratory water bath shaker until OD600 indicated exponential growth suitable for induction of expression (0.4-0.8 OD). Protein expression was induced by addition of 1.0 mM IPTG. After 3 hours incubation at 30° C. or 37° C. the OD600 was measured and expression examined. 1.0 ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.
  • Gateway Cloning and Expression
  • Sequences labelled GATE were cloned and expressed using the GATEWAY Cloning Technology (GIBCO-BRL). Recombinational cloning (RC) is based on the recombination reactions that mediate the integration and excision of phage into and from the E. coli genome, respectively. The integration involves recombination of the attP site of the phage DNA within the attB site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by attL and attR sites. The excision recombines attL and attR sites back to attP and attB sites (LR reaction). The integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IHF)] (BP clonase). The excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (His) (LR clonase), Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5 end of the primers used in PCR reactions to amplify Neisserial ORFs. The resulting products were BP cloned into a “Donor vector” containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase. The resulting “Entry clones” contain ORFs flanked by derivatives of the attL site (L1 and L2) and were subcloned into expression “destination vectors” which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in “expression clones” in which ORFs are flanked by B1 and B2 and fused in frame to the GST or His N terminal tags.
  • The E. coli strain used for GATEWAY expression is BL21-SI. Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).
  • Note that this system gives N-terminus His tags.
  • Preparation of Membrane Proteins.
  • Fractions composed principally of either inner, outer or total membrane were isolated in order to obtain recombinant proteins expressed with membrane-localisation leader sequences. The method for preparation of membrane fractions, enriched for recombinant proteins, was adapted from Filip et. al. [J. Bact. (1973) 115:717-722] and Davies et. al. [J. Immunol. Meth. (1990) 143:215-225]. Single colonies harbouring the plasmid of interest were grown overnight at 37° C. in 20 ml of LB/Amp (100 μg/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30° C. or 37° C. until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4° C. and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4° C. or on ice.
  • Cells were disrupted by sonication using a Branson Sonifier 450 and centrifuged at 5000 g for 20 min to sediment unbroken cells and inclusion bodies. The supernatant, containing membranes and cellular debris, was centrifuged at 50000 g (Beckman Ti50, 29000 rpm) for 75 min, washed with 20 mM Bis-tris propane (pH 6.5), 1.0 M NaCl, 10% (v/v) glycerol and sedimented again at 50000 g for 75 minutes. The pellet was resuspended in 20 mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final concentration) and incubated for 20 minutes to dissolve inner membrane. Cellular debris was pelleted by centrifugation at 5000 g for 10 min and the supernatant centrifuged at 75000 g for 75 minutes (Beckman Ti50, 33000 rpm). Proteins 0081, and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice. Outer membrane vesicles obtained from the 75000 g pellet were washed with 20 mM Tris-HCl (pH 7.5) and centrifuged at 75000 g for 75 minutes or overnight. The OMV was finally resuspended in 500 μl of 20 mM Tris-HCl (pH 7.5), 10% v/v glycerol. Orf1L and Orf40L were both localised and enriched in the outer membrane fraction which was used to immunise mice. Protein concentration was estimated by standard Bradford Assay (Bio-Rad), while protein concentration of inner membrane fraction was determined with the DC protein assay (Bio-R ad). Various fractions from the isolation procedure were assayed by SDS-PAGE.
  • Purification of his-Tagged Proteins
  • Various forms of 287 were cloned from strains 2996 and MC58. They were constructed with a C-terminus His-tagged fusion and included a mature form (aa 18-427), constructs with deletions (Δ1, Δ2, Δ3 and Δ4) and clones composed of either B or C domains. For each clone purified as a His-fusion, a single colony was streaked and grown overnight at 37° C. on a LB/Amp (100 μg/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 μg/ml) liquid medium and grown overnight at 37° C. with shaking. The overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 μg/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37° C.) until the OD550 reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000 g for 15 min at 4° C. The bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, Δ1, Δ2, Δ3 and Δ4287-His, Δ4287MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly. Cells were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13000×g for 30 ruin at 4° C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5 and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000 g for 30 min and the supernatant retained. Supernatants for both soluble and insoluble preparations were mixed with 150 μl Ni2+-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to the manufacturer's protocol. The batch-wise preparation was centrifuged at 700 g for 5 min at 4° C. and the supernatant discarded. The resin was washed twice (batch-wise) with 10 ml buffer A or B for 10 min, resuspended in 1.0 nil buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4° C. or (ii) buffer B at room temperature, until the OD280 of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8.0) or (ii) buffer D (10 mM Tris-Ha, 100 mM phosphate buffer, pH 6.3 and, optionally, 8M urea) until OD280 of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700 μl of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD280 indicated all the recombinant protein was obtained. 20 μl aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.
  • Renaturation of Denatured his-Fusion Proteins.
  • Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v. The proteins were diluted to 200 μg/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4° C. Further dialysis was performed with buffer II (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C. Protein concentration was estimated using the formula:

