US20170045258A1 - Active Regenerative Heating and Cooling - Google Patents

Active Regenerative Heating and Cooling Download PDF

Info

Publication number
US20170045258A1
US20170045258A1 US15/305,807 US201415305807A US2017045258A1 US 20170045258 A1 US20170045258 A1 US 20170045258A1 US 201415305807 A US201415305807 A US 201415305807A US 2017045258 A1 US2017045258 A1 US 2017045258A1
Authority
US
United States
Prior art keywords
fluid
control
regenerator device
regenerator
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/305,807
Inventor
Subramanyaravi Annapragada
Ulf J. Jonsson
Thomas D. Radcliff
Andrzej Ernest Kuczek
John P. Wesson
Neal R. Herring
Stuart S. Ochs
Yinshan Feng
Mikhail B. Gorbounov
Ram Ranjan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Assigned to UNITED TECHNOLOGIES CORPORATION reassignment UNITED TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FENG, YINSHAN, GORBOUNOV, MIKHAIL B., JONSSON, ULF J., Ranjan, Ram, ANNAPRAGADA, SUBRAMANYARAVI, HERRING, NEAL R., KUCZEK, ANDRZEJ ERNEST, OCHS, STUART S., RADCLIFF, THOMAS D., WESSON, JOHN P.
Publication of US20170045258A1 publication Critical patent/US20170045258A1/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to CARRIER CORPORATION reassignment CARRIER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAYTHEON TECHNOLOGIES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • F24F11/0009
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/04Distributing arrangements for the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/008Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air cyclic routing supply and exhaust air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/001Details of machines, plants or systems, using electric or magnetic effects by using electro-caloric effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • Heat pumps based on field-active heating/cooling processes such as the magnetocaloric, electrocaloric, and thermoelastic effect have the potential to replace traditional refrigerant-based heating, ventilation, and air-conditioning (HVAC) systems.
  • An electrocaloric effect-based device in particular may result in a totally solid state device needing no moving pans to deliver a high coefficient of performance (COP) and capacity. Because the stated effects provide relatively small temperature lifts, regeneration in the form of a regenerative heat exchanger may be applied to increase lift to levels needed for environmental control.
  • a field-active material heats up and cools down almost reversibly as an applied field is cycled.
  • the alternately created heating or cooling in the material needs to be transferred to either the indoor or outdoor space in a synchronous fashion based on whether cooling or heating in the space is required.
  • One means of performing this thermal switching function is to translate the working fluid into and out of the active element. The fluid is translated completely through the unit if the temperature lift is adequate for the application, while it is translated only partially through the unit if regeneration is needed to increase the lift. In this case the moving air serves the function of regenerative heat storage.
  • the active device whether subject to compete or partial fluid translation, is referred to herein as a regenerator.
  • This invention describes means to control the motion of the working fluid in a regenerator in a synchronous manner.
  • An embodiment is directed to a method comprising: obtaining a specification comprising at least one requirement associated with a heating, ventilation, and air-conditioning (HVAC) system, and based on the specification, configuring a control system to control a movement of fluid back and forth across at least one regenerator device of the HVAC system and a mixing of the fluid with ambient air.
  • HVAC heating, ventilation, and air-conditioning
  • An embodiment is directed to a system comprising: a heating, ventilation, and air-conditioning (HVAC) system comprising at least one regenerator device, and a control system configured to control a movement of fluid back and forth across the at least one regenerator device and a mixing of the fluid with ambient air.
  • HVAC heating, ventilation, and air-conditioning
  • FIG. 1 is a diagram of an exemplary ejector based linear system
  • FIG, 2 is a diagram of an exemplary rotary pressure pulsing system
  • FIG. 3 is a diagram of the sequential stages of operation of an exemplary system comprising two field-active regenerator modules
  • FIG. 4 is a diagram of an exemplary system comprising a field-active regenerator module and pumps;
  • FIG. 5 illustrates a flow chart of an exemplary method
  • FIG. 6 illustrates an exemplary computing system.
  • Exemplary embodiments of apparatuses, systems, and methods are described for controlling a movement of heat transfer fluid across one or more regenerators and a mixing of this fluid with ambient air.
  • the heat transfer fluid may be hot and cold ambient air.
  • the heat transfer fluid in intimate contact with the regenerator may be isolated from mixing, with the ambient air by an intermediate heat exchanger.
  • synchronous alternate pressure oscillations on cold and hot sides of a regenerator may be provided.
  • the pressure on the cold and hot side may be synchronized so that the fluid is pushed indoors during the cooling part of the regeneration cycle and fluid is pushed outdoors during the heating part of the regeneration cycle. This process is reversed to provide heating.
  • the pressure oscillations may be achieved through a linear actuator or a rotary fan design.
  • an ejector based linear system 100 operating in a cooling mode is shown.
  • the system 100 achieves cooling by closing a valve 102 on the cold side (e.g., the indoors) to raise the pressure and push a flow of fluid from an inlet 104 into a heat pump device 110 , such as an electrocaloric heat pump (ECHP) device.
  • a valve 118 is opened at the same time on the hot side (e.g., the outdoors).
  • the valve 102 is opened and the valve 118 is closed, which sucks the fluid from an inlet 120 and the device 110 back into the cold side, acting like an ejector.
  • the mechanism enhances mixing of the hot or cold fluid from the regenerator with the ambient air, ensuring that hot or cold fluid from the regenerator is not simply sucked back into the regenerator without mixing
  • the pressure oscillations may be synchronized at specific phase shifts with the field being applied to the active material 110 to gain the best performance, and that phase shift may change for different capacities and lifts. Also, the duration and/or shape of the pressure oscillation may be regulated to provide the correct volume flow of fluid through the system 100 .
  • the system 100 may operate on the basis of pressure generated by a running (e.g., a continuous running) of one or more fans.
  • the pressure may be controlled by the state (e.g., the degree of how open or closed) of the valves 102 and 118 .
  • the design of the valves 102 and 118 may be made as simple as possible in order to reduce cost.
  • the system 200 may have two rotating turbine fans 206 and 214 , one either side of a regenerator 120 .
  • the regenerator 120 may correspond to the device 110 in some embodiments.
  • the vanes of the cold side (e.g., indoor) and hot side (e.g., outdoor) turbine fans 206 and 214 may be out of phase with respect to one another and push and pull fluid into the regenerator 220 alternatively.
  • the vanes may be synchronized with a voltage signal.
  • the shapes of the vanes may be designed so that when the regenerator 220 is heating, the cold side vane may act as a compressor of fluid and the hot side vane may act as an expander which may result in the heated fluid being pushed out on to the hot side, as reflected via the dashed box 252 .
  • the hot side vane when the regenerator 220 is in cooling mode, the hot side vane may act as a compressor and the cold side vane may act as an expander pushing cold fluid to the cooled side, as reflected via the dashed box 260 .
  • the vanes of the fans 206 and 214 may be used to create localized pressure or pressure differential in proximity to the vanes or fans.
  • the speed, phase, and position of the fans, vanes, or blades may be controlled (e.g., time-controlled) to obtain an appropriate movement of fluid back and forth and mixing with ambient air.
  • the system 300 may include two regeneration devices or waits 304 and 312 with continuous hot and cold fluid streams which are switched alternately between the two units 304 and 312 to provide continuous space heating/cooling.
  • the unit 304 and/or the unit 312 may correspond to one or more of the device 110 and the device 220 .
  • An indoor space cooling cycle is referenced in FIG. 3 , but by simply shifting the phase by 180 degrees, the system 300 can be used for indoor space heating.
  • the system 300 when used for cooling may include two modes as described in further detail below.
  • a hot ambient fluid stream 320 from the outdoors may be diverted into the unit 312 which may be going through a cooling part of a regenerative cycle.
  • the fluid cooled below indoor ambient in the unit 312 may be pushed indoors and the new hot outdoor fluid stream 320 may enter the unit 312 .
  • a cold ambient fluid stream 328 may be diverted into the unit 304 which may be going through a heating part of a regenerative cycle.
  • the heated fluid above outdoor temperature in the unit 304 may be purged outdoors as the new indoor fluid stream 328 is brought into the unit 304 .
  • the flow streams 320 and 328 may be flipped between the units 304 and 312 relative to the first mode.
  • the hot ambient fluid stream 320 from outdoors may be diverted from the unit 312 to the unit 304 , which may now be going through a cooling part of the regenerative cycle.
  • the fluid cooled below indoor ambient in the unit 304 may be pushed indoors and new hot outdoor fluid stream 320 may enter the unit 304 .
  • the cold ambient fluid stream 328 may be diverted into the unit 312 , which may be going through a heating part of the regenerative cycle.
  • the heated fluid above outdoor temperature in the unit 312 may be purged outdoors as the indoor fluid stream 328 is brought into unit 312 .
  • the system 300 of FIG. 3 depicts the use of two regenerator devices 304 and 312 that are (substantially) one-hundred eighty degrees out of phase with respect to one another regarding the oriented direction of movement of fluid across or through the devices 304 and 312 .
  • a departure from one-hundred eighty degrees may represent a loss in efficiency.
  • any number of regenerator devices may be used in a given embodiment.
  • the number of regenerator devices used may be a function of the heating or cooling capacity that may be needed in a given application environment.
  • a combination of the two additional devices 304 and 312 may operate ninety degrees out of phase with respect to the combination of devices 304 and 312 .
  • a positive displacement may be used along with checks and vents to provide regeneration by synchronized alternate pumping of fluid.
  • pumping mechanisms and checks may include pistons/electro-magnetically driven membranes and flapper/poppet valves, respectively.
  • the system 400 may include a regenerative device or unit 410 .
  • the device 410 may correspond to one or more of the device 304 , the device 312 , the device 220 , and the device 110 .
  • the system 400 may include any number or type of pumps, such as linear pumps, piston pumps, etc.
  • a first pump 404 a may be associated with an indoor space or environment and a second pump 404 b may be associated with an outdoor space or environment.
  • the pumps 404 a and 404 b may be operated in a discontinuous fashion or manner and may be used to control a flow of fluid over time.
  • Each of the pumps 404 a and 404 b may include a check (shown at the bottom of the pumps in FIG. 4 ) that may selectively open or close a respective fluid inlet for the pump.
  • Each of the pumps 404 a and 404 b may include a vent (shown at the top of the pumps in FIG. 4 ) that may selectively open or close a respective fluid outlet for the pump.
  • the state of the checks and vents associated with each of the pumps 404 a and 404 b may be controlled in order to provide a controlled flow of fluid over time.
  • the system 400 may be configured to providing heating or cooling for the indoor space.
  • the exemplary sequence of operations # 1 - 4 denoted in FIG. 4 are described below for purposes of cooling the indoor space.
  • One skilled in the art would appreciate, based on this disclosure, that a similar sequence of operations could be constructed for purposes of heating the indoor space.
  • the regenerative elements or device 410 may be going through a heating cycle.
  • the cold/indoor side fluid may be pushed by the pump 404 a towards the device 410 , which may push out the fluid on the hot/outdoor side through the unlatched vent associated with the pump 404 b.
  • the vent and check associated with the pump 404 a may be latched and closed, respectively.
  • the check associated with the pump 404 b may be closed.
  • the cold/indoor side fluid pump 404 a may be turned-off, disengaged, or withdrawn.
  • the check associated with the pump 404 a may be opened to bring in cold ambient fluid.
  • the vent associated with the pump 404 a may be latched.
  • the vent associated with the pump 404 b may be latched.
  • the check associated with the pump 404 b may be open or slightly open.
  • a (pressure) differential may be established across the device 410 based on the two checks being open in operation # 2 .
  • the regenerative elements or device 410 may be going through a cooling cycle.
  • the hot/outdoor side fluid may be pushed by the pump 404 b towards the device 410 , which may push out the fluid on the cold/indoor side through the unlatched vent associated with the pump 404 a.
  • the vent and check associated with the pump 404 b may be latched and closed, respectively.
  • the check associated with the pump 404 a may be closed.
  • the hot/outdoor side fluid pump 404 b may be turned-off, disengaged, or withdrawn.
  • the check associated with the pump 404 b may be opened to bring in hot ambient fluid.
  • the vent associated with the pump 404 a may be latched.
  • the vent associated with the pump 404 b may be latched.
  • the check associated with the pump 404 a may be open or slightly open. A (pressure) differential may be established across the device 410 based on the two checks being open in operation # 4 .
  • the check associated with the pump 404 b was described above as being open or slightly open.
  • the check associated with the pump 404 a was described above as being open or slightly open.
  • the states of the referenced checks under such circumstances may be based on a passive control of the checks.
  • the check associated with the pump 404 b may be closed in operation 42 and the check associated with the pump 404 a may be closed in operation # 4 in order to enhance the performance or efficiency of the system.
  • an active control system may be used, potentially at greater cost relative to the use of passive controls. Thus, a trade-off may be made between performance/efficiency and cost in a given application.
  • the method 500 may be used in connection with one or more systems, components, or devices, such as those described herein.
  • the method 500 may be used to provide heating or cooling to an environment, such as an indoor environment.
  • a specification may be obtained.
  • the specification may include one or more requirements associated with an environment.
  • the specification may include parameters related to capacity, load, or temperature lift that a heating, ventilation, and air-conditioning (HVAC) system may be required to provide.
  • HVAC heating, ventilation, and air-conditioning
  • a control system may be designed or configured, potentially based on the specification or requirements of block 502 .
  • the control system may be configured to control a movement of fluid flow in one or more regenerator devices and a mixing of the fluid flow with ambient air.
  • the HVAC. and/or control systems may be deployed. As part of block 506 , the systems may be turned-on or enabled for use.
  • performance of the system(s) of block 506 may be monitored.
  • one or more parameters may be modified or adjusted.
  • a parameter may be modified or adjusted to improve the efficiency of a system.
  • a parameter may be modified to provide for a different climate (e.g., a hotter indoor temperature), potentially based on or in response to a user input.
  • the method 500 is illustrative. In some embodiments, one or more of the blocks or operations (or a portion thereof) may be optional, in some embodiments, one or more blocks or operations not shown may be included. In some embodiments, the blocks or operations may execute in an order or sequence that is different from what is shown,
  • FIG. 6 illustrates a computing system 600 in accordance with one or more embodiments.
  • the computing system 600 may be used as a control system, such as a control system to control an HVAC system.
  • the system 600 may include one or more processors 602 and memory 604 .
  • the memory 604 may store executable instructions, The executable instructions may be stored or organized in any manner and at any level of abstraction, such as in connection with one or more applications, processes, routines, procedures, methods, etc.
  • the instructions when executed by the one or more processors 602 , may cause the system 600 to perform one or more methodological acts, such as those described herein.
  • the system 600 may include logic devices, such as programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. not shown in FIG. 6 ).
  • logic devices such as programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. not shown in FIG. 6 ).
  • the system 600 may include one or more input/output (I/O) devices 606 .
  • the I/O device(s) 606 may include one or more of a keyboard or keypad, a touchscreen or touch panel, a display screen, a microphone, a speaker, a mouse, a button, a remote control, a joystick, a printer, a telephone or mobile device (e.g., a smartphone), a sensor, etc.
  • the I/O device(s) 606 may be configured to provide an interface to allow a user to interact with the system 600 .
  • the I/O device(s) 606 may support a graphical user interface (GUI) and/or voice-to-text capabilities.
  • GUI graphical user interface
  • Embodiments of the disclosure may be used to achieve an oscillatory flow and bulk flow mixing in a compact manner.
  • Embodiments may utilize any working fluid, such as air, in direct contact with the active material which improves simplicity and efficiency, or may isolate the heat transfer media contacting the active material from the ambient air using an intermediate heat exchanger. in some embodiments, zonal personalized space heating/cooling may be provided.
  • Embodiments of the disclosure may have few linear mechanical displacement parts, thereby improving the reliability and availability of a given system.
  • Embodiments of the disclosure may be used in active regenerative heating/cooling systems, such as electrocaloric and magnetocaloric thermal generators. Fluid handling described herein may also be applied to, e.g., power generation using active regenerative systems. Such techniques may be used for waste heat recovery and primary power generation.
  • various functions or acts may take place at a given location arid/or in connection with the operation of one or more apparatuses, systems, or devices.
  • a portion of a given function or act may be performed at a first device or location, and the remainder of the function or act may be performed at one or more additional devices or locations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Central Air Conditioning (AREA)

Abstract

Embodiments are directed to obtaining a specification comprising at least one requirement associated with a heating, ventilation, and air-conditioning (HVAC) system, and based on the specification, configuring a control system to control a movement of fluid back and forth across at least one regenerator device of the HVAC system and a mixing of the fluid with ambient air.

Description

    BACKGROUND
  • Heat pumps based on field-active heating/cooling processes such as the magnetocaloric, electrocaloric, and thermoelastic effect have the potential to replace traditional refrigerant-based heating, ventilation, and air-conditioning (HVAC) systems. An electrocaloric effect-based device in particular may result in a totally solid state device needing no moving pans to deliver a high coefficient of performance (COP) and capacity. Because the stated effects provide relatively small temperature lifts, regeneration in the form of a regenerative heat exchanger may be applied to increase lift to levels needed for environmental control.
  • A field-active material heats up and cools down almost reversibly as an applied field is cycled. To provide space heating/cooling capacity, the alternately created heating or cooling in the material needs to be transferred to either the indoor or outdoor space in a synchronous fashion based on whether cooling or heating in the space is required. One means of performing this thermal switching function is to translate the working fluid into and out of the active element. The fluid is translated completely through the unit if the temperature lift is adequate for the application, while it is translated only partially through the unit if regeneration is needed to increase the lift. In this case the moving air serves the function of regenerative heat storage. The active device, whether subject to compete or partial fluid translation, is referred to herein as a regenerator. This invention describes means to control the motion of the working fluid in a regenerator in a synchronous manner.
  • BRIEF SUMMARY
  • An embodiment is directed to a method comprising: obtaining a specification comprising at least one requirement associated with a heating, ventilation, and air-conditioning (HVAC) system, and based on the specification, configuring a control system to control a movement of fluid back and forth across at least one regenerator device of the HVAC system and a mixing of the fluid with ambient air.
  • An embodiment is directed to a system comprising: a heating, ventilation, and air-conditioning (HVAC) system comprising at least one regenerator device, and a control system configured to control a movement of fluid back and forth across the at least one regenerator device and a mixing of the fluid with ambient air.
  • Additional embodiments are described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements.
  • FIG. 1 is a diagram of an exemplary ejector based linear system;
  • FIG, 2 is a diagram of an exemplary rotary pressure pulsing system;
  • FIG. 3 is a diagram of the sequential stages of operation of an exemplary system comprising two field-active regenerator modules;
  • FIG. 4 is a diagram of an exemplary system comprising a field-active regenerator module and pumps;
  • FIG. 5 illustrates a flow chart of an exemplary method; and
  • FIG. 6 illustrates an exemplary computing system.
  • DETAILED DESCRIPTION
  • It is noted that various connections are set forth between elements in the following description and in the drawings (the contents of which are included in this disclosure by way of reference). It is noted that these connections in general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect. In this respect, a coupling between entities may refer to either a direct or an indirect connection.
  • Exemplary embodiments of apparatuses, systems, and methods are described for controlling a movement of heat transfer fluid across one or more regenerators and a mixing of this fluid with ambient air.
  • In some embodiments the heat transfer fluid may be hot and cold ambient air.
  • In some embodiments the heat transfer fluid in intimate contact with the regenerator may be isolated from mixing, with the ambient air by an intermediate heat exchanger.
  • In some embodiments, synchronous alternate pressure oscillations on cold and hot sides of a regenerator may be provided. To provide cooling, the pressure on the cold and hot side may be synchronized so that the fluid is pushed indoors during the cooling part of the regeneration cycle and fluid is pushed outdoors during the heating part of the regeneration cycle. This process is reversed to provide heating. The pressure oscillations may be achieved through a linear actuator or a rotary fan design.
  • Referring to FIG, 1, an ejector based linear system 100 operating in a cooling mode is shown. The system 100 achieves cooling by closing a valve 102 on the cold side (e.g., the indoors) to raise the pressure and push a flow of fluid from an inlet 104 into a heat pump device 110, such as an electrocaloric heat pump (ECHP) device. A valve 118 is opened at the same time on the hot side (e.g., the outdoors). Next, the valve 102 is opened and the valve 118 is closed, which sucks the fluid from an inlet 120 and the device 110 back into the cold side, acting like an ejector. The mechanism enhances mixing of the hot or cold fluid from the regenerator with the ambient air, ensuring that hot or cold fluid from the regenerator is not simply sucked back into the regenerator without mixing
  • The pressure levels referred to above are switched for heat pumping.
  • The pressure oscillations may be synchronized at specific phase shifts with the field being applied to the active material 110 to gain the best performance, and that phase shift may change for different capacities and lifts. Also, the duration and/or shape of the pressure oscillation may be regulated to provide the correct volume flow of fluid through the system 100.
  • The system 100 may operate on the basis of pressure generated by a running (e.g., a continuous running) of one or more fans. The pressure may be controlled by the state (e.g., the degree of how open or closed) of the valves 102 and 118. Ideally, the design of the valves 102 and 118 may be made as simple as possible in order to reduce cost.
  • Referring to FIG, 2, a rotary pressure pulsing system 200 operating in a cooling mode is shown. The system 200 may have two rotating turbine fans 206 and 214, one either side of a regenerator 120. The regenerator 120 may correspond to the device 110 in some embodiments.
  • The vanes of the cold side (e.g., indoor) and hot side (e.g., outdoor) turbine fans 206 and 214 may be out of phase with respect to one another and push and pull fluid into the regenerator 220 alternatively. The vanes may be synchronized with a voltage signal.
  • The shapes of the vanes may be designed so that when the regenerator 220 is heating, the cold side vane may act as a compressor of fluid and the hot side vane may act as an expander which may result in the heated fluid being pushed out on to the hot side, as reflected via the dashed box 252. Similarly, when the regenerator 220 is in cooling mode, the hot side vane may act as a compressor and the cold side vane may act as an expander pushing cold fluid to the cooled side, as reflected via the dashed box 260.
  • The vanes of the fans 206 and 214 may be used to create localized pressure or pressure differential in proximity to the vanes or fans. The speed, phase, and position of the fans, vanes, or blades may be controlled (e.g., time-controlled) to obtain an appropriate movement of fluid back and forth and mixing with ambient air.
  • Referring to FIG. 3, a system 300 in accordance with one or more embodiments is shown. The system 300 may include two regeneration devices or waits 304 and 312 with continuous hot and cold fluid streams which are switched alternately between the two units 304 and 312 to provide continuous space heating/cooling. The unit 304 and/or the unit 312 may correspond to one or more of the device 110 and the device 220.
  • An indoor space cooling cycle is referenced in FIG. 3, but by simply shifting the phase by 180 degrees, the system 300 can be used for indoor space heating. The system 300 when used for cooling may include two modes as described in further detail below.
  • In the first mode (shown on the left-hand side of the center dual-arrow in FIG. 3), a hot ambient fluid stream 320 from the outdoors may be diverted into the unit 312 which may be going through a cooling part of a regenerative cycle. The fluid cooled below indoor ambient in the unit 312 may be pushed indoors and the new hot outdoor fluid stream 320 may enter the unit 312. Meanwhile, a cold ambient fluid stream 328 may be diverted into the unit 304 which may be going through a heating part of a regenerative cycle. The heated fluid above outdoor temperature in the unit 304 may be purged outdoors as the new indoor fluid stream 328 is brought into the unit 304.
  • In the second mode (shown on the right-hand side of the center dual-arrow in FIG. 3), the flow streams 320 and 328 may be flipped between the units 304 and 312 relative to the first mode. The hot ambient fluid stream 320 from outdoors may be diverted from the unit 312 to the unit 304, which may now be going through a cooling part of the regenerative cycle. The fluid cooled below indoor ambient in the unit 304 may be pushed indoors and new hot outdoor fluid stream 320 may enter the unit 304. Meanwhile, the cold ambient fluid stream 328 may be diverted into the unit 312, which may be going through a heating part of the regenerative cycle. The heated fluid above outdoor temperature in the unit 312 may be purged outdoors as the indoor fluid stream 328 is brought into unit 312.
  • The system 300 of FIG. 3 depicts the use of two regenerator devices 304 and 312 that are (substantially) one-hundred eighty degrees out of phase with respect to one another regarding the oriented direction of movement of fluid across or through the devices 304 and 312. A departure from one-hundred eighty degrees may represent a loss in efficiency.
  • In reference to FIG, 3, any number of regenerator devices may be used in a given embodiment. The number of regenerator devices used may be a function of the heating or cooling capacity that may be needed in a given application environment. As an example of adding two additional devices (e.g., a first additional device 304 and a second additional device 312), a combination of the two additional devices 304 and 312 may operate ninety degrees out of phase with respect to the combination of devices 304 and 312.
  • In some embodiments, a positive displacement may be used along with checks and vents to provide regeneration by synchronized alternate pumping of fluid. In some embodiments, pumping mechanisms and checks may include pistons/electro-magnetically driven membranes and flapper/poppet valves, respectively.
  • Referring to FIG. 4, a system 400 in accordance with one or more embodiments is shown. The system 400 may include a regenerative device or unit 410. The device 410 may correspond to one or more of the device 304, the device 312, the device 220, and the device 110.
  • The system 400 may include any number or type of pumps, such as linear pumps, piston pumps, etc. A first pump 404 a may be associated with an indoor space or environment and a second pump 404 b may be associated with an outdoor space or environment. The pumps 404 a and 404 b may be operated in a discontinuous fashion or manner and may be used to control a flow of fluid over time.
  • Each of the pumps 404 a and 404 b may include a check (shown at the bottom of the pumps in FIG. 4) that may selectively open or close a respective fluid inlet for the pump. Each of the pumps 404 a and 404 b may include a vent (shown at the top of the pumps in FIG. 4) that may selectively open or close a respective fluid outlet for the pump. The state of the checks and vents associated with each of the pumps 404 a and 404 b may be controlled in order to provide a controlled flow of fluid over time.
  • The system 400 may be configured to providing heating or cooling for the indoor space. The exemplary sequence of operations #1-4 denoted in FIG. 4 are described below for purposes of cooling the indoor space. One skilled in the art would appreciate, based on this disclosure, that a similar sequence of operations could be constructed for purposes of heating the indoor space.
  • In operation # 1, the regenerative elements or device 410 may be going through a heating cycle. The cold/indoor side fluid may be pushed by the pump 404 a towards the device 410, which may push out the fluid on the hot/outdoor side through the unlatched vent associated with the pump 404 b. During operation # 1, the vent and check associated with the pump 404 a may be latched and closed, respectively. During operation # 1, the check associated with the pump 404 b may be closed.
  • In operation # 2, the cold/indoor side fluid pump 404 a may be turned-off, disengaged, or withdrawn. The check associated with the pump 404 a may be opened to bring in cold ambient fluid. During operation # 2, the vent associated with the pump 404 a may be latched. During operation # 2, the vent associated with the pump 404 b may be latched. During operation # 2, the check associated with the pump 404 b may be open or slightly open. A (pressure) differential may be established across the device 410 based on the two checks being open in operation # 2.
  • In operation # 3, the regenerative elements or device 410 may be going through a cooling cycle. The hot/outdoor side fluid may be pushed by the pump 404 b towards the device 410, which may push out the fluid on the cold/indoor side through the unlatched vent associated with the pump 404 a. During operation # 3, the vent and check associated with the pump 404 b may be latched and closed, respectively. During operation # 3, the check associated with the pump 404 a may be closed.
  • In operation #4, the hot/outdoor side fluid pump 404 b may be turned-off, disengaged, or withdrawn. The check associated with the pump 404 b may be opened to bring in hot ambient fluid. During operation #4, the vent associated with the pump 404 a may be latched. During operation #4, the vent associated with the pump 404 b may be latched. During operation #4, the check associated with the pump 404 a may be open or slightly open. A (pressure) differential may be established across the device 410 based on the two checks being open in operation #4.
  • In operation # 2, the check associated with the pump 404 b was described above as being open or slightly open. Similarly, in operation #4, the check associated with the pump 404 a was described above as being open or slightly open. The states of the referenced checks under such circumstances may be based on a passive control of the checks. Ideally, the check associated with the pump 404 b may be closed in operation 42 and the check associated with the pump 404 a may be closed in operation #4 in order to enhance the performance or efficiency of the system. In order to provide for such closure of the checks, an active control system may be used, potentially at greater cost relative to the use of passive controls. Thus, a trade-off may be made between performance/efficiency and cost in a given application.
  • Referring to FIG. 5, a flow chart of an exemplary method 500 is shown. The method 500 may be used in connection with one or more systems, components, or devices, such as those described herein. The method 500 may be used to provide heating or cooling to an environment, such as an indoor environment.
  • In block 502, a specification may be obtained. The specification may include one or more requirements associated with an environment. For example, the specification may include parameters related to capacity, load, or temperature lift that a heating, ventilation, and air-conditioning (HVAC) system may be required to provide.
  • In block 504, a control system may be designed or configured, potentially based on the specification or requirements of block 502. The control system may be configured to control a movement of fluid flow in one or more regenerator devices and a mixing of the fluid flow with ambient air.
  • In block 506, the HVAC. and/or control systems may be deployed. As part of block 506, the systems may be turned-on or enabled for use.
  • In block 508, performance of the system(s) of block 506 may be monitored. As part of block 508, one or more parameters may be modified or adjusted. For example, a parameter may be modified or adjusted to improve the efficiency of a system. A parameter may be modified to provide for a different climate (e.g., a hotter indoor temperature), potentially based on or in response to a user input.
  • The method 500 is illustrative. In some embodiments, one or more of the blocks or operations (or a portion thereof) may be optional, in some embodiments, one or more blocks or operations not shown may be included. In some embodiments, the blocks or operations may execute in an order or sequence that is different from what is shown,
  • FIG. 6 illustrates a computing system 600 in accordance with one or more embodiments. The computing system 600 may be used as a control system, such as a control system to control an HVAC system.
  • The system 600 may include one or more processors 602 and memory 604. The memory 604 may store executable instructions, The executable instructions may be stored or organized in any manner and at any level of abstraction, such as in connection with one or more applications, processes, routines, procedures, methods, etc. The instructions, when executed by the one or more processors 602, may cause the system 600 to perform one or more methodological acts, such as those described herein.
  • In some embodiments, the system 600 may include logic devices, such as programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. not shown in FIG. 6).
  • The system 600 may include one or more input/output (I/O) devices 606. The I/O device(s) 606 may include one or more of a keyboard or keypad, a touchscreen or touch panel, a display screen, a microphone, a speaker, a mouse, a button, a remote control, a joystick, a printer, a telephone or mobile device (e.g., a smartphone), a sensor, etc. The I/O device(s) 606 may be configured to provide an interface to allow a user to interact with the system 600. For example, the I/O device(s) 606 may support a graphical user interface (GUI) and/or voice-to-text capabilities.
  • Embodiments of the disclosure may be used to achieve an oscillatory flow and bulk flow mixing in a compact manner. Embodiments may utilize any working fluid, such as air, in direct contact with the active material which improves simplicity and efficiency, or may isolate the heat transfer media contacting the active material from the ambient air using an intermediate heat exchanger. in some embodiments, zonal personalized space heating/cooling may be provided. Embodiments of the disclosure may have few linear mechanical displacement parts, thereby improving the reliability and availability of a given system.
  • Embodiments of the disclosure may be used in active regenerative heating/cooling systems, such as electrocaloric and magnetocaloric thermal generators. Fluid handling described herein may also be applied to, e.g., power generation using active regenerative systems. Such techniques may be used for waste heat recovery and primary power generation.
  • As described herein, in some embodiments various functions or acts may take place at a given location arid/or in connection with the operation of one or more apparatuses, systems, or devices. For example, in sonic embodiments, a portion of a given function or act may be performed at a first device or location, and the remainder of the function or act may be performed at one or more additional devices or locations.
  • Aspects of the disclosure have been described in terms of illustrative embodiments thereof. Numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure. For example, one of ordinary skill in the art will appreciate that the steps described in conjunction with the illustrative figures may be performed in other than the recited order, and that one or more steps illustrated may be optional.

Claims (18)

What is claimed is:
1. A method comprising:
obtaining a specification comprising at least one requirement associated with a heating, ventilation, and air-conditioning (HVAC) system; and
based on the specification, configuring a control system to control a movement of fluid back and forth across at least one regenerator device of the HVAC system and a mixing of the fluid with ambient air.
2. The method of claim 1, further comprising:
causing the HVAC system and the control system to be deployed; and
monitoring the performance of the HVAC system.
3. The method of claim 2, further comprising:
adjusting at least one parameter associated with at least one of the HVAC system and the control system based on the monitoring.
4. The method of claim 1, wherein the at least one regenerator device is coupled to a first valve on a first side of the at least one regenerator device the method further comprising:
configuring the control system to control a state of the first valve in order to control the movement of the fluid and the mixing of the fluid.
5. The method of claim 4, wherein the at least one regenerator device is coupled to a second valve on a second side of the at least one regenerator device, the method further comprising:
configuring the control system to alternate between opening and closing the first and second valves, wherein at any given point M. time one of the first and second valves is commanded to open and the other of the first and second valves is commanded to close.
6. The method of claim 1, wherein the at least one regenerator device is coupled to a first turbine fan on a first side of the at least one regenerator device and a second turbine fan on a second side of the at least one regenerator device, the method further comprising:
configuring the control system to control at least one of a speed, phase, and position of each of the first and second fans in order to control the movement of the fluid and the mixing of the fluid.
7. The method of claim 1, wherein the at least one regenerator device comprises a first regenerator device and a second regenerator device, the method further comprising:
configuring the control system so as to cause the first and second regenerator devices to be substantially one-hundred eighty degrees out of phase with respect to one another regarding an oriented direction of the movement of the fluid across the first and second regenerator devices.
8. The method of claim 1, wherein the at least one regenerator device is coupled to a first pump on a first side of the at least one regenerator device and a second pump on a second side of the at least one regenerator device, and wherein the first pump is associated with a first vent and the second pump is associated with a second vent, the method further comprising:
configuring the control system to control a state of the first and second vents in order to control the movement of the fluid and the mixing of the fluid.
9. The method of claim 8, wherein the first pump is associated with a first check and the second pump is associated with a second check.
10. The method of claim 9, further comprising:
configuring the control system to control a state of the first and second checks in order to control the movement of the fluid and the mixing of the fluid.
11. A system comprising:
a heating, ventilation, and air-conditioning (HVAC) system comprising at least one regenerator device; and
a control system configured to control a movement of fluid back and forth across the at least one regenerator device and a mixing of the fluid with ambient air.
12. The system of claim 11, further comprising:
a first valve coupled to a first side of the at least one regenerator device; and
a second valve coupled to a second side of the at least one regenerator device,
wherein the control system is configured to control a state of the first and second valves in order to control the movement of the fluid and the mixing. of the fluid.
13. The system of claim 12, wherein the control system is configured to command the first and second valves to be alternately opened and closed, wherein at any given point in time one of the first and second valves is commanded to open and the other of the first and second valves is commanded to close.
14. The system of claim 11, further comprising:
a first turbine fan coupled to the at least one regenerator device on a first side of the at least one regenerator device; and
a second turbine fan coupled to the at least one regenerator device on a second side of the at least one regenerator device,
wherein the control system is configured to control at least one of a speed, phase, and position of each of the first and second fans in order to control the movement of the fluid and the mixing of the fluid.
15. The system of claim 11, wherein the at least one regenerator device comprises a first regenerator device and a second regenerator device, and wherein
the control system is configured to cause the first and second regenerator devices to be substantially one-hundred eighty degrees out of phase with respect to one another regarding an oriented direction of the movement of the fluid across the first and second. regenerator devices.
16. The system of claim 11, further comprising:
a first pump coupled to the at least one regenerator device on a first side of the at least one regenerator device; and
a second pump coupled to the at least one regenerator device on a second side of the at least one regenerator device,
wherein the first pump is associated with a first vent, and
wherein the second pump is associated with a second vent, and
wherein the control system is configured to control a state of the first and second vents in order to control the movement of the fluid and the mixing of the fluid.
17. The system of claim 16, wherein the first pump is associated with a first check and the second pump is associated with a second check.
18. The system of claim 17, wherein the control system is configured to control a state of the first and second checks in order to control the movement of the fluid and the mixing of the fluid.
US15/305,807 2014-04-21 2014-04-21 Active Regenerative Heating and Cooling Abandoned US20170045258A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/034753 WO2015163839A1 (en) 2014-04-21 2014-04-21 Active regenerative heating and cooling

Publications (1)

Publication Number Publication Date
US20170045258A1 true US20170045258A1 (en) 2017-02-16

Family

ID=50841958

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/305,807 Abandoned US20170045258A1 (en) 2014-04-21 2014-04-21 Active Regenerative Heating and Cooling

Country Status (7)

Country Link
US (1) US20170045258A1 (en)
EP (1) EP3134686B8 (en)
JP (1) JP2017516053A (en)
CN (1) CN106233081A (en)
CA (1) CA2946278C (en)
ES (1) ES2853448T3 (en)
WO (1) WO2015163839A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106718A1 (en) 2018-11-19 2020-05-28 Carrier Corporation Electrocaloric heat transfer system and a method of operating the same
US11187441B2 (en) 2019-10-10 2021-11-30 Palo Alto Research Center Incorporated Control system for an electrocaloric device
US11454415B2 (en) * 2017-11-23 2022-09-27 Carrier Corporation Hybrid electrocaloric heat pump system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121657A1 (en) * 2015-12-11 2017-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for operating cycle-based systems
US10890361B2 (en) 2016-06-08 2021-01-12 Carrier Corporation Electrocaloric heat transfer system
WO2018227501A1 (en) 2017-06-15 2018-12-20 Oppo广东移动通信有限公司 Data transmission method and device
WO2018237184A1 (en) * 2017-06-23 2018-12-27 Flir Systems, Inc. Mems cryocooler systems and methods
EP3695174B1 (en) 2017-10-11 2022-09-14 Teledyne FLIR Commercial Systems, Inc. Cryocooler controller systems and methods
JP2019074283A (en) * 2017-10-18 2019-05-16 株式会社デンソー Heat pump device
US20210254866A1 (en) * 2018-11-09 2021-08-19 Carrier Corporation Electrocaloric heat transfer articles and systems

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225819A (en) * 1962-08-31 1965-12-28 Daniel Moretti Apparatus and method for air to air heat exchange
US5050667A (en) * 1990-05-15 1991-09-24 Erling Berner Air ventilation and heat exchange apparatus
US5183098A (en) * 1989-08-17 1993-02-02 Stirling Technology, Inc. Air to air heat recovery ventilator
US7059385B2 (en) * 2000-04-19 2006-06-13 Mg Innovations Corp. Air conditioning device
US7441586B2 (en) * 2005-01-10 2008-10-28 In Sook Chung Heat exchange apparatus and ventilation system using the same
US20090308080A1 (en) * 2008-06-16 2009-12-17 Hyundai Motor Company Air Conditioning System
US20100101764A1 (en) * 2008-10-27 2010-04-29 Tai-Her Yang Double flow-circuit heat exchange device for periodic positive and reverse directional pumping
US20100107656A1 (en) * 2007-04-06 2010-05-06 Toyota Jidosha Kabushiki Kaisha Dehumidifier/humidifier for vehicle
US20120222427A1 (en) * 2009-09-17 2012-09-06 Materials And Electrochemical Research (Mer) Corporation Flow-synchronous field motion refrigeration
JP2013160460A (en) * 2012-02-06 2013-08-19 Daikin Industries Ltd Air conditioner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014380A (en) * 1973-11-13 1977-03-29 Gas Developments Corporation Air conditioning process
JPH0380235U (en) * 1989-12-01 1991-08-16
JP3927377B2 (en) * 2001-04-02 2007-06-06 新晃工業株式会社 Desiccant type air conditioner
US7654101B2 (en) * 2007-12-07 2010-02-02 Shapiro Ian M Split-air stream air conditioning with desiccant dehumidification
HU227348B1 (en) * 2008-06-02 2011-04-28 Andras Csiha Decentralised heat recovering ventillating apparatus with alternating direction
US20100018681A1 (en) * 2008-07-23 2010-01-28 Tai-Her Yang Single flow circuit heat exchange device for periodic positive and reverse directional pumping
CA2672897C (en) * 2008-07-23 2017-02-14 Tai-Her Yang Single flow circuit heat exchange device for periodic positive and reverse directional pumping
JP5218135B2 (en) * 2009-02-18 2013-06-26 ダイキン工業株式会社 Humidity control device
US8915092B2 (en) * 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
CN102720531A (en) * 2012-07-02 2012-10-10 北京科技大学 System and method for refrigeration and dehumidification of mine refuge chamber
CN102767872B (en) * 2012-08-09 2015-02-11 上海理工大学 Air-conditioning system capable of recycling waste heat

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225819A (en) * 1962-08-31 1965-12-28 Daniel Moretti Apparatus and method for air to air heat exchange
US5183098A (en) * 1989-08-17 1993-02-02 Stirling Technology, Inc. Air to air heat recovery ventilator
US5050667A (en) * 1990-05-15 1991-09-24 Erling Berner Air ventilation and heat exchange apparatus
US7059385B2 (en) * 2000-04-19 2006-06-13 Mg Innovations Corp. Air conditioning device
US7441586B2 (en) * 2005-01-10 2008-10-28 In Sook Chung Heat exchange apparatus and ventilation system using the same
US20100107656A1 (en) * 2007-04-06 2010-05-06 Toyota Jidosha Kabushiki Kaisha Dehumidifier/humidifier for vehicle
US20090308080A1 (en) * 2008-06-16 2009-12-17 Hyundai Motor Company Air Conditioning System
US20100101764A1 (en) * 2008-10-27 2010-04-29 Tai-Her Yang Double flow-circuit heat exchange device for periodic positive and reverse directional pumping
US20120222427A1 (en) * 2009-09-17 2012-09-06 Materials And Electrochemical Research (Mer) Corporation Flow-synchronous field motion refrigeration
JP2013160460A (en) * 2012-02-06 2013-08-19 Daikin Industries Ltd Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of JP 2013160460 A, retrieved 3/28/2018 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454415B2 (en) * 2017-11-23 2022-09-27 Carrier Corporation Hybrid electrocaloric heat pump system
WO2020106718A1 (en) 2018-11-19 2020-05-28 Carrier Corporation Electrocaloric heat transfer system and a method of operating the same
US11187441B2 (en) 2019-10-10 2021-11-30 Palo Alto Research Center Incorporated Control system for an electrocaloric device

Also Published As

Publication number Publication date
EP3134686A1 (en) 2017-03-01
CA2946278C (en) 2022-06-21
EP3134686B8 (en) 2021-04-07
WO2015163839A1 (en) 2015-10-29
CA2946278A1 (en) 2015-10-29
EP3134686B1 (en) 2021-02-17
ES2853448T3 (en) 2021-09-15
CN106233081A (en) 2016-12-14
JP2017516053A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
EP3134686B1 (en) Active regenerative heating and cooling
CN105240930B (en) The air quantity adjusting method of volume adjusting apparatus
CN108027152A (en) Air-conditioning unit in perspective formula window
US9897336B2 (en) High efficiency air delivery system and method
JP2014035109A (en) Heat pump apparatus
US10612800B2 (en) High efficiency heating and/or cooling system and methods
CN105757798A (en) Air-conditioning system and control method of air-conditioning system
EP2479520B1 (en) Three-way electromagnetic valve
JP2015148362A (en) Composite heat source heat pump device
KR102122574B1 (en) An accumulator and an air conditioner using thereof
KR20060086763A (en) Air conditioner equipped with variable capacity type compressor
JP2018066538A (en) Heat pump water heater with air-conditioning function
TW201716730A (en) Heat pump air condition system and control method thereof
US20200191423A1 (en) Air conditioning system and method of controlling the same
CN104736952A (en) Centrifugal compressor inlet guide vane control
EP2339267B1 (en) Refrigerating cycle apparatus, heat pump type hot water supply air conditioner and outdoor unit thereof
JP6359398B2 (en) Combined heat source heat pump device
JP6208086B2 (en) Combined heat source heat pump device
CN106461302B (en) System and method for controlling variable displacement compressor
JP2002266772A (en) Hermetic type electric compressor
CN109764391A (en) A kind of control method and control device of energy resource system
JP6258800B2 (en) Combined heat source heat pump device
KR102037247B1 (en) An accumulator and an air conditioner using it
JP7441379B2 (en) Reversible pneumatically driven expander
JP4124164B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANNAPRAGADA, SUBRAMANYARAVI;JONSSON, ULF J.;RADCLIFF, THOMAS D.;AND OTHERS;SIGNING DATES FROM 20140313 TO 20160314;REEL/FRAME:040086/0358

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054139/0751

Effective date: 20200403

AS Assignment

Owner name: CARRIER CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAYTHEON TECHNOLOGIES CORPORATION;REEL/FRAME:054513/0194

Effective date: 20201118

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: TC RETURN OF APPEAL

STCV Information on status: appeal procedure

Free format text: APPEAL READY FOR REVIEW

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION