US20170020210A1 - Protective apparel and support apparatus and method of use - Google Patents
Protective apparel and support apparatus and method of use Download PDFInfo
- Publication number
- US20170020210A1 US20170020210A1 US15/284,943 US201615284943A US2017020210A1 US 20170020210 A1 US20170020210 A1 US 20170020210A1 US 201615284943 A US201615284943 A US 201615284943A US 2017020210 A1 US2017020210 A1 US 2017020210A1
- Authority
- US
- United States
- Prior art keywords
- yoke
- chest
- wearer
- protective apparel
- support apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
- A41D13/12—Surgeons' or patients' gowns or dresses
- A41D13/1209—Surgeons' gowns or dresses
- A41D13/1218—Surgeons' gowns or dresses with head or face protection
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
- A41D13/12—Surgeons' or patients' gowns or dresses
- A41D13/1209—Surgeons' gowns or dresses
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B18/00—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
- A62B18/04—Gas helmets
- A62B18/045—Gas helmets with fans for delivering air for breathing mounted in or on the helmet
Definitions
- the present disclosure relates generally to protective garments and garment support systems and more particularly body mounted apparatus to support protective apparel.
- Protective apparel may be worn by surgeons and other care givers or other medical personnel in order to protect patients from infection. Orthopedic procedures and particularly those involving exposed bone are very susceptible to infection and osteomyelitis. Therefore protective apparel may be used to create a sterile field, typically achieved by a gown, often referred to as a “toga” that provides a barrier between the healthcare professionals and the patient.
- a sterile field typically achieved by a gown, often referred to as a “toga” that provides a barrier between the healthcare professionals and the patient.
- helmets may be worn on the head of the surgical staff supporting the protective apparel.
- the helmets however can be heavy and can result in a high center of gravity as they extend upwards from the head, resulting in discomfort and an un-ergonomic fit. This can lead to undue neck and back strain on the surgeon.
- a face shield and an apparel drape can add weight and drag to a helmet.
- Protective apparel including a helmet, face shield, and apparel drape often restricting movement of the wearer's head due to the added weight and drag.
- the face shield may result in a limited field of vision. Additionally, as a result of the contours and nature of the helmet alignment above the head, the face shield may sit close to the wearer's face and may create an uncomfortable and claustrophobic feel. Face shield size may be limited by the outer contours of the helmet. Extending portions of the face shield and/or protective apparel that hang off of the helmet may cause further drag and undue strain.
- Some solutions incorporate a chin bar on the helmet that couples to portions of the apparel; however this may further limit the field of vision of the surgeon, and may add more weight to the helmet.
- patients are positioned below the surgeon's head and may be positioned such that the chin bar obstructs the surgeon's view of the patient.
- the protective apparel may enclose the wearer's head and may trap in air exhausted by the wearer.
- Fans have been incorporated into the helmet and positioned on top of the user's head, and may add even more weight to the helmet further exacerbating the weight and center of gravity issues described above.
- the fan may draw air in through the gown material and may result in increased current drain on the fan. This may result in reduced battery life or an increased size of the power source to effectively transport air into the interior space of the protective suit.
- the power source must be carried off-helmet in order to incorporate enough energy to power the fan.
- a cable may run from the helmet to the power source, typically on a belt, and may restricting the wearer's movement, may rub against the wearer and/or may become unplugged during a procedure, such as a surgery.
- These fans may further prevent effective air circulation as they may merely force air into the enclosed area around the wearer's head.
- donning procedures may be important in maintaining the sterile field about the wearer.
- Current helmet systems may be cumbersome and may include unnecessary steps to don the system while maintaining sterility.
- FIG. 1 is a perspective view of an embodiment of a support yoke of the invention.
- FIG. 2 is a side view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 3 is a side view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 4 is a side view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 5 is a top view of an embodiment of a yoke of the invention.
- FIG. 6 is a perspective view of an embodiment of a gown of the invention.
- FIG. 7 is a front perspective view of an embodiment of a hood of the invention.
- FIG. 8 is a rear perspective view of the hood shown in FIG. 7 .
- FIG. 9 is a front perspective view of an embodiment of a wearer donning the gown shown in FIG. 6 and the hood shown in FIG. 7 .
- FIG. 10 is a front perspective view of an embodiment of a harness of the invention.
- FIG. 11 is an embodiment of a yoke attachment spring bracket of the invention.
- FIG. 12 is a front perspective view of an embodiment of a wearer donning a yoke of the invention.
- FIG. 13 is a side view of an embodiment of a yoke with a shield of the invention.
- FIG. 14 is a front view of an embodiment of a shield of the invention.
- FIG. 15 is an exploded view of an embodiment of a yoke of the invention.
- FIG. 16 is a perspective view of a yoke according to an embodiment.
- FIG. 17 is a top view of the yoke embodiment shown in FIG. 16 .
- FIG. 18 is a side view of the yoke embodiment shown in FIG. 16
- FIG. 19A illustrates a first front perspective view of the protective apparel embodiment.
- FIG. 19B illustrates a first rear perspective view of an additional embodiment of a protective apparel shown in FIG. 19A .
- FIG. 19C illustrates a first front perspective view of an additional embodiment of a protective apparel.
- FIG. 19D illustrates a first rear perspective view of the protective apparel embodiment shown in FIG. 19C .
- FIG. 20 is a side view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 21 is a perspective view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 22 is a perspective view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 23 is a side view of an embodiment of a yoke donned by a wearer of the invention.
- FIG. 24 is a perspective view of a yoke and securement device donned by a wearer according to an embodiment.
- FIG. 25 is a side view of a yoke and securement device donned by a wearer according to an embodiment.
- FIG. 26 is a perspective view of a yoke and securement device donned by a wearer according to an embodiment.
- FIG. 27 is a side view of yoke coupling to a yoke receiver according to an embodiment in a first configuration.
- FIG. 28 is a side view of yoke coupling to a yoke receiver according to an embodiment in a second configuration.
- FIG. 29 is a perspective view of yoke coupling to a yoke receiver according to an embodiment in the first configuration.
- FIG. 30 is a front perspective view of protective apparel embodiment.
- FIG. 31 is a side view of the protective apparel embodiment shown in FIG. 30 .
- FIG. 32 is a back perspective view of the protective apparel embodiment shown in FIG. 30 .
- embodiments described herein reference a user or wearer, specifically a surgeon
- embodiments of a protective apparel and support apparatus can be used by any user and/or wearer, for example, surgeons and/or other doctors, scientists, students, or any other user that can use protective apparel.
- the wearer may be working on, for example, an experiment, a hazardous material, or any other object and/or situation that may prefer protective apparel.
- Some embodiments described herein provide a protective apparel and support apparatus that provides a number of advantages, including but not limited to a more comfortable fit by offering a lower center of gravity, improved ergonomic design, a wider stance for improved field of vision, and an effective energy efficient airflow system.
- the protective apparel and support apparatus (“apparatus”) can be supported by a off of the head of a user.
- a contoured yoke support structure (“yoke”) can rest upon the torso of a user, for example portions of the waist, back, shoulders and chest of a user.
- the yoke of the protective apparel and support apparatus can be substantially free from contact with the wearer's head.
- the yoke support structure can include a frame that can be shaped to fit a user's shoulders and shaped to carry and support portions of the protective apparel.
- the frame can carry portions of the protective apparel which may include a transparent vision shield (e.g., a face shield or shield), barrier material such as a gown, interior air replenishment devices (e.g. a fan), and can distribute the weight of the protective apparel and support apparatus about the torso of the wearer.
- a transparent vision shield e.g., a face shield or shield
- barrier material such as a gown
- interior air replenishment devices e.g. a fan
- the yoke can include a first support portion that can be configured to rest at least partially on a first shoulder of a wearer and a second support portion that can be configured to rest at least partially on a second shoulder of the wearer.
- Protective apparel can be coupled to the first support portion and the second support portion of the yoke support structure, and can be configured to include a vision shield in front of the wearer's face for viewing and a protective barrier over the wearer.
- an air circulation system can be configured to be coupled to the yoke, and can be configured to provide air replenishment and air conditioning.
- the air circulation system can include a first fan and a second fan.
- the first fan can be configured to draw air into or out of the interior of a barrier space and the second fan can be configured to draw air into or out of an interior barrier space.
- the first fan and the second fan can be disposed away from the wearer's ears and can reduce noise generated by the fans.
- the yoke can include one or more hollow chambers configured to communicate air within the yoke.
- the first fan and the second fan can be disposed within, or coupled to a yoke support structure portion that can extend down the back of the wearer.
- a single fan may be used to draw air out of the interior barrier space or to introduce outside air into the interior barrier space.
- an intake fan can be configured to direct air through a yoke portion and out of a front of the yoke in a direction substantially parallel to the wearer's vision, which in some embodiments can be toward the vision shield. This can reduce an amount of air blown directly onto the wearer's face.
- the air may be directed around a curvature of the vision shield in front of the wear's face and to another side of the yoke.
- One or more inlet ports on the other side of the yoke can be directed to an exhaust fan that can create negative pressure that can result in drawing the air out of the interior of the barrier space.
- the vision shield has a surface area, i.e. a field of vision, of at least 72 inches square and preferably one to four times greater than 72 inches square.
- a lateral distance between the first yoke portion and the second yoke portion provides for a greater field of vision as the vision shield spans from the first yoke portion to the second yoke portion while the first yoke portion and the second yoke portion are supported by the wearer's shoulders.
- the support apparatus couples to a harness including a waist belt and shoulder straps.
- the waist belt and shoulder straps may be stand alone or incorporate into wearable garments.
- the support apparatus coupled to a torso securement device such as a jacket, vest, a shirt, etc.
- FIGS. 1-19 depict various embodiments of protective apparel and support apparatus and/or portions of apparatus.
- An apparatus can include a yoke, one or more gowns, togas, and/or hoods (single piece and/or multi-piece), and/or a harness, etc. While each embodiment can be described as including certain element or features, it is understood that non-mutually exclusive elements and features of any embodiment can be included in any other embodiment.
- FIG. 1 depicts a yoke support structure (“yoke”) 100 of a protective apparel and support apparatus according to an embodiment.
- the yoke 100 is a support structure that can be configured to rest on the shoulders and upper torso region of a wearer (not shown in FIG. 1 ).
- the yoke 100 includes a first chest member 102 a, a second chest member 102 b and a lateral chest member 102 c.
- the yoke 100 further includes a first back member 106 a coupled to the first chest member 102 a, and a second back member 106 b coupled to the second chest member 102 b.
- the yoke 100 can be configured such that the inner contours 120 a, b of the yoke 100 can substantially rest on the shoulders of the wearer and can substantially rest adjacent to portions of the chest and back of the wearer.
- the yoke 100 can be configured to rest securely on the upper torso of the wearer and can be configured to support portions of the protective apparel (not shown).
- the first chest member 102 a and the first back member 106 a form the first shoulder portion 104 a.
- the second chest member 102 b and the second back member 106 b form the second shoulder portion 104 b.
- first back member 106 a is hingedly coupled to the first chest member 102 a with a first hinge 108 a; and the second back member 106 b is hingedly coupled to the second chest member 102 b with a second hinge 108 b.
- the first hinge 108 a and the second hinge 108 b can allow the yoke 100 to adjust to the size of the wearer by pivoting the chest member and the back member relative to one another about hinges 108 a, 108 b, to change the shoulder opening size of yoke 100 . This can accommodate difference in torso thickness from one wearer to another wearer while still allowing the yoke 100 to wrap over the shoulders.
- the yoke 100 is a unitary structure and may be flexible such that yoke material bends, and can allow the yoke to be “form-fit” to the wearer by bending the unitary structure.
- Other embodiments may incorporate a plurality of members, while some or all may be flexible or some or all may be at least semi-rigid, or a combination thereof.
- a portion of the yoke may be a formable wire frame and another portion may be a plastic support portion.
- the yoke 100 can be configured to rest on the wearer's shoulder at the first shoulder portion 104 a and at the second shoulder portion 104 b.
- the chest members 102 a, 102 b connect across the chest of the wearer with the lateral chest member 102 c.
- the chest members 102 a, 102 b can rest on the chest without interconnecting the first and second chest members 102 a, 102 b.
- the yoke 100 can also partially rest on the chest in varying degrees with the chest members 102 a - c.
- FIG. 2 is a side view of a yoke 100 shown positioned on a wearer 200 .
- the yoke 100 is positioned on the wearer 200 's shoulders and include a substantially transparent vision shield 202 positioned in front of the wearer 200 's face 204 .
- the vision shield 202 can be configured to maintain barrier protection of the protective apparel while allowing the wearer 200 to see the patient.
- the weight of the vision shield 202 can be supported by the yoke 100 and can be distributed onto the shoulders 206 and can transfer the weight of the vision shield 202 to the wearer.
- the vision shield 202 position relative to the wearer's face 204 can be a function of a standoff distance (not shown) of the vision shield 202 from the chest members 102 a - c and an angle 208 of a tilt away from the yoke 100 and the wearer. Having the vision shield 202 coupled to the yoke 100 can offset the vision shield 202 a distance from the wearer's face.
- the first back member 106 a and the second back member 106 b can act as counter weight configured to counteract a moment of force on the front of the yoke 100 due to the weight of the vision shield 202 , a protective garment 302 (see, e.g., FIG. 3 ), and the front portion of the yoke 100 . Balancing the yoke 100 minimizes movement of the yoke 100 relative to the wearer 200 .
- a length and a weight of the back members 106 a, 106 b in conjunction with a weight of one or more batteries (not shown) and an air circulation system (not shown) can be configured to counter balance the moment of force on the front chest member 102 a - c.
- the counter weight effect of the back members 106 a, 106 b can counter act the amount of force on the wearer's chest and can distribute the weight about the wearer's shoulders.
- the yoke 100 can cradle the wearer's torso to minimize movement of the yoke 100 as it is worn.
- the yoke 100 can include a downward u-shape that can lower the center of gravity of the overall protective apparel and support apparatus (not shown) as it sits over the shoulders of the wearer, distributing the weight to stabilize the apparatus. Although it is preferred that movement of the protective apparel and support apparatus is minimized, some movement of the apparatus relative to the wearer may be acceptable. In such embodiments, the vision shield 202 can be sized such that some movement does not hinder the wearer's line of sight.
- FIG. 3 is a side view of the yoke 100 shown positioned on a wearer 200 and includes the vision shield 202 and a protective garment 302 .
- the protective garment 302 can be coupled to the yoke 100 , the vision shield 202 and/or a combination thereof. In this embodiment the protective garment 302 is coupled to the vision shield 202 .
- the vision shield 202 can be selectively coupled to the yoke and can be coupled to the yoke after the yoke is fitted on the wearer. In other embodiments, the vision shield 202 can be coupled to the yoke prior to the yoke being fitted to the wearer.
- the protective garment 302 can be, for example, a hood, a body toga, a gown, an upper torso gown, combinations of said protective garments, and/or the like.
- the protective garment 302 is positioned between the patient and the surgeon or care giver.
- the protective garment 302 and the vision shield 202 can be configured to form an interior barrier space 314 .
- the interior barrier space 314 is generally the space between the protective garment 302 and the wearer. The wearer's head and at least portions of the upper body of the wearer are contained within the interior barrier space 314 .
- the interior barrier space 314 is separated from an exterior 316 of the system.
- FIG. 4 is a side view of the yoke 100 as it rests on the wearer's torso, showing the conforming fit of the yoke 100 to the wearer's upper torso according to another embodiment.
- the back members 106 a - b rest on a back portion 402 of the wearer's torso
- the shoulder portions 104 a - b rest at least on the top of the wearer's shoulders
- the chest members 102 a - c rest on a front portion of the wearer's shoulders and the chest of the wearer's torso.
- the first hinge 108 a can be configured to couple the first back member 106 a and first chest member 102 a and can allow rotation of the first back member 106 a relative to the first chest member 102 a and can change the shape of the yoke 100 (the distance between the first chest member 102 a and the first back member 106 a ) to conform more closely to the wearer's torso size and shape.
- FIG. 5 is a top view of a yoke 100 .
- the chest members 102 a - c and the back members 106 a - b have internal chambers, a first chest member chamber 530 , a second chest member chamber 532 , a first back member chamber 534 and a second back member chamber 536 (“chambers 532 - 536 ”).
- FIG. 5 further illustrates dimensions of the yoke 100 .
- the overall width of the yoke 100 can provide a support that is generally wider than the wearer's head which can allow for donning of the yoke 100 and the accompanying protective apparel (not shown).
- a first inside dimension of the yoke W I , 502 measured at the rear of the yoke between the first back member 106 a and the second back member 106 b can be greater than 7.0 inches and preferably can be greater than 9.0 inches.
- a first outside dimension W o , 503 measured at the outer most dimension of the front portion of the yoke 100 between an outside of the first chest member 102 a and an outside of the second chest member 102 b.
- the first outside dimension W o can affect the distance the vision shield 202 is positioned relative to the wearer once the yoke 100 is donned.
- Yoke 100 further includes air transport ports, specifically, a first air port 510 and a second air port 512 .
- the first air port 510 and the second air port 512 are configured to allow air to be communicated between the interior barrier space 514 (or similarly as interior barrier space 314 ) of the system to the outside of the barrier. In this manner, air within the interior barrier space 514 can be replenished.
- one or more fans can be used for air circulation and/or replenishment.
- a first fan 540 (shown in broken line) draws air into the interior barrier space 514 through the first external air port 510 while a second fan 542 (shown in broken line) exhausts air from the interior barrier space 514 through the second air port 512 .
- the air that enters through the first air port 510 is communicated through the chambers 532 - 536 and then introduced to the interior barrier space 514 by at least one inlet ports 518 .
- the air that enters the yoke 100 through one or more outlets 520 travels through the one or more other of chambers 532 - 536 and is exhausted from the yoke 100 by the second blower fan 542 through the second external port 512 .
- the inlet port 518 may be formed in any of the chest members 102 a, 102 b, 102 c.
- yoke 100 includes more than one inlet port 518 ; specifically, first chest member 102 a can include a set of inlet ports 518 , and second chest member 102 b can include a set of outlet ports 520 . While shown in FIG. 5 as including a certain shape and/or location, in some embodiments, the shape and/or location of the one or more inlet and outlet ports can vary.
- the one or more ports may be one or more slots in the yoke 100 .
- the inlet ports 518 can introduce air into the interior barrier space 514 from first air port 510 , while the outlet ports 520 can remove air that can be exhausted from the second air port 512 .
- This is in effect a push/pull system wherein air is introduced (pushed) into the interior barrier space 514 by the first air port 510 , a first fan (shown later) and the inlet ports 518 and exhausted (pulled) through the second set if internal ports 520 , a second fan (shown later) and the second external port 512 .
- the air may be directed from the inlet ports 518 toward the vision shield 202 and drawn across the shield into the outlet ports 520 , thereby replenishing the air in the interior barrier space 514 .
- ports may be placed throughout the yoke. The ports may also be directed at the wearer or directed away from the wearer. Alternatively, various ports may be directed in different directions.
- a protective apparel and support apparatus can define an interior barrier space and a sterile field to substantially separate a wearer, for example a surgeon, from a person or thing, for example a patient.
- the apparatus includes a one-piece suit that covers the head and the body portions of the wearer.
- the apparatus includes multi-piece suits, for example, having a hood portion to cover a wearer's head and/or upper body, and a gown portion to cover a wearer's upper body and lower body.
- the yoke 100 is placed on the wearer and at least under the head covering portion of the protective apparel. In other embodiments the yoke 100 rests on the wearer under all portions of the protective apparel.
- FIG. 6 is a perspective view of a protective gown 600 that may form a portion of the invention.
- the protective gown 600 can include a front 602 and a back (not shown), a neck opening 604 , a first sleeve 606 a and a second sleeve 606 b.
- the protective gown 600 has a chest portion 622 , which can be indicated as the portion above the dash line 630 .
- the protective gown 600 includes a first yoke receiving area 610 and a second yoke receiving area 612 .
- the protective gown 600 also includes an abdominal portion 614 and a bottom portion 616 .
- the protective gown may also include a zipper 618 . While shown in FIG.
- protective gown 600 can include other fastening devices, such as hook and loop fasteners, adhesive or the like when the protective gown 600 is configured to fully encloses the back of the wearer. While the sleeves 606 a, 606 b are depicted in FIG. 6 as being short sleeves, in other embodiments, sleeves 606 a, 606 b can be long sleeves or, in some embodiments, the gown may not have sleeves at all so long as other protective garment portions provide complimentary protection. In such embodiments, the apparatus can include a second gown portion including sleeves (see, e.g., FIG. 7 ). Each sleeve 606 a, b may have an elastic cuff 620 a, b. The protective gown 600 can be used with a second protective portion (see, e.g., FIG. 7 ), which may be a hood.
- a second protective portion see, e.g., FIG. 7
- FIG. 7 is a perspective view of a second protective gown portion, specifically, a hood 700 .
- Hood 700 includes a vision shield 702 , a head portion 704 , a body portion 705 which includes a chest area 716 , and a pair of sleeves 706 a, b.
- Hood 700 may include a zipper 710 running from the front of the hood to the back over a top 712 of the hood 700 and down a back 714 of the hood 700 .
- Hood 700 can include one or more elastic elements.
- hood 700 includes a chest elastic 718 included around the chest area 716 and can include elastic sleeve cuffs 720 a, b at least at the end of sleeves 706 a, b.
- the first sleeve 706 a and the second sleeve 706 b are configured as long sleeves in this embodiment.
- the chest area 716 has a bottom edge 707 which defines a chest opening 709 .
- hood 700 can include no sleeves or short sleeves.
- hood 700 can be included in an apparatus having a first gown that includes long sleeves. In this manner, at least one of either the first gown or the hood can includes long sleeves.
- the hood 700 can include the same material as the protective gown 600 or it can include different material.
- the hood 700 may be made of a more breathable material than the protective gown 600 .
- the hood 700 may be made of a lighter material than the protective gown 600 .
- the hood 700 has a different barrier protection level than the protective gown 600 , for example, the hood 700 material may have a protection level in accordance with the Association for the Advancement of Medical Instrumentation (AAMI) standards.
- AAMI Association for the Advancement of Medical Instrumentation
- the material may be different from gown to gown or even within a single gown, the protective gown 600 may be rated at different AAMI standard levels. Different portions of each the hood 700 and the protective gown 600 may have different materials or protection levels as well.
- one or both of the protective gown 600 and/or the hood 700 can include woven, non-woven materials, plastics or the like.
- materials may be biodegradable, compostable or both.
- FIG. 8 is a rear perspective view of the hood 700 .
- the hood 700 further includes a first hood port 802 a which is a void in the hood 700 .
- the hood port 802 a is configured to substantially align with and be coupled to an air port of a yoke, for example, the first air port 510 of the yoke 100 .
- the hood portion further includes a second hood port 802 b which is a void in the hood 700 .
- the hood port 802 b is configured to substantially align and is configured to be coupled to an air port of a yoke, for example, the second air port 512 of the yoke 100 .
- the hood ports 802 a, 802 b are formed by voids in the hood material to allow for the flow of air between the interior barrier space and an exterior space. In some embodiments, the flow of air can be induced by the at least one fan of the yoke 100 . In some embodiments, one or both of port 802 a, 802 b can include a porous covering, for example, a mesh and/or a filter.
- the hood ports 802 a, 802 b can be configured to be coupled to a first air port and/or a second air port of a yoke, for example the first air port 510 and the second air port 512 of the yoke 100 .
- the air ports of the yoke can be configured to be secured to the hood ports 802 a, 802 b using hook and loop fasteners or another fastening system.
- a first hook or loop portion can be coupled to the hood adjacent the hood port 802 a, 802 b
- a second hook or loop portion can be coupled to the yoke 100 adjacent the air port 510 , 512 .
- securing the air ports of the yoke to the hood ports 802 a, 802 b can maintain the alignment of the air ports with the hood ports.
- the hood port 802 a may have a size smaller than an outside dimension of the first air port 802 a of the yoke 100 .
- the hood port 510 is sized large enough to slip over the first air port 510 and may be held in place by a detent (not shown) in the first air port 510 .
- the hood port 802 a is greater in size relative to the first air port 510 of the yoke 100 such that the hood port generally aligns with the first port 510 when the hood is donned.
- an elastic fastener (not shown) can be disposed about one or more of hood ports 510 , 512 and can be configured to maintain one of more of hood ports 510 , 512 in a closed position.
- the hood 700 can be donned such that portions of the gown 600 are covered by the hood 700 to complete the sterile field about the wearer.
- the sleeves 606 a, b of the protective gown 600 are overlapped by the sleeves 706 a, b of the hood 700 .
- the overlap can be configured to maintain the sterile filed.
- the chest elastic 718 of the hood 700 holds the chest area 716 of the hood 700 tight to the chest portion 622 of the protective gown 600 such that the there is sufficient material overlap to maintain the sterile field.
- the hood 700 is shown as including a certain body portion 705 hood 700 1 ength, in other embodiments, the length of the body portion can be shorter, or longer, for example, extending below the chest area for example.
- FIG. 9 illustrates a wearer 901 of an apparatus including the protective gown 600 , the yoke 100 , and the hood 700 .
- FIG. 9 illustrates the wearer 901 with the protective gown 600 on and the yoke 100 placed on the wearer over portions of the protective gown 600 , with the hood portion off.
- the back members 106 a, b of the yoke 100 are not connected so as to accommodate rear entry donning of the yoke 100 by the wearer 901 .
- the wearer 901 slides the yoke 100 , indicated by arrow 904 , on from a front side of the wearer 901 and then down onto the shoulders of the wearer 901 .
- the wearer 901 in this illustration, is holding the hood 700 in preparation to don the hood 700 over the yoke 100 and over the gown 600 .
- the hood 700 is shown here in an open position to be donned on the wearer 901 such that sterile filed is maintained.
- the hood 700 is then closed, by zipping up the hood 700 in this embodiment.
- the shield 702 has a yoke receiving element 1404 (see e.g., element 1404 in FIG. 14 ) that includes notches or voids in the shield, adhesive, hook and loop or other securement devices, or a combination thereof. Hook and loop fasteners 902 may be placed at various positions on the shield 702 and the yoke 100 to hold the shield to the yoke 100 .
- yoke 100 can be configured to be coupled to a securement device, specifically a body securement device, such as, for example, a harness.
- the securement device can be configured to be worn by a wearer and can be mechanically coupled to yoke 100 such that the yoke 100 can be restrained to the wearer.
- FIG. 10 illustrates a securement device, specifically a harness 1000 configured to be coupled to the yoke 100 .
- the harness 1000 can supplement the yoke 100 as part of the apparatus. In some situations, the harness 1000 may provide improved fit for the wearer. In other embodiments the harness 1000 provides additional ergonomic features.
- the harness 1000 includes shoulder straps, specifically a first shoulder strap 1002 a, a second shoulder strap 1002 b, and a belt 1006 .
- the first shoulder strap 1002 a includes a first yoke attachment portion 1008 a and the second shoulder strap 1002 b includes a second yoke attachment portion 1008 b.
- the harness 1000 may be used in conjunction with the yoke 100 and a protective garment as part of a protective apparel and support apparatus.
- the belt portion 1006 of the harness 1000 can be configured to provide support for the lower back and abdominal regions of the wearer.
- the yoke attachment portions 1008 a, b comprise a pair of attachable straps that comprise a first yoke securement strap 1010 a, b and a second yoke securement strap 1012 a, b for each shoulder strap 1002 a, b.
- the first yoke securement strap 1010 a and a second yoke securement strap 1012 a are configured to be selectively coupled to a first side of the yoke 100 and a first yoke securement strap 1010 b and a second yoke securement strap 1012 b are configured to be selectively coupled to a second side of the yoke 100 .
- the harness 1000 is worn by the wearer and the yoke 100 is placed on to the wearer.
- the yoke can rest adjacent to at least a portion of the yoke attachment portions 1008 a - b of the harness 1000 .
- the first yoke securement strap 1010 a and a second yoke securement strap 1012 a can be wrapped over the yoke 100 and coupled together by a fastener, which in this embodiment is a hook and loop fastener.
- At least one of the first and second yoke securement straps 1010 a, 1012 a are elastic and can be stretched over the yoke 100 to secure the yoke to the harness 1000 .
- the protective apparel may be fitted to the yoke and the wearer.
- the yoke 100 can be coupled to more than one securement device, such as, for example, a backpack, a vest, a jacket, shirt, scrub or the like generally worn by the user.
- Some embodiments include providing hook and loop fastener on conjoining portions of the yoke and the harness.
- a first portion of the hook and loop fastener resides on the top of the shoulder strap and aligns with a second complimentary hook and loop fastener portion attached to the underside of the yoke, selectively coupling together when the yoke is placed on the harness 1000 .
- the yoke attachment portion is a spring bracket coupled to the shoulder strap of the harness 1000 , illustrated in FIG. 11 .
- the spring bracket 1102 is a u-shaped bracket that receives the yoke 100 , holding the yoke 100 to the harness 1000 through the frictional forces of the spring.
- An additionally securement strap may be placed at the top of the u-shape bracket 1102 in some embodiments.
- a yoke can be couple to a harness using, for example, cover snaps, clips, etc.
- FIG. 10 depicts the yoke being coupled to the harness, other embodiments, the yoke can be coupled to other garments worn by the wearer, for example, a shirt.
- FIG. 12 is a perspective view of a harness 1000 that is being coupled to the yoke 100 as it is donned on the wearer.
- Harness 1000 can allow the yoke 100 to be secured to the wearer, and may reduce or eliminate forces and/or stress on the wearer's head, such that a lens (not shown) can include an increased field of vision, and can be spaced apart a distance from the wearer's face, configured to improve comfort and maneuverability.
- the yoke 100 can be donned by placing yoke 100 in front of the wearer's chest and neck region and then down onto the shoulders of the wearer.
- the height of the yoke relative to the wearer is illustrated in FIG. 12 .
- the yoke can be brought up from in front of the wearer, sliding around the neck and brought to rest on the shoulders of the wearer 1201 .
- the open yoke configuration is that the yoke need only be raised enough to clear the shoulders during donning; and it may not be necessary to reach over the wearer's head to be donned.
- the yoke 100 is held by the chest portions, and moved back and over the shoulders of the wearer and brought to rest on the shoulder. Once resting, the yoke 100 may be secured by the yoke attachment portions 1008 a - b for example.
- FIG. 13 is a side view 1300 of the yoke 100 with the vision shield 202 coupled thereto.
- the air flow directions and internal portions of the yoke are represented in broken line format.
- Inlet ports 518 are shown as a first internal air port 1306 a, a second internal air port 1306 b, a third internal air port 1306 c, a fourth internal air port 1306 d, and a fifth internal air port 1306 e.
- the internal air ports are configured to communicate with the internal chambers 530 , 532 , 534 and 536 .
- Some of the internal air ports can be associated with one or more air baffles. In this embodiment the air baffles are located within the yoke 100 .
- the air ports 1306 a - e may be apertures in the yoke 100 or the apertures may be complimented by nozzles or the like.
- the first internal air port 1306 a is shown as an aperture in the yoke 100 chest member 102 a.
- a first airflow line 1308 a indicates the general direction of flow of air as it discharges from the first internal port 1306 a.
- the second internal air port 1306 b is an aperture in the chest member 102 a. Adjacent to the second port 1306 b is a first air baffle 1310 a.
- the first air baffle 1310 a is configured to direct at least some of the air out of the internal port 1306 b.
- the first air baffle 1310 a is also configured in this embodiment to direct air into the first internal air port 1306 a.
- the third internal air port 1306 c is an aperture in the chest member 102 a. Adjacent to the third port 1306 c is a second air baffle 1310 b configured to divert air through the third port 1306 c and in the general direction of the third airflow line 1308 c. The second air baffle 1310 b is also configured in this embodiment to direct air into the second internal air port 1306 b.
- the fourth internal air port 1306 d is an aperture in the chest member 102 a. Adjacent to the fourth port 1306 d is a third air baffle 1310 c configured to divert air through the fourth port 1306 d and in the general direction of the fourth airflow line 1308 d. The third air baffle 1310 c is also configured in this embodiment to direct air into the third internal air port 1306 c.
- the fifth internal air port 1306 e is an aperture in the chest member 102 a. Adjacent to the fifth port 1306 e is the third air baffle 1310 c configured to divert air through the fifth port 1306 e and in the general direction of the fourth airflow line 1308 e.
- the internal air ports 1306 a - e are located in a chest member top 130 a of yoke 100 .
- This position in the yoke 100 allows the air to be directed parallel to the wearer's line of sight and not onto the wearer directly.
- the air flow is directed along the vision shield 202 , beginning where the vision shield 202 meets the yoke 100 at a yoke-shield interface line 1340 .
- the air flow generally travels along the shield 202 until the shield curves around to mate with the second chest member 102 b.
- the shield can include a curvilinear shape; can extend from a first side of yoke 100 to a second side of yoke 100 ; and can curve around a chest portion 102 a - c.
- the air can be diverted by the vision shield 202 and can generally travel around the shield 202 and can be directed toward the opposite side of the vision shield 202 and the second chest member 102 b.
- the air can travel from one of internal air ports 1306 a - e on a first side of the yoke 100 to an internal air port (not shown) on a second side of the yoke 100 .
- the quantity of internal air ports may be fewer than or greater than those illustrated in the present embodiment.
- the size of the apertures may also vary, and may further vary from port to port.
- the air can flow to the internal air ports 1306 a - e via one or more internal chambers, or internal chamber portions of the yoke 100 .
- the internal chamber comprises the first chamber 532 of the chest member 102 a which is in communication with the second chamber 536 of the back member 106 a of the yoke 100 .
- the hinge portion 1330 of the chest member 102 a and the back member 106 a is configured to couple the chest member 102 a and the back member 106 a such that the air can move between the chest member 102 a and the back member 106 , and the internal air ports and external air ports.
- yoke 100 can include a blower (e.g. a fan) 1318 .
- Blower 1318 can be disposed within the back member 106 a and can be adjacent to the external air port 510 .
- the blower 1318 can draw air into the yoke chamber, the second chamber 536 , which then travels through the hinge 1330 to the first chamber 532 and out the internal air ports 1306 a - e.
- outlet ports 520 have a similar arrangement, as with the first chest member 102 a of the yoke portions illustrated in FIG. 13 , in the second chest member 102 b.
- a second blower can be disposed in the back member 106 b however; the second blower can be configured to draw air out of the interior barrier space 514 through outlet ports 520 , a first and second chamber of the second chest member 102 b, through the second blower and out the second external port 512 .
- the vision shield 202 may be angled away from the vertical axis 1302 at a shield angle 1304 , which may be an angle between 0 degrees and at least 45 degrees.
- the shield angle 1302 is between 20 and 30 degrees and may preferably be about 25 degrees from the vertical ‘Y” axis 1302 .
- This angle 1304 in conjunction with the configuration of the yoke 100 can offset the vision shield 202 surface from the wearer's face making the system more comfortable for the wearer.
- the yoke 100 extends in the X direction away from the users face, while the vision shield 202 further extends away from the face by nature of the angle, both creating the distance between the wearer's face and the shield 202 while distributing the weight of the shield 202 and garment 302 to the upper torso. Further, the shield 202 may support portions of the protective apparel that extend beyond the wearer's head, and can hold the apparel out of the wearer's face.
- yoke 100 can include a power system for the blower 1318 including one or more batteries 1320 and a switch 1322 coupled between the batteries 1320 and the blower 1318 .
- the batteries 1320 and the blower 1318 can be positioned within the yoke 100 to provide counter weight to the shield 202 and the protective apparel, balancing the yoke on the wearer.
- the blower 1318 can be a Sunon GB0545AFV1-8 with maglev bearing for example. Those of ordinary skill in the tart will understand that other fans or blowers may achieve the results intended in accordance with this disclosure.
- FIG. 14 illustrates a shield 1402 in accordance with one embodiment of the disclosure.
- Shield 1402 can be similar to and can include similar elements to shield 202 . In this manner, shield 1402 can be part of any protective apparel and support apparatus described herein.
- the shield 1402 includes a top 1406 and a bottom 1408 , a first side 1410 and a second side 1412 .
- the bottom includes a yoke engagement element 1404 , which can be a void or a notch in the shield 1402 as illustrated in this embodiment. This engagement element may mate with a shield receiving element (see 1303 in FIG. 13 ).
- the first side 1410 and the second side 1412 can include portions configured to couple to the yoke 100 with securement devices such as fasteners.
- the fasteners may include, and are not limited to those that would secure the shield to the yoke, such as hook and loop fasteners, adhesive, buttons, snaps, keyholes, clips an the like.
- the shield is substantially clear and may have coating such as anti-glare, anti-reflection, hydrophobic, anti-fog and the like.
- the securement devise may be placed on or incorporated into the shield in the fastener area 1414 .
- FIG. 15 is an exploded perspective view of the components of the yoke 100 .
- the yoke 100 in this embodiment comprises a first chest member first half 1502 and first chest member second half 1504 , a second chest member first half 1506 a second chest member second half 1508 , a third chest member first half 1510 and a third chest member second half 1512 .
- the third chest member first half 1510 and the third chest member second half 1512 are coupled together by a hinge 1514 .
- the hinge may further include an adjustment device, for example a threaded adjustment device configured to adjust the angle of the hinge and hence the angle of the third chest member first half 1510 and the third chest member second half 1512 .
- the first chest member first half 1502 and first chest member second half 1504 are coupled together to form the first chest member 102 a.
- the second chest member first half 1506 and a second chest member second half 1508 are coupled together to form the second chest member 102 b.
- the first chest member 102 a and the second chest member 102 b have an internal chamber enclosed on four sides creating a hollow internal air flow chamber.
- the third chest member 102 c includes two single piece portions 1510 , 1512 , which may have a chamber or may be open ended on at least one side.
- the halves may be secured together by screws, adhesive or other sufficient securement means as known to those of ordinary skill in the art.
- the yoke 100 in this embodiment includes a first back member first half 1522 and first back member second half 1524 , a second back member first half 1526 and a second back member second half 1528 .
- a first back member first half 1522 and first back member second half 1504 are coupled together to form the first chest member 106 a.
- the second chest portion first half 1506 and a second chest member second half 1508 are coupled together to form the second chest member 106 b.
- the first back member 106 a and the second back member 106 b have an internal chamber enclosed on four sides creating a hollow internal air flow chamber.
- the first chest member 102 a and the first back member 106 a are coupled together by hinge 108 a as shown in FIG. 1 , and similarly in FIG. 13 and in exploded view in FIG. 15 .
- the first chest member first half 1502 and the first chest member second half 1504 are assembled to form the first chest member 102 a with the first chest member hinge at a first end 1546 of the first chest member 102 a.
- the first back member 106 a comprising the first back member first half 1522 and the first back member second half 1524 are assembled such that the back member hinge engages with the chest member hinge.
- the chest member hinge is partially contained within the back member hinge, e.g. in a fork like manner.
- the first chest member hinge 1332 includes a first protrusion 1550 and a second protrusion 1552 .
- the second protrusion 1552 selectively engages with a first void 1554 in the first back member hinge 1555 .
- the second protrusion 1552 and the first void 1554 share a common axis about which is an axis of rotation 550 (see FIG. 13 ) for the first chest member 102 a and the first back member 106 a.
- the second protrusion 1550 can engage one of the plurality of voids, specifically, a second void, a third void and a fourth void in this embodiment.
- the second protrusion 1550 in combination with one of the second void 1360 third void 1362 or fourth void 1364 , can secure the first chest portion 102 a at a first, second, or third angel relative to the back member 106 a.
- the second protrusion 1550 is configured on the first end 1546 which may be flexible such that the protrusion may flex inwards and disengage the one of the second void 1360 , third void 1362 or fourth void 1364 .
- the second protrusion 1550 can include a button surface that may be accessible to a wearer's finger that is pushed on, to disengage the second protrusion from the first void 1360 of back member and allow the back member 106 a to rotate, until the second protrusion 1550 engages another one of the voids e.g. the third void 1362 or the fourth void 1364 of the back member hinge portion.
- the yoke may include a power system for a first fan 1532 and a second fan 1530 .
- the power system may include one or more batteries 1534 , one or more battery contacts 1540 , 1542 , a battery compartment cover 1536 , and a battery switch 1538 .
- FIGS. 16-18 are views of a yoke 1601 according to another embodiment.
- FIG. 16 is a perspective view of yoke 1501
- FIG. 17 is a top view of yoke 1601
- FIG. 18 is a side view of yoke 1601 .
- Yoke 1601 includes a first chest member 1502 a, a second chest member 1502 b, and a lateral chest member 1502 c, a plurality of inlets 1518 , a plurality of outlets 1520 , a vision shield support 1503 , a first fan 1508 a and a second fan 1508 b, and a first battery compartment 1510 a and a second battery compartment 1510 b.
- Yoke 1501 can include similar elements with similar features with yoke 100 .
- first chest member 1502 a can be similar to first chest member 102 a.
- yoke 1601 does not include back members.
- first battery compartment 1510 a and second battery compartment 1510 b can be arranged such that one or more batteries (not shown) can be removed and/or otherwise replaced while yoke 1501 is in use, e.g., during a surgery or other procedure.
- first fan 1508 a, second fan 1508 b, and/or the one or more batteries can be sized to counterbalance first chest member 102 a, second chest member 102 b, and/or lateral chest member 102 c.
- FIG. 20 is a side view of a yoke 2001 according to an embodiment.
- Yoke 2001 includes a chest member 2003 that can be disposed on a chest 2012 of a wearer and can be close to a front of a neck (not shown) of the wearer's. Chest portion 2003 can be configured such that a wearer's line of sight 2008 may not be obstructed.
- yoke 2001 can primarily and/or completely rest on the wearer's chest 2012 .
- yoke 2001 can arch over the wearer's shoulders (not shown) and can extend to a back (not shown) of the wearer as disclosed in other embodiments (see, e.g., FIG. 4 ). As shown in FIG.
- a vision shield 2002 has an upper portion 2004 and a lower portion 2006 .
- Lower portion 2006 can extend inwardly towards the wearer.
- Vision shield 2002 can be configured with a concave bubble shape to provide an extended field of vision and can maintain a substantially undistorted view of the subject and area surrounding the wearer.
- vision shield 2002 can be pre-formed in the concave shape.
- vision shield 2002 can be other shapes, such as, for example, rectangular, square, etc, and can be pre-formed, or formed when vision shield 2002 is coupled to yoke 2001 .
- Vision shield 2002 can be coupled to yoke 2001 by an attachment device, such as hook and loop, adhesive, buttons, snaps, keyholes, clips, magnets or the like.
- yoke 2001 includes hook and loop fasteners 2010 .
- Hook and loop fastener 2010 can include a first hook or loop fastener carried on the yoke 2001 and an associated hook and loop fastener carried on vision shield 2002 .
- Yoke 2001 can be secured to vision shield 2002 by any number of hook and look fasteners 2010 .
- vision shield 2002 can be sized such that alignment of vision shield 2002 to yoke 2001 is not critical. Said another way, a small misalignment of vision shield 2002 may not obstruct lines of sight 2008 of the wearer.
- the size of vision shield 2002 can allow for variable alignment relative to yoke 2001
- the shape of the vision shield can be complimentary to yoke 2001 .
- the vision shield 2002 configured in the pre-formed concave manner, can allow for stackability during shipping and storage.
- vision shield 2002 can be coupled to the protective apparel (not shown) and can be folded and stacked together for storage and shipping to the end user.
- Vision shield 2002 can be attached to the protective apparel with adhesive, stitched, ultrasonically bonded, or the like.
- the garment is made of a non-woven material.
- the protective apparel can include any materials described herein.
- vision shield 2002 can be coupled to the protective apparel just prior to donning on the yoke, e.g. after manufacture and shipping.
- vision shield 2002 can include a thickness between about 0.005 inches and about 0.050 inches.
- vision shield 2002 can includes polycarbonate material.
- vision shield 2002 can includes polyethylene terephthalate (PET) materials.
- PET polyethylene terephthalate
- vision shield 2002 can include polyethylene terephtalate glycol-modified (PET-G) materials. While desrcibeb herein as including the above thicknesses and/or materials, in some embodiments, vision shield 2002 can include other suitable thicknesses and/or materials.
- FIG. 21 is a perspective view of a yoke 2100 disposed on a wearer.
- Yoke 2100 includes first chest member 2101 and a second chest member 2101 b which are not connected across the chest of the wear with a lateral chest member. This can increase visibility below the wearer's head.
- a vision shield 2102 can extend all the way to the wearer's chest 2106 at a chest portion 2104 , without being obstructed by a lateral chest member for example.
- FIG. 22 is a view of a yoke 2201 coupled to a securement device 2202 .
- the securement device 2202 may be a garment adapted to couple with the yoke 2201 and/or with the protective apparel (not shown) portions thereof.
- Yoke 2201 can be permanently coupled to the torso securement device 2202 or may be detachably coupled thereto. Embodiments where yoke 2201 is detachably coupled can allow for interchangeability, cleaning of securement device 2201 .
- the securement device 2201 can, as illustrated in this embodiment be a vest, or alternatively for example may be a jacket, shirt, scrub or other torso securement device or the like generally worn by a user.
- securement device 2202 can includes a fastening system, such as those described herein, to couple a vision shield and/or protective apparel to securement device 2202 and/or yoke 2201 , and/or to compliment a fastening system of yoke 2201 .
- clips or attachment portions on the securement device can mate with complimentary clips or attachment portions on the vision shield and/or protective apparel and/or portions thereof.
- a heating and/or cooling system can be integral to a securement device, and that heating and/or cooling system can feed into the yoke.
- a securement device 2302 can include a fan 2304 configured to direct air through one or more air flow channels 2306 of securement device 2302 and into yoke 2301 .
- securement device 2302 can include a heating and/or cooling elements (not shown) to modify a temperature of the air flow from fan 2304 .
- Such heating and/or cooling elements can be, for example, electrical (e.g., battery or plug elements), chemical (e.g., heat and/or ice packs), etc.
- securement device 2302 can include pockets and/or phase change material used for temperature management.
- a securement device and/or protective apparel can include radiation shielding.
- a yoke 2401 can be coupled to a securement device 2402 which can include x-ray protective portion 2404 .
- x-ray protective portion 2404 can include lead to protect the wearer while taking x-rays during a procedure.
- the lead can be attached to securement device 2402 by any suitable means for example may be held in pockets or sewn in or adhesively attached to the vest, a combination thereof or the like.
- FIG. 25 is a side view of a protective apparel and support apparatus according to another embodiment.
- the apparatus includes a yoke 2501 coupled to a fan 2504 via an air flow channel 2506 .
- air flow channel 2506 can be outside of and coupled to a securement device 2502 .
- the apparatus can include a vision shield 2510 and protective apparel 2512 .
- Fan 2504 can supply air flow to yoke 2501 and to a barrier space 2512 indirection CC. Fan 2504 can exhaust air from barrier space 2512 in direction BB and can exhaust air from air flow channel 2506 in direction AA.
- the one or more fans can draw air into, and exhaust air out of, a securement device, protective apparel and/or yoke via ports.
- Air channels can be built into and/or coupled to a securement device and/or protective apparel. The air flow may be directed over heating or cooling pacts to condition the air.
- an air passage port can be coupled the air passage of the vest to the interior of the support to channel air around the support and about the wearers head.
- a single fan can both intake and exhaust air from the apparatus.
- a securement device and/or protective apparent can include three dimensional (3D) fabrics, wherein air flow is directed within the 3D fabric, for example, air channels within around the vest. Channels in the vest can be defined in the fabric to direct the air to desired portions.
- a protective apparel and support apparatus can include one or more electronic devices, such as, for example, a camera, a projector, a microphone, a speaker, gesture module, network communication device, and/or control device (e.g., for controlling a fan, camera, etc).
- the one or more electronic devices can be wired, wireless, and/or both wired and wireless.
- the control device can control the one or more electronic devices.
- the one or more electronic devices can be controlled remotely via the network communication device.
- environmental and vital readings of the wearer can be transmitted via the network communication device.
- the apparatus can include a single control device configured to control all electronics devices.
- the apparatus can include multiple control devices associated with less than all the electronic devices.
- the control device can be a remote control, can be handheld, can be mounted on the yoke, protective apparel, can be foot operated (e.g., a foot pedal) and/or securement device, and/or can be controlled via a network connection.
- a control device can change a speed of a fan and hence airflow in and out of the interior barrier space.
- a camera can be coupled to the yoke and can be aimed in one or more directions. Some camera positions are adjacent to a vision shield and the vision shield can include a camera lens portion
- the yoke may have communications modules such as the microphone, the speaker, the wireless communication device, configured to communicate with a second communication device remote from the surgeon, for example other personal involved in the procedure whether in the room or not.
- a voice recognition module can be configured to activate the wearer's microphone circuit upon speaking to communicate without having to press a button so that the wearer may keep their hands free.
- the fan speed control may be voice activated as well. In one embodiment the wearer can use voice commands to activate different functions, such as fan on and off, fan speed, temperature, control music, or for other communications.
- the wearer can be able to instruct the system to turn on the fans by speaking “fan on.” Or change the fan speed by speaking “fan three” or “fan up.”
- Feedback to acknowledge receipt of the command can be issued by audible, visible, tactile, or physical indication may be presented to the wearer.
- audible beep through a speaker or the like can signal that the command was heard but not received properly or understood.
- a light may flash or a vibrator can activate to give a physical response to the command.
- Lights, such a light emitting diodes (LED) can be placed in visible locations to the wearer to represent and indicate the existence of predetermined conditions.
- LED light emitting diodes
- a gesture module can be incorporated into the apparatus so that the wearer can command different functions associated with the system by making gestures.
- Gestures can be detected by accelerometers or a camera system such as a yoke mounted camera, yoke mounted accelerometers or a combination thereof.
- the accelerometers may be carried on the protective apparel such as the sleeves or the yoke or securement device.
- a camera mounted in the yoke or vest portion may be aimed at the wearer, such as the head to detect motion and gestures by the wearer. Moving the head in a predefined motion gesture can signal the fan to increase speed for example.
- electronic devices can be controlled by a combination of voice and gesture commands, and or can have redundant commands, for example, a voice command to change fan speed, as well as a gesture command to change fan speed.
- a protective apparel and support apparatus can include one or more magnets configured to couple a vision shield to a yoke.
- a securement device can include one or more clips to retain the protective hood/vision shield and may not include a yoke.
- air can be ported from the protective apparel and/or securement device into the inner barrier and around the wearer.
- a fan can be disposed into a portion of the protective apparel and/or securement device.
- the apparatus can include LED lights, configured to produce low or no heat and can be disposed adjacent to the vision shield to prevent glare.
- a vision shield can be preformed, e.g.
- a vision shield can be supported by a yoke, and the vision shield can provide the sole direct support of a protective garment.
- a yoke can include at least one air port directed at the wearer, for example, a neck of the wearer, such that a wearer can know that air flow is present.
- a vision shield can extend over and around a wearer's head to substantially encapsulate a wearer's head such that the wearer can have a substantially panoramic view.
- a vision shield can include a portion that can present and/or otherwise function as a heads-up-display (HUD).
- a projector can be configured in the yoke, securement device, and/or protective apparel that can be aimed at the vision shield.
- the projector can project protective apparel data such as fan speed, battery power remaining, or critical patient data such as body temperature, blood pressure, hear rate/pulse and the like.
- a portion of the vision shield can be configured to display the information. For example, a portion of the vision can be etched or darkened in order to create the HUD effect.
- a projector can be coupled to a wireless receiver to receive the data from monitoring equipment.
- Each piece of monitoring equipment can include a communication module to transmit that data to the projector wireless receiver. In other embodiments, monitoring equipment can share a common communication module.
- an apparatus can include one or more supports that can extend up from a waist of a wearer, can be included in a securement device.
- the supports can hold the yoke off of the shoulders and can transfer at least a portion of the load to the waist and hip area of the wearer.
- a waist belt can be coupled to a rigid back support that can extend upwards along the wearer's back, and up and over a wearer's shoulders, and can be coupled to a chest brace.
- Air tubes or channels can be brought up and over the wearer's body to the front of the wearer's face to circulate fresh air to the internal chamber.
- a vision shield can be coupled to the yoke.
- the control device can be located in the front portion of the yoke, the protective apparel, and/or securement device as described herein.
- the control device can be positioned at a location within the sterile field of the wearer such that accessing the controls may not require the wearer to breach the sterile field.
- a switch set for fan on/of and up/down speed controls can be located at easy to access positions on the yoke or securement device for example.
- the controls on the control device can be physical button switches, virtual buttons, or reed switches or the like. In other embodiments, as described above, the control device can accept voice, visual, and/or gesture commands.
- FIG. 26 is a perspective view of a control device 2604 coupled to a securement device 2602 including air flow channels 2606 .
- Control device 2604 includes a plurality of electronics modules 2608 a - d.
- control device 2604 can be integral with a yoke, in other embodiments, control device 2604 can be integral with securement device 2602 and/or protective apparel. In other embodiments, control device 2604 can be separate from, but coupled to any of the yoke, the protective apparel, and/or securement device 2602 .
- Electronics modules 2608 a - d can include any input and/or output device, for example microphone, speaker, lights, fan control, camera, and/or projector.
- FIGS. 27-29 depict a yoke 2701 coupling to a yoke receiver 2720 , according to an embodiment.
- FIG. 27 is a side view of yoke 2701 coupling to yoke receiver 2720 in a first configuration (prior to coupling)
- FIG. 28 is a side view of yoke 2701 coupling to yoke receiver 2720 in a second configuration (after coupling)
- FIG. 29 is a perspective view of yoke 2701 coupling to yoke receiver 2720 in the first configuration.
- Yoke 2701 can include shoe 2703 configured to be received by a boot 2724 of yoke receiver 2720 , and a shoulder pad 2705 configured to rest on a shoulder plate 2722 of yoke receiver 2720 .
- yoke receiver can be integral to, and/or otherwise coupled to, a securement device (e.g., harness, shirt, etc).
- yoke 2701 can be moved in direction DD such that shoe 2703 is moved into boot 2724 and can be moved in direction EE such that shoulder pad 2705 is disposed on shoulder plate 2720 .
- shoe 2703 and boot 2724 can be sized, e.g., can include a complimentary taper, such that shoe 2703 can be easily maneuvered into boot 2724 .
- yoke receiver 2720 can be monolithically formed, in other embodiments; yoke receiver 2720 can be separately formed.
- Yoke receiver 2720 can include material similar to yoke 2701 and/or can include different materials.
- any yoke, vision shield, protective apparel, and/or securement device can be used with any combination of yoke, vision shield, protective apparel, and/or securement device, except for mutually exclusive combinations.
- a yoke, and/or features of a yoke can be integral with a securement device.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Pulmonology (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Professional, Industrial, Or Sporting Protective Garments (AREA)
Abstract
Description
- This application is a division of co-pending U.S. patent application Ser. No. 13/709,783 entitled “PROTECTIVE APPAREL AND SUPPORT APPARATUS AND METHOD OF USE,” which is a continuation-in-part of U.S. patent application Ser. No. 13/427,475, filed on Mar. 22, 2012 and issued as U.S. Pat. No. 8,950,017 on Feb. 10, 2015. U.S. Pat. No. 8,950,017 claims priority to and the benefit of U.S. Provisional Application No. 61/466,334 filed Mar. 22, 2011 and entitled “PROTECTIVE APPAREL AND SUPPORT APPARATUS AND METHOD OF USE.” The content of these applications are herein incorporated by reference in their entirety.
- The present disclosure relates generally to protective garments and garment support systems and more particularly body mounted apparatus to support protective apparel.
- Protective apparel may be worn by surgeons and other care givers or other medical personnel in order to protect patients from infection. Orthopedic procedures and particularly those involving exposed bone are very susceptible to infection and osteomyelitis. Therefore protective apparel may be used to create a sterile field, typically achieved by a gown, often referred to as a “toga” that provides a barrier between the healthcare professionals and the patient.
- In some cases, helmets may be worn on the head of the surgical staff supporting the protective apparel. The helmets however can be heavy and can result in a high center of gravity as they extend upwards from the head, resulting in discomfort and an un-ergonomic fit. This can lead to undue neck and back strain on the surgeon. Further, a face shield and an apparel drape can add weight and drag to a helmet. Protective apparel including a helmet, face shield, and apparel drape often restricting movement of the wearer's head due to the added weight and drag.
- Further, the face shield may result in a limited field of vision. Additionally, as a result of the contours and nature of the helmet alignment above the head, the face shield may sit close to the wearer's face and may create an uncomfortable and claustrophobic feel. Face shield size may be limited by the outer contours of the helmet. Extending portions of the face shield and/or protective apparel that hang off of the helmet may cause further drag and undue strain.
- Some solutions incorporate a chin bar on the helmet that couples to portions of the apparel; however this may further limit the field of vision of the surgeon, and may add more weight to the helmet. Typically patients are positioned below the surgeon's head and may be positioned such that the chin bar obstructs the surgeon's view of the patient.
- The protective apparel may enclose the wearer's head and may trap in air exhausted by the wearer. Fans have been incorporated into the helmet and positioned on top of the user's head, and may add even more weight to the helmet further exacerbating the weight and center of gravity issues described above. The fan may draw air in through the gown material and may result in increased current drain on the fan. This may result in reduced battery life or an increased size of the power source to effectively transport air into the interior space of the protective suit.
- In some cases the power source must be carried off-helmet in order to incorporate enough energy to power the fan. In such case, a cable may run from the helmet to the power source, typically on a belt, and may restricting the wearer's movement, may rub against the wearer and/or may become unplugged during a procedure, such as a surgery. These fans may further prevent effective air circulation as they may merely force air into the enclosed area around the wearer's head.
- Further, donning procedures may be important in maintaining the sterile field about the wearer. Current helmet systems may be cumbersome and may include unnecessary steps to don the system while maintaining sterility.
- Thus, there is a need for a protective apparel support apparatus that is light weight, ergonomically configured and improves the wearer's environment.
- The various aspects, features and advantages of the disclosure will become more fully apparent to those having ordinary skill in the art upon careful consideration of the following Detailed Description thereof with the accompanying drawings described below.
-
FIG. 1 is a perspective view of an embodiment of a support yoke of the invention. -
FIG. 2 is a side view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 3 is a side view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 4 is a side view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 5 is a top view of an embodiment of a yoke of the invention. -
FIG. 6 is a perspective view of an embodiment of a gown of the invention. -
FIG. 7 is a front perspective view of an embodiment of a hood of the invention. -
FIG. 8 is a rear perspective view of the hood shown in FIG.7. -
FIG. 9 is a front perspective view of an embodiment of a wearer donning the gown shown inFIG. 6 and the hood shown inFIG. 7 . -
FIG. 10 is a front perspective view of an embodiment of a harness of the invention. -
FIG. 11 is an embodiment of a yoke attachment spring bracket of the invention. -
FIG. 12 is a front perspective view of an embodiment of a wearer donning a yoke of the invention. -
FIG. 13 is a side view of an embodiment of a yoke with a shield of the invention. -
FIG. 14 is a front view of an embodiment of a shield of the invention. -
FIG. 15 is an exploded view of an embodiment of a yoke of the invention. -
FIG. 16 is a perspective view of a yoke according to an embodiment. -
FIG. 17 is a top view of the yoke embodiment shown inFIG. 16 . -
FIG. 18 is a side view of the yoke embodiment shown inFIG. 16 -
FIG. 19A illustrates a first front perspective view of the protective apparel embodiment. -
FIG. 19B illustrates a first rear perspective view of an additional embodiment of a protective apparel shown inFIG. 19A . -
FIG. 19C illustrates a first front perspective view of an additional embodiment of a protective apparel. -
FIG. 19D illustrates a first rear perspective view of the protective apparel embodiment shown inFIG. 19C . -
FIG. 20 is a side view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 21 is a perspective view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 22 is a perspective view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 23 is a side view of an embodiment of a yoke donned by a wearer of the invention. -
FIG. 24 is a perspective view of a yoke and securement device donned by a wearer according to an embodiment. -
FIG. 25 is a side view of a yoke and securement device donned by a wearer according to an embodiment. -
FIG. 26 is a perspective view of a yoke and securement device donned by a wearer according to an embodiment. -
FIG. 27 is a side view of yoke coupling to a yoke receiver according to an embodiment in a first configuration. -
FIG. 28 is a side view of yoke coupling to a yoke receiver according to an embodiment in a second configuration. -
FIG. 29 is a perspective view of yoke coupling to a yoke receiver according to an embodiment in the first configuration. -
FIG. 30 is a front perspective view of protective apparel embodiment. -
FIG. 31 is a side view of the protective apparel embodiment shown inFIG. 30 . -
FIG. 32 is a back perspective view of the protective apparel embodiment shown inFIG. 30 . - Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of apparatus components and method steps for a protective apparel and support system. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
- In describing the embodiments herein in detail and referring to the drawings, like numbers indicate like parts throughout the figures. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.” Relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. While some embodiments described herein reference a user or wearer, specifically a surgeon, embodiments of a protective apparel and support apparatus can be used by any user and/or wearer, for example, surgeons and/or other doctors, scientists, students, or any other user that can use protective apparel. In this manner, while some embodiments described herein can reference a patient, in other embodiments, the wearer may be working on, for example, an experiment, a hazardous material, or any other object and/or situation that may prefer protective apparel.
- Some embodiments described herein provide a protective apparel and support apparatus that provides a number of advantages, including but not limited to a more comfortable fit by offering a lower center of gravity, improved ergonomic design, a wider stance for improved field of vision, and an effective energy efficient airflow system. In such embodiment, the protective apparel and support apparatus (“apparatus”) can be supported by a off of the head of a user. In such embodiments a contoured yoke support structure (“yoke”) can rest upon the torso of a user, for example portions of the waist, back, shoulders and chest of a user.
- In embodiments, of the invention, the yoke of the protective apparel and support apparatus can be substantially free from contact with the wearer's head. The yoke support structure can include a frame that can be shaped to fit a user's shoulders and shaped to carry and support portions of the protective apparel. The frame can carry portions of the protective apparel which may include a transparent vision shield (e.g., a face shield or shield), barrier material such as a gown, interior air replenishment devices (e.g. a fan), and can distribute the weight of the protective apparel and support apparatus about the torso of the wearer. This can provide the wearer with a comfortable, protective apparel and support apparatus that has a low center of gravity, that may not rest on the wearer's, head and that may provide an ergonomic support to improve wearability.
- In some embodiments, the yoke can include a first support portion that can be configured to rest at least partially on a first shoulder of a wearer and a second support portion that can be configured to rest at least partially on a second shoulder of the wearer. Protective apparel can be coupled to the first support portion and the second support portion of the yoke support structure, and can be configured to include a vision shield in front of the wearer's face for viewing and a protective barrier over the wearer.
- In some embodiments, an air circulation system can be configured to be coupled to the yoke, and can be configured to provide air replenishment and air conditioning. The air circulation system can include a first fan and a second fan. The first fan can be configured to draw air into or out of the interior of a barrier space and the second fan can be configured to draw air into or out of an interior barrier space. The first fan and the second fan can be disposed away from the wearer's ears and can reduce noise generated by the fans. The yoke can include one or more hollow chambers configured to communicate air within the yoke. In some embodiments, the first fan and the second fan can be disposed within, or coupled to a yoke support structure portion that can extend down the back of the wearer. In some embodiments, a single fan may be used to draw air out of the interior barrier space or to introduce outside air into the interior barrier space.
- In some embodiments, an intake fan can be configured to direct air through a yoke portion and out of a front of the yoke in a direction substantially parallel to the wearer's vision, which in some embodiments can be toward the vision shield. This can reduce an amount of air blown directly onto the wearer's face. In such an embodiment, the air may be directed around a curvature of the vision shield in front of the wear's face and to another side of the yoke. One or more inlet ports on the other side of the yoke can be directed to an exhaust fan that can create negative pressure that can result in drawing the air out of the interior of the barrier space.
- In some embodiments, the vision shield has a surface area, i.e. a field of vision, of at least 72 inches square and preferably one to four times greater than 72 inches square. A lateral distance between the first yoke portion and the second yoke portion provides for a greater field of vision as the vision shield spans from the first yoke portion to the second yoke portion while the first yoke portion and the second yoke portion are supported by the wearer's shoulders.
- In other embodiments, the support apparatus couples to a harness including a waist belt and shoulder straps. The waist belt and shoulder straps may be stand alone or incorporate into wearable garments. In other embodiment, the support apparatus coupled to a torso securement device such as a jacket, vest, a shirt, etc.
-
FIGS. 1-19 depict various embodiments of protective apparel and support apparatus and/or portions of apparatus. An apparatus can include a yoke, one or more gowns, togas, and/or hoods (single piece and/or multi-piece), and/or a harness, etc. While each embodiment can be described as including certain element or features, it is understood that non-mutually exclusive elements and features of any embodiment can be included in any other embodiment. -
FIG. 1 depicts a yoke support structure (“yoke”) 100 of a protective apparel and support apparatus according to an embodiment. Theyoke 100 is a support structure that can be configured to rest on the shoulders and upper torso region of a wearer (not shown inFIG. 1 ). Theyoke 100 includes afirst chest member 102 a, asecond chest member 102 b and alateral chest member 102 c. Theyoke 100 further includes afirst back member 106 a coupled to thefirst chest member 102 a, and asecond back member 106 b coupled to thesecond chest member 102 b. Theyoke 100 can be configured such that theinner contours 120 a, b of theyoke 100 can substantially rest on the shoulders of the wearer and can substantially rest adjacent to portions of the chest and back of the wearer. Theyoke 100 can be configured to rest securely on the upper torso of the wearer and can be configured to support portions of the protective apparel (not shown). Thefirst chest member 102 a and thefirst back member 106 a form thefirst shoulder portion 104 a. Thesecond chest member 102 b and thesecond back member 106 b form thesecond shoulder portion 104 b. - In this embodiment the
first back member 106 a is hingedly coupled to thefirst chest member 102 a with afirst hinge 108 a; and thesecond back member 106 b is hingedly coupled to thesecond chest member 102 b with asecond hinge 108 b. Thefirst hinge 108 a and thesecond hinge 108 b can allow theyoke 100 to adjust to the size of the wearer by pivoting the chest member and the back member relative to one another about hinges 108 a, 108 b, to change the shoulder opening size ofyoke 100. This can accommodate difference in torso thickness from one wearer to another wearer while still allowing theyoke 100 to wrap over the shoulders. In alternative embodiments, theyoke 100 is a unitary structure and may be flexible such that yoke material bends, and can allow the yoke to be “form-fit” to the wearer by bending the unitary structure. Other embodiments may incorporate a plurality of members, while some or all may be flexible or some or all may be at least semi-rigid, or a combination thereof. For example, a portion of the yoke may be a formable wire frame and another portion may be a plastic support portion. - The
yoke 100 can be configured to rest on the wearer's shoulder at thefirst shoulder portion 104 a and at thesecond shoulder portion 104 b. In this embodiment thechest members lateral chest member 102 c. In other thechest members second chest members yoke 100 can also partially rest on the chest in varying degrees with the chest members 102 a-c. -
FIG. 2 is a side view of ayoke 100 shown positioned on awearer 200. Theyoke 100 is positioned on thewearer 200's shoulders and include a substantiallytransparent vision shield 202 positioned in front of thewearer 200'sface 204. Thevision shield 202 can be configured to maintain barrier protection of the protective apparel while allowing thewearer 200 to see the patient. The weight of thevision shield 202 can be supported by theyoke 100 and can be distributed onto the shoulders 206 and can transfer the weight of thevision shield 202 to the wearer. Thevision shield 202 position relative to the wearer'sface 204 can be a function of a standoff distance (not shown) of thevision shield 202 from the chest members 102 a-c and anangle 208 of a tilt away from theyoke 100 and the wearer. Having thevision shield 202 coupled to theyoke 100 can offset the vision shield 202 a distance from the wearer's face. - The
first back member 106 a and thesecond back member 106 b can act as counter weight configured to counteract a moment of force on the front of theyoke 100 due to the weight of thevision shield 202, a protective garment 302 (see, e.g.,FIG. 3 ), and the front portion of theyoke 100. Balancing theyoke 100 minimizes movement of theyoke 100 relative to thewearer 200. A length and a weight of theback members yoke 100 can be imparted from the chest member's 102 a-c on to the wearer's chest, the counter weight effect of theback members yoke 100 can cradle the wearer's torso to minimize movement of theyoke 100 as it is worn. - As shown in
FIGS. 1-4 , theyoke 100 can include a downward u-shape that can lower the center of gravity of the overall protective apparel and support apparatus (not shown) as it sits over the shoulders of the wearer, distributing the weight to stabilize the apparatus. Although it is preferred that movement of the protective apparel and support apparatus is minimized, some movement of the apparatus relative to the wearer may be acceptable. In such embodiments, thevision shield 202 can be sized such that some movement does not hinder the wearer's line of sight. -
FIG. 3 is a side view of theyoke 100 shown positioned on awearer 200 and includes thevision shield 202 and aprotective garment 302. Theprotective garment 302 can be coupled to theyoke 100, thevision shield 202 and/or a combination thereof. In this embodiment theprotective garment 302 is coupled to thevision shield 202. Thevision shield 202 can be selectively coupled to the yoke and can be coupled to the yoke after the yoke is fitted on the wearer. In other embodiments, thevision shield 202 can be coupled to the yoke prior to the yoke being fitted to the wearer. Theprotective garment 302 can be, for example, a hood, a body toga, a gown, an upper torso gown, combinations of said protective garments, and/or the like. Theprotective garment 302 is positioned between the patient and the surgeon or care giver. Theprotective garment 302 and thevision shield 202 can be configured to form aninterior barrier space 314. Theinterior barrier space 314 is generally the space between theprotective garment 302 and the wearer. The wearer's head and at least portions of the upper body of the wearer are contained within theinterior barrier space 314. Theinterior barrier space 314 is separated from anexterior 316 of the system. -
FIG. 4 is a side view of theyoke 100 as it rests on the wearer's torso, showing the conforming fit of theyoke 100 to the wearer's upper torso according to another embodiment. The back members 106 a-b rest on aback portion 402 of the wearer's torso, theshoulder portions 104 a-b, rest at least on the top of the wearer's shoulders and the chest members 102 a-c rest on a front portion of the wearer's shoulders and the chest of the wearer's torso. Thefirst hinge 108 a can be configured to couple thefirst back member 106 a andfirst chest member 102 a and can allow rotation of thefirst back member 106 a relative to thefirst chest member 102 a and can change the shape of the yoke 100 (the distance between thefirst chest member 102 a and thefirst back member 106 a) to conform more closely to the wearer's torso size and shape. -
FIG. 5 is a top view of ayoke 100. In this embodiment the chest members 102 a-c and the back members 106 a-b have internal chambers, a firstchest member chamber 530, a secondchest member chamber 532, a firstback member chamber 534 and a second back member chamber 536 (“chambers 532-536”).FIG. 5 further illustrates dimensions of theyoke 100. - The overall width of the
yoke 100 can provide a support that is generally wider than the wearer's head which can allow for donning of theyoke 100 and the accompanying protective apparel (not shown). A first inside dimension of the yoke WI, 502 measured at the rear of the yoke between thefirst back member 106 a and thesecond back member 106 b can be greater than 7.0 inches and preferably can be greater than 9.0 inches. A first outside dimension Wo, 503 measured at the outer most dimension of the front portion of theyoke 100 between an outside of thefirst chest member 102 a and an outside of thesecond chest member 102 b. The first outside dimension Wo can affect the distance thevision shield 202 is positioned relative to the wearer once theyoke 100 is donned. The wider the yoke 100 (Wo), the wider thevision shield 202 and subsequently, the greater the field of vision, as well as the greater the distance theshield 202 will be offset from the wearer's face. -
Yoke 100, as shown inFIG. 5 , further includes air transport ports, specifically, afirst air port 510 and asecond air port 512. Thefirst air port 510 and thesecond air port 512 are configured to allow air to be communicated between the interior barrier space 514 (or similarly as interior barrier space 314) of the system to the outside of the barrier. In this manner, air within theinterior barrier space 514 can be replenished. In some embodiments one or more fans can be used for air circulation and/or replenishment. In this embodiment, a first fan 540 (shown in broken line) draws air into theinterior barrier space 514 through the firstexternal air port 510 while a second fan 542 (shown in broken line) exhausts air from theinterior barrier space 514 through thesecond air port 512. The air that enters through thefirst air port 510 is communicated through the chambers 532-536 and then introduced to theinterior barrier space 514 by at least oneinlet ports 518. After flowing through theinterior barrier space 514, the air that enters theyoke 100 through one ormore outlets 520, travels through the one or more other of chambers 532-536 and is exhausted from theyoke 100 by thesecond blower fan 542 through the secondexternal port 512. - The
inlet port 518 may be formed in any of thechest members FIG. 5 ,yoke 100 includes more than oneinlet port 518; specifically,first chest member 102 a can include a set ofinlet ports 518, andsecond chest member 102 b can include a set ofoutlet ports 520. While shown inFIG. 5 as including a certain shape and/or location, in some embodiments, the shape and/or location of the one or more inlet and outlet ports can vary. For example the one or more ports may be one or more slots in theyoke 100. - In this embodiment the
inlet ports 518 can introduce air into theinterior barrier space 514 fromfirst air port 510, while theoutlet ports 520 can remove air that can be exhausted from thesecond air port 512. This is in effect a push/pull system wherein air is introduced (pushed) into theinterior barrier space 514 by thefirst air port 510, a first fan (shown later) and theinlet ports 518 and exhausted (pulled) through the second set ifinternal ports 520, a second fan (shown later) and the secondexternal port 512. In this embodiment the air may be directed from theinlet ports 518 toward thevision shield 202 and drawn across the shield into theoutlet ports 520, thereby replenishing the air in theinterior barrier space 514. It is also understood by those of ordinary skill in the art that ports may be placed throughout the yoke. The ports may also be directed at the wearer or directed away from the wearer. Alternatively, various ports may be directed in different directions. - As described herein, a protective apparel and support apparatus can define an interior barrier space and a sterile field to substantially separate a wearer, for example a surgeon, from a person or thing, for example a patient. In some embodiments the apparatus includes a one-piece suit that covers the head and the body portions of the wearer. In some embodiments, the apparatus includes multi-piece suits, for example, having a hood portion to cover a wearer's head and/or upper body, and a gown portion to cover a wearer's upper body and lower body. In these embodiments the
yoke 100 is placed on the wearer and at least under the head covering portion of the protective apparel. In other embodiments theyoke 100 rests on the wearer under all portions of the protective apparel. -
FIG. 6 is a perspective view of aprotective gown 600 that may form a portion of the invention. Theprotective gown 600 can include a front 602 and a back (not shown), aneck opening 604, afirst sleeve 606 a and asecond sleeve 606 b. Theprotective gown 600 has achest portion 622, which can be indicated as the portion above thedash line 630. Theprotective gown 600 includes a firstyoke receiving area 610 and a secondyoke receiving area 612. Theprotective gown 600 also includes anabdominal portion 614 and abottom portion 616. The protective gown may also include azipper 618. While shown inFIG. 6 as including azipper 618, in other embodiments,protective gown 600 can include other fastening devices, such as hook and loop fasteners, adhesive or the like when theprotective gown 600 is configured to fully encloses the back of the wearer. While thesleeves FIG. 6 as being short sleeves, in other embodiments,sleeves FIG. 7 ). Eachsleeve 606 a, b may have anelastic cuff 620 a, b. Theprotective gown 600 can be used with a second protective portion (see, e.g.,FIG. 7 ), which may be a hood. -
FIG. 7 is a perspective view of a second protective gown portion, specifically, ahood 700.Hood 700 includes avision shield 702, ahead portion 704, abody portion 705 which includes achest area 716, and a pair ofsleeves 706 a, b.Hood 700 may include azipper 710 running from the front of the hood to the back over a top 712 of thehood 700 and down a back 714 of thehood 700.Hood 700 can include one or more elastic elements. Specifically,hood 700 includes a chest elastic 718 included around thechest area 716 and can include elastic sleeve cuffs 720 a, b at least at the end ofsleeves 706 a, b. The first sleeve706 a and thesecond sleeve 706 b are configured as long sleeves in this embodiment. Thechest area 716 has abottom edge 707 which defines achest opening 709. While shown inFIG. 7 as including long sleeves, in other embodiments,hood 700 can include no sleeves or short sleeves. In such embodiments,hood 700 can be included in an apparatus having a first gown that includes long sleeves. In this manner, at least one of either the first gown or the hood can includes long sleeves. - The
hood 700 can include the same material as theprotective gown 600 or it can include different material. For example thehood 700 may be made of a more breathable material than theprotective gown 600. Thehood 700 may be made of a lighter material than theprotective gown 600. In other embodiments, thehood 700 has a different barrier protection level than theprotective gown 600, for example, thehood 700 material may have a protection level in accordance with the Association for the Advancement of Medical Instrumentation (AAMI) standards. The material may be different from gown to gown or even within a single gown, theprotective gown 600 may be rated at different AAMI standard levels. Different portions of each thehood 700 and theprotective gown 600 may have different materials or protection levels as well. In some embodiments, one or both of theprotective gown 600 and/or thehood 700 can include woven, non-woven materials, plastics or the like. In some embodiments, materials may be biodegradable, compostable or both. -
FIG. 8 is a rear perspective view of thehood 700. Thehood 700 further includes afirst hood port 802 a which is a void in thehood 700. Thehood port 802 a is configured to substantially align with and be coupled to an air port of a yoke, for example, thefirst air port 510 of theyoke 100. The hood portion further includes asecond hood port 802 b which is a void in thehood 700. Thehood port 802 b is configured to substantially align and is configured to be coupled to an air port of a yoke, for example, thesecond air port 512 of theyoke 100. Thehood ports yoke 100. In some embodiments, one or both ofport - As described above, the
hood ports first air port 510 and thesecond air port 512 of theyoke 100. In such embodiments, the air ports of the yoke can be configured to be secured to thehood ports hood port yoke 100 adjacent theair port hood ports hood port 802 a may have a size smaller than an outside dimension of thefirst air port 802 a of theyoke 100. In this embodiment thehood port 510 is sized large enough to slip over thefirst air port 510 and may be held in place by a detent (not shown) in thefirst air port 510. In yet another embodiment, thehood port 802 a is greater in size relative to thefirst air port 510 of theyoke 100 such that the hood port generally aligns with thefirst port 510 when the hood is donned. In some embodiments, an elastic fastener (not shown) can be disposed about one or more ofhood ports hood ports - In an apparatus including the
hood 700 and thefirst gown portion 600, thehood 700 can be donned such that portions of thegown 600 are covered by thehood 700 to complete the sterile field about the wearer. In such embodiments, thesleeves 606 a, b of theprotective gown 600 are overlapped by thesleeves 706 a, b of thehood 700. The overlap can be configured to maintain the sterile filed. The chest elastic 718 of thehood 700 holds thechest area 716 of thehood 700 tight to thechest portion 622 of theprotective gown 600 such that the there is sufficient material overlap to maintain the sterile field. While thehood 700 is shown as including acertain body portion 705hood 700 1ength, in other embodiments, the length of the body portion can be shorter, or longer, for example, extending below the chest area for example. -
FIG. 9 illustrates awearer 901 of an apparatus including theprotective gown 600, theyoke 100, and thehood 700. Specifically,FIG. 9 illustrates thewearer 901 with theprotective gown 600 on and theyoke 100 placed on the wearer over portions of theprotective gown 600, with the hood portion off. Theback members 106 a, b of theyoke 100 are not connected so as to accommodate rear entry donning of theyoke 100 by thewearer 901. Thewearer 901 slides theyoke 100, indicated byarrow 904, on from a front side of thewearer 901 and then down onto the shoulders of thewearer 901. Thewearer 901, in this illustration, is holding thehood 700 in preparation to don thehood 700 over theyoke 100 and over thegown 600. Thehood 700 is shown here in an open position to be donned on thewearer 901 such that sterile filed is maintained. Thehood 700 is then closed, by zipping up thehood 700 in this embodiment. Theshield 702 has a yoke receiving element 1404 (see e.g.,element 1404 inFIG. 14 ) that includes notches or voids in the shield, adhesive, hook and loop or other securement devices, or a combination thereof. Hook andloop fasteners 902 may be placed at various positions on theshield 702 and theyoke 100 to hold the shield to theyoke 100. - In some embodiments,
yoke 100 can be configured to be coupled to a securement device, specifically a body securement device, such as, for example, a harness. In such embodiments, the securement device can be configured to be worn by a wearer and can be mechanically coupled toyoke 100 such that theyoke 100 can be restrained to the wearer. -
FIG. 10 illustrates a securement device, specifically aharness 1000 configured to be coupled to theyoke 100. Although the configuration of theyoke 100 can allow it to be a stand alone apparatus, theharness 1000 can supplement theyoke 100 as part of the apparatus. In some situations, theharness 1000 may provide improved fit for the wearer. In other embodiments theharness 1000 provides additional ergonomic features. Theharness 1000 includes shoulder straps, specifically afirst shoulder strap 1002 a, asecond shoulder strap 1002 b, and abelt 1006. Thefirst shoulder strap 1002 a includes a firstyoke attachment portion 1008 a and thesecond shoulder strap 1002 b includes a secondyoke attachment portion 1008 b. Theharness 1000 may be used in conjunction with theyoke 100 and a protective garment as part of a protective apparel and support apparatus. In this embodiment, thebelt portion 1006 of theharness 1000 can be configured to provide support for the lower back and abdominal regions of the wearer. - In this embodiment, the
yoke attachment portions 1008 a, b comprise a pair of attachable straps that comprise a firstyoke securement strap 1010 a, b and a secondyoke securement strap 1012 a, b for eachshoulder strap 1002 a, b. The firstyoke securement strap 1010 a and a secondyoke securement strap 1012 a are configured to be selectively coupled to a first side of theyoke 100 and a firstyoke securement strap 1010 b and a secondyoke securement strap 1012 b are configured to be selectively coupled to a second side of theyoke 100. - In this embodiment, the
harness 1000 is worn by the wearer and theyoke 100 is placed on to the wearer. The yoke can rest adjacent to at least a portion of the yoke attachment portions 1008 a-b of theharness 1000. The firstyoke securement strap 1010 a and a secondyoke securement strap 1012 a can be wrapped over theyoke 100 and coupled together by a fastener, which in this embodiment is a hook and loop fastener. At least one of the first and secondyoke securement straps yoke 100 to secure the yoke to theharness 1000. The same applies to the firstyoke securement strap 1010 b and a secondyoke securement strap 1012 b coupling the second side of theyoke 100 to theharness 1000. Once theharness 1000 is coupled to theyoke 100, the protective apparel may be fitted to the yoke and the wearer. In some embodiments, theyoke 100 can be coupled to more than one securement device, such as, for example, a backpack, a vest, a jacket, shirt, scrub or the like generally worn by the user. - Other embodiments and means for coupling the yoke to the harness will be evident to those of ordinary skill in the art. Some embodiments include providing hook and loop fastener on conjoining portions of the yoke and the harness. In this embodiment a first portion of the hook and loop fastener resides on the top of the shoulder strap and aligns with a second complimentary hook and loop fastener portion attached to the underside of the yoke, selectively coupling together when the yoke is placed on the
harness 1000. - In yet another embodiment, the yoke attachment portion is a spring bracket coupled to the shoulder strap of the
harness 1000, illustrated inFIG. 11 . Thespring bracket 1102 is a u-shaped bracket that receives theyoke 100, holding theyoke 100 to theharness 1000 through the frictional forces of the spring. An additionally securement strap may be placed at the top of theu-shape bracket 1102 in some embodiments. - In other embodiments, a yoke can be couple to a harness using, for example, cover snaps, clips, etc. Further,
FIG. 10 depicts the yoke being coupled to the harness, other embodiments, the yoke can be coupled to other garments worn by the wearer, for example, a shirt. -
FIG. 12 is a perspective view of aharness 1000 that is being coupled to theyoke 100 as it is donned on the wearer. Once theyoke 100 is in place, the yoke securement straps can be wrapped over the yoke portions and secured together.Harness 1000 can allow theyoke 100 to be secured to the wearer, and may reduce or eliminate forces and/or stress on the wearer's head, such that a lens (not shown) can include an increased field of vision, and can be spaced apart a distance from the wearer's face, configured to improve comfort and maneuverability. In such an embodiment theyoke 100 can be donned by placingyoke 100 in front of the wearer's chest and neck region and then down onto the shoulders of the wearer. The height of the yoke relative to the wearer is illustrated inFIG. 12 . In some embodiments, the yoke can be brought up from in front of the wearer, sliding around the neck and brought to rest on the shoulders of the wearer 1201. In some embodiments, the open yoke configuration is that the yoke need only be raised enough to clear the shoulders during donning; and it may not be necessary to reach over the wearer's head to be donned. - In one embodiment the
yoke 100 is held by the chest portions, and moved back and over the shoulders of the wearer and brought to rest on the shoulder. Once resting, theyoke 100 may be secured by the yoke attachment portions 1008 a-b for example. -
FIG. 13 is a side view 1300 of theyoke 100 with thevision shield 202 coupled thereto. The air flow directions and internal portions of the yoke are represented in broken line format. Inlet ports 518 (see, e.g.FIG. 5 ) are shown as a first internal air port 1306 a, a second internal air port 1306 b, a third internal air port 1306 c, a fourth internal air port 1306 d, and a fifth internal air port 1306 e. The internal air ports are configured to communicate with theinternal chambers yoke 100. The air ports 1306 a-e may be apertures in theyoke 100 or the apertures may be complimented by nozzles or the like. - The first internal air port 1306 a is shown as an aperture in the
yoke 100chest member 102 a. A first airflow line 1308 a indicates the general direction of flow of air as it discharges from the first internal port 1306 a. - The second internal air port 1306 b is an aperture in the
chest member 102 a. Adjacent to the second port 1306 b is a first air baffle 1310 a. The first air baffle 1310 a is configured to direct at least some of the air out of the internal port 1306 b. The first air baffle 1310 a is also configured in this embodiment to direct air into the first internal air port 1306 a. - The third internal air port 1306 c is an aperture in the
chest member 102 a. Adjacent to the third port 1306 c is a second air baffle 1310 b configured to divert air through the third port 1306 c and in the general direction of the third airflow line 1308 c. The second air baffle 1310 b is also configured in this embodiment to direct air into the second internal air port 1306 b. - The fourth internal air port 1306 d is an aperture in the
chest member 102 a. Adjacent to the fourth port 1306 d is a third air baffle 1310 c configured to divert air through the fourth port 1306 d and in the general direction of the fourth airflow line 1308 d. The third air baffle 1310 c is also configured in this embodiment to direct air into the third internal air port 1306 c. - The fifth internal air port 1306 e is an aperture in the
chest member 102 a. Adjacent to the fifth port 1306 e is the third air baffle 1310 c configured to divert air through the fifth port 1306 e and in the general direction of the fourth airflow line 1308 e. - In the embodiment illustrated in
FIG. 13 , the internal air ports 1306 a-e are located in achest member top 130 a ofyoke 100. This position in theyoke 100 allows the air to be directed parallel to the wearer's line of sight and not onto the wearer directly. The air flow is directed along thevision shield 202, beginning where thevision shield 202 meets theyoke 100 at a yoke-shield interface line 1340. The air flow generally travels along theshield 202 until the shield curves around to mate with thesecond chest member 102 b. Said another way, the shield can include a curvilinear shape; can extend from a first side ofyoke 100 to a second side ofyoke 100; and can curve around a chest portion 102 a-c. The air can be diverted by thevision shield 202 and can generally travel around theshield 202 and can be directed toward the opposite side of thevision shield 202 and thesecond chest member 102 b. In this embodiment, the air can travel from one of internal air ports 1306 a-e on a first side of theyoke 100 to an internal air port (not shown) on a second side of theyoke 100. - The quantity of internal air ports may be fewer than or greater than those illustrated in the present embodiment. The size of the apertures may also vary, and may further vary from port to port. The air can flow to the internal air ports 1306 a-e via one or more internal chambers, or internal chamber portions of the yoke100. The internal chamber comprises the
first chamber 532 of thechest member 102 a which is in communication with thesecond chamber 536 of theback member 106 a of theyoke 100. The hinge portion 1330 of thechest member 102 a and theback member 106 a, is configured to couple thechest member 102 a and theback member 106 a such that the air can move between thechest member 102 a and the back member 106, and the internal air ports and external air ports. As shown inFIG. 13 ,yoke 100 can include a blower (e.g. a fan) 1318. Blower 1318 can be disposed within theback member 106 a and can be adjacent to theexternal air port 510. In this embodiment the blower 1318 can draw air into the yoke chamber, thesecond chamber 536, which then travels through the hinge 1330 to thefirst chamber 532 and out the internal air ports 1306 a-e. - In this embodiment outlet ports 520 (see
FIG. 5 ) have a similar arrangement, as with thefirst chest member 102 a of the yoke portions illustrated inFIG. 13 , in thesecond chest member 102 b. A second blower can be disposed in theback member 106 b however; the second blower can be configured to draw air out of theinterior barrier space 514 throughoutlet ports 520, a first and second chamber of thesecond chest member 102 b, through the second blower and out the secondexternal port 512. - Also illustrated in
FIG. 13 is the configuration of thevision shield 202 relative to theyoke 100. Thevision shield 202 may be angled away from the vertical axis 1302 at a shield angle 1304, which may be an angle between 0 degrees and at least 45 degrees. In this embodiment the shield angle 1302 is between 20 and 30 degrees and may preferably be about 25 degrees from the vertical ‘Y” axis 1302. This angle 1304 in conjunction with the configuration of theyoke 100 can offset thevision shield 202 surface from the wearer's face making the system more comfortable for the wearer. Theyoke 100 extends in the X direction away from the users face, while thevision shield 202 further extends away from the face by nature of the angle, both creating the distance between the wearer's face and theshield 202 while distributing the weight of theshield 202 andgarment 302 to the upper torso. Further, theshield 202 may support portions of the protective apparel that extend beyond the wearer's head, and can hold the apparel out of the wearer's face. - As shown in
FIG. 13 ,yoke 100 can include a power system for the blower 1318 including one or more batteries 1320 and a switch 1322 coupled between the batteries 1320 and the blower 1318. The batteries 1320 and the blower 1318 can be positioned within theyoke 100 to provide counter weight to theshield 202 and the protective apparel, balancing the yoke on the wearer. The blower 1318 can be a Sunon GB0545AFV1-8 with maglev bearing for example. Those of ordinary skill in the tart will understand that other fans or blowers may achieve the results intended in accordance with this disclosure. -
FIG. 14 illustrates ashield 1402 in accordance with one embodiment of the disclosure.Shield 1402 can be similar to and can include similar elements to shield 202. In this manner,shield 1402 can be part of any protective apparel and support apparatus described herein. Theshield 1402 includes a top 1406 and a bottom 1408, afirst side 1410 and asecond side 1412. The bottom includes ayoke engagement element 1404, which can be a void or a notch in theshield 1402 as illustrated in this embodiment. This engagement element may mate with a shield receiving element (see 1303 inFIG. 13 ). Thefirst side 1410 and thesecond side 1412 can include portions configured to couple to theyoke 100 with securement devices such as fasteners. The fasteners may include, and are not limited to those that would secure the shield to the yoke, such as hook and loop fasteners, adhesive, buttons, snaps, keyholes, clips an the like. The shield is substantially clear and may have coating such as anti-glare, anti-reflection, hydrophobic, anti-fog and the like. The securement devise may be placed on or incorporated into the shield in thefastener area 1414. -
FIG. 15 is an exploded perspective view of the components of theyoke 100. Theyoke 100 in this embodiment comprises a first chest memberfirst half 1502 and first chest membersecond half 1504, a second chest member first half 1506 a second chest membersecond half 1508, a third chest memberfirst half 1510 and a third chest membersecond half 1512. In this embodiment the third chest memberfirst half 1510 and the third chest membersecond half 1512 are coupled together by a hinge 1514. The hinge may further include an adjustment device, for example a threaded adjustment device configured to adjust the angle of the hinge and hence the angle of the third chest memberfirst half 1510 and the third chest membersecond half 1512. - The first chest member
first half 1502 and first chest membersecond half 1504 are coupled together to form thefirst chest member 102 a. The second chest memberfirst half 1506 and a second chest membersecond half 1508 are coupled together to form thesecond chest member 102 b. Thefirst chest member 102 a and thesecond chest member 102 b have an internal chamber enclosed on four sides creating a hollow internal air flow chamber. Thethird chest member 102 c includes twosingle piece portions - The
yoke 100 in this embodiment includes a first back memberfirst half 1522 and first back membersecond half 1524, a second back memberfirst half 1526 and a second back membersecond half 1528. A first back memberfirst half 1522 and first back membersecond half 1504 are coupled together to form thefirst chest member 106 a. The second chest portionfirst half 1506 and a second chest membersecond half 1508 are coupled together to form thesecond chest member 106 b. Thefirst back member 106 a and thesecond back member 106 b have an internal chamber enclosed on four sides creating a hollow internal air flow chamber. - The
first chest member 102 a and thefirst back member 106 a are coupled together byhinge 108 a as shown inFIG. 1 , and similarly inFIG. 13 and in exploded view inFIG. 15 . The first chest memberfirst half 1502 and the first chest membersecond half 1504 are assembled to form thefirst chest member 102 a with the first chest member hinge at a first end 1546 of thefirst chest member 102 a. Thefirst back member 106 a, comprising the first back memberfirst half 1522 and the first back membersecond half 1524 are assembled such that the back member hinge engages with the chest member hinge. In this embodiment the chest member hinge is partially contained within the back member hinge, e.g. in a fork like manner. - The first chest member hinge 1332 includes a
first protrusion 1550 and asecond protrusion 1552. Thesecond protrusion 1552 selectively engages with afirst void 1554 in the firstback member hinge 1555. Thesecond protrusion 1552 and thefirst void 1554 share a common axis about which is an axis of rotation 550 (seeFIG. 13 ) for thefirst chest member 102 a and thefirst back member 106 a. - The
second protrusion 1550 can engage one of the plurality of voids, specifically, a second void, a third void and a fourth void in this embodiment. Thesecond protrusion 1550 in combination with one of thesecond void 1360third void 1362 orfourth void 1364, can secure thefirst chest portion 102 a at a first, second, or third angel relative to theback member 106 a. Thesecond protrusion 1550 is configured on the first end 1546 which may be flexible such that the protrusion may flex inwards and disengage the one of thesecond void 1360,third void 1362 orfourth void 1364. Thesecond protrusion 1550 can include a button surface that may be accessible to a wearer's finger that is pushed on, to disengage the second protrusion from thefirst void 1360 of back member and allow theback member 106 a to rotate, until thesecond protrusion 1550 engages another one of the voids e.g. thethird void 1362 or thefourth void 1364 of the back member hinge portion. - As shown in
FIG. 15 , the yoke may include a power system for afirst fan 1532 and asecond fan 1530. The power system may include one ormore batteries 1534, one ormore battery contacts battery compartment cover 1536, and abattery switch 1538. -
FIGS. 16-18 are views of a yoke 1601 according to another embodiment. Specifically,FIG. 16 is a perspective view of yoke 1501,FIG. 17 is a top view of yoke 1601, andFIG. 18 is a side view of yoke 1601. Yoke 1601 includes afirst chest member 1502 a, asecond chest member 1502 b, and alateral chest member 1502 c, a plurality ofinlets 1518, a plurality ofoutlets 1520, avision shield support 1503, afirst fan 1508 a and asecond fan 1508 b, and afirst battery compartment 1510 a and asecond battery compartment 1510 b. Yoke 1501 can include similar elements with similar features withyoke 100. For example,first chest member 1502 a can be similar tofirst chest member 102 a. As seen inFIGS. 16-18 , and in contrast toyoke 100 described above, yoke 1601 does not include back members. In some embodiments,first battery compartment 1510 a andsecond battery compartment 1510 b can be arranged such that one or more batteries (not shown) can be removed and/or otherwise replaced while yoke 1501 is in use, e.g., during a surgery or other procedure. In some embodiments,first fan 1508 a,second fan 1508 b, and/or the one or more batteries can be sized to counterbalancefirst chest member 102 a,second chest member 102 b, and/orlateral chest member 102 c. -
FIG. 20 is a side view of ayoke 2001 according to an embodiment.Yoke 2001 includes achest member 2003 that can be disposed on achest 2012 of a wearer and can be close to a front of a neck (not shown) of the wearer's.Chest portion 2003 can be configured such that a wearer's line ofsight 2008 may not be obstructed. As shown inFIG. 20 ,yoke 2001 can primarily and/or completely rest on the wearer'schest 2012. In someembodiments yoke 2001 can arch over the wearer's shoulders (not shown) and can extend to a back (not shown) of the wearer as disclosed in other embodiments (see, e.g.,FIG. 4 ). As shown inFIG. 20 , avision shield 2002 has anupper portion 2004 and alower portion 2006.Lower portion 2006 can extend inwardly towards the wearer.Vision shield 2002 can be configured with a concave bubble shape to provide an extended field of vision and can maintain a substantially undistorted view of the subject and area surrounding the wearer. In this embodiment,vision shield 2002 can be pre-formed in the concave shape. As discussed above, in some embodiments,vision shield 2002 can be other shapes, such as, for example, rectangular, square, etc, and can be pre-formed, or formed whenvision shield 2002 is coupled toyoke 2001. -
Vision shield 2002 can be coupled toyoke 2001 by an attachment device, such as hook and loop, adhesive, buttons, snaps, keyholes, clips, magnets or the like. As shown inFIG. 20 ,yoke 2001 includes hook andloop fasteners 2010. Hook andloop fastener 2010 can include a first hook or loop fastener carried on theyoke 2001 and an associated hook and loop fastener carried onvision shield 2002.Yoke 2001 can be secured tovision shield 2002 by any number of hook and lookfasteners 2010. In some embodiments,vision shield 2002 can be sized such that alignment ofvision shield 2002 toyoke 2001 is not critical. Said another way, a small misalignment ofvision shield 2002 may not obstruct lines ofsight 2008 of the wearer. Although the size ofvision shield 2002 can allow for variable alignment relative toyoke 2001, the shape of the vision shield can be complimentary toyoke 2001. - The
vision shield 2002, configured in the pre-formed concave manner, can allow for stackability during shipping and storage. In one embodiment,vision shield 2002 can be coupled to the protective apparel (not shown) and can be folded and stacked together for storage and shipping to the end user.Vision shield 2002 can be attached to the protective apparel with adhesive, stitched, ultrasonically bonded, or the like. In one embodiment the garment is made of a non-woven material. In other embodiments, the protective apparel can include any materials described herein. In other embodiments,vision shield 2002 can be coupled to the protective apparel just prior to donning on the yoke, e.g. after manufacture and shipping. - In some embodiments,
vision shield 2002 can include a thickness between about 0.005 inches and about 0.050 inches. In some embodiments,vision shield 2002 can includes polycarbonate material. In other embodiments,vision shield 2002 can includes polyethylene terephthalate (PET) materials. In some such embodiments,vision shield 2002 can include polyethylene terephtalate glycol-modified (PET-G) materials. While desrcibeb herein as including the above thicknesses and/or materials, in some embodiments,vision shield 2002 can include other suitable thicknesses and/or materials. - While some embodiments depict a chest member including three portions (see, e.g.,
FIG. 1 ), specifically a first chest member, a second chest member, and a lateral chest member, in other embodiments, a yoke may not include a lateral chest member portion.FIG. 21 is a perspective view of ayoke 2100 disposed on a wearer.Yoke 2100 includes first chest member 2101 and asecond chest member 2101 b which are not connected across the chest of the wear with a lateral chest member. This can increase visibility below the wearer's head. In this embodiment, avision shield 2102 can extend all the way to the wearer'schest 2106 at achest portion 2104, without being obstructed by a lateral chest member for example. -
FIG. 22 is a view of ayoke 2201 coupled to asecurement device 2202. Thesecurement device 2202 may be a garment adapted to couple with theyoke 2201 and/or with the protective apparel (not shown) portions thereof.Yoke 2201 can be permanently coupled to thetorso securement device 2202 or may be detachably coupled thereto. Embodiments whereyoke 2201 is detachably coupled can allow for interchangeability, cleaning ofsecurement device 2201. Thesecurement device 2201 can, as illustrated in this embodiment be a vest, or alternatively for example may be a jacket, shirt, scrub or other torso securement device or the like generally worn by a user. - In some embodiments,
securement device 2202 can includes a fastening system, such as those described herein, to couple a vision shield and/or protective apparel tosecurement device 2202 and/oryoke 2201, and/or to compliment a fastening system ofyoke 2201. In such embodiments, clips or attachment portions on the securement device can mate with complimentary clips or attachment portions on the vision shield and/or protective apparel and/or portions thereof. - While embodiments described herein show heating and/or cooling devices integral with a yoke, in other embodiments, a heating and/or cooling system can be integral to a securement device, and that heating and/or cooling system can feed into the yoke. For example, as shown in
FIG. 23 , asecurement device 2302 can include afan 2304 configured to direct air through one or moreair flow channels 2306 ofsecurement device 2302 and intoyoke 2301. In such embodiments,securement device 2302 can include a heating and/or cooling elements (not shown) to modify a temperature of the air flow fromfan 2304. Such heating and/or cooling elements can be, for example, electrical (e.g., battery or plug elements), chemical (e.g., heat and/or ice packs), etc. In such embodiments,securement device 2302 can include pockets and/or phase change material used for temperature management. - In some embodiments, a securement device and/or protective apparel can include radiation shielding. For example, as shown in
FIG. 24 , ayoke 2401 can be coupled to asecurement device 2402 which can include x-rayprotective portion 2404. In such embodiments, x-rayprotective portion 2404 can include lead to protect the wearer while taking x-rays during a procedure. The lead can be attached tosecurement device 2402 by any suitable means for example may be held in pockets or sewn in or adhesively attached to the vest, a combination thereof or the like. -
FIG. 25 is a side view of a protective apparel and support apparatus according to another embodiment. The apparatus includes ayoke 2501 coupled to afan 2504 via anair flow channel 2506. In some embodiments,air flow channel 2506 can be outside of and coupled to asecurement device 2502. The apparatus can include avision shield 2510 andprotective apparel 2512.Fan 2504 can supply air flow toyoke 2501 and to abarrier space 2512 indirection CC.Fan 2504 can exhaust air frombarrier space 2512 in direction BB and can exhaust air fromair flow channel 2506 in direction AA. - In embodiments with one or more fans, the one or more fans can draw air into, and exhaust air out of, a securement device, protective apparel and/or yoke via ports. Air channels can be built into and/or coupled to a securement device and/or protective apparel. The air flow may be directed over heating or cooling pacts to condition the air. If a support is coupled to the vest, an air passage port can be coupled the air passage of the vest to the interior of the support to channel air around the support and about the wearers head. In some embodiments, a single fan can both intake and exhaust air from the apparatus. In some embodiments, a securement device and/or protective apparent can include three dimensional (3D) fabrics, wherein air flow is directed within the 3D fabric, for example, air channels within around the vest. Channels in the vest can be defined in the fabric to direct the air to desired portions.
- In some embodiments, a protective apparel and support apparatus can include one or more electronic devices, such as, for example, a camera, a projector, a microphone, a speaker, gesture module, network communication device, and/or control device (e.g., for controlling a fan, camera, etc). In such embodiments, the one or more electronic devices can be wired, wireless, and/or both wired and wireless. In some embodiments, the control device can control the one or more electronic devices. In other embodiments, the one or more electronic devices can be controlled remotely via the network communication device. In some embodiments, environmental and vital readings of the wearer can be transmitted via the network communication device. In some embodiments, the apparatus can include a single control device configured to control all electronics devices. In other embodiments, the apparatus can include multiple control devices associated with less than all the electronic devices. The control device can be a remote control, can be handheld, can be mounted on the yoke, protective apparel, can be foot operated (e.g., a foot pedal) and/or securement device, and/or can be controlled via a network connection. In some embodiments, a control device can change a speed of a fan and hence airflow in and out of the interior barrier space.
- In some embodiments, a camera can be coupled to the yoke and can be aimed in one or more directions. Some camera positions are adjacent to a vision shield and the vision shield can include a camera lens portion
- The yoke may have communications modules such as the microphone, the speaker, the wireless communication device, configured to communicate with a second communication device remote from the surgeon, for example other personal involved in the procedure whether in the room or not. A voice recognition module can be configured to activate the wearer's microphone circuit upon speaking to communicate without having to press a button so that the wearer may keep their hands free. The fan speed control may be voice activated as well. In one embodiment the wearer can use voice commands to activate different functions, such as fan on and off, fan speed, temperature, control music, or for other communications.
- For example, the wearer can be able to instruct the system to turn on the fans by speaking “fan on.” Or change the fan speed by speaking “fan three” or “fan up.” These are exemplary commands only and it is understood that any commands can be used. Feedback to acknowledge receipt of the command, correctly or erroneously, can be issued by audible, visible, tactile, or physical indication may be presented to the wearer. For example an audible beep through a speaker or the like can signal that the command was heard but not received properly or understood. Alternatively or additionally, a light may flash or a vibrator can activate to give a physical response to the command. Lights, such a light emitting diodes (LED) can be placed in visible locations to the wearer to represent and indicate the existence of predetermined conditions.
- In some embodiments, a gesture module can be incorporated into the apparatus so that the wearer can command different functions associated with the system by making gestures. Gestures can be detected by accelerometers or a camera system such as a yoke mounted camera, yoke mounted accelerometers or a combination thereof. The accelerometers may be carried on the protective apparel such as the sleeves or the yoke or securement device. A camera mounted in the yoke or vest portion may be aimed at the wearer, such as the head to detect motion and gestures by the wearer. Moving the head in a predefined motion gesture can signal the fan to increase speed for example. In some embodiments, electronic devices can be controlled by a combination of voice and gesture commands, and or can have redundant commands, for example, a voice command to change fan speed, as well as a gesture command to change fan speed.
- In some embodiments, a protective apparel and support apparatus can include one or more magnets configured to couple a vision shield to a yoke. In some embodiments a securement device can include one or more clips to retain the protective hood/vision shield and may not include a yoke. In such embodiments, air can be ported from the protective apparel and/or securement device into the inner barrier and around the wearer. In such embodiments, a fan can be disposed into a portion of the protective apparel and/or securement device. In some embodiments, the apparatus can include LED lights, configured to produce low or no heat and can be disposed adjacent to the vision shield to prevent glare. In some embodiments, a vision shield can be preformed, e.g. can hold a shape when not secured to a yoke, securement device and/or protective apparel. In some embodiments, a vision shield can be supported by a yoke, and the vision shield can provide the sole direct support of a protective garment. In some embodiments, a yoke can include at least one air port directed at the wearer, for example, a neck of the wearer, such that a wearer can know that air flow is present. In some embodiments, a vision shield can extend over and around a wearer's head to substantially encapsulate a wearer's head such that the wearer can have a substantially panoramic view.
- In some embodiments, a vision shield can include a portion that can present and/or otherwise function as a heads-up-display (HUD). A projector can be configured in the yoke, securement device, and/or protective apparel that can be aimed at the vision shield. The projector can project protective apparel data such as fan speed, battery power remaining, or critical patient data such as body temperature, blood pressure, hear rate/pulse and the like. A portion of the vision shield can be configured to display the information. For example, a portion of the vision can be etched or darkened in order to create the HUD effect. A projector can be coupled to a wireless receiver to receive the data from monitoring equipment. Each piece of monitoring equipment can include a communication module to transmit that data to the projector wireless receiver. In other embodiments, monitoring equipment can share a common communication module.
- In some embodiments, an apparatus can include one or more supports that can extend up from a waist of a wearer, can be included in a securement device. In such embodiments, the supports can hold the yoke off of the shoulders and can transfer at least a portion of the load to the waist and hip area of the wearer. In one such embodiment, a waist belt can be coupled to a rigid back support that can extend upwards along the wearer's back, and up and over a wearer's shoulders, and can be coupled to a chest brace. Air tubes or channels can be brought up and over the wearer's body to the front of the wearer's face to circulate fresh air to the internal chamber. A vision shield can be coupled to the yoke.
- The control device can be located in the front portion of the yoke, the protective apparel, and/or securement device as described herein. The control device can be positioned at a location within the sterile field of the wearer such that accessing the controls may not require the wearer to breach the sterile field. A switch set for fan on/of and up/down speed controls can be located at easy to access positions on the yoke or securement device for example. The controls on the control device can be physical button switches, virtual buttons, or reed switches or the like. In other embodiments, as described above, the control device can accept voice, visual, and/or gesture commands.
-
FIG. 26 is a perspective view of acontrol device 2604 coupled to a securement device 2602 includingair flow channels 2606.Control device 2604 includes a plurality of electronics modules 2608 a-d. In some embodiments,control device 2604 can be integral with a yoke, in other embodiments,control device 2604 can be integral with securement device 2602 and/or protective apparel. In other embodiments,control device 2604 can be separate from, but coupled to any of the yoke, the protective apparel, and/or securement device 2602. Electronics modules 2608 a-d can include any input and/or output device, for example microphone, speaker, lights, fan control, camera, and/or projector. -
FIGS. 27-29 depict ayoke 2701 coupling to ayoke receiver 2720, according to an embodiment. Specifically,FIG. 27 is a side view ofyoke 2701 coupling toyoke receiver 2720 in a first configuration (prior to coupling),FIG. 28 is a side view ofyoke 2701 coupling toyoke receiver 2720 in a second configuration (after coupling); andFIG. 29 is a perspective view ofyoke 2701 coupling toyoke receiver 2720 in the first configuration.Yoke 2701 can includeshoe 2703 configured to be received by aboot 2724 ofyoke receiver 2720, and ashoulder pad 2705 configured to rest on ashoulder plate 2722 ofyoke receiver 2720. In some embodiments, yoke receiver can be integral to, and/or otherwise coupled to, a securement device (e.g., harness, shirt, etc). As shown inFIGS. 27 and 30 ,yoke 2701 can be moved in direction DD such thatshoe 2703 is moved intoboot 2724 and can be moved in direction EE such thatshoulder pad 2705 is disposed onshoulder plate 2720. As shown inFIGS. 27 and 29 ,shoe 2703 andboot 2724 can be sized, e.g., can include a complimentary taper, such thatshoe 2703 can be easily maneuvered intoboot 2724. In some embodiment,yoke receiver 2720 can be monolithically formed, in other embodiments;yoke receiver 2720 can be separately formed.Yoke receiver 2720 can include material similar toyoke 2701 and/or can include different materials. - While the present disclosure and what the best modes of the inventions have been described in a manner establishing possession hereof by the inventors and enabling those of ordinary skill in the art to make and use the same, it will be understood and appreciated that there are many equivalents to the exemplary embodiments disclosed herein and that modifications and variations may be made thereto without departing from the scope and spirit of the inventions, which are to be limited not by the exemplary embodiments but by the appended claims. For example, while references have been made to specific dimensions, in other embodiments the dimensions can be different. For example, protective apparel and support apparatus described herein can be manufactured in sizes, e.g., small, medium, large, one size fits all, etc. In other examples, any yoke, vision shield, protective apparel, and/or securement device can be used with any combination of yoke, vision shield, protective apparel, and/or securement device, except for mutually exclusive combinations. Furthermore, in some embodiments, a yoke, and/or features of a yoke, can be integral with a securement device.
Claims (20)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/284,943 US9854858B2 (en) | 2011-03-22 | 2016-10-04 | Protective apparel and support apparatus and method of use |
US15/850,176 US10448685B2 (en) | 2011-03-22 | 2017-12-21 | Protective apparel and support apparatus and method of use |
US16/653,621 US11083232B2 (en) | 2011-03-22 | 2019-10-15 | Protective apparel and support apparatus and method of use |
US17/369,845 US11564427B2 (en) | 2011-03-22 | 2021-07-07 | Protective apparel and support apparatus and method of use |
US18/101,946 US12063991B2 (en) | 2011-03-22 | 2023-01-26 | Protective apparel and support apparatus and method of use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161466334P | 2011-03-22 | 2011-03-22 | |
US13/427,475 US8950017B2 (en) | 2011-03-22 | 2012-03-22 | Protective apparel and support apparatus and method of use |
US13/709,783 US9480290B2 (en) | 2011-03-22 | 2012-12-10 | Protective apparel and support apparatus and method of use |
US15/284,943 US9854858B2 (en) | 2011-03-22 | 2016-10-04 | Protective apparel and support apparatus and method of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/709,783 Division US9480290B2 (en) | 2011-03-22 | 2012-12-10 | Protective apparel and support apparatus and method of use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/850,176 Continuation-In-Part US10448685B2 (en) | 2011-03-22 | 2017-12-21 | Protective apparel and support apparatus and method of use |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170020210A1 true US20170020210A1 (en) | 2017-01-26 |
US9854858B2 US9854858B2 (en) | 2018-01-02 |
Family
ID=48084955
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/709,783 Active 2033-09-10 US9480290B2 (en) | 2011-03-22 | 2012-12-10 | Protective apparel and support apparatus and method of use |
US15/284,943 Active US9854858B2 (en) | 2011-03-22 | 2016-10-04 | Protective apparel and support apparatus and method of use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/709,783 Active 2033-09-10 US9480290B2 (en) | 2011-03-22 | 2012-12-10 | Protective apparel and support apparatus and method of use |
Country Status (1)
Country | Link |
---|---|
US (2) | US9480290B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384084B2 (en) | 2017-10-18 | 2019-08-20 | Stryker Corporation | Personal protection system with control member |
KR20240141991A (en) | 2023-03-21 | 2024-09-30 | 오모션 주식회사 | 3D face model making apparatus, method, system, and computer-readable storage medium based on event information |
KR20240141990A (en) | 2023-03-21 | 2024-09-30 | 오모션 주식회사 | 3D face model making apparatus, method, system, and computer-readable storage medium based on time information |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8950017B2 (en) | 2011-03-22 | 2015-02-10 | Medline Industries, Inc. | Protective apparel and support apparatus and method of use |
WO2014174284A1 (en) * | 2013-04-23 | 2014-10-30 | Surgivisor Limited | Personal protective system |
GB2523333B (en) * | 2014-02-20 | 2018-01-10 | Draeger Safety Uk Ltd | Temperature control garment |
GB2523334A (en) * | 2014-02-20 | 2015-08-26 | Draeger Safety Uk Ltd | Garment |
US10470505B2 (en) * | 2014-05-07 | 2019-11-12 | Medline Industries, Inc. | Protective apparel system with impervious protection |
US9861152B1 (en) * | 2014-11-05 | 2018-01-09 | Robert Rumfelt | Method and apparatus for improved helmet |
DE202015003549U1 (en) * | 2015-01-09 | 2016-04-12 | Tesimax-Altinger Gmbh | protective suit |
US20160353827A1 (en) * | 2015-06-08 | 2016-12-08 | Erick Verela | Helmet providing weather protection |
AU2017205201B2 (en) * | 2016-01-07 | 2022-03-03 | Thi Total Healthcare Innovation Gmbh | Donnable barrier devices, systems, and methods with touchless control |
US10537754B1 (en) * | 2016-04-18 | 2020-01-21 | Nicholas Vukelja | Personal air purification device and related methods |
US10512798B2 (en) | 2016-08-05 | 2019-12-24 | Illinois Tool Works Inc. | Method and apparatus for providing air flow |
EP3515225B1 (en) * | 2016-09-23 | 2020-11-18 | Zimmer, Inc. | Surgical helmet |
US10561866B1 (en) * | 2016-10-05 | 2020-02-18 | Garrett Lee Hinnant | Adjustable back, neck, and head support for fall arrest harness |
US20210227901A1 (en) * | 2020-01-23 | 2021-07-29 | Ghassan S. Kassab | Lead gown support |
US20210251802A1 (en) * | 2020-02-18 | 2021-08-19 | Light Tree Ventures Holding B.V. | Utility garment with therapeutic characteristics |
US20210330999A1 (en) * | 2020-04-24 | 2021-10-28 | Production Club Inc. | Sterile Body Suit Apparatus, System, and Method |
USD931550S1 (en) * | 2020-07-02 | 2021-09-21 | A-Dec, Inc. | Neck worn face shield |
USD930258S1 (en) * | 2020-07-28 | 2021-09-07 | Shannon M. O'Toole | Face shield attachment |
USD1030233S1 (en) | 2022-01-26 | 2024-06-11 | Depre, Llc | Medical gown |
USD1030232S1 (en) | 2022-01-26 | 2024-06-11 | Depre, Llc | Medical gown |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055173A (en) * | 1975-04-21 | 1977-10-25 | Knab James V | Surgical masking and ventilating system |
US4386277A (en) * | 1980-10-20 | 1983-05-31 | Samuel Moti | X-Ray face mask and bib device |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1313908A (en) * | 1919-08-26 | polasky | ||
US932880A (en) | 1908-09-30 | 1909-08-31 | Louis Sandcroft Meikle | Fireman's equipment. |
US1004850A (en) * | 1911-03-23 | 1911-10-03 | Joseph Cogil | Wind-shield. |
US1095089A (en) * | 1912-11-04 | 1914-04-28 | Henry G Dinn | Protective garment. |
US1191773A (en) | 1915-06-29 | 1916-07-18 | William F Dinkuhn | Face-shield. |
US1255249A (en) * | 1917-06-02 | 1918-02-05 | Charles B Wade | Electric-welding shield. |
US1561760A (en) | 1924-08-07 | 1925-11-17 | Martin C Whelan | Eye protector |
US2171337A (en) * | 1938-10-17 | 1939-08-29 | Hellmann John | Air conditioned garment |
US2456130A (en) | 1945-01-31 | 1948-12-14 | Christian J Lambertsen | Breathing apparatus |
US2460269A (en) * | 1945-03-16 | 1949-02-01 | William R Appeldoorn | Personal body air conditioning device |
US2573414A (en) | 1947-03-05 | 1951-10-30 | Karl L Dunn | Hot work garment |
US2773262A (en) | 1954-10-14 | 1956-12-11 | Du Pont | Air ventilation harness |
US2904040A (en) * | 1958-08-11 | 1959-09-15 | Randall H Hale | Cervical brace |
GB1007197A (en) | 1963-06-22 | 1965-10-13 | Miklos Simon | Welding mask |
US3302214A (en) * | 1964-06-01 | 1967-02-07 | Yuritch Victor Lester | Protective armor for the human body |
US3351056A (en) | 1965-02-19 | 1967-11-07 | George P Durney | Shoulder seal between a protective suit and helmet |
US3529594A (en) | 1968-07-22 | 1970-09-22 | John Charnley | Clothing to protect the environment from contamination |
US3625206A (en) | 1969-11-03 | 1971-12-07 | John Charnley | Protective clothing |
US3688314A (en) | 1969-12-10 | 1972-09-05 | Ilc Ind Inc | Protective garment |
US3707004A (en) | 1971-02-02 | 1972-12-26 | John R Kapitan | Ballistic resistant protective guard |
GB1395099A (en) | 1973-03-02 | 1975-05-21 | Howorth Air Conditioning Ltd | Protective clothing |
DE2442881A1 (en) | 1974-09-07 | 1976-03-25 | Feldmuehle Anlagen Prod | Head and face protection shield with window - made from ceramic and metal plates and worn on body |
US4042976A (en) | 1976-02-12 | 1977-08-23 | Jay Carter Reynolds | Protective collar |
US4019508A (en) | 1976-05-21 | 1977-04-26 | Research Development Systems, Inc. | Wearable, self-contained fully mobile personal breathing apparatus for surgeons and operating room personnel |
US4272851A (en) | 1979-02-16 | 1981-06-16 | Durafab Division Of Texel Industries, Inc. | Hazardous environment suit |
US4286170A (en) | 1980-02-11 | 1981-08-25 | Samuel Moti | X-Ray face mask and chest shield device |
US4513452A (en) * | 1983-03-14 | 1985-04-30 | Rankin Sr P Phillip | Heat resistant suit for use in boiler repair |
US5176668A (en) | 1984-04-13 | 1993-01-05 | Kimberly-Clark Corporation | Absorbent structure designed for absorbing body fluids |
PH23956A (en) | 1985-05-15 | 1990-01-23 | Procter & Gamble | Absorbent articles with dual layered cores |
US4672968A (en) | 1985-08-30 | 1987-06-16 | Lenox Jerril C | Headwear with built-in cooling means |
US4838885A (en) | 1985-09-06 | 1989-06-13 | Kimberly-Clark Corporation | Form-fitting self-adjusting disposable garment with a multilayered absorbent |
US4699620A (en) | 1985-09-06 | 1987-10-13 | Kimberly-Clark Corporation | Form-fitting self-adjusting disposable garment with a multilayered absorbent |
US4639254A (en) | 1985-10-24 | 1987-01-27 | Kimberly-Clark Corporation | Three-dimensional sanitary napkin having absorbent material contoured on the baffle side |
GB8602807D0 (en) | 1986-02-05 | 1986-03-12 | Howorth Air Eng Ltd | Body exhaust gown arrangement |
US4859184A (en) | 1986-03-24 | 1989-08-22 | Hazard James T | Face shield device |
US5047023A (en) | 1986-07-18 | 1991-09-10 | The Procter & Gamble Company | Absorbent members having low density and basis weight acquisition zones |
US4878046A (en) * | 1987-07-30 | 1989-10-31 | United Technologies Corporation | Mounting a cathode ray tube for a heads-up display system |
US4845779A (en) | 1987-10-09 | 1989-07-11 | Wheeler Ronald M | Protective hospital gown |
US5134007A (en) | 1988-05-24 | 1992-07-28 | The Procter & Gamble Company | Multiple layer absorbent cores for absorbent articles |
US5046492A (en) | 1988-07-15 | 1991-09-10 | Stackhouse Wyman H | Clean room helmet system |
US4901716A (en) | 1989-02-06 | 1990-02-20 | Stackhouse Wyman H | Clean room helmet system |
US5188624A (en) | 1990-01-16 | 1993-02-23 | Weyerhaeuser Company | Absorbent article with superabsorbent particle containing insert pad and liquid dispersion pad |
US5054480A (en) | 1990-06-14 | 1991-10-08 | Bio Medical Devices, Inc. | Personal air filtration and control system |
US5253642A (en) | 1992-03-25 | 1993-10-19 | Stackhouse, Inc. | Surgical gown |
GB2266669B (en) * | 1992-05-05 | 1996-03-27 | Joseph Anthony Griffiths | Breathing equipment for aircrew |
US5500954A (en) | 1992-11-02 | 1996-03-26 | J. Prime Industries, Inc. | Safety shield system |
US5294478A (en) | 1992-12-18 | 1994-03-15 | Kimberly-Clark Corporation | Multi-layer absorbent composite |
US5466513A (en) | 1992-12-18 | 1995-11-14 | Kimberly-Clark Corporation | Multi-layer absorbent composite |
US5295271A (en) | 1993-01-25 | 1994-03-22 | Butterfield James N | Shoulder rest helmet |
US5348547A (en) | 1993-04-05 | 1994-09-20 | The Procter & Gamble Company | Absorbent members having improved fluid distribution via low density and basis weight acquisition zones |
IL107502A (en) * | 1993-11-04 | 1999-12-31 | Elbit Systems Ltd | Helmet display mounting system |
US5492110A (en) | 1994-12-23 | 1996-02-20 | Golden West Communications | Switched alert circuit for fireman's breathing system |
US5592936A (en) | 1995-08-28 | 1997-01-14 | Stackhouse, Inc. | Surgical helmet |
US5711033A (en) | 1995-10-05 | 1998-01-27 | Bio-Medical Devices, Inc. | Air filtration and control system including head gear |
US5655374A (en) | 1996-02-21 | 1997-08-12 | Surgical Specialty Products, Inc. | Surgical suit |
WO1999035927A1 (en) | 1998-01-16 | 1999-07-22 | Depuy Orthopaedics, Inc. | Head gear apparatus |
JP4024316B2 (en) | 1998-01-29 | 2007-12-19 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Wiper device |
DE60133811T2 (en) | 2000-01-18 | 2009-06-25 | Stryker Corp., Kalamazoo | AIR FILTER SYSTEM WITH A HELMET OF AT LEAST TWO AIR OUTPUTS FOR DISTRIBUTING THE AIR TO THE HEAD OF THE USER |
US6374823B1 (en) | 2000-03-14 | 2002-04-23 | Mohammed Ali Hajianpour | Disposable ventilated face shield and head covering |
FR2806635B1 (en) | 2000-03-27 | 2002-06-07 | Intertechnique Sa | PERSONAL PROTECTION DEVICE, ESPECIALLY AGAINST NBC ASSAULT |
DE10147045B4 (en) | 2001-09-25 | 2005-03-17 | Dräger Safety AG & Co. KGaA | Data communication system for mask or helmet wearers |
US6751807B2 (en) | 2002-03-26 | 2004-06-22 | Depuy Orthopaedics, Inc. | Piezo fan for ventilated garment |
US6990691B2 (en) | 2003-07-18 | 2006-01-31 | Depuy Products, Inc. | Head gear apparatus |
US6874170B1 (en) | 2003-11-10 | 2005-04-05 | Todd D. Aaron | Head and neck protection system |
US7608052B1 (en) * | 2004-08-10 | 2009-10-27 | Baker Ford S | Cervical brace and therapy device |
US7120941B2 (en) * | 2004-11-05 | 2006-10-17 | Ken Glaser | Crash helmet assembly |
US7752682B2 (en) | 2005-03-24 | 2010-07-13 | Stryker Corporation | Personal protection system including a helmet and a hood, the helmet including a ventilation system that blows air on the neck of the wearer |
KR101377404B1 (en) | 2005-07-14 | 2014-03-25 | 스트리커 코포레이션 | Medical/surgical personal protection system providing ventilation and illumination, the ventilation unit cooling the light source |
US7937775B2 (en) | 2005-08-09 | 2011-05-10 | Microtek Medical, Inc. | Surgical protective head gear assembly including high volume air delivery system |
US20070050898A1 (en) | 2005-08-09 | 2007-03-08 | Larson Keith A | Surgical protective system and assembly having a head gear assembly supporting a surgical garment and air delivery system |
US7608847B2 (en) | 2005-12-16 | 2009-10-27 | Rees Chet R | System and method for implementing a suspended personal radiation protection system |
US8020552B2 (en) | 2007-02-26 | 2011-09-20 | Microtek Medical, Inc. | Helmets and methods of making and using the same |
AU2008227867B2 (en) * | 2007-03-20 | 2012-03-08 | Xceed Holdings Close Corporation | Adaptive head and neck restraint system for a person in a vehicle |
GB0722592D0 (en) * | 2007-11-16 | 2007-12-27 | Birmingham City University | Surgeons headgear |
US8234722B2 (en) | 2007-12-14 | 2012-08-07 | Stryker Corporation | Personal protection system with head unit having easy access controls and protective covering having glare avoiding face shield |
US7973299B2 (en) | 2008-01-18 | 2011-07-05 | Rees Chet R | System and method for providing a suspended personal radiation protection system |
US8598554B2 (en) | 2008-01-18 | 2013-12-03 | Interventco, Llc | System and method for providing a suspended personal radiation protection system |
ITTV20080039A1 (en) * | 2008-03-06 | 2009-09-07 | Alpinestars Research Srl | PROTECTIVE COLLAR IN PARTICULAR FOR MOTORCYCLE DRIVERS |
ITMI20080396U1 (en) | 2008-12-03 | 2010-06-03 | Starmed S P A Ora Intersurgical S P A | HELMET STRUCTURE FOR NON-INVASIVE VENTILATION OF PATIENTS. |
KR101152722B1 (en) | 2010-04-26 | 2012-07-03 | 백종태 | Individual-use Helmet Aid and foldable Aid to Provide the air in Emergency |
US8230852B2 (en) | 2010-05-28 | 2012-07-31 | Honeywell International Inc. | Shoulder mounted hood cooling system |
JP5721217B2 (en) | 2011-03-16 | 2015-05-20 | 住友化学株式会社 | Liquid crystal polyester resin composition and molded body |
US8950017B2 (en) | 2011-03-22 | 2015-02-10 | Medline Industries, Inc. | Protective apparel and support apparatus and method of use |
US8393017B2 (en) * | 2011-08-09 | 2013-03-12 | Brady Sheren Designs Inc. | Apparatus to be worn on an individual's chest below a full face helmet to limit the occurrence of cervical spinal cord injuries in the event of a crash |
US20130205480A1 (en) * | 2012-02-09 | 2013-08-15 | Scott W. Nagely | Energy dissipating breakaway assembly for protective helmet |
-
2012
- 2012-12-10 US US13/709,783 patent/US9480290B2/en active Active
-
2016
- 2016-10-04 US US15/284,943 patent/US9854858B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4055173A (en) * | 1975-04-21 | 1977-10-25 | Knab James V | Surgical masking and ventilating system |
US4386277A (en) * | 1980-10-20 | 1983-05-31 | Samuel Moti | X-Ray face mask and bib device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384084B2 (en) | 2017-10-18 | 2019-08-20 | Stryker Corporation | Personal protection system with control member |
US11413480B2 (en) | 2017-10-18 | 2022-08-16 | Stryker Corporation | Personal protection system with control member |
KR20240141991A (en) | 2023-03-21 | 2024-09-30 | 오모션 주식회사 | 3D face model making apparatus, method, system, and computer-readable storage medium based on event information |
KR20240141990A (en) | 2023-03-21 | 2024-09-30 | 오모션 주식회사 | 3D face model making apparatus, method, system, and computer-readable storage medium based on time information |
Also Published As
Publication number | Publication date |
---|---|
US20130091624A1 (en) | 2013-04-18 |
US9854858B2 (en) | 2018-01-02 |
US9480290B2 (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9854858B2 (en) | Protective apparel and support apparatus and method of use | |
US12063991B2 (en) | Protective apparel and support apparatus and method of use | |
US9776024B2 (en) | Protective apparel and support apparatus and method of use | |
AU2017279764B2 (en) | Protective apparel and support apparatus and method of use | |
US20200068965A1 (en) | Protective apparel system with impervious protection | |
AU2017210506B2 (en) | Protective apparel and support apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDLINE INDUSTRIES, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CZAJKA, FRANCIS A.;LOTHER, TROY;KUTSCH, JOHN H.;AND OTHERS;SIGNING DATES FROM 20130916 TO 20130919;REEL/FRAME:040220/0039 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MEDLINE INDUSTRIES, LP, ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:MEDLINE INDUSTRIES, INC.;REEL/FRAME:057787/0674 Effective date: 20210907 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., TEXAS Free format text: SECURITY INTEREST;ASSIGNOR:MEDLINE INDUSTRIES, LP;REEL/FRAME:058040/0001 Effective date: 20211021 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:MEDLINE INDUSTRIES, LP;REEL/FRAME:057927/0091 Effective date: 20211021 |