  • Protein (mg/ml)=(1.55×OD280)−(0.76×OD260)
  • Amino Acid Sequence Analysis.
  • Automated sequence analysis of the NH2-terminus of proteins was performed on a Beckman sequencer (LF 3000) equipped with an on-line phenylthiohydantoin-amino acid analyser (System Gold) according to the manufacturer's recommendations.
  • Immunization
  • Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.
  • Sera Analysis—ELISA
  • The acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and bacteria were washed twice with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37° C. and then overnight at 4° C. with stirring. 100 μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4° C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer; 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37° C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37° C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H2O2) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl 12.5% H2SO4 was added to each well and OD490 was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD490 value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD49 of 0.4 was higher than 1:400.
  • Sera Analysis—FACS Scan Bacteria Binding Assay
  • The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37° C. with 5% CO2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 025% glucose. Bacterial growth was monitored every 30 minutes by following OD620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.05. 100 μl bacterial cells were added to each well of a Costar 96 well plate. 100 μl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4° C. Cells were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 μl/well of blocking buffer in each well, 100 μl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4° C. Cells were spun down by centrifugation at 4000 rpm for 5 minutes and washed by addition of 200 μl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 μl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15 mW) setting were: FL2 on; FSC-H threshold: 92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.
  • Sera Analysis—Bactericidal Assay
  • N. meningitidis strain 2996 was grown overnight at 37° C. on chocolate agar plates (starting from a frozen stock) with 5% CO2. Colonies were collected and used to inoculate 7 ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD620 of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD620 reached the value of 0.23-0.24. Bacteria were diluted in 50 mM Phosphate buffer pH 7.2 containing 10 mM MgCl2, 10 mM CaCl2 and 0.5% (w/v) BSA (assay buffer) at the working dilution of 105 CFU/ml. The total volume of the final reaction mixture was 50 μl with 25 μl of serial two fold dilution of test serum, 12.5 μl of bacteria at the working dilution, 12.5 μl of baby rabbit complement (final concentration 25%).
  • Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56° C. for 30′. Immediately after the addition of the baby rabbit complement, 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0). The 96-wells plate was incubated for 1 hour at 37° C. with rotation. 7 μl of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10 μl of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 1). Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.
  • Sera Analysis—Western Blots
  • Purified proteins (500 ng/lane), outer membrane vesicles (5 μg) and total cell extracts (25 μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4° C., using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4° C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37° C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.
  • The OMVs were prepared as follows: N. meningitidis strain 2996 was grown overnight at 37 degrees with 5% CO2 on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20 mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56° C. for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000 g at the temperature of 4° C. The pellet containing the membranes was resuspended in 2% sarkosyl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000 g for 3 hours. The pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard′.
  • Total cell extracts were prepared as follows: N. meningitidis strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56° C. for 30 minutes.
  • 961 Domain Studies
  • Cellular Fractions Preparation
  • Total lysate, periplasm, supernatant and OMV of E. coli clones expressing different domains of 961 were prepared using bacteria from over-night cultures or after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris 50 mM (pH 8) with polimixine 100 μg/ml. After 1 hr at room temperature bacteria were centrifuged at 13000 rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2 μm and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SUS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.
  • Adhesion Assay
  • Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained, in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15 mM L-glutamin′ e and antibiotics.
  • For the adherence assay, sub-confluent culture of Chang epithelial cells were rinsed with PBS and treated with trypsin-EDTA (Gibco), to release them from the plastic support. The cells were then suspended in PBS, counted and dilute in PBS to 5×105 cells/ml.
  • Bacteria from over-night cultures or after induction with IPTG, were pelleted and washed twice with PBS by centrifuging at 13000 for 5 min. Approximately 2-3×108 (cfu) were incubated with 0.5 mg/ml FITC (Sigma) in 1 ml buffer containing 50 mM NaHCO3 and 100 mM NaCl pH 8, for 30 min at room temperature in the dark. FITC-labeled bacteria were wash 2-3 times and suspended in PBS at 1-1.5×109/ml. 200 μl of this suspension (2-3×108) were incubated with 2000 (1×105) epithelial cells for 30 min a 37° C. Cells were than centrifuged at 2000 rpm for 5 min to remove non-adherent bacteria, suspended in 200 μl of PBS, transferred to FACScan tubes and read

Claims (29)

1. A method of inducing a bactericidal immune response in an animal, comprising administering to the animal a composition comprising a non-lipidated polypeptide, which comprises an amino acid sequence having greater than 99% sequence identity to the amino acid sequence of ΔG741 from Neisseria meningitidis strain MC58, wherein the non-lipidated polypeptide is present in an immunologically effective amount that is effective to elicit bactericidal antibodies against a Neisseria meningitidis serogroup B strain in the animal.
2. The method according to claim 1, wherein the immunologically effective amount is at least 20 μg.
3. The method according to claim 2, wherein the immunologically effective amount is 50-200 μg.
4. The method according to claim 2, wherein said composition additionally comprises an effective amount of an adjuvant.
5. The method according to claim 4, wherein the adjuvant is aluminum hydroxide or aluminum phosphate.
6. The method according to claim 2, wherein said non-lipidated polypeptide does not comprise an N-terminal amino acid residue site for lipidation.
7. The method according claim 2, further comprising a pharmaceutically acceptable carrier, adjuvant, diluent or buffer.
8. The method according to claim 2, wherein the non-lipidated polypeptide elicits a bactericidal immune response against a heterologous Neisseria meningitidis strain in the animal.
9. The method according to claim 2, consisting essentially of the non-lipidated polypeptide.
10. The method according to claim 2, wherein the composition does not comprise a protein having an amino acid sequence of greater than 80% sequence identity to SEQ ID NO: 2534 in WO99/57280.
11. The method according to claim 2, wherein the non-lipidated polypeptide is a recombinant polypeptide.
12. The method according to claim 2, wherein the non-lipidated polypeptide is a fusion polypeptide.
13. The method according to claim 2, wherein the non-lipidated polypeptide is a purified polypeptide.
14. The method according to claim 2, wherein the non-lipidated polypeptide is conjugated to a carrier.
15. The method according to claim 2, wherein the non-lipidated polypeptide was expressed in E. coli.
16. The method according to claim 1, wherein the composition comprises
(a) the non-lipidated polypeptide; and
(b) an immunostimulatory effective amount of an aluminum hydroxide adjuvant.
17. The method according to claim 16, wherein the immunologically effective amount of the non-lipidated polypeptide is at least 20 μg.
18. The method according to claim 16, wherein the immunologically effective amount of the non-lipidated polypeptide is 50-200 μg.
19. The method according to claim 16, wherein said non-lipidated polypeptide does not comprise an N-terminal amino acid residue site for lipidation.
20. The method according to claim 16, further comprising a pharmaceutically acceptable carrier, diluent or buffer.
21. The method according to claim 16, wherein the non-lipidated polypeptide elicits a bactericidal immune response against a heterologous Neisseria meningitidis strain in the animal.
22. The method according to claim 16, consisting essentially of (a) and (b).
23. The method according to claim 16, wherein the composition does not comprise a protein having an amino acid sequence of greater than 80% sequence identity to SEQ ID NO: 2534 of WO99/57280.
24. The method according to claim 16, wherein the non-lipidated polypeptide is a recombinant polypeptide.
25. The method according to claim 16, wherein the non-lipidated polypeptide is a fusion polypeptide.
26. The method according to claim 16, wherein the non-lipidated polypeptide is a purified polypeptide.
27. The method according to claim 16, wherein the non-lipidated polypeptide is conjugated to a carrier.
28. The method according to claim 16, wherein the non-lipidated polypeptide comprises the amino acid sequence of ΔG741 from Neisseria meningitidis strain MC58.
29. The method according to claim 16, wherein the non-lipidated polypeptide was expressed in E. coli.
US15/368,435 2000-02-28 2016-12-02 Heterologous expression of neisserial proteins Abandoned US20170080077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/368,435 US20170080077A1 (en) 2000-02-28 2016-12-02 Heterologous expression of neisserial proteins

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
GB0004695.3 2000-02-28
GB0004695A GB0004695D0 (en) 2000-02-28 2000-02-28 Protein expression
GB0027675.8 2000-11-13
GB0027675A GB0027675D0 (en) 2000-11-13 2000-11-13 Protein Expression
US10/220,481 US7803387B2 (en) 2000-02-28 2001-02-28 Heterologous expression of Neisserial proteins
PCT/IB2001/000452 WO2001064922A2 (en) 2000-02-28 2001-02-28 Heterologous expression of neisserial proteins
US12/825,210 US8114960B2 (en) 2000-02-28 2010-06-28 Heterologous expression of Neisserial proteins
US13/340,549 US8703914B2 (en) 2000-02-28 2011-12-29 Heterologous expression of neisserial proteins
US14/244,806 US20140294885A1 (en) 2000-02-28 2014-04-03 Heterologous expression of neisserial proteins
US15/368,435 US20170080077A1 (en) 2000-02-28 2016-12-02 Heterologous expression of neisserial proteins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/244,806 Continuation US20140294885A1 (en) 2000-02-28 2014-04-03 Heterologous expression of neisserial proteins

Publications (1)

Publication Number Publication Date
US20170080077A1 true US20170080077A1 (en) 2017-03-23

Family

ID=26243750

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/220,480 Abandoned US20040092711A1 (en) 2000-02-28 2001-02-28 Hybrid expression of neisserial proteins
US10/220,481 Expired - Fee Related US7803387B2 (en) 2000-02-28 2001-02-28 Heterologous expression of Neisserial proteins
US11/067,260 Expired - Fee Related US9267163B2 (en) 2000-02-28 2005-02-25 Hybrid expression of neisserial proteins
US12/825,210 Expired - Fee Related US8114960B2 (en) 2000-02-28 2010-06-28 Heterologous expression of Neisserial proteins
US13/340,549 Expired - Fee Related US8703914B2 (en) 2000-02-28 2011-12-29 Heterologous expression of neisserial proteins
US14/244,806 Abandoned US20140294885A1 (en) 2000-02-28 2014-04-03 Heterologous expression of neisserial proteins
US14/448,792 Expired - Fee Related US9150898B2 (en) 2000-02-28 2014-07-31 Heterologous expression of Neisserial proteins
US15/368,435 Abandoned US20170080077A1 (en) 2000-02-28 2016-12-02 Heterologous expression of neisserial proteins
US15/368,429 Abandoned US20170080076A1 (en) 2000-02-28 2016-12-02 Heterologous expression of neisserial proteins

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US10/220,480 Abandoned US20040092711A1 (en) 2000-02-28 2001-02-28 Hybrid expression of neisserial proteins
US10/220,481 Expired - Fee Related US7803387B2 (en) 2000-02-28 2001-02-28 Heterologous expression of Neisserial proteins
US11/067,260 Expired - Fee Related US9267163B2 (en) 2000-02-28 2005-02-25 Hybrid expression of neisserial proteins
US12/825,210 Expired - Fee Related US8114960B2 (en) 2000-02-28 2010-06-28 Heterologous expression of Neisserial proteins
US13/340,549 Expired - Fee Related US8703914B2 (en) 2000-02-28 2011-12-29 Heterologous expression of neisserial proteins
US14/244,806 Abandoned US20140294885A1 (en) 2000-02-28 2014-04-03 Heterologous expression of neisserial proteins
US14/448,792 Expired - Fee Related US9150898B2 (en) 2000-02-28 2014-07-31 Heterologous expression of Neisserial proteins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/368,429 Abandoned US20170080076A1 (en) 2000-02-28 2016-12-02 Heterologous expression of neisserial proteins

Country Status (20)

Country Link
US (9) US20040092711A1 (en)
EP (6) EP1947187B9 (en)
JP (8) JP4763210B2 (en)
CN (7) CN100473663C (en)
AT (3) ATE387502T1 (en)
AU (4) AU2001239488B2 (en)
BR (2) BR0108711A (en)
CA (5) CA2400562C (en)
CY (6) CY1106532T1 (en)
DE (3) DE60126249T2 (en)
DK (4) DK1947187T5 (en)
ES (5) ES2360746T3 (en)
HK (4) HK1064120A1 (en)
LU (1) LU92240I2 (en)
MX (2) MXPA02008313A (en)
NL (1) NL300605I2 (en)
NZ (2) NZ521531A (en)
PT (4) PT1790660E (en)
RU (2) RU2304617C2 (en)
WO (2) WO2001064920A2 (en)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860192A1 (en) 1996-09-17 2007-11-28 Novartis Vaccines and Diagnostics, Inc. Compositions and methods for treating intracellular diseases
CA2317815A1 (en) * 1998-01-14 1999-07-22 Chiron S.P.A. Neisseria meningitidis antigens
ES2304065T3 (en) 1998-05-01 2008-09-01 Novartis Vaccines And Diagnostics, Inc. ANTIGENS AND COMPOSITIONS OF NEISSERIA MENINGITIDIS.
US20070026021A1 (en) * 1998-05-01 2007-02-01 Chiron S.R.I. Neisseria meningitidis antigens and compositions
ES2228454T3 (en) * 1999-02-26 2005-04-16 Chiron S.R.L. IMPROVEMENT OF THE BACTERIAL ACTIVITY OF NEISSERIA ANTIGENS WITH OLIGONUCLEOTIDES CONTAINING MOTIVES CG.
NZ581940A (en) 1999-04-30 2011-07-29 Novartis Vaccines & Diagnostic Conserved neisserial antigens
GB9911683D0 (en) * 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
AU783894B2 (en) * 1999-05-19 2005-12-22 Novartis Vaccines And Diagnostics S.R.L. Combination neisserial compositions
RU2281956C2 (en) 1999-10-29 2006-08-20 Чирон С.Р.Л. Neisseria antigene peptides
GB9928196D0 (en) 1999-11-29 2000-01-26 Chiron Spa Combinations of B, C and other antigens
DK2289545T3 (en) * 2000-01-17 2016-09-05 Glaxosmithkline Biologicals Sa Supplemented OMV vaccine against meningococcus
CN100473663C (en) 2000-02-28 2009-04-01 启龙股份公司 Heterologous expression of neisserial proteins
ATE455793T1 (en) * 2001-04-17 2010-02-15 Novartis Vaccines & Diagnostic MONOCLONAL ANTIBODIES AGAINST MOLECULAR MIMETICS OF MENINGOCOCCAL B EPITOPES
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
US6928463B1 (en) * 2001-07-06 2005-08-09 Nortel Networks Limited Broadband content delivery via personal content tunnel
GB0118249D0 (en) 2001-07-26 2001-09-19 Chiron Spa Histidine vaccines
GB0121591D0 (en) 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
JP4592284B2 (en) * 2001-07-27 2010-12-01 カイロン ソチエタ ア レスポンサビリタ リミタータ Neisseria meningitidis attachment factor
AU2014201962B2 (en) * 2001-09-06 2016-06-09 Novartis Vaccines And Diagnostics S.R.L. Hybrid and tandem expression of Neisserial proteins
AR045702A1 (en) 2001-10-03 2005-11-09 Chiron Corp COMPOSITIONS OF ASSISTANTS.
US7838015B2 (en) 2001-10-03 2010-11-23 Novartis Vaccines And Diagnostics, Inc. Adjuvanted meningococcus compositions
EP1438323A4 (en) * 2001-10-03 2007-08-01 Novartis Vaccines & Diagnostic Adjuvanted meningococcus compositions
MX339524B (en) * 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
JP2006500963A (en) 2002-08-02 2006-01-12 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Vaccine composition
US7785608B2 (en) 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
AU2003274511B2 (en) * 2002-10-11 2009-06-04 Glaxosmithkline Biologicals S.A. Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
WO2004039417A2 (en) 2002-11-01 2004-05-13 Glaxosmithkline Biologicals S.A. Drying process
DK2279746T3 (en) 2002-11-15 2013-11-25 Novartis Vaccines & Diagnostic SURFACE PROTEINS IN NEISSERIA MENINGITIDIS
GB0227346D0 (en) * 2002-11-22 2002-12-31 Chiron Spa 741
WO2004067030A2 (en) 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
WO2005019265A1 (en) 2003-08-13 2005-03-03 Chiron Corporation Improved method of purifying tfpi and tfpi analogs
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
ES2397923T3 (en) 2003-10-02 2013-03-12 Novartis Ag Liquid vaccines for multiple meningococcal serogroups
GB0408977D0 (en) * 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
GB0409748D0 (en) 2004-04-30 2004-06-09 Chiron Srl Lactoferrin cleavage
GB0419408D0 (en) * 2004-09-01 2004-10-06 Chiron Srl 741 chimeric polypeptides
GB0424092D0 (en) 2004-10-29 2004-12-01 Chiron Srl Immunogenic bacterial vesicles with outer membrane proteins
MX291624B (en) 2005-02-18 2011-11-04 Novartis Vaccines & Diagnostic Immunogens from uropathogenic escherichia coli.
AU2006214064B2 (en) 2005-02-18 2012-04-26 J. Craig Venter Institute, Inc. Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli
CN100475965C (en) * 2005-07-22 2009-04-08 上海高科联合生物技术研发有限公司 Method for E, coli to express lysostaphin in high efficiency via external secretion
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
WO2007066226A2 (en) * 2005-12-06 2007-06-14 Universita Degli Studi Di Padova Methods and compositions relating to adhesins as adjuvants
JP2010500399A (en) 2006-08-16 2010-01-07 ノバルティス アーゲー Immunogen from Urinary Pathogenic Escherichia coli
AR064642A1 (en) 2006-12-22 2009-04-15 Wyeth Corp POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD
GB0700562D0 (en) 2007-01-11 2007-02-21 Novartis Vaccines & Diagnostic Modified Saccharides
GB0713880D0 (en) 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
PT2200642E (en) 2007-10-19 2012-05-30 Novartis Ag Meningococcal vaccine formulations
CA2716212A1 (en) 2008-02-21 2009-08-27 Novartis Ag Meningococcal fhbp polypeptides
PT2268618E (en) 2008-03-03 2015-10-12 Novartis Ag Compounds and compositions as tlr activity modulators
US20100105875A1 (en) * 2008-06-09 2010-04-29 Maria Scarselli Antibodies against neisserial factor H binding protein
JP5487463B2 (en) * 2008-08-08 2014-05-07 独立行政法人産業技術総合研究所 Non-diffusing plant virus vector
CA2756522C (en) 2009-03-24 2018-06-26 Novartis Ag Adjuvanting meningococcal factor h binding protein
WO2010144734A1 (en) 2009-06-10 2010-12-16 Novartis Ag Benzonaphthyridine-containing vaccines
ES2596653T3 (en) 2009-06-16 2017-01-11 Glaxosmithkline Biologicals Sa Opsonization bactericidal and antibody-dependent assays mediated by high-performance complement
JP2013502918A (en) 2009-08-27 2013-01-31 ノバルティス アーゲー Hybrid polypeptide comprising Neisseria meningitidis fHBP sequence
AU2010290896B2 (en) 2009-09-02 2014-07-03 Glaxosmithkline Biologicals S.A. Immunogenic compositions including TLR activity modulators
TWI445708B (en) 2009-09-02 2014-07-21 Irm Llc Compounds and compositions as tlr activity modulators
US20130022639A1 (en) 2009-09-30 2013-01-24 Novartis Ag Expression of meningococcal fhbp polypeptides
EP2493499A1 (en) 2009-10-27 2012-09-05 Novartis AG Modified meningococcal fhbp polypeptides
WO2011057148A1 (en) 2009-11-05 2011-05-12 Irm Llc Compounds and compositions as tlr-7 activity modulators
AU2010339921B2 (en) 2009-12-15 2016-08-11 Glaxosmithkline Biologicals S.A. Homogeneous suspension of immunopotentiating compounds and uses thereof
WO2011119759A1 (en) 2010-03-23 2011-09-29 Irm Llc Compounds (cystein based lipopeptides) and compositions as tlr2 agonists used for treating infections, inflammations, respiratory diseases etc.
US10478483B2 (en) 2010-06-25 2019-11-19 Glaxosmithkline Biologicals Sa Combinations of meningococcal factor H binding proteins
RU2580620C2 (en) 2010-08-23 2016-04-10 ВАЙЕТ ЭлЭлСи STABLE COMPOSITIONS OF ANTIGENS Neisseria meningitidis rLP2086
PE20140173A1 (en) 2010-09-10 2014-02-20 Wyeth Llc NON-LIPIDED VARIANTS OF NEISSERIA MENINGITIDIS ANTIGENS ORF2086
AU2011300418B2 (en) 2010-09-10 2016-05-12 Glaxosmithkline Biologicals Sa Meningococcus overexpressing NadA and/or NHBA and outer membrane vesicles derived therefrom
GB201102090D0 (en) * 2011-02-08 2011-03-23 Univ Sheffield Antigenic polypeptide
SG11201400199XA (en) 2011-08-31 2014-03-28 Children S Hospital & Res Ct Oakland Engineered sequences to facilitate expression of antigens in neisseria and methods of use
MY198910A (en) 2012-03-09 2023-10-02 Pfizer Neisseria meningitidis compositions and methods thereof
SA115360586B1 (en) 2012-03-09 2017-04-12 فايزر انك Neisseria meningitidis compositions and methods thereof
JP2015521595A (en) 2012-06-14 2015-07-30 ノバルティス アーゲー Vaccine for serogroup X meningococcus
CN104736563A (en) 2012-07-27 2015-06-24 国家健康与医学研究院 Cd147 as receptor for pilus-mediated adhesion of meningococci to vascular endothelia
WO2014084432A1 (en) * 2012-11-30 2014-06-05 경상대학교 산학협력단 Helicobacter pylori expression vector
EP2964665B1 (en) 2013-03-08 2018-08-01 Pfizer Inc Immunogenic fusion polypeptides
MX369534B (en) 2013-09-08 2019-11-11 Pfizer Neisseria meningitidis compositions and methods thereof.
SG11201606478YA (en) 2014-02-28 2016-09-29 Glaxosmithkline Biolog Sa Modified meningococcal fhbp polypeptides
CN107249626A (en) 2015-02-19 2017-10-13 辉瑞大药厂 Neisseria meningitidis composition and its method
GB201522153D0 (en) 2015-12-15 2016-01-27 Univ Southampton Meningococcal infection and modified neisseria lactamica
AU2017321039B2 (en) 2016-09-02 2021-03-18 Glaxosmithkline Biologicals Sa Vaccines for Neisseria gonorrhoeae
EP3312192B1 (en) * 2016-10-24 2023-02-22 BiOMVis Srl Immunogenic compositions containing bacterial outer membrane vesicles
SG11201906519RA (en) 2017-01-31 2019-08-27 Pfizer Neisseria meningitidis compositions and methods thereof
CN110516550B (en) * 2019-07-26 2022-07-05 电子科技大学 FPGA-based lane line real-time detection method
TW202245836A (en) 2021-02-19 2022-12-01 美商賽諾菲巴斯德公司 Meningococcal b recombinant vaccine
GB202208089D0 (en) 2022-06-01 2022-07-13 Glaxosmithkline Biologicals Sa Immunogenic composition
GB202208093D0 (en) 2022-06-01 2022-07-13 Glaxosmithkline Biologicals Sa Immunogenic composition
WO2024030931A1 (en) 2022-08-03 2024-02-08 Sanofi Pasteur Inc. Adjuvanted immunogenic composition against neisseria meningitidis b

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057820A1 (en) * 1998-05-01 1999-11-11 Arraycomm, Inc. Method and apparatus for determining spatial signatures for calibrating a communication station having an antenna array

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239749A (en) * 1979-09-27 1980-12-16 United States Of America Neisseria gonorrhoeae vaccine
US5288641A (en) * 1984-06-04 1994-02-22 Arch Development Corporation Herpes Simplex virus as a vector
CA1282721C (en) 1984-06-04 1991-04-09 Bernard Roizman Herpes simplex virus as a vector
EP0273116A3 (en) 1986-10-09 1990-05-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Gonococcal and meningococcal polypeptides, vaccines and diagnostics
GB8702816D0 (en) 1987-02-07 1987-03-11 Al Sumidaie A M K Obtaining retrovirus-containing fraction
US5270176A (en) * 1987-11-20 1993-12-14 Hoechst Aktiengesellschaft Method for the selective cleavage of fusion proteins with lysostaphin
CA1340506C (en) * 1987-11-24 1999-04-20 Nicholas H. Carbonetti Production of gonorrheal pi proteins and vaccines
US5591624A (en) * 1988-03-21 1997-01-07 Chiron Viagene, Inc. Retroviral packaging cell lines
CN1038306A (en) 1988-03-21 1989-12-27 维吉恩公司 Recombinant retroviruses
US5422120A (en) * 1988-05-30 1995-06-06 Depotech Corporation Heterovesicular liposomes
AP129A (en) 1988-06-03 1991-04-17 Smithkline Biologicals S A Expression of retrovirus gag protein eukaryotic cells
AU640118B2 (en) 1988-12-19 1993-08-19 De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezonheid En Cultuur Meningococcal class 1 outer-membrane protein vaccine
NL8803111A (en) 1988-12-19 1990-07-16 Nederlanden Staat Meningococcus class 1 outer-membrane protein vaccine - useful to immunise against meningococcal disease
US5703055A (en) * 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
DE69032284T2 (en) 1989-03-21 1998-10-08 Vical, Inc., San Diego, Calif. EXPRESSION OF EXOGENOUS POLYNUCLEOTIDE SEQUENCES IN VERTEBLE
GB8919607D0 (en) 1989-08-30 1989-10-11 Wellcome Found Novel entities for cancer therapy
CU22302A1 (en) * 1990-09-07 1995-01-31 Cigb Codifying nucleotidic sequence for a protein of the external membrane of neisseria meningitidis and the use of that protein in preparing vaccines.
IE912559A1 (en) 1990-07-19 1992-01-29 Merck & Co Inc The class ii protein of the outer membrane of neisseria¹meningitidis, and vaccines containing same
WO1992005266A2 (en) 1990-09-21 1992-04-02 Viagene, Inc. Packaging cells
US5965424A (en) * 1991-01-11 1999-10-12 Boehringer Mannheim Gmbh Methods for making neisseria or hemophilus IgA protease and DNA encoding the proteases
ES2127217T3 (en) 1991-03-14 1999-04-16 Imclone Systems Inc RECOMBINATION HYBRID PORINE EPITOPES.
FR2681786A1 (en) 1991-09-27 1993-04-02 Centre Nat Rech Scient RECOMBINANT VECTORS OF VIRAL ORIGIN, PROCESS FOR OBTAINING SAME AND THEIR USE FOR THE EXPRESSION OF POLYPEPTIDES IN MUSCLE CELLS.
IL103059A0 (en) 1991-09-30 1993-02-21 Boehringer Ingelheim Int Conjugates for introducing nucleic acid into higher eucaryotic cells
NZ244306A (en) 1991-09-30 1995-07-26 Boehringer Ingelheim Int Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation
US6100380A (en) * 1991-10-28 2000-08-08 Cytran, Inc. Immunomodulating peptides and methods of use
EP0625049A4 (en) 1992-01-23 1995-07-12 Vical Inc Ex vivo gene transfer.
FR2692592B1 (en) * 1992-06-19 1995-03-31 Pasteur Merieux Serums Vacc DNA fragments encoding the Neisseria meningitidis transferrin receptor subunits and methods of expressing them.
ATE307200T1 (en) * 1992-07-07 2005-11-15 Fuso Pharmaceutical Ind PROBE FOR DIAGNOSING AN INFECTIOUS DISEASE CAUSED BY STAPHYLOCOCCUS EPIDERMIDIS
US6592873B1 (en) 1992-10-30 2003-07-15 Iowa State University Research Foundation, Inc. Polynucleic acids isolated from a porcine reproductive and respiratory syndrome virus (PRRSV) and proteins encoded by the polynucleic acids
US5785974A (en) * 1993-01-23 1998-07-28 Immunologia Y Genetica Aplicada, S.A. Synthetic peptides and vaccines against parvovirus
US5439808A (en) * 1993-07-23 1995-08-08 North American Vaccine, Inc. Method for the high level expression, purification and refolding of the outer membrane group B porin proteins from Neisseria meningitidis
AU7408494A (en) * 1993-07-30 1995-02-28 University Of North Carolina At Chapel Hill, The Production of gonorrheal pi proteins and vaccines in e. coli and salmonella
US5914254A (en) 1993-08-02 1999-06-22 Celtrix Pharmaceuticals, Inc. Expression of fusion polypeptides transported out of the cytoplasm without leader sequences
US5510264A (en) 1993-09-28 1996-04-23 Insight Biotech Inc. Antibodies which bind meningitis related homologous antigenic sequences
NZ276305A (en) 1993-11-16 1997-10-24 Depotech Corp Controlled release vesicle compositions
JP4303315B2 (en) 1994-05-09 2009-07-29 オックスフォード バイオメディカ(ユーケー)リミテッド Non-crossing retroviral vector
FR2720408B1 (en) 1994-05-31 1996-08-14 Pasteur Merieux Serums Vacc Fragments Tbp2 of Neisseria meningitidis.
US6245337B1 (en) 1994-08-25 2001-06-12 Washington University Haemophilus adherence and penetration proteins
IL117483A (en) 1995-03-17 2008-03-20 Bernard Brodeur Proteinase k resistant surface protein of neisseria meningitidis
US5646259A (en) 1995-03-24 1997-07-08 St. Louis University DNA encoding haemophilus adhesion proteins
US6265567B1 (en) 1995-04-07 2001-07-24 University Of North Carolina At Chapel Hill Isolated FrpB nucleic acid molecule
WO1996040718A1 (en) * 1995-06-07 1996-12-19 Connaught Laboratories, Inc. Expression of lipoproteins
DE19534579C2 (en) 1995-09-18 2000-06-08 Max Planck Gesellschaft Nucleic acid molecules encoding proteins that mediate the adhesion of Neisseria cells to human cells
PT854729E (en) 1995-09-18 2004-08-31 Us Army Med Res Mat Com Usamrm METHODS IMPROVED FOR THE PRODUCTION OF MULTIVALENT SUBUNIT VACCINES OF PROTEOSOMES COMPLEXATED NOT COVALENTLY
FR2739624B1 (en) 1995-10-10 1997-12-05 Pasteur Merieux Serums Vacc NEW NEISSERIA MENINGITIDIS TBP2 SUBUNIT
ZA9610456B (en) * 1995-12-20 1997-06-20 Novo Nordisk As N-terminally extended proteins expressed in yeast
EP0877816A1 (en) * 1996-02-01 1998-11-18 North American Vaccine, Inc. Expression of group b neisseria meningitidis outer membrane (mb3) protein from yeast and vaccines
US6083499A (en) * 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
US6472518B1 (en) 1996-10-24 2002-10-29 Centers For Disease Control And Prevention, As Represented By The Secretary, Department Of Health And Human Services Invasion associated genes from Neisseria meningitidis serogroup B
US5980898A (en) 1996-11-14 1999-11-09 The United States Of America As Represented By The U.S. Army Medical Research & Material Command Adjuvant for transcutaneous immunization
JP2001515467A (en) 1996-12-20 2001-09-18 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム USPA1 and USPA2 antigens of Moraxella catarrhalis
US6017531A (en) 1997-06-02 2000-01-25 W. R. Grace & Co. Hydrophilic composition containing protease produced by Vibrio
US6583275B1 (en) * 1997-07-02 2003-06-24 Genome Therapeutics Corporation Nucleic acid sequences and expression system relating to Enterococcus faecium for diagnostics and therapeutics
AU9363798A (en) * 1997-11-06 1999-05-31 Chiron S.P.A. Neisserial antigens
US6914131B1 (en) * 1998-10-09 2005-07-05 Chiron S.R.L. Neisserial antigens
GB9726398D0 (en) * 1997-12-12 1998-02-11 Isis Innovation Polypeptide and coding sequences
CA2317815A1 (en) * 1998-01-14 1999-07-22 Chiron S.P.A. Neisseria meningitidis antigens
US7635486B1 (en) * 1998-02-03 2009-12-22 The United States Of America As Represented By The Department Of Health And Human Services Recombinant lipidated PsaA protein, methods of preparation and use
WO1999041230A1 (en) * 1998-02-11 1999-08-19 Eli Lilly And Company Processes and intermediates useful to make antifolates
GB9808734D0 (en) 1998-04-23 1998-06-24 Smithkline Beecham Biolog Novel compounds
GB9808866D0 (en) 1998-04-24 1998-06-24 Smithkline Beecham Biolog Novel compounds
US6150502A (en) * 1998-04-29 2000-11-21 Genesis Research & Development Corporation Limited Polypeptides expressed in skin cells
US20070026021A1 (en) * 1998-05-01 2007-02-01 Chiron S.R.I. Neisseria meningitidis antigens and compositions
ES2304065T3 (en) 1998-05-01 2008-09-01 Novartis Vaccines And Diagnostics, Inc. ANTIGENS AND COMPOSITIONS OF NEISSERIA MENINGITIDIS.
US5990085A (en) * 1998-05-04 1999-11-23 Michigan State University Inhibin-HBc fusion protein
GB9810276D0 (en) 1998-05-13 1998-07-15 Smithkline Beecham Biolog Novel compounds
US6248329B1 (en) * 1998-06-01 2001-06-19 Ramaswamy Chandrashekar Parasitic helminth cuticlin nucleic acid molecules and uses thereof
AU1202200A (en) * 1998-10-09 2000-05-01 Chiron Corporation Neisseria genomic sequences and methods of their use
EP1144645A1 (en) 1999-01-15 2001-10-17 SMITHKLINE BEECHAM BIOLOGICALS s.a. Neisseria meningitidis polypeptide basb052
EP1147194A1 (en) 1999-01-22 2001-10-24 SMITHKLINE BEECHAM BIOLOGICALS s.a. Neisseria meningitidis antigenic polypeptides, corresponding polynucleotides and protective antibodies
GB9902084D0 (en) 1999-01-29 1999-03-24 Smithkline Beecham Biolog Novel compounds
ES2228454T3 (en) * 1999-02-26 2005-04-16 Chiron S.R.L. IMPROVEMENT OF THE BACTERIAL ACTIVITY OF NEISSERIA ANTIGENS WITH OLIGONUCLEOTIDES CONTAINING MOTIVES CG.
NZ581940A (en) * 1999-04-30 2011-07-29 Novartis Vaccines & Diagnostic Conserved neisserial antigens
BR0010361A (en) 1999-04-30 2003-06-10 Chiron Corp Genetic sequences of neisseria and use of these
GB9911683D0 (en) * 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
AU783894B2 (en) * 1999-05-19 2005-12-22 Novartis Vaccines And Diagnostics S.R.L. Combination neisserial compositions
GB9916529D0 (en) * 1999-07-14 1999-09-15 Chiron Spa Antigenic peptides
RU2281956C2 (en) * 1999-10-29 2006-08-20 Чирон С.Р.Л. Neisseria antigene peptides
RU2002117308A (en) * 1999-11-29 2004-03-10 Чирон Спа (It) 85 kDA ANTIGEN NEISSERIA
GB9928676D0 (en) 1999-12-03 2000-02-02 Provalis Uk Ltd Pseudomonas aeruginosa antigens
US20010031268A1 (en) * 1999-12-17 2001-10-18 Baldwin Thomas John Antigen preparations
DK2289545T3 (en) * 2000-01-17 2016-09-05 Glaxosmithkline Biologicals Sa Supplemented OMV vaccine against meningococcus
KR100698561B1 (en) 2000-01-25 2007-03-21 더 유니버서티 어브 퀸슬랜드 Proteins comprising conserved regions of neisseria meningitidis surface antigen nhha
CN100473663C (en) * 2000-02-28 2009-04-01 启龙股份公司 Heterologous expression of neisserial proteins
WO2001081581A2 (en) 2000-04-21 2001-11-01 Corixa Corporation Compositions and methods for the therapy and diagnosis of acne vulgaris
AU2001276619A1 (en) 2000-07-03 2002-01-14 Chiron S.P.A. Immunisation against chlamydia pneumoniae
GB0017149D0 (en) 2000-07-12 2000-08-30 Chiron Spa Helicobacter pylori mutants
GB0103170D0 (en) 2001-02-08 2001-03-28 Smithkline Beecham Biolog Vaccine composition
US20040073294A1 (en) * 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
GB0103424D0 (en) * 2001-02-12 2001-03-28 Chiron Spa Gonococcus proteins
EP1409013B1 (en) 2001-07-26 2009-11-18 Novartis Vaccines and Diagnostics S.r.l. Vaccines comprising aluminium adjuvants and histidine
GB0118249D0 (en) * 2001-07-26 2001-09-19 Chiron Spa Histidine vaccines
JP4592284B2 (en) 2001-07-27 2010-12-01 カイロン ソチエタ ア レスポンサビリタ リミタータ Neisseria meningitidis attachment factor
GB0121591D0 (en) * 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
GB0129007D0 (en) * 2001-12-04 2002-01-23 Chiron Spa Adjuvanted antigenic meningococcal compositions
JP2006500963A (en) * 2002-08-02 2006-01-12 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Vaccine composition
US7785608B2 (en) * 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
AU2003274511B2 (en) * 2002-10-11 2009-06-04 Glaxosmithkline Biologicals S.A. Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
GB0227346D0 (en) * 2002-11-22 2002-12-31 Chiron Spa 741
WO2004065603A2 (en) 2003-01-15 2004-08-05 Wyeth Holdings Corporation Methods for increasing neisseria protein expression
WO2004067030A2 (en) * 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
US20070253964A1 (en) 2003-04-16 2007-11-01 Zlotnick Gary W Novel Immunogenic Compositions for the Prevention and Treatment of Meningococcal Disease
GB0315021D0 (en) * 2003-06-26 2003-07-30 Chiron Srl Immunogenic gonococcal compositions
GB0323103D0 (en) * 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
ES2397923T3 (en) * 2003-10-02 2013-03-12 Novartis Ag Liquid vaccines for multiple meningococcal serogroups
GB0408977D0 (en) * 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
GB0409748D0 (en) * 2004-04-30 2004-06-09 Chiron Srl Lactoferrin cleavage
GB0410866D0 (en) * 2004-05-14 2004-06-16 Chiron Srl Haemophilius influenzae
GB0419408D0 (en) * 2004-09-01 2004-10-06 Chiron Srl 741 chimeric polypeptides
EP2682126B1 (en) 2005-01-27 2016-11-23 Children's Hospital & Research Center at Oakland GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
NZ572054A (en) 2006-03-22 2011-12-22 Novartis Ag Regimens for immunisation with meningococcal conjugates
TW200806315A (en) 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
NZ573931A (en) * 2006-06-29 2012-03-30 Craig J Venter Inst Inc Polypeptides from neisseria meningitidis
AR064642A1 (en) * 2006-12-22 2009-04-15 Wyeth Corp POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD
WO2008125985A2 (en) 2007-04-11 2008-10-23 Novartis Ag Blocking interaction between pathogen factors and factor h to inhibit hemorrhagic syndromes
CA2688268A1 (en) 2007-06-04 2008-12-11 Novartis Ag Formulation of meningitis vaccines
CA2716212A1 (en) 2008-02-21 2009-08-27 Novartis Ag Meningococcal fhbp polypeptides
PT2268618E (en) * 2008-03-03 2015-10-12 Novartis Ag Compounds and compositions as tlr activity modulators
US9511131B2 (en) 2008-03-10 2016-12-06 Children's Hospital & Research Center Oakland Chimeric factor H binding proteins (fHBP) containing a heterologous B domain and methods of use
EP2331562A4 (en) 2008-09-03 2012-07-04 Childrens Hosp & Res Ct Oak Peptides presenting an epitope of an a domain of factor h binding protein and methods of use
IT1394288B1 (en) 2008-09-12 2012-06-06 Novartis Vaccines & Diagnostic PROTEIN IMMUNOGENES THAT LINK THE FACTOR H.
GB0819633D0 (en) 2008-10-25 2008-12-03 Isis Innovation Composition
CA2756522C (en) * 2009-03-24 2018-06-26 Novartis Ag Adjuvanting meningococcal factor h binding protein
ES2458355T3 (en) * 2010-09-01 2014-05-05 Novartis Ag Adsorption of immunopotentiators on insoluble metal salts
ES2744471T3 (en) * 2010-09-04 2020-02-25 Glaxosmithkline Biologicals Sa Bactericidal antibody assays to assess immunogenesis and potency of meningococcal capsular saccharide vaccines
AU2011300418B2 (en) * 2010-09-10 2016-05-12 Glaxosmithkline Biologicals Sa Meningococcus overexpressing NadA and/or NHBA and outer membrane vesicles derived therefrom
ES2864764T3 (en) * 2011-05-11 2021-10-14 Childrens Medical Center Immunogenic composition presenting multiple antigens, and its methods and uses
US9184727B2 (en) * 2012-06-11 2015-11-10 Phonon Corporation SAW device and method for post-seal frequency trimming

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057820A1 (en) * 1998-05-01 1999-11-11 Arraycomm, Inc. Method and apparatus for determining spatial signatures for calibrating a communication station having an antenna array

Also Published As

Publication number Publication date
EP1947187A1 (en) 2008-07-23
CN1800385B (en) 2010-06-02
ES2391153T3 (en) 2012-11-22
JP2011101657A (en) 2011-05-26
US20040092711A1 (en) 2004-05-13
CN1544462A (en) 2004-11-10
DK1790660T3 (en) 2012-09-17
CN1201011C (en) 2005-05-11
DE60132978D1 (en) 2008-04-10
CN100473663C (en) 2009-04-01
ES2360746T3 (en) 2011-06-08
CA2875231A1 (en) 2001-09-07
JP2013005816A (en) 2013-01-10
CN100334214C (en) 2007-08-29
DE60126249T2 (en) 2008-05-29
CA2689666A1 (en) 2001-09-07
RU2002125882A (en) 2004-03-10
AU2001239488B2 (en) 2006-01-19
US9150898B2 (en) 2015-10-06
CA2400562A1 (en) 2001-09-07
EP1259627A2 (en) 2002-11-27
JP4846160B2 (en) 2011-12-28
BR0108711A (en) 2004-06-22
CN1426471A (en) 2003-06-25
US9267163B2 (en) 2016-02-23
BR0108713A (en) 2004-06-22
WO2001064920A3 (en) 2002-03-14
US20140363462A1 (en) 2014-12-11
EP1790660A2 (en) 2007-05-30
PT1261723E (en) 2008-06-05
DE60126249D1 (en) 2007-03-15
JP2011083287A (en) 2011-04-28
JP2016128520A (en) 2016-07-14
PT1947187E (en) 2011-07-04
MXPA02008313A (en) 2002-12-09
EP2270030A2 (en) 2011-01-05
NZ521531A (en) 2005-12-23
EP1790660B1 (en) 2012-06-20
RU2002125880A (en) 2004-03-10
JP4763210B2 (en) 2011-08-31
LU92240I2 (en) 2013-09-04
ATE503837T1 (en) 2011-04-15
ATE352631T1 (en) 2007-02-15
ATE387502T1 (en) 2008-03-15
JP5941027B2 (en) 2016-06-29
CY1113477T1 (en) 2016-06-22
JP2014121333A (en) 2014-07-03
EP2270031A3 (en) 2011-02-16
JP5346004B2 (en) 2013-11-20
EP2270030A3 (en) 2011-02-02
CN1800385A (en) 2006-07-12
ES2281409T3 (en) 2007-10-01
HK1071147A1 (en) 2005-07-08
EP2270030B1 (en) 2012-05-23
ES2360746T9 (en) 2012-02-13
US8703914B2 (en) 2014-04-22
DE60132978T2 (en) 2009-02-26
DK1947187T5 (en) 2011-10-24
CN101139590B (en) 2012-07-18
US20170080076A1 (en) 2017-03-23
AU3947801A (en) 2001-09-12
CA2400570A1 (en) 2001-09-07
DK1261723T3 (en) 2008-06-23
EP1947187B9 (en) 2011-09-21
US20130005667A1 (en) 2013-01-03
JP2014000092A (en) 2014-01-09
AU2001239478B2 (en) 2007-05-17
CA2744921C (en) 2014-05-13
RU2299906C2 (en) 2007-05-27
AU3948801A (en) 2001-09-12
CA2744921A1 (en) 2001-09-07
US20140294885A1 (en) 2014-10-02
WO2001064922A2 (en) 2001-09-07
JP2003525049A (en) 2003-08-26
HK1064120A1 (en) 2005-01-21
EP1790660A3 (en) 2007-10-31
ES2386534T3 (en) 2012-08-22
NL300605I2 (en) 2016-09-22
CY2013025I1 (en) 2015-11-04
MXPA02008314A (en) 2002-12-09
EP1947187B1 (en) 2011-03-30
PT1790660E (en) 2012-09-17
US20100267931A1 (en) 2010-10-21
CN1508253A (en) 2004-06-30
US20040110670A1 (en) 2004-06-10
DE60144353D1 (en) 2011-05-12
EP1261723A2 (en) 2002-12-04
HK1055993A1 (en) 2004-01-30
CA2400570C (en) 2010-04-27
CN101139590A (en) 2008-03-12
CY1106532T1 (en) 2012-01-25
CY1107447T1 (en) 2012-12-19
US20060051840A1 (en) 2006-03-09
RU2304617C2 (en) 2007-08-20
CY2013025I2 (en) 2015-11-04
CA2400562C (en) 2011-09-20
EP2270031A2 (en) 2011-01-05
CY1111591T1 (en) 2015-10-07
CN1426473A (en) 2003-06-25
NZ521396A (en) 2004-06-25
EP1261723B1 (en) 2008-02-27
ES2299476T3 (en) 2008-06-01
CN101906413A (en) 2010-12-08
US7803387B2 (en) 2010-09-28
WO2001064920A2 (en) 2001-09-07
DK1947187T3 (en) 2011-05-09
EP1259627B1 (en) 2007-01-24
HK1056197A1 (en) 2004-02-06
CN100339482C (en) 2007-09-26
CA2689666C (en) 2015-02-24
DK2270030T3 (en) 2012-08-13
CY1113032T1 (en) 2016-04-13
US8114960B2 (en) 2012-02-14
WO2001064922A3 (en) 2001-12-06
JP2003525050A (en) 2003-08-26
PT2270030E (en) 2012-07-24

Similar Documents

Publication Publication Date Title
US9150898B2 (en) Heterologous expression of Neisserial proteins
AU2001239488A1 (en) Heterologous expression of neisserial proteins

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHIRON S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARICO, MARIA BEATRICE;COMANDUCCI, MAURIZIO;GALEOTTI, CESIRA;AND OTHERS;SIGNING DATES FROM 20050608 TO 20050620;REEL/FRAME:041760/0809

Owner name: GLAXOSMITHKLINE BIOLOGICALS SA, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS AG;REEL/FRAME:041760/0534

Effective date: 20150320

Owner name: NOVARTIS AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS VACCINES AND DIAGNOSTICS SRL;REEL/FRAME:041760/0733

Effective date: 20111007

Owner name: NOVARTIS VACCINES AND DIAGNOSTICS S.R.L., ITALY

Free format text: CHANGE OF NAME;ASSIGNOR:CHIRON S.R.L.;REEL/FRAME:041797/0387

Effective date: 20080304

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION