US20170029925A1 - Ultra high strength copper-nickel-tin alloys - Google Patents

Ultra high strength copper-nickel-tin alloys Download PDF

Info

Publication number
US20170029925A1
US20170029925A1 US15/290,747 US201615290747A US2017029925A1 US 20170029925 A1 US20170029925 A1 US 20170029925A1 US 201615290747 A US201615290747 A US 201615290747A US 2017029925 A1 US2017029925 A1 US 2017029925A1
Authority
US
United States
Prior art keywords
alloy
ksi
nickel
copper
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/290,747
Inventor
John F. Wetzel
Ted Skoraszewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Materion Corp
Original Assignee
Materion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materion Corp filed Critical Materion Corp
Priority to US15/290,747 priority Critical patent/US20170029925A1/en
Assigned to Materion Corporation reassignment Materion Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SKORASZEWSKI, TED, WETZEL, JOHN F.
Publication of US20170029925A1 publication Critical patent/US20170029925A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Materion Corporation
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Definitions

  • the present disclosure relates to ultra high strength wrought copper-nickel-tin alloys and processes for enhancing the yield strength characteristics of the copper-nickel-tin alloy.
  • the copper-nickel-tin alloys undergo a processing method that results in substantially higher strength levels from known alloys and processes, and will be described with particular reference thereto.
  • Copper-beryllium alloys are used in in voice coil motor (VCM) technology.
  • VCM technology refers to various mechanical and electrical designs that are used to provide high-resolution, auto-focus, optical zooming camera capability in mobile devices. This technology requires alloys that can fit within confined spaces that also have reduced size, weight and power consumption features to increase portability and functionality of the mobile device. Copper-beryllium alloys are utilized in these applications due to their high strength, resilience and fatigue strength.
  • Some copper-nickel-tin alloys have been identified as having desirable properties similar to those of copper-beryllium alloys, and can be manufactured at a reduced cost.
  • a copper-nickel-tin alloy offered as Brushform® 158 (BF 158) by Materion Corporation is sold in various forms and is a high-performance, heat treated alloy that allows a designer to form the alloy into electronic connectors, switches, sensors, springs and the like.
  • These alloys are generally sold as a wrought alloy product in which a designer manipulates the alloy into a final shape through working rather than by casting.
  • these copper-nickel-tin alloys have formability limitations compared to copper-beryllium alloys.
  • the present disclosure relates to an ultra high strength copper-nickel-tin alloy and a method to improve the 0.2% offset yield strength (hereinafter abbreviated “yield strength”) of the copper-nickel-tin alloy such that the resulting yield strength is at least 175 ksi.
  • yield strength 0.2% offset yield strength
  • the alloy is first mechanically cold worked to undergo a plastic deformation %CW (i.e. percentage cold working) of about 50% to about 75%.
  • %CW i.e. percentage cold working
  • the alloy then undergoes a thermal stress relief step by heating to an elevated temperature between about 740° F. and about 850° F. for a period of between about 3 minutes and about 14 minutes to produce the desired formability characteristics.
  • FIG. 1 is a flow chart illustrating an exemplary method of the present disclosure.
  • FIG. 2 is a graph showing the 0.2% offset yield strength versus line speed at different temperatures.
  • the terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named ingredients/steps and permit the presence of other ingredients/steps.
  • such description should be construed as also describing compositions or processes as “consisting of” and “consisting essentially of” the enumerated ingredients/steps, which allows the presence of only the named ingredients/steps, along with any unavoidable impurities that might result therefrom, and excludes other ingredients/steps.
  • a value modified by a term or terms, such as “about” and “substantially,” may not be limited to the precise value specified.
  • the approximating language may correspond to the precision of an instrument for measuring the value.
  • the modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression from about 2 to about 4′′ also discloses the range “from 2 to 4.”
  • spinodal alloy refers to an alloy whose chemical composition is such that it is capable of undergoing spinodal decomposition.
  • spinodal alloy refers to alloy chemistry, not physical state. Therefore, a “spinodal alloy” may or may not have undergone spinodal decomposition and may or not be in the process of undergoing spinodal decomposition.
  • Spinodal aging/decomposition is a mechanism by which multiple components can separate into distinct regions or microstructures with different chemical compositions and physical properties.
  • crystals with bulk composition in the central region of a phase diagram undergo exsolution.
  • Spinodal decomposition at the surfaces of the alloys of the present disclosure results in surface hardening.
  • Spinodal alloy structures are made of homogeneous two phase mixtures that are produced when the original phases are separated under certain temperatures and compositions referred to as a miscibility gap that is reached at an elevated temperature.
  • the alloy phases spontaneously decompose into other phases in which a crystal structure remains the same but the atoms within the structure are modified but remain similar in size.
  • Spinodal hardening increases the yield strength of the base metal and includes a high degree of uniformity of composition and microstructure.
  • the copper-nickel-tin alloy utilized herein generally includes from about 9.0 wt % to about 15.5 wt % nickel, and from about 6.0 wt % to about 9.0 wt % tin, with the remaining balance being copper.
  • This alloy can be hardened and more easily formed into high yield strength products that can be used in various industrial and commercial applications.
  • This high performance alloy is designed to provide properties similar to copper-beryllium alloys.
  • the copper-nickel-tin alloys of the present disclosure include from about 9 wt % to about 15 wt % nickel and from about 6 wt % to about 9 wt % tin, with the remaining balance being copper.
  • the copper-nickel-tin alloys include from about 14.5 wt % to about 15.5% nickel, and from about 7.5 wt % to about 8.5 wt % tin, with the remaining balance being copper.
  • These alloys can have a combination of various properties that separate the alloys into different ranges.
  • the present disclosure is directed towards alloys that are designated TM12.
  • TM12 refers to copper-nickel-tin alloys that generally have a 0.2% offset yield strength of at least 175 ksi, an ultimate tensile strength of at least 180 ksi, and a minimum %elongation at break of 1%.
  • the yield strength of the alloy must be a minimum of 175 ksi.
  • FIG. 1 is a flowchart that outlines the steps of the metal working processes of the present disclosure for obtaining a TM12 alloy.
  • the metal working process begins by first cold working the alloy 100 .
  • the alloy then undergoes a heat treatment 200 .
  • old working is the process of mechanically altering the shape or size of the metal by plastic deformation. This can be done by rolling, drawing, pressing, spinning, extruding or heading of the metal or alloy.
  • dislocations of atoms occur within the material. Particularly, the dislocations occur across or within the grains of the metal. The dislocations over-lap each other and the dislocation density within the material increases. The increase in over-lapping dislocations makes the movement of further dislocations more difficult. This increases the hardness and tensile strength of the resulting alloy while generally reducing the ductility and impact characteristics of the alloy. Cold working also improves the surface finish of the alloy.
  • % CW The percentage of cold working (% CW), or the degree of deformation, can be determined by measuring the change in the cross-sectional area of the alloy before and after cold working, according to the following formula:
  • a 0 is the initial or original cross-sectional area before cold working
  • a f is the final cross-sectional area after cold working. It is noted that the change in cross-sectional area is usually due solely to changes in the thickness of the alloy, so the % CW can also be calculated using the initial and final thickness as well.
  • the initial cold working step 100 is performed on the alloy such that the resultant alloy has a plastic deformation in a range of 50%-75% cold working. More particularly, the cold working % achieved by the first step can be about 65%.
  • the alloy then undergoes a heat treatment step 200 .
  • Heat treating metal or alloys is a controlled process of heating and cooling metals to alter their physical and mechanical properties without changing the product shape. Heat treatment is associated with increasing the strength of the material but it can also be used to alter certain manufacturability objectives such as to improve machining, improve formability, or to restore ductility after a cold working operation.
  • the heat treating step 200 is performed on the alloy after the cold working step 100 .
  • the alloy is placed in a traditional furnace or other similar assembly and then exposed to an elevated temperature in the range of about 740° F. to about 850° F. for a time period of from about 3 minutes to about 14 minutes.
  • these temperatures refer to the temperature of the atmosphere to which the alloy is exposed, or to which the furnace is set; the alloy itself does not necessarily reach these temperatures.
  • This heat treatment can be performed, for example, by placing the alloy in strip form on a conveyor furnace apparatus and running the alloy strip at a rate of about 5 ft/min through the conveyor furnace. In more specific embodiments, the temperature is from about 740° F. to about 800° F.
  • This process can achieve a yield strength level for the ultra high strength copper-nickel-tin alloy that is at least 175 ksi.
  • This process has consistently been identified to produce alloy having a yield strength in the range of about 175 ksi to 190 ksi. More particularly, this process can process alloy with a resulting yield strength (0.2% offset) of about 178 ksi to 185 ksi.
  • TM12 alloy A balance is reached between cold working and heat treating. There is an ideal balance between an amount of strength that is gained from cold working wherein too much cold working can adversely affect the formability characteristics of this alloy. Similarly, if too much strength gain is derived from heat treatment, formability characteristics can be adversely affected.
  • the resulting characteristics of the TM12 alloy include a yield strength that is at least 175 ksi. This strength characteristic exceeds the strength features of other known similar copper-nickel-tin alloys.
  • Copper-nickel-tin alloys containing 15 wt % nickel, 8 wt % tin, and balance copper were formed into strips.
  • the strips were then cold worked using a rolling assembly.
  • the strips were cold worked and measured at %CW of 65%.
  • the strips underwent a heat treatment step using a conveyor furnace apparatus.
  • the conveyor furnace was set at temperatures of 740° F., 760° F., 780° F., 800° F., 825° F., or 850° F.
  • the strips were run through the conveyor furnace at a line speed of 5, 10, 15, or 20 ft/min. Two strips were used for each combination of temperature and speed.
  • T ultimate tensile strength
  • Y 0.2% offset yield strength
  • E % elongation at break
  • M Young's modulus
  • FIG. 2 is a graph showing the 0.2% offset yield strength versus line speed at the different temperatures. The minimum yield strength of at least 175 ksi is achieved over a wide temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Contacts (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

The present disclosure relates to ultra high strength wrought copper-nickel-tin alloys and processes for improving the yield strength of the copper-nickel-tin alloy such that the resulting 0.2% offset yield strength is at least 175 ksi. The alloy includes about 14.5 wt % to about 15.5% nickel, about 7.5 wt % to about 8.5% tin, and the remaining balance is copper. The steps include cold working the copper-nickel-tin alloy wherein the alloy undergoes between 50%-75% plastic deformation. The alloy is heat treated at elevated temperatures between about 740° F. and about 850° F. for a time period of about 3 minutes to 14 minutes.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 14/204,681, filed Mar. 11, 2014, now U.S. Pat. No. ______, which claimed priority to U.S. Provisional Patent Application Ser. No. 61/781,942, filed on Mar. 14, 2013, the contents of all of which are fully incorporated by reference herein.
  • BACKGROUND
  • The present disclosure relates to ultra high strength wrought copper-nickel-tin alloys and processes for enhancing the yield strength characteristics of the copper-nickel-tin alloy. In particular, the copper-nickel-tin alloys undergo a processing method that results in substantially higher strength levels from known alloys and processes, and will be described with particular reference thereto.
  • Copper-beryllium alloys are used in in voice coil motor (VCM) technology. VCM technology refers to various mechanical and electrical designs that are used to provide high-resolution, auto-focus, optical zooming camera capability in mobile devices. This technology requires alloys that can fit within confined spaces that also have reduced size, weight and power consumption features to increase portability and functionality of the mobile device. Copper-beryllium alloys are utilized in these applications due to their high strength, resilience and fatigue strength.
  • Some copper-nickel-tin alloys have been identified as having desirable properties similar to those of copper-beryllium alloys, and can be manufactured at a reduced cost. For example, a copper-nickel-tin alloy offered as Brushform® 158 (BF 158) by Materion Corporation, is sold in various forms and is a high-performance, heat treated alloy that allows a designer to form the alloy into electronic connectors, switches, sensors, springs and the like. These alloys are generally sold as a wrought alloy product in which a designer manipulates the alloy into a final shape through working rather than by casting. However, these copper-nickel-tin alloys have formability limitations compared to copper-beryllium alloys.
  • Therefore, it would be desirable to develop new ultra high strength copper-nickel-tin alloys and processes for that would improve the yield strength characteristics of such alloys.
  • BRIEF DESCRIPTION
  • The present disclosure relates to an ultra high strength copper-nickel-tin alloy and a method to improve the 0.2% offset yield strength (hereinafter abbreviated “yield strength”) of the copper-nickel-tin alloy such that the resulting yield strength is at least 175 ksi. Generally, the alloy is first mechanically cold worked to undergo a plastic deformation %CW (i.e. percentage cold working) of about 50% to about 75%. The alloy then undergoes a thermal stress relief step by heating to an elevated temperature between about 740° F. and about 850° F. for a period of between about 3 minutes and about 14 minutes to produce the desired formability characteristics.
  • These and other non-limiting characteristics of the disclosure are more particularly disclosed below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following is a brief description of the drawings, which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.
  • FIG. 1 is a flow chart illustrating an exemplary method of the present disclosure.
  • FIG. 2 is a graph showing the 0.2% offset yield strength versus line speed at different temperatures.
  • DETAILED DESCRIPTION
  • A more complete understanding of the components, processes and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
  • Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
  • The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
  • As used in the specification and in the claims, the terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named ingredients/steps and permit the presence of other ingredients/steps. However, such description should be construed as also describing compositions or processes as “consisting of” and “consisting essentially of” the enumerated ingredients/steps, which allows the presence of only the named ingredients/steps, along with any unavoidable impurities that might result therefrom, and excludes other ingredients/steps.
  • Numerical values in the specification and claims of this application should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value.
  • All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of “from 2 grams to 10 grams” is inclusive of the endpoints, 2 grams and 10 grams, and all the intermediate values).
  • A value modified by a term or terms, such as “about” and “substantially,” may not be limited to the precise value specified. The approximating language may correspond to the precision of an instrument for measuring the value. The modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression from about 2 to about 4″ also discloses the range “from 2 to 4.”
  • Percentages of elements should be assumed to be percent by weight of the stated alloy, unless expressly stated otherwise.
  • As used herein, the term “spinodal alloy” refers to an alloy whose chemical composition is such that it is capable of undergoing spinodal decomposition. The term “spinodal alloy” refers to alloy chemistry, not physical state. Therefore, a “spinodal alloy” may or may not have undergone spinodal decomposition and may or not be in the process of undergoing spinodal decomposition.
  • Spinodal aging/decomposition is a mechanism by which multiple components can separate into distinct regions or microstructures with different chemical compositions and physical properties. In particular, crystals with bulk composition in the central region of a phase diagram undergo exsolution. Spinodal decomposition at the surfaces of the alloys of the present disclosure results in surface hardening.
  • Spinodal alloy structures are made of homogeneous two phase mixtures that are produced when the original phases are separated under certain temperatures and compositions referred to as a miscibility gap that is reached at an elevated temperature. The alloy phases spontaneously decompose into other phases in which a crystal structure remains the same but the atoms within the structure are modified but remain similar in size. Spinodal hardening increases the yield strength of the base metal and includes a high degree of uniformity of composition and microstructure.
  • The copper-nickel-tin alloy utilized herein generally includes from about 9.0 wt % to about 15.5 wt % nickel, and from about 6.0 wt % to about 9.0 wt % tin, with the remaining balance being copper. This alloy can be hardened and more easily formed into high yield strength products that can be used in various industrial and commercial applications. This high performance alloy is designed to provide properties similar to copper-beryllium alloys.
  • More particularly, the copper-nickel-tin alloys of the present disclosure include from about 9 wt % to about 15 wt % nickel and from about 6 wt % to about 9 wt % tin, with the remaining balance being copper. In more specific embodiments, the copper-nickel-tin alloys include from about 14.5 wt % to about 15.5% nickel, and from about 7.5 wt % to about 8.5 wt % tin, with the remaining balance being copper. These alloys can have a combination of various properties that separate the alloys into different ranges. The present disclosure is directed towards alloys that are designated TM12. More specifically, “TM12” refers to copper-nickel-tin alloys that generally have a 0.2% offset yield strength of at least 175 ksi, an ultimate tensile strength of at least 180 ksi, and a minimum %elongation at break of 1%. To be considered a TM12 alloy, the yield strength of the alloy must be a minimum of 175 ksi.
  • FIG. 1 is a flowchart that outlines the steps of the metal working processes of the present disclosure for obtaining a TM12 alloy. The metal working process begins by first cold working the alloy 100. The alloy then undergoes a heat treatment 200. C
  • old working is the process of mechanically altering the shape or size of the metal by plastic deformation. This can be done by rolling, drawing, pressing, spinning, extruding or heading of the metal or alloy. When a metal is plastically deformed, dislocations of atoms occur within the material. Particularly, the dislocations occur across or within the grains of the metal. The dislocations over-lap each other and the dislocation density within the material increases. The increase in over-lapping dislocations makes the movement of further dislocations more difficult. This increases the hardness and tensile strength of the resulting alloy while generally reducing the ductility and impact characteristics of the alloy. Cold working also improves the surface finish of the alloy. Mechanical cold working is generally performed at a temperature below the recrystallization point of the alloy, and is usually done at room temperature. The percentage of cold working (% CW), or the degree of deformation, can be determined by measuring the change in the cross-sectional area of the alloy before and after cold working, according to the following formula:

  • % CW=100*[A 0 −A f ]/A 0
  • where A0 is the initial or original cross-sectional area before cold working, and Af is the final cross-sectional area after cold working. It is noted that the change in cross-sectional area is usually due solely to changes in the thickness of the alloy, so the % CW can also be calculated using the initial and final thickness as well.
  • The initial cold working step 100 is performed on the alloy such that the resultant alloy has a plastic deformation in a range of 50%-75% cold working. More particularly, the cold working % achieved by the first step can be about 65%.
  • The alloy then undergoes a heat treatment step 200. Heat treating metal or alloys is a controlled process of heating and cooling metals to alter their physical and mechanical properties without changing the product shape. Heat treatment is associated with increasing the strength of the material but it can also be used to alter certain manufacturability objectives such as to improve machining, improve formability, or to restore ductility after a cold working operation. The heat treating step 200 is performed on the alloy after the cold working step 100. The alloy is placed in a traditional furnace or other similar assembly and then exposed to an elevated temperature in the range of about 740° F. to about 850° F. for a time period of from about 3 minutes to about 14 minutes. It is noted that these temperatures refer to the temperature of the atmosphere to which the alloy is exposed, or to which the furnace is set; the alloy itself does not necessarily reach these temperatures. This heat treatment can be performed, for example, by placing the alloy in strip form on a conveyor furnace apparatus and running the alloy strip at a rate of about 5 ft/min through the conveyor furnace. In more specific embodiments, the temperature is from about 740° F. to about 800° F.
  • This process can achieve a yield strength level for the ultra high strength copper-nickel-tin alloy that is at least 175 ksi. This process has consistently been identified to produce alloy having a yield strength in the range of about 175 ksi to 190 ksi. More particularly, this process can process alloy with a resulting yield strength (0.2% offset) of about 178 ksi to 185 ksi.
  • A balance is reached between cold working and heat treating. There is an ideal balance between an amount of strength that is gained from cold working wherein too much cold working can adversely affect the formability characteristics of this alloy. Similarly, if too much strength gain is derived from heat treatment, formability characteristics can be adversely affected. The resulting characteristics of the TM12 alloy include a yield strength that is at least 175 ksi. This strength characteristic exceeds the strength features of other known similar copper-nickel-tin alloys.
  • The following examples are provided to illustrate the alloys, articles, and processes of the present disclosure. The examples are merely illustrative and are not intended to limit the disclosure to the materials, conditions, or process parameters set forth therein.
  • EXAMPLES
  • Copper-nickel-tin alloys containing 15 wt % nickel, 8 wt % tin, and balance copper were formed into strips. The strips were then cold worked using a rolling assembly. The strips were cold worked and measured at %CW of 65%. Next, the strips underwent a heat treatment step using a conveyor furnace apparatus. The conveyor furnace was set at temperatures of 740° F., 760° F., 780° F., 800° F., 825° F., or 850° F. The strips were run through the conveyor furnace at a line speed of 5, 10, 15, or 20 ft/min. Two strips were used for each combination of temperature and speed.
  • Various properties were then measured. Those properties included the ultimate tensile strength (T) in ksi; the 0.2% offset yield strength (Y) in ksi; the % elongation at break (E); and the Young's modulus (M) in millions of pounds per square inch (10̂6 psi). Table 1 and Table 2 provide the measured results. The average values for T and Y are also provided.
  • TABLE 1
    Temp FPM T Y Avg T Avg Y E M
    740 5 187.1 180.6 1.77 16.88
    740 5 183.3 180.0 185.2 180.3 1.43 16.89
    740 10 179.2 173.5 1.73 16.93
    740 10 180.7 175.4 180.0 174.5 1.64 16.89
    740 15 175.0 171.2 1.54 16.95
    740 15 173.8 168.9 174.4 170.0 1.60 17.00
    740 20 168.2 161.6 1.61 16.64
    740 20 171.0 165.9 169.6 163.7 2.05 16.98
    760 5 190.4 182.0 1.83 16.72
    760 5 187.8 181.6 189.1 181.8 1.62 16.78
    760 10 183.4 176.8 1.60 16.90
    760 10 183.1 174.4 183.3 175.6 2.00 16.80
    760 15 178.3 170.2 1.97 16.89
    760 15 181.1 173.5 179.7 171.8 1.90 16.76
    760 20 174.9 168.2 1.61 16.86
    760 20 173.5 165.3 174.2 166.8 2.03 16.64
    780 5 188.9 180.0 1.80 16.55
    780 5 189.8 181.8 189.4 180.6 1.68 16.78
    780 10 186.4 177.7 1.84 16.88
    780 10 185.7 178.0 186.1 177.8 1.67 16.82
    780 15 181.8 173.7 1.91 16.86
    780 15 181.1 172.8 181.5 173.2 1.99 16.89
    780 20 176.3 167.6 1.80 16.76
    780 20 179.1 171.2 177.7 169.4 1.83 16.81
  • TABLE 2
    Temp FPM T Y Avg T Avg Y E M
    800 5 189.1 178.2 1.83 16.53
    800 5 185.1 176.8 187.1 177.5 1.59 16.31
    800 10 187.7 178.6 1.66 16.77
    800 10 186.5 181.2 187.1 179.9 1.49 17.27
    800 15 184.0 175.1 1.76 16.84
    800 15 174.6 173.6 179.3 179.4 1.25 17.09
    800 20 180.9 171.8 1.74 16.67
    800 20 179.9 172.2 180.4 172 1.66 17.03
    825 5 172.0 157.6 1.79 15.51
    825 5 170.8 156.1 171.4 156.8 1.70 15.86
    825 10 183.1 171.5 1.83 16.59
    825 10 185.9 172.1 184.5 171.8 2.08 16.37
    825 15 186.3 173.7 2.02 16.63
    825 15 184.5 171.3 185.4 172.5 1.99 16.18
    825 20 177.9 172.5 1.45 16.51
    825 20 186.6 174.4 182.2 173.5 1.92 16.73
    850 5 157.6 137.5 2.58 15.87
    850 5 151.8 130.2 154.7 133.8 2.47 15.66
    850 10 175.1 163.7 1.73 16.33
    850 10 176.8 163.2 176.0 163.4 2.00 16.08
    850 15 178.6 165.9 1.91 16.25
    850 15 173.1 167.6 175.9 166.8 1.40 16.31
    850 20 178.9 169.8 1.60 16.53
    850 20 178.9 170.4 178.9 170.1 1.56 16.62
  • Summarizing, it was found that alloys having a minimum 0.2% offset yield strength of at least 175 ksi, an ultimate tensile strength of at least 180 ksi, a %elongation at break of at least 1%, and a Young's modulus of at least 16 million psi could be obtained. FIG. 2 is a graph showing the 0.2% offset yield strength versus line speed at the different temperatures. The minimum yield strength of at least 175 ksi is achieved over a wide temperature range.
  • It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims (20)

1. An ultra-high strength wrought alloy comprising copper, nickel, and tin, and having a 0.2% offset yield strength of at least 175 ksi, wherein the alloy is produced by:
performing a first mechanical cold working step on the alloy to a percentage of cold working (%CW) of about 50% to about 75%; and
heat treating the alloy.
2. The alloy of claim 1, wherein the heat treating step is performed at a temperature of about 740° F. to about 850° F. for a period of about 3 minutes to 14 minutes.
3. The alloy of claim 2, wherein the heat treating step is performed at a temperature of about 740° F. to about 800° F.
4. The alloy of claim 1, wherein the heat treating step is performed by running the alloy in strip form through a furnace at a rate of about 5 ft/min to about 20 ft/mm.
5. The alloy of claim 1, wherein the alloy has a 0.2% offset yield strength of 175 to 190 ksi.
6. The alloy of claim 1, wherein the alloy has an ultimate tensile strength of at least 180 ksi.
7. The alloy of claim 1, wherein the alloy has a % elongation at break of at least 1%.
8. The alloy of claim 1, wherein the alloy has a Young's modulus of at least 16 million psi.
9. The alloy of claim 1, wherein the alloy has a 0.2% offset yield strength of at least 175 ksi and an ultimate tensile strength of at least 180 ksi.
10. The alloy of claim 1, wherein the alloy includes from about 14.5 wt % to about 15.5 wt % nickel, and from about 7.5 wt % to about 8.5% tin; and with the remaining balance being copper.
11. The alloy of claim 1, wherein the heat treating step is performed at a temperature of about 740° F. to about 850° F. while running the alloy in strip form through a conveyor furnace apparatus at a rate of about 5 ft/min to about 20 ft/min.
12. The alloy of claim 1, having a 0.2% offset yield strength of at least 175 ksi; an ultimate tensile strength of at least 180 ksi; a % elongation at break of at least 1%; and a Young's modulus of at least 16 million psi.
13. An ultra-high strength wrought alloy comprising copper, nickel, and tin, and having a 0.2% offset yield strength of at least 175 ksi.
14. The alloy of claim 13, wherein the alloy comprises:
about 9.0 wt % to about 15.5 wt % nickel;
about 6.0 wt % to about 9.0% tin; and
copper.
15. The alloy of claim 13, wherein the alloy has a 0.2% offset yield strength of at least 175 ksi and an ultimate tensile strength of at least 180 ksi.
16. The alloy of claim 13, wherein the alloy has a 0.2% offset yield strength of at least 175 ksi; an ultimate tensile strength of at least 180 ksi; a % elongation at break of at least 1%; and a Young's modulus of at least 16 million psi.
17. The alloy of claim 13, wherein the alloy is made by:
performing a first mechanical cold working step on the alloy to a percentage of cold working (%CW) of about 50% to about 75%; and
heat treating the alloy.
18. The alloy of claim 17, wherein the heat treating step is performed at a temperature of about 740° F. to about 850° F. for a period of about 3 minutes to 14 minutes.
19. The alloy of claim 17, wherein the heat treating step is performed by running the alloy in strip form through a furnace at a rate of about 5 ft/min to about 20 ft/mm.
20. The alloy of claim 17, wherein the heat treating step is performed at a temperature of about 740° F. to about 850° F. while running the alloy in strip form through a furnace at a rate of about 5 ft/min to about 20 ft/min.
US15/290,747 2013-03-14 2016-10-11 Ultra high strength copper-nickel-tin alloys Abandoned US20170029925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/290,747 US20170029925A1 (en) 2013-03-14 2016-10-11 Ultra high strength copper-nickel-tin alloys

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361781942P 2013-03-14 2013-03-14
US14/204,681 US9487850B2 (en) 2013-03-14 2014-03-11 Ultra high strength copper-nickel-tin alloys
US15/290,747 US20170029925A1 (en) 2013-03-14 2016-10-11 Ultra high strength copper-nickel-tin alloys

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/204,681 Division US9487850B2 (en) 2013-03-14 2014-03-11 Ultra high strength copper-nickel-tin alloys

Publications (1)

Publication Number Publication Date
US20170029925A1 true US20170029925A1 (en) 2017-02-02

Family

ID=51522098

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/204,681 Active 2034-09-03 US9487850B2 (en) 2013-03-14 2014-03-11 Ultra high strength copper-nickel-tin alloys
US15/290,747 Abandoned US20170029925A1 (en) 2013-03-14 2016-10-11 Ultra high strength copper-nickel-tin alloys

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/204,681 Active 2034-09-03 US9487850B2 (en) 2013-03-14 2014-03-11 Ultra high strength copper-nickel-tin alloys

Country Status (7)

Country Link
US (2) US9487850B2 (en)
EP (1) EP2971199B1 (en)
JP (1) JP6340408B2 (en)
KR (2) KR102333721B1 (en)
CN (2) CN105229180B (en)
RU (2) RU2650387C2 (en)
WO (1) WO2014150532A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102306527B1 (en) 2013-06-04 2021-09-30 엔지케이 인슐레이터 엘티디 Copper-alloy production method, and copper alloy
JP5925936B1 (en) 2015-04-22 2016-05-25 日本碍子株式会社 Copper alloy
WO2016203659A1 (en) 2015-06-15 2016-12-22 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
EP3273304B1 (en) * 2016-07-19 2021-11-10 Nivarox-FAR S.A. Part for clock movement
EP3273307A1 (en) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Part for clock movement
EP3273303A1 (en) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Part for clock movement
EP3273306A1 (en) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Part for clock movement
CN110366600A (en) * 2017-01-06 2019-10-22 美题隆公司 Adonic piston compression ring
CN110462091B (en) 2017-02-04 2022-06-14 美题隆公司 Method for producing copper-nickel-tin alloy
JP2019065362A (en) 2017-10-03 2019-04-25 Jx金属株式会社 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, EXTENDED COPPER ARTICLE, ELECTRONIC DEVICE COMPONENT, AND AUTO FOCUS CAMERA MODULE
JP2019065361A (en) 2017-10-03 2019-04-25 Jx金属株式会社 Cu-Ni-Sn-BASED COPPER ALLOY FOIL, EXTENDED COPPER ARTICLE, ELECTRONIC DEVICE COMPONENT, AND AUTO FOCUS CAMERA MODULE
CN115896539B (en) * 2022-12-28 2024-04-26 北冶功能材料(江苏)有限公司 Ultrahigh-strength fracture-resistant copper-nickel-tin alloy foil and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198499A (en) 1961-08-11 1965-08-03 Kaiser Aluminium Chem Corp Method and apparatus for supporting and heat treating
US4142918A (en) * 1978-01-23 1979-03-06 Bell Telephone Laboratories, Incorporated Method for making fine-grained Cu-Ni-Sn alloys
US4260432A (en) 1979-01-10 1981-04-07 Bell Telephone Laboratories, Incorporated Method for producing copper based spinodal alloys
CN87100204B (en) * 1987-01-05 1988-11-23 上海冶金专科学校 Deformable copper alloy for elastic parts
US5089057A (en) 1989-09-15 1992-02-18 At&T Bell Laboratories Method for treating copper-based alloys and articles produced therefrom
JP2001032029A (en) * 1999-05-20 2001-02-06 Kobe Steel Ltd Copper alloy excellent in stress relaxation resistance, and its manufacture
RU2348720C2 (en) * 2004-04-05 2009-03-10 Свиссметал-Юмс Юзин Металлюржик Сюисс Са Machinable alloy on basis of copper and method of its manufacturing
JP2007531824A (en) * 2004-04-05 2007-11-08 スイスメタル−ユエムエス・ユジン・メタルリュルジク・スイス・エスア Cutting lead-containing Cu-Ni-Sn alloy and method for producing the same
CN1327017C (en) * 2004-07-22 2007-07-18 同济大学 Novel elastic conductive alloy and its preparing method
DE102005063325B4 (en) * 2005-05-13 2008-01-10 Federal-Mogul Wiesbaden Gmbh & Co. Kg Slide bearing composite, use and manufacturing process
RU2398904C2 (en) * 2005-09-22 2010-09-10 Мицубиси Синдох Ко, Лтд Easy-to-cut copper alloy with exceedingly low contents of lead
CN101845569A (en) * 2010-06-23 2010-09-29 广州市安达汽车零件有限公司 Copper base alloy material for sliding bearing
CN102146533B (en) * 2011-03-25 2012-11-14 富威科技(吴江)有限公司 Formula of copper nickel tin alloy strip and production process
CN102286714A (en) * 2011-08-15 2011-12-21 江西理工大学 Preparation method of copper-nickel-tin alloy

Also Published As

Publication number Publication date
EP2971199B1 (en) 2020-09-02
RU2764883C2 (en) 2022-01-24
CN105229180A (en) 2016-01-06
JP2016516897A (en) 2016-06-09
RU2018109084A (en) 2019-02-26
KR102229606B1 (en) 2021-03-19
US9487850B2 (en) 2016-11-08
US20140261925A1 (en) 2014-09-18
CN105229180B (en) 2019-09-17
KR20150125725A (en) 2015-11-09
CN110423968A (en) 2019-11-08
JP6340408B2 (en) 2018-06-06
RU2018109084A3 (en) 2021-07-27
RU2650387C2 (en) 2018-04-11
EP2971199A4 (en) 2017-05-03
RU2015143929A (en) 2017-04-20
EP2971199A1 (en) 2016-01-20
WO2014150532A1 (en) 2014-09-25
KR102333721B1 (en) 2021-12-01
KR20210031005A (en) 2021-03-18
CN110423968B (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US9487850B2 (en) Ultra high strength copper-nickel-tin alloys
JP2019094569A (en) Process for improving formability of wrought copper-nickel-tin alloys
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
CN110462091B (en) Method for producing copper-nickel-tin alloy
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
TWI748442B (en) Copper-beryllium alloy with high strength
JP2017179446A (en) Al-Mg-Si-BASED ALLOY SHEET

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATERION CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WETZEL, JOHN F.;SKORASZEWSKI, TED;REEL/FRAME:039988/0576

Effective date: 20150528

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCT Information on status: administrative procedure adjustment

Free format text: PROSECUTION SUSPENDED

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:MATERION CORPORATION;REEL/FRAME:050493/0809

Effective date: 20190924

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:MATERION CORPORATION;REEL/FRAME:050493/0809

Effective date: 20190924

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION