US20170037536A1 - Method and apparatus for the selective deposition of epitaxial germanium stressor alloys - Google Patents
Method and apparatus for the selective deposition of epitaxial germanium stressor alloys Download PDFInfo
- Publication number
- US20170037536A1 US20170037536A1 US15/299,023 US201615299023A US2017037536A1 US 20170037536 A1 US20170037536 A1 US 20170037536A1 US 201615299023 A US201615299023 A US 201615299023A US 2017037536 A1 US2017037536 A1 US 2017037536A1
- Authority
- US
- United States
- Prior art keywords
- gas
- precursor
- metal
- coupled
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title abstract description 53
- 229910052732 germanium Inorganic materials 0.000 title abstract description 51
- 238000000034 method Methods 0.000 title abstract description 21
- 230000008021 deposition Effects 0.000 title description 23
- 229910045601 alloy Inorganic materials 0.000 title description 2
- 239000000956 alloy Substances 0.000 title description 2
- 239000002243 precursor Substances 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 23
- 150000005309 metal halides Chemical class 0.000 claims abstract description 23
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 9
- 150000002367 halogens Chemical class 0.000 claims abstract description 9
- 238000009833 condensation Methods 0.000 claims abstract description 8
- 230000005494 condensation Effects 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 53
- 239000012159 carrier gas Substances 0.000 claims description 11
- 230000037361 pathway Effects 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 7
- -1 organometallic halide Chemical class 0.000 claims description 7
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052986 germanium hydride Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012713 reactive precursor Substances 0.000 claims 4
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 229910001092 metal group alloy Inorganic materials 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 description 23
- 229910052718 tin Inorganic materials 0.000 description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004401 flow injection analysis Methods 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910018957 MClx Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OWKFZBJFYBIPMX-UHFFFAOYSA-N chlorogermane Chemical compound [GeH3]Cl OWKFZBJFYBIPMX-UHFFFAOYSA-N 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- VXGHASBVNMHGDI-UHFFFAOYSA-N digermane Chemical compound [Ge][Ge] VXGHASBVNMHGDI-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- PJYXVICYYHGLSW-UHFFFAOYSA-J tetrachloroplumbane Chemical compound Cl[Pb](Cl)(Cl)Cl PJYXVICYYHGLSW-UHFFFAOYSA-J 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
- C30B23/063—Heating of the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/08—Germanium
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/52—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1054—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
- C30B23/066—Heating of the material to be evaporated
Definitions
- Technology described herein relates to manufacture of semiconductor devices. More specifically, methods are described of forming field effect transistors using strained materials.
- Germanium was one of the first materials used for semiconductor applications such as CMOS transistors. Due to vast abundance of silicon compared to germanium, however, silicon has been the overwhelming semiconductor material of choice for CMOS manufacture. As device geometries decline according to Moore's Law, the size of transistor components poses challenges to engineers working to make devices that are smaller, faster, use less power, and generate less heat. For example, as the size of a transistor declines, the channel region of the transistor becomes smaller, and the electronic properties of the channel become less viable, with more resistivity and higher threshold voltages. Carrier mobility is increased in the silicon channel area by using silicon-germanium stressors embedded in the source/drain areas, as some manufacturers have done for the 45 nm node. For future nodes, however, still higher mobility devices are needed. Thus, there is a continuing need for methods and apparatus to form high mobility semiconductor devices.
- a germanium stressor layer may be formed on a substrate by positioning the substrate in a processing chamber, flowing a germanium precursor into the processing chamber, forming a stressor precursor outside the processing chamber, flowing the stressor precursor into the processing chamber, and growing the germanium stressor layer epitaxially on the substrate.
- An apparatus for forming such layers includes a rotating substrate support disposed in an enclosure, a plurality of gas inlets formed in a wall of the enclosure, at least one gas outlet formed in a wall of the enclosure, a reactive or non-reactive source for generating a stressor precursor coupled to a gas inlet by a first conduit, a non-reactive source for providing a germanium precursor coupled to a gas inlet by a second conduit, and an exhaust system.
- the exhaust system may be heated and may have a coating applied to reduce adhesion of exhaust components, and may include a condensation trap.
- the germanium precursor may be a hydride, and the stressor precursor may be a metal halide.
- a selectivity control species for example a halide gas, may be included with the reaction mixture to control deposition selectivity on semiconductive and dielectric regions of the substrate.
- FIG. 1 is a flow diagram summarizing a method according to one embodiment.
- FIG. 2 is a flow diagram summarizing a method according to another embodiment.
- FIG. 3 is a schematic diagram of an apparatus according to another embodiment.
- FIG. 1 is a flow diagram summarizing a method 100 according to one embodiment.
- a semiconductor substrate is positioned in a processing chamber at 102 .
- the semiconductor substrate may be any semiconductive material on which a stressor layer is to be formed.
- a silicon substrate on which a transistor structure is to be formed may be used in one example.
- the semiconductor substrate may have dielectric areas formed on a surface thereof in some embodiments.
- a silicon substrate may have transistor gate structures and dielectric spacers formed adjacent to semiconductive source/drain regions, which may be regions of doped silicon or regions on which source/drain materials are to be formed.
- the source/drain regions may comprise the stressor layers described herein in addition to, or instead of, doped silicon layers.
- the stressor layers described herein typically comprise metal atoms disposed in a germanium matrix, Ge x M y .
- Large metal atoms for example group IV metals larger than germanium, such as tin and lead, are useful for adding compressive stress to a germanium matrix.
- a germanium crystal usually has a cubic structure with unit cell dimension about 570 pm (picometer). Each germanium atom has a radius of about 125 pm, which tin atoms have radius of about 145 pm, and lead has radius of between 155 and 180 pm.
- Adding the larger metal atoms to a germanium crystal matrix results in a larger lattice size that exerts a uniaxial compressive stress to lateral germanium atoms and/or biaxial tensile strain to overlying germanium atoms.
- Such strain increases the energy of local electrons and reduces the bandgap of the germanium, resulting in higher carrier mobility compared to unstrained germanium.
- the silicon substrate may have a germanium channel layer adjacent to which the stressor layer is to be formed as part of a transistor gate structure.
- the Ge x M y stressor in this case applies a uniaxial stress onto the neighboring germanium layer.
- the germanium channel layer is deposited over the stressor layer, so that a biaxial tensile strain is applied to the germanium channel layer.
- a germanium precursor is provided to the processing chamber containing the semiconductor substrate at 104 .
- the germanium precursor is typically a germanium hydride, such as germane (GeH 4 ), digermane (Ge 2 H 6 ), or higher hydrides (Ge x H 2x+2 ), or a combination thereof.
- the germanium precursor may be mixed with a carrier gas, which may be a non-reactive gas such as nitrogen gas, hydrogen gas, or a noble gas such as helium or argon, or a combination thereof.
- the ratio of germanium precursor volumetric flow rate to carrier gas flow rate may be used to control gas flow velocity through the chamber. The ratio may be any proportion from about 1% to about 99%, depending on the flow velocity desired.
- a relatively high velocity may improve uniformity of the formed layer.
- the flow rate of germanium precursor may be between about 0.1 sLm and about 2.0 sLm.
- carrier gas flow rate between about 5 sLm and about 40 sLm provides a uniform layer thickness.
- a metal halide is provided to the processing chamber at 106 to react with the germanium precursor and deposit a layer of metal doped germanium.
- the metal halide may be a tin or lead halide gas, for example SnCl 4 , SnCl 2 , PbCl 4 , or PbCl 2 or an organometallic chloride having the formula R x MCl y , where R is methyl or t-butyl, x is 1 or 2, M is Sn or Pb, and y is 2 or 3, such that the formed layer is composed primarily of group IV elements.
- the degree of mobility enhancement achieved in the neighboring germanium layer depends on the lattice mismatch and consequent stress imparted by the stressor layer. This in turn depends approximately linearly on the concentration of metal atoms in the stressor matrix. As the concentration of metal increases in the stressor, the energy of valence electrons in the neighboring stressed germanium rises due to bending and straining of orbitals, and the energy of the conduction band decreases. At high enough concentration, the semiconductor-metal alloy becomes a direct bandgap material (i.e. metallic). It may be useful, in some embodiments, to limit the metal concentration so the alloy remains an indirect bandgap material. In transistor applications, maintaining an indirect bandgap material in source/drain regions may reduce leakage.
- the metal halide is provided to the processing chamber at a flow rate between about 10 sccm and about 300 sccm, such as between about 50 sccm and about 200 sccm, for example about 100 sccm.
- the metal halide may also be mixed with a carrier gas to achieve a desired space velocity and/or mixing performance in the processing chamber.
- the metal halide may be sourced from a solid source of metal halide crystals sublimed into a flowing carrier gas stream such as N 2 , H 2 , Ar, or He, or the metal halide may be generated by passing a halogen gas, optionally with one of the above carrier gases, over a solid metal in a contacting chamber to perform the reaction M+2Cl 2 ⁇ MCl 4 , where M is Sn or Pb.
- the contacting chamber may be adjacent to the processing chamber, coupled thereto by a conduit which is preferably short to reduce the possibility of metal halide particles depositing in the conduit.
- the metal halide and the germanium precursor are usually provided to the processing chamber through different pathways.
- the germanium precursor is provided through a first pathway, and the metal halide is provided through a second pathway.
- the two pathways are generally different and kept separate up to the point of entry into the processing chamber.
- both streams enter through a sidewall of the chamber proximate an edge of the substrate support, travel across the substrate support from one side to an opposite side thereof and into an exhaust system.
- the substrate support may rotate during formation of the stressed layer to improve uniformity.
- the first pathway generally communicates with a first entry point into the processing chamber, which may comprise one or more openings in a wall of the chamber or a gas distributor, such as a showerhead, coupled to a wall of the chamber.
- the one or more openings may be proximate an edge of the substrate support, as described above, or may be portals in a dual or multi path gas distributor.
- the second pathway likewise communicates with a second entry point similar to the first entry point.
- the first and second entry points are disposed such that the two streams mix and provide a deposition or layer growth mixture in a region above the substrate support.
- Use of a gas distributor may reduce or eliminate the need to rotate the substrate during processing in some embodiments.
- Pressure in the processing chamber is maintained between about 5 Torr and about 200 Torr, such as between about 20 Torr and about 80 Torr, for example about 40 Torr.
- Temperature is between about 150° C. and about 500° C., such as between about 200° C. and about 400° C., for example about 300° C.
- Temperatures are kept below a decomposition temperature of the metal halide precursor, generally about 600° C. or lower. Pressures may be below about 5 Torr in some embodiments, but reduced pressure also reduces deposition rate. Deposition rate at these conditions is between about 50 ⁇ /min and about 500 ⁇ /min.
- a germanium stressor layer, or germanium metal alloy layer, is formed at 108 , according to the following reactions:
- Hydrogen gas may be provided to the chamber to facilitate the deposition reactions.
- a flowrate of hydrogen gas between about 5 sLm and about 40 sLm may be included with any or all of the precursors to provide an ambient hydrogen concentration.
- the layer is typically deposited to a thickness between about 300 ⁇ and about 800 ⁇ .
- Concentration of tin atoms in a germanium matrix may be between about 1% and about 12%, such as between about 3% and about 9%, for example about 6%, according to the method 100 .
- concentration of lead atoms in the germanium matrix may be between about 0.2% and about 5%, such as between about 1% and about 3%, for example about 2%.
- a mixture of lead and tin may be used, if desired.
- Lead may achieve higher bandgap reduction at lower doses than tin, and using a mixture of lead and tin may be advantageous in some embodiments for delivering processability (i.e. tin halides are more stable than lead halides at elevated temperatures) with some enhancement of bandgap reduction.
- FIG. 2 is a flow diagram summarizing a method 200 according to another embodiment.
- the method 200 is similar in many respects to the method 100 , and may be used to achieve similar results when processing substrates having semiconductive and dielectric regions.
- a substrate having semiconductive and dielectric features is disposed in a processing chamber with characteristics as described above in connection with FIG. 1 .
- a germanium precursor which may be any of the germanium precursors described in connection with FIG. 1
- a tin or lead precursor, or a mixture of tin and lead precursors which may be any of the tin or lead precursors described above in connection with FIG. 1 , is provided to the processing chamber through a second pathway.
- a deposition control species is provided to the processing chamber.
- the deposition control species is provided to control deposition of germanium, tin, and/or lead on the surface of the substrate.
- the deposition control species selectively removes deposited species from the dielectric regions of the substrate faster than from the semiconductive regions.
- the deposition control species may be a selectivity control species because in some embodiments selectivity may be controlled by adjusting the amount of the selectivity control species relative to the reactive species in the reaction mixture.
- the deposition control species is typically a halogen containing species, such as a halide, for example HCl, HF, or HBr.
- the deposition control species is HCl.
- the deposition control species may be provided at a flow rate between about 10 sccm and about 1000 sccm, such as between about 100 sccm and about 500 sccm, for example about 200 sccm.
- Layer growth selectivity and deposition rate may be controlled by adjusting a volumetric ratio of deposition control species to germanium precursor. A higher ratio reduces deposition rate overall, but improves selectivity.
- the volumetric flow ratio of deposition control species to germanium precursor ranges between about 0.01 and about 0.1 for most embodiments, such as between about 0.02 and about 0.06, for example about 0.04.
- the deposition rate is about 50 ⁇ /min, while at the low end of the range the deposition rate is about 500 ⁇ /min.
- the deposition rate on the semiconductive regions is about 50 times the deposition rate on the dielectric regions.
- the amount of compressive stress introduced by the stressor layer may be controlled at low metal concentrations by varying the concentration of metal incorporated in the stressor matrix.
- the metal concentration may be controlled by adjusting a ratio of metal precursor to germanium precursor in the reaction mixture.
- the ratio of volumetric flow rates of metal precursor to germanium precursor provided to the processing chamber will be between about 1% and about 20%, such as between about 4% and about 12%, for example about 8%.
- FIG. 3 is a schematic diagram of an apparatus 300 according to another embodiment.
- the apparatus 300 is useable for practicing the methods described herein for forming stressed layers.
- a processing chamber 302 has a substrate support 308 , which may be a rotating substrate support, disposed in an interior thereof.
- a heat source 306 is disposed facing one side of the substrate support 308 . Alternately, a heat source may be embedded in the substrate support 308 .
- a chamber with a heated substrate support as described in commonly assigned U.S. Pat. No. 7,172,792, entitled “Method for forming a high quality low temperature silicon nitride film”, issued Feb. 6, 2007, may be adapted to build the apparatus described herein and to practice the methods described herein.
- a chamber with a lamp heating module as described in commonly assigned U.S. Patent Publication 2008/0072820, entitled “Modular CVD Epi 300 mm Reactor”, published Mar. 27, 2008, may also be adapted to build the apparatus described herein and to practice the methods described herein.
- An EpiTM 300 mm reactor or a 300 mm xGenTM chamber, both available from Applied Materials, Inc., of Santa Clara, Calif., may be adapted to make and use embodiments described herein.
- the processing chamber 302 may have a showerhead 304 for gas entry into the chamber. Alternately, gas may be provided to the processing chamber through a side entry 320 coupled to a sidewall 360 of the chamber 302 .
- a feed system 328 including a chemical delivery system 310 and a metal precursor contact chamber 312 , is coupled to the chamber 302 through a variety of conduits.
- a first conduit 322 and a second conduit 324 may couple the feed system 328 to the optional showerhead 304 .
- the showerhead 304 may be a dual-pathway showerhead to prevent mixing of the precursors prior to entry into the chamber 302 .
- An exemplary dual-pathway showerhead is described in commonly assigned U.S. Pat. No. 6,983,892, entitled “Gas distribution showerhead for semiconductor processing”, issued Jan. 10, 2006.
- cross-flow gas injection may be practiced by providing first and second cross-flow gas conduits 316 and 318 to the side entry point 320 .
- An example of a cross-flow injection configuration is described in U.S. Pat. No. 6,500,734.
- the apparatus 300 may contain both a showerhead configuration and a cross-flow injection configuration, or only one or the other configuration.
- the chemical delivery system 310 delivers germanium precursors, optionally with carrier gases such as nitrogen and/or hydrogen, to the chamber 302 .
- the chemical delivery system 310 may also deliver deposition or selectivity control species to the chamber 302 .
- the chemical delivery system 310 may include liquid or gaseous sources and controls (not shown), which may be configured in a gas panel.
- the contact chamber 312 may be coupled to either the side entry point 320 or the showerhead 304 by a conduit 314 disposed to carry a metal precursor to the chamber 302 .
- Conduits 314 , 316 , and 322 may be heated to a temperature between about 50° C. and about 200° C. to control or prevent condensation of metal halide species therein.
- the contact chamber 312 typically contains a bed of solid metal or metal halide crystals.
- the metal halide crystals may be sublimed into a carrier gas provided through one or both of gas feed conduits 362 and 364 .
- the solid metal may be contacted with a halogen gas source provided through one or both of the gas feed conduits 362 and 364 .
- a halogen gas source is provided through a first gas feed conduit 362 while a carrier gas is provided through a second gas feed conduit 364 .
- the gases either for subliming or reacting, may be flowed through a powdered metal or metal halide fluidized bed to enhance contacting.
- a mesh strainer or filter may be used to prevent entrainment of particles into the chamber 302 .
- the gases may flow across a fixed solid metal or metal halide bed.
- An exhaust system 330 is coupled to the chamber 302 .
- the exhaust system 330 may be coupled to the chamber at any convenient location, which may depend on the location of the gas entry into the chamber.
- the exhaust system may be coupled to a bottom wall of the chamber, around the heat source 306 , for example, by one or more portals or through an annular opening.
- An annular manifold may be disposed near an edge of the substrate support and coupled to the exhaust system 330 in some embodiments.
- the exhaust system 330 may be coupled to a sidewall of the chamber opposite the side entry point 320 .
- An exhaust conduit 340 couples an exhaust cap 332 to a vacuum pump 352 through a throttle valve 366 .
- a jacket 368 encompasses the exhaust conduit 340 and throttle valve 366 from the exhaust cap 332 to an inlet 350 of the vacuum pump 352 .
- the jacket 368 enables thermal control of the exhaust conduit 340 to prevent condensation of exhaust species in the line. Any heating medium, such as steam, or hot air, water, or other hot fluid, may be used to maintain the exhaust conduit at a temperature above a dew point of the exhaust gas. Alternately, the jacket may include resistive heating elements (i.e. an electric blanket).
- a condensation trap 336 may be coupled to the exhaust conduit 340 by a valve 338 , if desired, to further enhance trapping of any condensates in the exhaust system 330 .
- the vacuum pump 352 pays off to an abatement system 356 through an abatement conduit 354 , which is typically not heated or jacketed, and cleaned gas exhausted at 358 .
- the exhaust conduit 340 may be coated with quartz or with an inert polymer material.
- Plasma or ultraviolet activated cleaning agents may be coupled into the exhaust system 330 by active source 334 , which may be coupled to a microwave or RF chamber for generating active cleaning species.
- a cleaning gas line 326 may provide cleaning gases from the chemical delivery system 310 to the exhaust conduit 340 , proceeding through the active source 334 , if desired. Use of active species for cleaning allows cleaning to proceed at reduced temperatures.
- a method for cleaning a chamber used to perform the methods described herein, such as the chamber 302 , or any chamber used to perform the methods 100 and 200 includes providing a halogen gas to the chamber, converting residues to volatile halides. Temperature of the chamber is typically maintained below about 600° C. during cleaning, and metal deposits are converted to MCl x , typically SnCl x or PbCl x .
- the halogen gas may be chlorine gas, fluorine gas, HCl, or HF.
- the chamber may be heated to an extent that separate heating of the exhaust conduit is not needed, especially if the exhaust conduit is insulated. Alternately, chamber temperature may be kept below about 400° C., if desired, and the exhaust conduit 340 heated to prevent condensation.
- Alternate embodiments of forming a stressor layer may include cyclical processes of forming a substantially pure epitaxial germanium layer and then forming a metal-doped epitaxial germanium layer, the pure and doped layers formed by starting and stopping flow of the metal precursor while maintaining flow of the germanium precursor, generally according to recipes described above.
- a layer having graded stress may be formed by establishing flow of the germanium precursor for a period of time to form an epitaxial initial layer of substantially pure germanium, starting flow of the metal precursor at an initial flow rate, and then increasing the flow rate of the metal precursor to a final flow rate according to any desired pattern, linear or non-linear.
- Such a graded stress layer may adhere to underlying layers more strongly while providing increased electron mobility.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
A method and apparatus for forming heterojunction stressor layers is described. A germanium precursor and a metal precursor are provided to a chamber, and an epitaxial layer of germanium-metal alloy formed on the substrate. The metal precursor is typically a metal halide, which may be provided by subliming a solid metal halide or by contacting a pure metal with a halogen gas. The precursors may be provided through a showerhead or through a side entry point, and an exhaust system coupled to the chamber may be separately heated to manage condensation of exhaust components.
Description
- This application is a divisional of U.S. patent application Ser. No. 13/193,506, filed Jul. 28, 2011, now U.S. Pat. No. 9,476,144, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/468,443 filed Mar. 28, 2011, all of which are herein incorporated by reference in their entirety.
- Field of the Invention
- Technology described herein relates to manufacture of semiconductor devices. More specifically, methods are described of forming field effect transistors using strained materials.
- Description of the Related Art
- Germanium was one of the first materials used for semiconductor applications such as CMOS transistors. Due to vast abundance of silicon compared to germanium, however, silicon has been the overwhelming semiconductor material of choice for CMOS manufacture. As device geometries decline according to Moore's Law, the size of transistor components poses challenges to engineers working to make devices that are smaller, faster, use less power, and generate less heat. For example, as the size of a transistor declines, the channel region of the transistor becomes smaller, and the electronic properties of the channel become less viable, with more resistivity and higher threshold voltages. Carrier mobility is increased in the silicon channel area by using silicon-germanium stressors embedded in the source/drain areas, as some manufacturers have done for the 45 nm node. For future nodes, however, still higher mobility devices are needed. Thus, there is a continuing need for methods and apparatus to form high mobility semiconductor devices.
- Method and apparatus for forming stressor layers on a semiconductor substrate are provided. A germanium stressor layer may be formed on a substrate by positioning the substrate in a processing chamber, flowing a germanium precursor into the processing chamber, forming a stressor precursor outside the processing chamber, flowing the stressor precursor into the processing chamber, and growing the germanium stressor layer epitaxially on the substrate. An apparatus for forming such layers includes a rotating substrate support disposed in an enclosure, a plurality of gas inlets formed in a wall of the enclosure, at least one gas outlet formed in a wall of the enclosure, a reactive or non-reactive source for generating a stressor precursor coupled to a gas inlet by a first conduit, a non-reactive source for providing a germanium precursor coupled to a gas inlet by a second conduit, and an exhaust system. The exhaust system may be heated and may have a coating applied to reduce adhesion of exhaust components, and may include a condensation trap.
- The germanium precursor may be a hydride, and the stressor precursor may be a metal halide. A selectivity control species, for example a halide gas, may be included with the reaction mixture to control deposition selectivity on semiconductive and dielectric regions of the substrate.
- So that the manner in which the above-recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
-
FIG. 1 is a flow diagram summarizing a method according to one embodiment. -
FIG. 2 is a flow diagram summarizing a method according to another embodiment. -
FIG. 3 is a schematic diagram of an apparatus according to another embodiment. - To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
-
FIG. 1 is a flow diagram summarizing amethod 100 according to one embodiment. A semiconductor substrate is positioned in a processing chamber at 102. The semiconductor substrate may be any semiconductive material on which a stressor layer is to be formed. A silicon substrate on which a transistor structure is to be formed may be used in one example. The semiconductor substrate may have dielectric areas formed on a surface thereof in some embodiments. For example, a silicon substrate may have transistor gate structures and dielectric spacers formed adjacent to semiconductive source/drain regions, which may be regions of doped silicon or regions on which source/drain materials are to be formed. Thus, the source/drain regions may comprise the stressor layers described herein in addition to, or instead of, doped silicon layers. - The stressor layers described herein typically comprise metal atoms disposed in a germanium matrix, GexMy. Large metal atoms, for example group IV metals larger than germanium, such as tin and lead, are useful for adding compressive stress to a germanium matrix. A germanium crystal usually has a cubic structure with unit cell dimension about 570 pm (picometer). Each germanium atom has a radius of about 125 pm, which tin atoms have radius of about 145 pm, and lead has radius of between 155 and 180 pm. Adding the larger metal atoms to a germanium crystal matrix results in a larger lattice size that exerts a uniaxial compressive stress to lateral germanium atoms and/or biaxial tensile strain to overlying germanium atoms. Such strain increases the energy of local electrons and reduces the bandgap of the germanium, resulting in higher carrier mobility compared to unstrained germanium.
- In one aspect, the silicon substrate may have a germanium channel layer adjacent to which the stressor layer is to be formed as part of a transistor gate structure. The GexMy stressor in this case applies a uniaxial stress onto the neighboring germanium layer. In another aspect, the germanium channel layer is deposited over the stressor layer, so that a biaxial tensile strain is applied to the germanium channel layer.
- A germanium precursor is provided to the processing chamber containing the semiconductor substrate at 104. The germanium precursor is typically a germanium hydride, such as germane (GeH4), digermane (Ge2H6), or higher hydrides (GexH2x+2), or a combination thereof. The germanium precursor may be mixed with a carrier gas, which may be a non-reactive gas such as nitrogen gas, hydrogen gas, or a noble gas such as helium or argon, or a combination thereof. The ratio of germanium precursor volumetric flow rate to carrier gas flow rate may be used to control gas flow velocity through the chamber. The ratio may be any proportion from about 1% to about 99%, depending on the flow velocity desired. In some embodiments, a relatively high velocity may improve uniformity of the formed layer. In a 300 mm single-wafer embodiment, the flow rate of germanium precursor may be between about 0.1 sLm and about 2.0 sLm. For a chamber having a volume of about 50 L, at the above flow rates for germanium precursor, carrier gas flow rate between about 5 sLm and about 40 sLm provides a uniform layer thickness.
- A metal halide is provided to the processing chamber at 106 to react with the germanium precursor and deposit a layer of metal doped germanium. The metal halide may be a tin or lead halide gas, for example SnCl4, SnCl2, PbCl4, or PbCl2 or an organometallic chloride having the formula RxMCly, where R is methyl or t-butyl, x is 1 or 2, M is Sn or Pb, and y is 2 or 3, such that the formed layer is composed primarily of group IV elements.
- The degree of mobility enhancement achieved in the neighboring germanium layer depends on the lattice mismatch and consequent stress imparted by the stressor layer. This in turn depends approximately linearly on the concentration of metal atoms in the stressor matrix. As the concentration of metal increases in the stressor, the energy of valence electrons in the neighboring stressed germanium rises due to bending and straining of orbitals, and the energy of the conduction band decreases. At high enough concentration, the semiconductor-metal alloy becomes a direct bandgap material (i.e. metallic). It may be useful, in some embodiments, to limit the metal concentration so the alloy remains an indirect bandgap material. In transistor applications, maintaining an indirect bandgap material in source/drain regions may reduce leakage.
- The metal halide is provided to the processing chamber at a flow rate between about 10 sccm and about 300 sccm, such as between about 50 sccm and about 200 sccm, for example about 100 sccm. The metal halide may also be mixed with a carrier gas to achieve a desired space velocity and/or mixing performance in the processing chamber. The metal halide may be sourced from a solid source of metal halide crystals sublimed into a flowing carrier gas stream such as N2, H2, Ar, or He, or the metal halide may be generated by passing a halogen gas, optionally with one of the above carrier gases, over a solid metal in a contacting chamber to perform the reaction M+2Cl2→MCl4, where M is Sn or Pb. The contacting chamber may be adjacent to the processing chamber, coupled thereto by a conduit which is preferably short to reduce the possibility of metal halide particles depositing in the conduit.
- The metal halide and the germanium precursor are usually provided to the processing chamber through different pathways. The germanium precursor is provided through a first pathway, and the metal halide is provided through a second pathway. The two pathways are generally different and kept separate up to the point of entry into the processing chamber. In one embodiment, both streams enter through a sidewall of the chamber proximate an edge of the substrate support, travel across the substrate support from one side to an opposite side thereof and into an exhaust system. The substrate support may rotate during formation of the stressed layer to improve uniformity. The first pathway generally communicates with a first entry point into the processing chamber, which may comprise one or more openings in a wall of the chamber or a gas distributor, such as a showerhead, coupled to a wall of the chamber. The one or more openings may be proximate an edge of the substrate support, as described above, or may be portals in a dual or multi path gas distributor. The second pathway likewise communicates with a second entry point similar to the first entry point. The first and second entry points are disposed such that the two streams mix and provide a deposition or layer growth mixture in a region above the substrate support. Use of a gas distributor may reduce or eliminate the need to rotate the substrate during processing in some embodiments.
- Growth of the stressor layer is generally epitaxial for high structural quality. Pressure in the processing chamber is maintained between about 5 Torr and about 200 Torr, such as between about 20 Torr and about 80 Torr, for example about 40 Torr. Temperature is between about 150° C. and about 500° C., such as between about 200° C. and about 400° C., for example about 300° C. Temperatures are kept below a decomposition temperature of the metal halide precursor, generally about 600° C. or lower. Pressures may be below about 5 Torr in some embodiments, but reduced pressure also reduces deposition rate. Deposition rate at these conditions is between about 50 Å/min and about 500 Å/min.
- A germanium stressor layer, or germanium metal alloy layer, is formed at 108, according to the following reactions:
-
MCl4+GeH4→MH2Cl2+GeH2Cl2 -
MH2Cl2+H2→M+2HCl+H2 -
GeH2Cl2+H2→Ge+2HCl+H2 - where M is Sn or Pb. Similar reactions occur with the organometallic chlorides described above. Higher order germanes yield a mix of chlorogermane intermediates, which similarly resolve into germanium deposits. Hydrogen gas may be provided to the chamber to facilitate the deposition reactions. A flowrate of hydrogen gas between about 5 sLm and about 40 sLm may be included with any or all of the precursors to provide an ambient hydrogen concentration.
- The layer is typically deposited to a thickness between about 300 Å and about 800 Å. Concentration of tin atoms in a germanium matrix may be between about 1% and about 12%, such as between about 3% and about 9%, for example about 6%, according to the
method 100. If lead is used, concentration of lead atoms in the germanium matrix may be between about 0.2% and about 5%, such as between about 1% and about 3%, for example about 2%. A mixture of lead and tin may be used, if desired. Lead may achieve higher bandgap reduction at lower doses than tin, and using a mixture of lead and tin may be advantageous in some embodiments for delivering processability (i.e. tin halides are more stable than lead halides at elevated temperatures) with some enhancement of bandgap reduction. -
FIG. 2 is a flow diagram summarizing amethod 200 according to another embodiment. Themethod 200 is similar in many respects to themethod 100, and may be used to achieve similar results when processing substrates having semiconductive and dielectric regions. At 202, a substrate having semiconductive and dielectric features is disposed in a processing chamber with characteristics as described above in connection withFIG. 1 . At 204, a germanium precursor, which may be any of the germanium precursors described in connection withFIG. 1 , is provided to the processing chamber through a first pathway. At 206, a tin or lead precursor, or a mixture of tin and lead precursors, which may be any of the tin or lead precursors described above in connection withFIG. 1 , is provided to the processing chamber through a second pathway. - At 208, a deposition control species is provided to the processing chamber. The deposition control species is provided to control deposition of germanium, tin, and/or lead on the surface of the substrate. The deposition control species selectively removes deposited species from the dielectric regions of the substrate faster than from the semiconductive regions. Thus, the deposition control species may be a selectivity control species because in some embodiments selectivity may be controlled by adjusting the amount of the selectivity control species relative to the reactive species in the reaction mixture.
- The deposition control species is typically a halogen containing species, such as a halide, for example HCl, HF, or HBr. In one embodiment, the deposition control species is HCl. The deposition control species may be provided at a flow rate between about 10 sccm and about 1000 sccm, such as between about 100 sccm and about 500 sccm, for example about 200 sccm. Layer growth selectivity and deposition rate may be controlled by adjusting a volumetric ratio of deposition control species to germanium precursor. A higher ratio reduces deposition rate overall, but improves selectivity. The volumetric flow ratio of deposition control species to germanium precursor ranges between about 0.01 and about 0.1 for most embodiments, such as between about 0.02 and about 0.06, for example about 0.04. At the upper end of the range the deposition rate is about 50 Å/min, while at the low end of the range the deposition rate is about 500 Å/min. However, at the upper end of the range, film growth on dielectric regions of the substrate is not observed, while at the lower end of the range, the deposition rate on the semiconductive regions is about 50 times the deposition rate on the dielectric regions.
- The amount of compressive stress introduced by the stressor layer may be controlled at low metal concentrations by varying the concentration of metal incorporated in the stressor matrix. The metal concentration may be controlled by adjusting a ratio of metal precursor to germanium precursor in the reaction mixture. For most embodiments, the ratio of volumetric flow rates of metal precursor to germanium precursor provided to the processing chamber will be between about 1% and about 20%, such as between about 4% and about 12%, for example about 8%.
-
FIG. 3 is a schematic diagram of anapparatus 300 according to another embodiment. Theapparatus 300 is useable for practicing the methods described herein for forming stressed layers. Aprocessing chamber 302 has asubstrate support 308, which may be a rotating substrate support, disposed in an interior thereof. Aheat source 306 is disposed facing one side of thesubstrate support 308. Alternately, a heat source may be embedded in thesubstrate support 308. A chamber with a heated substrate support as described in commonly assigned U.S. Pat. No. 7,172,792, entitled “Method for forming a high quality low temperature silicon nitride film”, issued Feb. 6, 2007, may be adapted to build the apparatus described herein and to practice the methods described herein. A chamber with a lamp heating module as described in commonly assigned U.S. Patent Publication 2008/0072820, entitled “Modular CVD Epi 300 mm Reactor”, published Mar. 27, 2008, may also be adapted to build the apparatus described herein and to practice the methods described herein. AnEpi™ 300 mm reactor or a 300 mm xGen™ chamber, both available from Applied Materials, Inc., of Santa Clara, Calif., may be adapted to make and use embodiments described herein. Theprocessing chamber 302 may have ashowerhead 304 for gas entry into the chamber. Alternately, gas may be provided to the processing chamber through aside entry 320 coupled to asidewall 360 of thechamber 302. - A
feed system 328, including achemical delivery system 310 and a metalprecursor contact chamber 312, is coupled to thechamber 302 through a variety of conduits. Afirst conduit 322 and asecond conduit 324 may couple thefeed system 328 to theoptional showerhead 304. For performing the methods described herein, theshowerhead 304 may be a dual-pathway showerhead to prevent mixing of the precursors prior to entry into thechamber 302. An exemplary dual-pathway showerhead is described in commonly assigned U.S. Pat. No. 6,983,892, entitled “Gas distribution showerhead for semiconductor processing”, issued Jan. 10, 2006. - Alternately, or additionally, cross-flow gas injection may be practiced by providing first and second
cross-flow gas conduits side entry point 320. An example of a cross-flow injection configuration is described in U.S. Pat. No. 6,500,734. Theapparatus 300 may contain both a showerhead configuration and a cross-flow injection configuration, or only one or the other configuration. - The
chemical delivery system 310 delivers germanium precursors, optionally with carrier gases such as nitrogen and/or hydrogen, to thechamber 302. Thechemical delivery system 310 may also deliver deposition or selectivity control species to thechamber 302. Thechemical delivery system 310 may include liquid or gaseous sources and controls (not shown), which may be configured in a gas panel. - The
contact chamber 312 may be coupled to either theside entry point 320 or theshowerhead 304 by aconduit 314 disposed to carry a metal precursor to thechamber 302.Conduits contact chamber 312 typically contains a bed of solid metal or metal halide crystals. The metal halide crystals may be sublimed into a carrier gas provided through one or both ofgas feed conduits gas feed conduits gas feed conduit 362 while a carrier gas is provided through a secondgas feed conduit 364. The gases, either for subliming or reacting, may be flowed through a powdered metal or metal halide fluidized bed to enhance contacting. A mesh strainer or filter may be used to prevent entrainment of particles into thechamber 302. Alternately, the gases may flow across a fixed solid metal or metal halide bed. - An
exhaust system 330 is coupled to thechamber 302. Theexhaust system 330 may be coupled to the chamber at any convenient location, which may depend on the location of the gas entry into the chamber. For gas entry through theshowerhead 304, the exhaust system may be coupled to a bottom wall of the chamber, around theheat source 306, for example, by one or more portals or through an annular opening. An annular manifold may be disposed near an edge of the substrate support and coupled to theexhaust system 330 in some embodiments. For cross-flow embodiments, theexhaust system 330 may be coupled to a sidewall of the chamber opposite theside entry point 320. - An
exhaust conduit 340 couples anexhaust cap 332 to avacuum pump 352 through athrottle valve 366. Ajacket 368 encompasses theexhaust conduit 340 andthrottle valve 366 from theexhaust cap 332 to aninlet 350 of thevacuum pump 352. Thejacket 368 enables thermal control of theexhaust conduit 340 to prevent condensation of exhaust species in the line. Any heating medium, such as steam, or hot air, water, or other hot fluid, may be used to maintain the exhaust conduit at a temperature above a dew point of the exhaust gas. Alternately, the jacket may include resistive heating elements (i.e. an electric blanket). Acondensation trap 336 may be coupled to theexhaust conduit 340 by avalve 338, if desired, to further enhance trapping of any condensates in theexhaust system 330. Thevacuum pump 352 pays off to anabatement system 356 through anabatement conduit 354, which is typically not heated or jacketed, and cleaned gas exhausted at 358. To further reduce wetting or nucleation in theexhaust conduit 340, theexhaust conduit 340 may be coated with quartz or with an inert polymer material. - Plasma or ultraviolet activated cleaning agents may be coupled into the
exhaust system 330 byactive source 334, which may be coupled to a microwave or RF chamber for generating active cleaning species. A cleaninggas line 326 may provide cleaning gases from thechemical delivery system 310 to theexhaust conduit 340, proceeding through theactive source 334, if desired. Use of active species for cleaning allows cleaning to proceed at reduced temperatures. - A method for cleaning a chamber used to perform the methods described herein, such as the
chamber 302, or any chamber used to perform themethods exhaust conduit 340 heated to prevent condensation. - Alternate embodiments of forming a stressor layer may include cyclical processes of forming a substantially pure epitaxial germanium layer and then forming a metal-doped epitaxial germanium layer, the pure and doped layers formed by starting and stopping flow of the metal precursor while maintaining flow of the germanium precursor, generally according to recipes described above. In other embodiments, a layer having graded stress may be formed by establishing flow of the germanium precursor for a period of time to form an epitaxial initial layer of substantially pure germanium, starting flow of the metal precursor at an initial flow rate, and then increasing the flow rate of the metal precursor to a final flow rate according to any desired pattern, linear or non-linear. Such a graded stress layer may adhere to underlying layers more strongly while providing increased electron mobility.
- While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof.
Claims (17)
1. An apparatus for forming a stressor layer on a substrate, comprising:
a rotatable substrate support disposed in an enclosure;
a plurality of gas inlets formed in a first wall of the enclosure;
at least one gas outlet formed in a second wall of the enclosure;
a reactive precursor source coupled to a gas inlet by a first conduit;
a non-reactive precursor source coupled to a gas inlet by a second conduit; and
an exhaust system comprising a condensation trap.
2. The apparatus of claim 1 , wherein at least one gas inlet of the plurality of gas inlets is formed in the first wall of the enclosure near the rotatable substrate support.
3. The apparatus of claim 1 , wherein the exhaust system further comprises jacketed piping and valves.
4. The apparatus of claim 3 , wherein the exhaust system further comprises a vacuum pump and the jacketed piping ends at an inlet of the vacuum pump.
5. The apparatus of claim 3 , wherein the exhaust system further comprises an adhesion reducing coating.
6. The apparatus of claim 1 , wherein the reactive precursor source is coupled to a metal halide source.
7. The apparatus of claim 1 , wherein the non-reactive precursor source is a germanium hydride source.
8. The apparatus of claim 1 , further comprising a metal precursor contact chamber coupled with the first conduit, wherein the contact chamber contains a bed of solid metal or metal halide crystals.
9. The apparatus of claim 8 , further comprising a halogen gas source coupled with the metal precursor contact chamber through a first gas feed conduit.
10. The apparatus of claim 9 , further comprising a carrier gas source coupled with the metal precursor contact chamber through a second gas feed conduit.
11. An apparatus for forming a stressor layer on a substrate, comprising:
a rotatable substrate support disposed in an enclosure;
a heat source disposed in the enclosure below the rotatable substrate support;
a gas inlet formed in a sidewall of the enclosure proximate to an edge of the substrate support and having a flow direction substantially parallel to an upper surface of the rotatable substrate support;
a gas outlet formed in a sidewall opposite the gas inlet and proximate to the edge of the rotatable substrate support;
a first precursor pathway coupled to the gas inlet and to a germanium hydride source;
a second precursor pathway coupled to the gas inlet and to a metal halide source or organometallic halide source; and
an exhaust system comprising an exhaust conduit and valves coupling the gas outlet to a vacuum pump, wherein the exhaust conduit is encompassed by a jacket.
12. The apparatus of claim 11 , wherein the jacket includes resistive heating elements.
13. The apparatus of claim 11 , further comprising a condensation trap coupled to the exhaust conduit.
14. The apparatus of claim 11 , wherein the exhaust conduit is coated with quartz or an inert polymer material.
15. The apparatus of claim 11 , further comprising a metal precursor contact chamber coupled with the second precursor pathway, wherein the contact chamber contains a bed of solid metal or metal halide crystals.
16. The apparatus of claim 15 , further comprising a halogen gas source coupled with the metal precursor contact chamber through a first gas feed conduit.
17. The apparatus of claim 16 , further comprising a carrier gas source coupled with the metal precursor contact chamber through a second gas feed conduit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/299,023 US20170037536A1 (en) | 2011-03-28 | 2016-10-20 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161468443P | 2011-03-28 | 2011-03-28 | |
US13/193,506 US9476144B2 (en) | 2011-03-28 | 2011-07-28 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
US15/299,023 US20170037536A1 (en) | 2011-03-28 | 2016-10-20 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/193,506 Division US9476144B2 (en) | 2011-03-28 | 2011-07-28 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170037536A1 true US20170037536A1 (en) | 2017-02-09 |
Family
ID=46925557
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/193,506 Active 2034-02-18 US9476144B2 (en) | 2011-03-28 | 2011-07-28 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
US15/299,023 Abandoned US20170037536A1 (en) | 2011-03-28 | 2016-10-20 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/193,506 Active 2034-02-18 US9476144B2 (en) | 2011-03-28 | 2011-07-28 | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys |
Country Status (7)
Country | Link |
---|---|
US (2) | US9476144B2 (en) |
KR (1) | KR101883360B1 (en) |
CN (2) | CN107675250B (en) |
DE (1) | DE112011105102T5 (en) |
SG (2) | SG10201601916TA (en) |
TW (1) | TWI534863B (en) |
WO (1) | WO2012134512A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190009697A (en) * | 2017-07-19 | 2019-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a group iv semiconductor and related semiconductor device structures |
Families Citing this family (252)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
WO2013163192A1 (en) * | 2012-04-24 | 2013-10-31 | Applied Materials, Inc. | Gas reclamation and abatement system for high volume epitaxial silicon deposition system |
US9171715B2 (en) | 2012-09-05 | 2015-10-27 | Asm Ip Holding B.V. | Atomic layer deposition of GeO2 |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9583363B2 (en) * | 2012-12-31 | 2017-02-28 | Sunedison Semiconductor Limited (Uen201334164H) | Processes and apparatus for preparing heterostructures with reduced strain by radial distension |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9396934B2 (en) * | 2013-08-14 | 2016-07-19 | Asm Ip Holding B.V. | Methods of forming films including germanium tin and structures and devices including the films |
US9218963B2 (en) * | 2013-12-19 | 2015-12-22 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
SG11201607337TA (en) * | 2014-03-05 | 2016-10-28 | Silverstream Technologies B V | Use of an air lubrication system for reducing marine growth on a vessel |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9704708B2 (en) | 2014-07-11 | 2017-07-11 | Applied Materials, Inc. | Halogenated dopant precursors for epitaxy |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10658222B2 (en) | 2015-01-16 | 2020-05-19 | Lam Research Corporation | Moveable edge coupling ring for edge process control during semiconductor wafer processing |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
JP6371738B2 (en) * | 2015-05-28 | 2018-08-08 | 株式会社東芝 | Deposition equipment |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10957561B2 (en) * | 2015-07-30 | 2021-03-23 | Lam Research Corporation | Gas delivery system |
JP6391171B2 (en) * | 2015-09-07 | 2018-09-19 | 東芝メモリ株式会社 | Semiconductor manufacturing system and operation method thereof |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10825659B2 (en) | 2016-01-07 | 2020-11-03 | Lam Research Corporation | Substrate processing chamber including multiple gas injection points and dual injector |
US10651015B2 (en) | 2016-02-12 | 2020-05-12 | Lam Research Corporation | Variable depth edge ring for etch uniformity control |
US10699878B2 (en) | 2016-02-12 | 2020-06-30 | Lam Research Corporation | Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
TWI751158B (en) * | 2016-07-06 | 2022-01-01 | 荷蘭商Asm智慧財產控股公司 | Structures and devices including germanium-tin films and methods of forming same |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
WO2018016375A1 (en) | 2016-07-20 | 2018-01-25 | 昭和電工株式会社 | Gas supply apparatus and gas supply method |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
KR20180068582A (en) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
JP7214724B2 (en) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | Storage device for storing wafer cassettes used in batch furnaces |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (en) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | Method for depositing gap filling layer by plasma auxiliary deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (en) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
TW202409324A (en) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
JP7080140B2 (en) * | 2018-09-06 | 2022-06-03 | 東京エレクトロン株式会社 | Board processing equipment |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (en) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
WO2020082282A1 (en) * | 2018-10-25 | 2020-04-30 | China Triumph International Engineering Co., Ltd. | Vapor deposition apparatus and use thereof |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI819180B (en) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR20200091543A (en) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
KR20200102357A (en) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for plug fill deposition in 3-d nand applications |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
CN112309843A (en) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | Selective deposition method for achieving high dopant doping |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (en) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
CN110777436A (en) * | 2019-11-05 | 2020-02-11 | 中国科学院半导体研究所 | Silicon-based group IV alloy material and epitaxial method thereof |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
TW202125596A (en) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
CN113445029A (en) * | 2020-03-25 | 2021-09-28 | 拓荆科技股份有限公司 | Double-sided deposition apparatus and method |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
JP2021172884A (en) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
TW202147543A (en) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing system |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR102707957B1 (en) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
TW202219628A (en) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (en) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming metal silicon oxide and metal silicon oxynitride |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220053482A (en) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
TW202235675A (en) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Injector, and substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020002948A1 (en) * | 2000-03-24 | 2002-01-10 | Toshiaki Hongo | Plasma processing apparatus having an evacuating arrangement to evacuate gas from a gas-introducing part of a process chamber |
US6500734B2 (en) * | 1993-07-30 | 2002-12-31 | Applied Materials, Inc. | Gas inlets for wafer processing chamber |
US20050079690A1 (en) * | 2002-12-06 | 2005-04-14 | Akihiko Suka | Method for producing silicon epitaxial wafer |
US20060219161A1 (en) * | 2003-08-13 | 2006-10-05 | Satoru Wakamatsu | Tubular reaction vessel and process for producing silicon therewith |
US20080160633A1 (en) * | 2006-12-27 | 2008-07-03 | Janssen Marcel J G | Catalyst treatment apparatus and process |
US20090111246A1 (en) * | 2007-10-26 | 2009-04-30 | Asm America, Inc. | Inhibitors for selective deposition of silicon containing films |
US20090250641A1 (en) * | 2008-04-07 | 2009-10-08 | Komatsu Ltd. | Extreme ultra violet light source apparatus |
US20090304924A1 (en) * | 2006-03-03 | 2009-12-10 | Prasad Gadgil | Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films |
US20100267174A1 (en) * | 2009-04-20 | 2010-10-21 | Applied Materials, Inc. | LED Substrate Processing |
US20100279020A1 (en) * | 2009-04-29 | 2010-11-04 | Applied Materials, Inc. | METHOD OF FORMING IN-SITU PRE-GaN DEPOSITION LAYER IN HVPE |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2742383A (en) | 1952-08-09 | 1956-04-17 | Hughes Aircraft Co | Germanium junction-type semiconductor devices |
JP2845422B2 (en) | 1994-06-03 | 1999-01-13 | 住友金属鉱山株式会社 | Plasma CVD equipment |
US5548128A (en) | 1994-12-14 | 1996-08-20 | The United States Of America As Represented By The Secretary Of The Air Force | Direct-gap germanium-tin multiple-quantum-well electro-optical devices on silicon or germanium substrates |
US20040129212A1 (en) | 2002-05-20 | 2004-07-08 | Gadgil Pradad N. | Apparatus and method for delivery of reactive chemical precursors to the surface to be treated |
JP4954448B2 (en) * | 2003-04-05 | 2012-06-13 | ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. | Organometallic compounds |
US7589003B2 (en) | 2003-06-13 | 2009-09-15 | Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University, A Corporate Body Organized Under Arizona Law | GeSn alloys and ordered phases with direct tunable bandgaps grown directly on silicon |
WO2004114368A2 (en) * | 2003-06-13 | 2004-12-29 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University | METHOD FOR PREPARING GE1-x-ySnxEy (E=P, As, Sb) SEMICONDUCTORS AND RELATED Si-Ge-Sn-E AND Si-Ge-E ANALOGS |
NO20045674D0 (en) * | 2004-12-28 | 2004-12-28 | Uni I Oslo | Thin films prepared with gas phase deposition technique |
US7323391B2 (en) * | 2005-01-15 | 2008-01-29 | Applied Materials, Inc. | Substrate having silicon germanium material and stressed silicon nitride layer |
JP2008532294A (en) * | 2005-03-11 | 2008-08-14 | アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステイト ユニバーシティ | Novel GeSiSn-based compounds, templates, and semiconductor structures |
US7470972B2 (en) | 2005-03-11 | 2008-12-30 | Intel Corporation | Complementary metal oxide semiconductor integrated circuit using uniaxial compressive stress and biaxial compressive stress |
US20090087967A1 (en) * | 2005-11-14 | 2009-04-02 | Todd Michael A | Precursors and processes for low temperature selective epitaxial growth |
FR2910346B1 (en) * | 2006-12-22 | 2010-10-15 | Inst Francais Du Petrole | METHOD FOR DEHYDROGENATION IN THE PRESENCE OF A BIMETALLIC OR MULTI-METALLIC CATALYST HAVING AN OPTIMISED HYDROGEN ADSORPTION CAPABILITY AND BIMETALLICITY INDEX |
US20090136652A1 (en) | 2007-06-24 | 2009-05-28 | Applied Materials, Inc. | Showerhead design with precursor source |
CN101928990A (en) * | 2009-06-26 | 2010-12-29 | 中国科学院半导体研究所 | Epitaxial growth method of GeSn alloy |
-
2011
- 2011-07-28 SG SG10201601916TA patent/SG10201601916TA/en unknown
- 2011-07-28 KR KR1020137026920A patent/KR101883360B1/en active IP Right Grant
- 2011-07-28 CN CN201710735725.9A patent/CN107675250B/en active Active
- 2011-07-28 DE DE112011105102.6T patent/DE112011105102T5/en active Pending
- 2011-07-28 WO PCT/US2011/045795 patent/WO2012134512A1/en active Application Filing
- 2011-07-28 CN CN201180069589.5A patent/CN103443901B/en active Active
- 2011-07-28 SG SG2013070073A patent/SG193516A1/en unknown
- 2011-07-28 US US13/193,506 patent/US9476144B2/en active Active
- 2011-07-29 TW TW100127101A patent/TWI534863B/en active
-
2016
- 2016-10-20 US US15/299,023 patent/US20170037536A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6500734B2 (en) * | 1993-07-30 | 2002-12-31 | Applied Materials, Inc. | Gas inlets for wafer processing chamber |
US20020002948A1 (en) * | 2000-03-24 | 2002-01-10 | Toshiaki Hongo | Plasma processing apparatus having an evacuating arrangement to evacuate gas from a gas-introducing part of a process chamber |
US20050079690A1 (en) * | 2002-12-06 | 2005-04-14 | Akihiko Suka | Method for producing silicon epitaxial wafer |
US20060219161A1 (en) * | 2003-08-13 | 2006-10-05 | Satoru Wakamatsu | Tubular reaction vessel and process for producing silicon therewith |
US20090304924A1 (en) * | 2006-03-03 | 2009-12-10 | Prasad Gadgil | Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films |
US20080160633A1 (en) * | 2006-12-27 | 2008-07-03 | Janssen Marcel J G | Catalyst treatment apparatus and process |
US20090111246A1 (en) * | 2007-10-26 | 2009-04-30 | Asm America, Inc. | Inhibitors for selective deposition of silicon containing films |
US20090250641A1 (en) * | 2008-04-07 | 2009-10-08 | Komatsu Ltd. | Extreme ultra violet light source apparatus |
US20100267174A1 (en) * | 2009-04-20 | 2010-10-21 | Applied Materials, Inc. | LED Substrate Processing |
US20100279020A1 (en) * | 2009-04-29 | 2010-11-04 | Applied Materials, Inc. | METHOD OF FORMING IN-SITU PRE-GaN DEPOSITION LAYER IN HVPE |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190009697A (en) * | 2017-07-19 | 2019-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a group iv semiconductor and related semiconductor device structures |
KR102547932B1 (en) | 2017-07-19 | 2023-06-26 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a group iv semiconductor and related semiconductor device structures |
Also Published As
Publication number | Publication date |
---|---|
TWI534863B (en) | 2016-05-21 |
US9476144B2 (en) | 2016-10-25 |
CN107675250B (en) | 2020-08-07 |
US20120247386A1 (en) | 2012-10-04 |
CN103443901A (en) | 2013-12-11 |
SG193516A1 (en) | 2013-10-30 |
CN107675250A (en) | 2018-02-09 |
TW201239952A (en) | 2012-10-01 |
KR101883360B1 (en) | 2018-07-30 |
SG10201601916TA (en) | 2016-04-28 |
KR20140031210A (en) | 2014-03-12 |
DE112011105102T5 (en) | 2014-01-02 |
CN103443901B (en) | 2017-09-15 |
WO2012134512A1 (en) | 2012-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170037536A1 (en) | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys | |
TWI598458B (en) | Method and apparatus for germanium tin alloy formation by thermal cvd | |
US20130183814A1 (en) | Method of depositing a silicon germanium tin layer on a substrate | |
US20210102290A1 (en) | Gas injection system and reactor system including same | |
TWI595537B (en) | Method of semiconductor film stabilization | |
US7674337B2 (en) | Gas manifolds for use during epitaxial film formation | |
US9082684B2 (en) | Method of epitaxial doped germanium tin alloy formation | |
KR100214910B1 (en) | Utilization of sih4 soak and purge in deposition processes | |
KR101703017B1 (en) | - methods for depositing group - layers on substrates | |
KR20100103552A (en) | Separate injection of reactive species in selective formation of films | |
US9029264B2 (en) | Methods for depositing a tin-containing layer on a substrate | |
US20240332016A1 (en) | Methods for silicon germanium uniformity control using multiple precursors | |
JP6814561B2 (en) | Gas piping system, chemical vapor deposition equipment, film formation method and method for manufacturing SiC epitaxial wafer | |
US20170194138A1 (en) | Low temperature selective deposition employing a germanium-containing gas assisted etch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANCHEZ, ERROL ANTONIO C.;CARLSON, DAVID K.;REEL/FRAME:041154/0277 Effective date: 20110913 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |