US20160329616A1 - Semiconductor circuit and semiconductor device - Google Patents

Semiconductor circuit and semiconductor device Download PDF

Info

Publication number
US20160329616A1
US20160329616A1 US15/215,707 US201615215707A US2016329616A1 US 20160329616 A1 US20160329616 A1 US 20160329616A1 US 201615215707 A US201615215707 A US 201615215707A US 2016329616 A1 US2016329616 A1 US 2016329616A1
Authority
US
United States
Prior art keywords
circuit
voltage
power source
battery
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/215,707
Inventor
Yoshihiro Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to US15/215,707 priority Critical patent/US20160329616A1/en
Publication of US20160329616A1 publication Critical patent/US20160329616A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • G01R31/362
    • G01R31/3658
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a semiconductor circuit and a semiconductor circuit. More specifically, the present invention relates to a semiconductor circuit and a semiconductor device for monitoring a battery voltage.
  • a high output battery with a large capacity has been widely used for driving a motor of a hybrid vehicle or an electric vehicle.
  • a high output battery is formed of a plurality of batteries (battery cells) connected in series (as an example, a lithium-ion battery and the likes).
  • a battery monitoring system for monitoring and controlling a voltage of the battery cells of the high output battery.
  • the battery monitoring system is composed of a measurement semiconductor circuit and a control semiconductor circuit, so that the battery monitoring system can monitor and control a voltage of the battery cells of the high output battery.
  • various control signals (command signals) and data signals are exchanged between the measurement semiconductor circuit and the control semiconductor circuit.
  • Patent Reference has disclosed a technology for reducing an influence on the command signals and the data signals due to external noises and the likes.
  • Patent Reference Japanese Patent Publication No. 2009-27916
  • FIG. 5 is a block diagram showing a configuration of a conventional semiconductor device 110 as the battery monitoring system.
  • the conventional battery monitoring system includes a battery 114 having a plurality of battery cell groups 115 and a semiconductor device 110 for measuring and controlling a voltage of battery cells 117 of the battery 114 .
  • a control semiconductor circuit 112 transmits a command (a signal) to a measurement semiconductor circuit 120 . Accordingly, a cell voltage equalization process (equalizing the voltage of each of the battery cells 117 ) or a charging discharging control process (controlling charging and discharging of each of the battery cells 117 ) of the battery 114 are performed according to voltage information of each of the battery cells 117 obtained from the measurement semiconductor circuit 120 .
  • the measurement semiconductor circuit 120 is provided for each of the battery cell groups 115 .
  • a subscript number is attached to the reference numeral.
  • the subscript number is omitted.
  • the measurement semiconductor circuit 120 includes an IO circuit 122 for operating at a GND-VDD level on a low potential side and an IO circuit 132 for operating at a VCC-VCC2 level on a high potential side. Accordingly, the measurement semiconductor circuits 120 are configured to mutually exchange the command signals and the data signals such as measurement results without passing through a power source separation element. Further, the measurement semiconductor circuit 120 includes a logic circuit 124 , an A/D conversion circuit 126 , a cell selection circuit 128 , a level shift circuit 130 , and a voltage adjustment circuit 134 .
  • the VCC terminal is provided for supplying a power source voltage to drive the cell selection circuit 128 , the level shift circuit 130 , and the voltage adjustment circuit 134 , and for supplying a reference voltage of the IO circuit 132 .
  • the VCC2 terminal is provided for supplying a power source voltage of the IO circuit 132 .
  • an RC filter 119 is disposed between the VCC terminal and the power source line 113 , and an LPF 118 is disposed between each of the Vn terminals and the power source line 113 .
  • a GND terminal is directly connected to the power source line 113 .
  • the control semiconductor circuit 112 transmits the command signal to the semiconductor circuit 120 1 for measuring the voltage of the battery cells 117 11-n1 .
  • the logic circuit 124 1 determines whether the command signal is the command signal for measuring the voltage of the battery cells 117 11-n1 connected to the semiconductor circuit 120 1 .
  • the logic circuit 124 1 determines that the command signal is not the command signal for measuring the voltage of the battery cells 117 11-n1 the logic circuit 124 1 outputs the command signal as is to the level shift circuit 130 1 .
  • the level shift circuit 130 1 level shifts the command signal input at the GND-VDD level to the VCC-VCC2 level, and outputs the command signal to the semiconductor circuit 120 2 at the upper stage through the communication terminal 136 1 .
  • the cell selection circuit 128 1 selects one of the battery cells 117 11-n1 whose voltage the command signal instructs to be measured. Then, the cell selection circuit 128 1 outputs the data signal indicating the voltage of the one of the battery cells 117 11-n1 to the control semiconductor circuit 112 through the transmission path through which the command signal is transmitted.
  • the command signal and the data signal indicating the voltage measurement result are exchanged through the communication terminals 135 and 136 .
  • an RC filter substantially equivalent to the RC filter 119 may be disposed between the GND terminal and the power source line 113 , so that the GND potential does not fluctuate to a large extent. In this case, for example, when the battery cells 117 are charged, it is possible to supply the voltage to the GND terminal without a large fluctuation.
  • Vo to Vn levels the voltage input to the terminals V 0 to Vn (referred to as Vo to Vn levels) changes significantly. Accordingly, a potential difference between the GND level and the Vo to Vn levels is shifted, or the GND level exceeds the Vo to Vn levels, thereby causing a false operation of the semiconductor circuit 120 .
  • the GND terminal is directly connected to the power source line 113 . Accordingly, even when the voltage of each of the battery cells 117 changes significantly while the battery cells 117 are being charged or a motor is driven, and the voltage input to the terminals VO to Vn (referred to as Vo to Vn levels) changes significantly, it is possible to change the voltage supplied to the GND terminal of the semiconductor circuit 120 . As a result, it is possible to prevent the GND level from exceeding the Vo to Vn levels, thereby preventing a false operation of the semiconductor circuit 120 .
  • the GND terminal is directly connected to the power source line 113 .
  • an RC filter with a low property (a level lower than the RC filter 119 ) may be disposed between the GND terminal and the power source line 113
  • a charging current is generated in a regenerative brake system, so that the charging current is reused using the motor as a generator. Due to the load current or the charging current, the battery voltage tends to change significantly, and the change influences as the noise.
  • FIG. 6 is a graph for explaining the false operation of the conventional semiconductor device 110 .
  • the GND terminal is directly connected to the power source line 113 . Accordingly, even when the voltage of each of the battery cells 117 changes significantly while the battery cells 117 are being charged or the motor is driven, and the Vo to Vn levels change significantly, it is possible to prevent the potential of the GND level from shifting relative to those of the Vo to Vn levels, and to prevent the GND level from exceeding the Vo to Vn levels, thereby preventing the false operation of the semiconductor circuit 120 .
  • the voltage supplied to the GND terminal of the semiconductor circuit 120 changes according to the change in the Vo to Vn levels.
  • the voltage V 70 (the GND level (GND 2 ) of the semiconductor circuit 120 2 ) changes as well.
  • a voltage VCC2 1 (the GND level (GND 2 ) of the semiconductor circuit 120 2 ) input into the VCC2 1 terminal of the semiconductor circuit 120 1 changes as well.
  • the RC filter 119 1 is connected to the VCC1 terminal of the semiconductor circuit 120 1 . Accordingly, due to the filter effect of the RC filter 119 1 , a high frequency component is cut, and the voltage VCC 1 does not change significantly. In sum, the voltage VCC2 1 does change and the voltage VCC 1 does not change. Accordingly, when the voltage exceeds the threshold value, the logic level of the signal input into the IO circuit 132 1 through the communication terminal 136 1 is inverted, thereby causing the false operation.
  • an object of the present invention is to provide a semiconductor circuit and a semiconductor device capable of solving the problems of the conventional semiconductor circuit and the conventional semiconductor device.
  • it is possible to properly perform signal communication regardless of a change in a battery voltage due to a voltage variation.
  • a semiconductor circuit includes a first terminal directly connected to a power source line connected in series to a plurality of power source supply portions including batteries; a first communication circuit for performing signal communication with a semiconductor circuit at a lower stage according to a first reference voltage and a first power source voltage supplied from the first terminal; and a second communication circuit for performing signal communication with a semiconductor circuit at a higher stage according to a second reference voltage greater than the first reference voltage thus supplied and a second power source voltage greater than the first power source voltage.
  • the semiconductor circuit further includes a level shift circuit for level shifting a first signal to a level corresponding to the second reference voltage of the second communication circuit and the second power source voltage when the first signal is input to the first communication circuit from the semiconductor circuit at the lower stage.
  • the level shift circuit is also provided for level shifting a second signal to a level corresponding to the first reference voltage of the first communication circuit and the first power source voltage when the second signal is input to the second communication circuit from the semiconductor circuit at the higher stage.
  • the semiconductor circuit further includes a power source voltage output circuit for supplying the first power source voltage to the first communication circuit and outputting the first power source voltage externally.
  • the semiconductor circuit further includes a second terminal connected to the power source line through a first filter for supplying a third power source voltage to the level shift circuit and the power source voltage output circuit; a third terminal directly connected to the power source line for supplying the second reference voltage to the second communication circuit; and a fourth terminal connected to the semiconductor circuit at the higher level for supplying the first power source voltage of the semiconductor circuit at the higher level output from the power source voltage output circuit in the semiconductor circuit at the higher level as the second power source voltage to the second communication circuit.
  • a potential difference between the first reference voltage supplied to the first communication circuit and the first power source voltage is equal to a potential difference between the second reference voltage supplied to the second communication circuit and the second power source voltage.
  • the first communication circuit and the second communication circuit are configured to perform the signal communication according to a differential signal.
  • the semiconductor circuit in one of the first aspect to the third aspect of the present invention further includes a selection circuit connected to each of the batteries in the power source supply portions through a second filter for selecting one of the batteries in the power source supply portions.
  • a semiconductor device includes the semiconductor circuit according to one of the first aspect to the fourth aspect of the present invention disposed per each of the power source supply portions.
  • FIG. 1 is a block diagram showing a configuration of a battery monitoring system according to a first embodiment of the present invention
  • FIG. 2 is a circuit diagram showing a cell selection circuit of a semiconductor circuit of the battery monitoring system according to the first embodiment of the present invention
  • FIG. 3 is a graph for explaining an operation of the semiconductor device of the battery monitoring system according to the first embodiment of the present invention
  • FIG. 4 is a block diagram showing a configuration of a battery monitoring system according to a second embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a conventional semiconductor device.
  • FIG. 6 is a graph for explaining a false operation of the conventional semiconductor device.
  • FIG. 1 is a block diagram showing a configuration of a battery monitoring system according to the first embodiment of the present invention.
  • the battery monitoring system includes a battery 14 including a plurality of battery cell groups 15 and a semiconductor device 10 for measuring and controlling a voltage of battery cells 17 of the battery 14 .
  • a control semiconductor circuit 12 transmits a command (a signal) to a measurement semiconductor circuit 20 . Accordingly, a cell voltage equalization process (equalizing the voltage of each of the battery cells 17 ) or a charging discharging control process (controlling charging and discharging of each of the battery cells 17 ) of the battery 14 are performed according to voltage information of each of the battery cells 17 obtained from the measurement semiconductor circuit 20 .
  • the semiconductor circuit 20 is provided for each of the battery cell groups 15 .
  • a subscript number is attached to the reference numeral.
  • the semiconductor circuits 20 are referred collectively, the subscript number is omitted.
  • the semiconductor circuit 20 includes an IO circuit 22 for operating at a GND-VDD level on a low potential side and an IO circuit 32 for operating at a VCC-VCC2 level on a high potential side. It is noted that a reference voltage VCC1 and a power source voltage VCC2 are supplied to the IO circuit 32 . Accordingly, the semiconductor circuits 20 are configured to mutually exchange the command signals and the data signals such as measurement results without passing through a power source separation element.
  • the GND level (the GND 1 ) of the semiconductor circuit 20 1 is not limited to a voltage value of 0 V, and may be an arbitrary value.
  • the semiconductor circuit 20 connected to the IO circuit 32 is referred to as the semiconductor circuit 20 at a higher stage
  • the semiconductor circuit 20 connected to the IO circuit 22 is referred to as the semiconductor circuit 20 at a lower stage.
  • the semiconductor circuit 20 at the higher stage has the GND level greater (a higher voltage value) than that of the semiconductor circuit 20 at the lower stage.
  • the semiconductor circuit 20 includes a logic circuit 24 , an A/D conversion circuit 26 , a cell selection circuit 28 , a level shift circuit 30 , and a voltage adjustment circuit 34 .
  • the logic circuit 24 is a circuit having a function of decoding the command signal input thereto. More specifically, the logic circuit 24 has a function of decoding the command signal input thereto, and of determining whether the voltage measurement of the semiconductor circuit 20 is instructed.
  • the A/D conversion circuit 26 is a circuit having a function of performing an A/D (analog/digital) conversion on the signal input thereto.
  • the cell selection circuit 28 is a circuit having a function of selecting one of the battery cells 17 whose voltage is to be measured according to the command signal, and of outputting a voltage value of the one of the battery cells 17 thus selected (described in more detail later).
  • the level shift circuit 30 is a circuit having a function of performing a level shift on a level of the signal between the GND-VDD level on the low potential side and the VCC1-VCC2 level on the high potential side.
  • the voltage adjustment circuit 34 is a circuit having a function of outputting a VDD voltage to be as a power source voltage of the IO circuit 22 .
  • the VCC terminal is connected to a power source line 13 of the battery 14 through an RC filter 19 to stabilize a power source voltage VCC for supplying the power source voltage VCC to the logic circuit 24 , the cell selection circuit 28 , the level shift circuit 30 , and the voltage adjustment circuit 34 .
  • the VCC1 terminal is directly connected to the power source line 13 for supplying a reference voltage VCC1 of the IO circuit 32 .
  • the VCC2 terminal is connected to the semiconductor circuit 20 at the higher stage for receiving an output voltage VDD output from the voltage adjustment circuit 34 of the semiconductor circuit 20 at the higher stage, and for supplying a power source voltage of the IO circuit 32 .
  • the Vn terminals are provided for connecting a positive electrode and a negative electrode of each of the battery cells 17 .
  • a LPF (low pass filter) 18 is disposed between each of the Vn terminals and the power source line 13 for stabilizing the power source voltage.
  • the control semiconductor circuit 12 transmits the command signal for measuring the voltage of the battery cell 17 12-n2 . It is noted that the command signal contains information pertaining to which one of the battery cell 17 12-n2 is measured.
  • the logic circuit 24 1 decodes the command signal to determine whether the command signal is the command signal for instructing the measurement of the voltage of the battery cell 17 12-n2 connected to the semiconductor circuit 20 2 .
  • the logic circuit 24 2 determines that the command signal is the command signal for instructing the measurement of the voltage of the battery cell 17 12-n2 connected to the semiconductor circuit 20 2 , the logic circuit 24 2 outputs the control signal to the A/D conversion circuit 26 2 and the cell selection circuit 28 2 .
  • the cell selection circuit 28 2 selects one of the battery cell 17 2 ( 17 21-n2 ) specified according to the control signal through an internal switch (switching). Then, the cell selection circuit 28 1 outputs the voltage of the one of the battery cell 117 12-n2 to the A/D conversion circuit 26 2 .
  • FIG. 2 is a circuit diagram showing the cell selection circuit 28 of the semiconductor circuit 20 of the battery monitoring system according to the first embodiment of the present invention.
  • the cell selection circuit 28 includes an analog level shifter 40 and a cell selection switch 42 .
  • the cell selection circuit 28 is connected to the power source line 13 on the positive electrode side of the battery cells 17 n , so that the power source voltage VCC is supplied from the power source line 13 to the cell selection circuit 28 .
  • Both end portions of each of the battery cells 17 n are connected to input terminals of the cell selection switch 42 of the cell selection circuit 28 through the LPFs 18 .
  • Output terminals of the cell selection switch 42 are connected to the analog level shifter 40 .
  • the analog level shifter 40 is formed of a detection resistor, an amplifier 44 , and a dummy switch. The dummy switch is turned on all the time.
  • the analog level shifter 40 converts the voltage of the battery cell 17 n (equal to V n -V n-1 ), so that the voltage of the battery cell 17 n becomes V out and is converted to the voltage with the GND reference, thereby outputting to the A/D conversion circuit 26 .
  • a switching element connected to the positive side of the battery cell 17 and a switching element connected to the negative side of the battery cell 17 are turned on, and other switching elements are turned off.
  • the A/D conversion circuit 26 2 when the voltage of the battery cell 17 2 thus selected is output from the cell selection circuit 28 2 to the A/D conversion circuit 26 2 , the A/D conversion circuit 26 2 outputs the data signal, in which the voltage thus input is converted to a digital value, to the logic circuit 24 2 . Further, the data signal returns back through the path of the command signal transmission, and is output to the control semiconductor circuit 12 .
  • FIG. 3 is a graph for explaining the operation of the semiconductor device 10 of the battery monitoring system according to the first embodiment of the present invention.
  • a voltage V 70 decreases, thereby decreasing the voltage.
  • the voltage VCC2 1 the GND level (GND 2 ) of the semiconductor circuit 20 2
  • the voltage VCC2 1 the GND level (GND 2 ) of the semiconductor circuit 20 2
  • the VCC1 1 terminal of the semiconductor circuit 20 1 is directly connected to the power source line 13 1 . Accordingly, the sudden voltage change is generated as well without cutting the noise. As a result, the voltage VCC2 1 changes, and the voltage VCC1 1 changes as well. Therefore, a potential difference between the voltage VCC2 1 and the voltage VCC1 1 becomes constant regardless of the voltage change. Accordingly, the communication signal input into the IO circuit 32 1 does not change, and the logic inversion does not take place, thereby preventing the false operation.
  • the semiconductor circuit 20 includes the VCC terminal connected to the VDD output of the semiconductor circuit 20 at the higher stage, and the VCC1 terminal directly connected to the power source line 13 . Further, the power source voltage VCC2 is supplied to the IO circuit 32 on the high potential side from the VCC2 terminal, and the reference voltage VCC1 is supplied to the IO circuit 32 on the high potential side from the VCC1 terminal. Further, the semiconductor circuit 20 includes the VCC terminal connected to the power source line 13 of the battery 14 through the RC filter 19 , so that the power source voltage VCC is supplied from the terminal VCC to the logic circuit 24 , the A/D conversion circuit 26 , the cell selection circuit 28 , the level shift circuit 30 , and the voltage adjustment circuit 34 .
  • a terminal for supplying a power source voltage is connected to a power source line through an LPF to cut the high frequency component, so that the power source voltage is stabilized.
  • the VCC terminal is connected to the power source line 13 of the battery 14 through the RC filter 19 to stabilize the power source voltage VCC for supplying the power source voltage VCC to the logic circuit 24 , the A/D conversion circuit 26 , the cell selection circuit 28 , the level shift circuit 30 , and the voltage adjustment circuit 34 .
  • the terminal for supplying the power source voltage to the IO circuit 132 is connected to the power source line 113 through the RC filter 119 .
  • the terminal VCC1 is directly connected to the power source line 13 , and the reference voltage VCC1 is supplied to the IC circuit 32 from the terminal VCC1. Accordingly, the reference voltage VCC1 changes according to the change in the battery voltage due to the load current.
  • the power source voltage VCC2 that is supplied to the IC circuit 32 from the semiconductor circuit 20 at the higher stage through the terminal VCC2 changes as well. Therefore, the potential difference between the voltage VCC2 1 and the voltage VCC1 1 becomes constant. Accordingly, the communication signal is not affected, and the false operation is prevented, thereby properly performing the signal communication regardless of the battery voltage change.
  • the terminal VCC1 is directly connected to the power source line 13 .
  • a filter such as an LPF may be disposed between the terminal VCC1 and the power source line 13 such that the shift is reduced.
  • the voltage change value of the power source voltage VCC2 does not become equal to the voltage change value of the reference voltage VCC1. Even when the potential difference is generated to some extent, as far as the potential difference thus generated does not exceed the threshold value of the logic level inversion, it is expected to cause no serious problem, and it is possible to obtain an effect of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a battery monitoring system according to the second embodiment of the present invention.
  • the battery monitoring system according to the second embodiment of the present invention has the configuration similar to that of the battery monitoring system according to the first embodiment of the present invention. Accordingly, components in the second embodiment similar to those in the first embodiment are designated with the same reference numerals, and explanations thereof are omitted.
  • a semiconductor circuit 60 of the battery monitoring system includes an IO circuit 62 and an IO circuit 64 of a differential type, instead of the IO circuit 22 and the IO circuit 32 of the single end type in the first embodiment. Accordingly, while the signal is transmitted and received through one single signal line in the first embodiment, the signal is transmitted and received through two signal lines in the second embodiment.
  • the data is transmitted between the semiconductor circuits 60 with the differential signal using the two signal lines. Accordingly, it is possible to reduce the noise other than the voltage change due to the battery voltage change such as the radiation noise as described above. As a result, it is possible to perform the data communication more properly.

Abstract

A semiconductor device includes a power source line connected in series to a plurality of power source supply portions; a semiconductor chip including a first communication circuit connected to a lower stage semiconductor chip, a second communication circuit connected to a higher stage semiconductor chip, and a terminal connected to the second communication circuit; and a connecting line directly connected to the power source line and the terminal of the semiconductor chip without disposing any grounded circuitry element in parallel to the terminal and the power source line.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation application of a prior application Ser. No. 13/211,463, filed on Aug. 17, 2011, allowed, which claims priority of Japanese Patent Application No. 2010-183292, filed on Aug. 18, 2010.
  • BACKGROUND OF THE INVENTION AND RELATED ART STATEMENT
  • The present invention relates to a semiconductor circuit and a semiconductor circuit. More specifically, the present invention relates to a semiconductor circuit and a semiconductor device for monitoring a battery voltage.
  • Recently, a high output battery with a large capacity has been widely used for driving a motor of a hybrid vehicle or an electric vehicle. In general, such a high output battery is formed of a plurality of batteries (battery cells) connected in series (as an example, a lithium-ion battery and the likes).
  • It has been known that a battery monitoring system is provided for monitoring and controlling a voltage of the battery cells of the high output battery. The battery monitoring system is composed of a measurement semiconductor circuit and a control semiconductor circuit, so that the battery monitoring system can monitor and control a voltage of the battery cells of the high output battery. When the battery monitoring system monitors and controls a voltage of the battery cells of the high output battery, various control signals (command signals) and data signals are exchanged between the measurement semiconductor circuit and the control semiconductor circuit. Patent Reference has disclosed a technology for reducing an influence on the command signals and the data signals due to external noises and the likes.
  • Patent Reference: Japanese Patent Publication No. 2009-27916
  • FIG. 5 is a block diagram showing a configuration of a conventional semiconductor device 110 as the battery monitoring system. As shown in FIG. 5, the conventional battery monitoring system includes a battery 114 having a plurality of battery cell groups 115 and a semiconductor device 110 for measuring and controlling a voltage of battery cells 117 of the battery 114.
  • In the conventional battery monitoring system, a control semiconductor circuit 112 transmits a command (a signal) to a measurement semiconductor circuit 120. Accordingly, a cell voltage equalization process (equalizing the voltage of each of the battery cells 117) or a charging discharging control process (controlling charging and discharging of each of the battery cells 117) of the battery 114 are performed according to voltage information of each of the battery cells 117 obtained from the measurement semiconductor circuit 120.
  • In the conventional battery monitoring system, the measurement semiconductor circuit 120 is provided for each of the battery cell groups 115. In the following description, when it is necessary to differentiate each of the measurement semiconductor circuits 120, a subscript number is attached to the reference numeral. When the measurement semiconductor circuits 120 are referred collectively, the subscript number is omitted.
  • In the conventional battery monitoring system, the measurement semiconductor circuit 120 includes an IO circuit 122 for operating at a GND-VDD level on a low potential side and an IO circuit 132 for operating at a VCC-VCC2 level on a high potential side. Accordingly, the measurement semiconductor circuits 120 are configured to mutually exchange the command signals and the data signals such as measurement results without passing through a power source separation element. Further, the measurement semiconductor circuit 120 includes a logic circuit 124, an A/D conversion circuit 126, a cell selection circuit 128, a level shift circuit 130, and a voltage adjustment circuit 134.
  • In the conventional battery monitoring system, the measurement semiconductor circuit 120 further includes a VCC terminal connected to a power source line 113 of the battery 114; a VDD terminal for externally outputting an output voltage VDD of the voltage adjustment circuit 134; a VCC2 terminal connected to the measurement semiconductor circuit 120 on an upper stage; and Vn terminals (n=0 to n, n is an integer). The VCC terminal is provided for supplying a power source voltage to drive the cell selection circuit 128, the level shift circuit 130, and the voltage adjustment circuit 134, and for supplying a reference voltage of the IO circuit 132. The VCC2 terminal is provided for supplying a power source voltage of the IO circuit 132.
  • In the conventional battery monitoring system, in order to stabilize the power source voltage, an RC filter 119 is disposed between the VCC terminal and the power source line 113, and an LPF 118 is disposed between each of the Vn terminals and the power source line 113. A GND terminal is directly connected to the power source line 113.
  • In the conventional battery monitoring system, when the voltage of the battery cells 117 11-n1 is measured, the control semiconductor circuit 112 transmits the command signal to the semiconductor circuit 120 1 for measuring the voltage of the battery cells 117 11-n1. When the command signal is input to the IO circuit 122 1 of the semiconductor circuit 120 1 through a communication terminal 135 1, the logic circuit 124 1 determines whether the command signal is the command signal for measuring the voltage of the battery cells 117 11-n1 connected to the semiconductor circuit 120 1.
  • When the logic circuit 124 1 determines that the command signal is not the command signal for measuring the voltage of the battery cells 117 11-n1 the logic circuit 124 1 outputs the command signal as is to the level shift circuit 130 1. The level shift circuit 130 1 level shifts the command signal input at the GND-VDD level to the VCC-VCC2 level, and outputs the command signal to the semiconductor circuit 120 2 at the upper stage through the communication terminal 136 1.
  • When the logic circuit 124 1 determines that the command signal is the command signal for measuring the voltage of the battery cells 117 11-n1 connected to the semiconductor circuit 120 1, the cell selection circuit 128 1 selects one of the battery cells 117 11-n1 whose voltage the command signal instructs to be measured. Then, the cell selection circuit 128 1 outputs the data signal indicating the voltage of the one of the battery cells 117 11-n1 to the control semiconductor circuit 112 through the transmission path through which the command signal is transmitted.
  • As described above, in the conventional semiconductor device 110, the command signal and the data signal indicating the voltage measurement result (the voltage of the battery cells 117) are exchanged through the communication terminals 135 and 136.
  • In the conventional battery monitoring system, an RC filter substantially equivalent to the RC filter 119 may be disposed between the GND terminal and the power source line 113, so that the GND potential does not fluctuate to a large extent. In this case, for example, when the battery cells 117 are charged, it is possible to supply the voltage to the GND terminal without a large fluctuation.
  • However, when the voltage of each of the battery cells 117 changes significantly while the battery cells 117 are being charged, the voltage input to the terminals V0 to Vn (referred to as Vo to Vn levels) changes significantly. Accordingly, a potential difference between the GND level and the Vo to Vn levels is shifted, or the GND level exceeds the Vo to Vn levels, thereby causing a false operation of the semiconductor circuit 120.
  • To this end, in the conventional semiconductor device 110 shown in FIG. 5, the GND terminal is directly connected to the power source line 113. Accordingly, even when the voltage of each of the battery cells 117 changes significantly while the battery cells 117 are being charged or a motor is driven, and the voltage input to the terminals VO to Vn (referred to as Vo to Vn levels) changes significantly, it is possible to change the voltage supplied to the GND terminal of the semiconductor circuit 120. As a result, it is possible to prevent the GND level from exceeding the Vo to Vn levels, thereby preventing a false operation of the semiconductor circuit 120.
  • It is noted that, in the conventional semiconductor device 110 shown in FIG. 5, the GND terminal is directly connected to the power source line 113. Alternatively, an RC filter with a low property (a level lower than the RC filter 119) may be disposed between the GND terminal and the power source line 113
  • In the semiconductor circuit 120 of the conventional semiconductor device 110 shown in FIG. 5, it is difficult to reduce a noise in the following circumstance, thereby causing a problem.
  • In a hybrid vehicle or an electric vehicle driving, when a motor is driven, a load current is generated.
  • Further, when a brake is applied, a charging current is generated in a regenerative brake system, so that the charging current is reused using the motor as a generator. Due to the load current or the charging current, the battery voltage tends to change significantly, and the change influences as the noise.
  • In the conventional semiconductor device 110 shown in FIG. 5, the change in the battery voltage may invert a logic level of the communication signal, thereby causing a false operation as shown in FIG. 6. FIG. 6 is a graph for explaining the false operation of the conventional semiconductor device 110.
  • In the conventional semiconductor device 110 shown in FIG. 5, when the load current and the like are generated in the battery cell group 115 2, the battery voltage decreases by an internal resistance of the battery cells 117. Accordingly, a voltage V70 (the GND level (GND2) of the semiconductor circuit 120 2) decreases, thereby decreasing the voltage.
  • As explained above, in the semiconductor circuit 120 of the conventional semiconductor device 110 shown in FIG. 5, the GND terminal is directly connected to the power source line 113. Accordingly, even when the voltage of each of the battery cells 117 changes significantly while the battery cells 117 are being charged or the motor is driven, and the Vo to Vn levels change significantly, it is possible to prevent the potential of the GND level from shifting relative to those of the Vo to Vn levels, and to prevent the GND level from exceeding the Vo to Vn levels, thereby preventing the false operation of the semiconductor circuit 120.
  • It is noted that when the GND terminal is directly connected to the power source line 113, the voltage supplied to the GND terminal of the semiconductor circuit 120 changes according to the change in the Vo to Vn levels. As a result, the voltage V70 (the GND level (GND2) of the semiconductor circuit 120 2) changes as well. When the GND level (GND2) of the semiconductor circuit 120 2 changes, a voltage VCC21 (the GND level (GND2) of the semiconductor circuit 120 2) input into the VCC21 terminal of the semiconductor circuit 120 1 changes as well.
  • As explained above, the RC filter 119 1 is connected to the VCC1 terminal of the semiconductor circuit 120 1. Accordingly, due to the filter effect of the RC filter 119 1, a high frequency component is cut, and the voltage VCC1 does not change significantly. In sum, the voltage VCC21 does change and the voltage VCC1 does not change. Accordingly, when the voltage exceeds the threshold value, the logic level of the signal input into the IO circuit 132 1 through the communication terminal 136 1 is inverted, thereby causing the false operation.
  • In view of the problems described above, an object of the present invention is to provide a semiconductor circuit and a semiconductor device capable of solving the problems of the conventional semiconductor circuit and the conventional semiconductor device. In the present invention, it is possible to properly perform signal communication regardless of a change in a battery voltage due to a voltage variation.
  • Further objects and advantages of the invention will be apparent from the following description of the invention.
  • SUMMARY OF THE INVENTION
  • In order to attain the objects described above, according to a first aspect of the present invention, a semiconductor circuit includes a first terminal directly connected to a power source line connected in series to a plurality of power source supply portions including batteries; a first communication circuit for performing signal communication with a semiconductor circuit at a lower stage according to a first reference voltage and a first power source voltage supplied from the first terminal; and a second communication circuit for performing signal communication with a semiconductor circuit at a higher stage according to a second reference voltage greater than the first reference voltage thus supplied and a second power source voltage greater than the first power source voltage.
  • According to the first aspect of the present invention, the semiconductor circuit further includes a level shift circuit for level shifting a first signal to a level corresponding to the second reference voltage of the second communication circuit and the second power source voltage when the first signal is input to the first communication circuit from the semiconductor circuit at the lower stage. The level shift circuit is also provided for level shifting a second signal to a level corresponding to the first reference voltage of the first communication circuit and the first power source voltage when the second signal is input to the second communication circuit from the semiconductor circuit at the higher stage.
  • According to the first aspect of the present invention, the semiconductor circuit further includes a power source voltage output circuit for supplying the first power source voltage to the first communication circuit and outputting the first power source voltage externally.
  • According to the first aspect of the present invention, the semiconductor circuit further includes a second terminal connected to the power source line through a first filter for supplying a third power source voltage to the level shift circuit and the power source voltage output circuit; a third terminal directly connected to the power source line for supplying the second reference voltage to the second communication circuit; and a fourth terminal connected to the semiconductor circuit at the higher level for supplying the first power source voltage of the semiconductor circuit at the higher level output from the power source voltage output circuit in the semiconductor circuit at the higher level as the second power source voltage to the second communication circuit.
  • According to a second aspect of the present invention, in the semiconductor circuit in the first aspect of the present invention, a potential difference between the first reference voltage supplied to the first communication circuit and the first power source voltage is equal to a potential difference between the second reference voltage supplied to the second communication circuit and the second power source voltage.
  • According to a third aspect of the present invention, in the semiconductor circuit in the first aspect or the second aspect of the present invention, the first communication circuit and the second communication circuit are configured to perform the signal communication according to a differential signal.
  • According to a fourth aspect of the present invention, the semiconductor circuit in one of the first aspect to the third aspect of the present invention further includes a selection circuit connected to each of the batteries in the power source supply portions through a second filter for selecting one of the batteries in the power source supply portions.
  • According to a fifth aspect of the present invention, a semiconductor device includes the semiconductor circuit according to one of the first aspect to the fourth aspect of the present invention disposed per each of the power source supply portions.
  • As described above, in the present invention, it is possible to properly perform the signal communication regardless of a change in a battery voltage due to a voltage variation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing a configuration of a battery monitoring system according to a first embodiment of the present invention;
  • FIG. 2 is a circuit diagram showing a cell selection circuit of a semiconductor circuit of the battery monitoring system according to the first embodiment of the present invention;
  • FIG. 3 is a graph for explaining an operation of the semiconductor device of the battery monitoring system according to the first embodiment of the present invention;
  • FIG. 4 is a block diagram showing a configuration of a battery monitoring system according to a second embodiment of the present invention;
  • FIG. 5 is a block diagram showing a configuration of a conventional semiconductor device; and
  • FIG. 6 is a graph for explaining a false operation of the conventional semiconductor device.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Hereunder, preferred embodiments of the present invention will be explained with reference to the accompanying drawings.
  • First Embodiment
  • A first embodiment of the present invention will be explained. FIG. 1 is a block diagram showing a configuration of a battery monitoring system according to the first embodiment of the present invention.
  • As shown in FIG. 1, the battery monitoring system includes a battery 14 including a plurality of battery cell groups 15 and a semiconductor device 10 for measuring and controlling a voltage of battery cells 17 of the battery 14.
  • In the battery monitoring system, a control semiconductor circuit 12 transmits a command (a signal) to a measurement semiconductor circuit 20. Accordingly, a cell voltage equalization process (equalizing the voltage of each of the battery cells 17) or a charging discharging control process (controlling charging and discharging of each of the battery cells 17) of the battery 14 are performed according to voltage information of each of the battery cells 17 obtained from the measurement semiconductor circuit 20.
  • In the semiconductor device 10 of the battery monitoring system, the semiconductor circuit 20 is provided for each of the battery cell groups 15. In the following description, when it is necessary to differentiate each of the semiconductor circuits 20, a subscript number is attached to the reference numeral. When the semiconductor circuits 20 are referred collectively, the subscript number is omitted.
  • In the semiconductor device 10, the semiconductor circuit 20 includes an IO circuit 22 for operating at a GND-VDD level on a low potential side and an IO circuit 32 for operating at a VCC-VCC2 level on a high potential side. It is noted that a reference voltage VCC1 and a power source voltage VCC2 are supplied to the IO circuit 32. Accordingly, the semiconductor circuits 20 are configured to mutually exchange the command signals and the data signals such as measurement results without passing through a power source separation element.
  • In the semiconductor device 10, the GND level (the GND1) of the semiconductor circuit 20 1 is not limited to a voltage value of 0 V, and may be an arbitrary value. Further, the semiconductor circuit 20 connected to the IO circuit 32 is referred to as the semiconductor circuit 20 at a higher stage, and the semiconductor circuit 20 connected to the IO circuit 22 is referred to as the semiconductor circuit 20 at a lower stage. The semiconductor circuit 20 at the higher stage has the GND level greater (a higher voltage value) than that of the semiconductor circuit 20 at the lower stage.
  • In the battery monitoring system in the embodiment, the semiconductor circuit 20 includes a logic circuit 24, an A/D conversion circuit 26, a cell selection circuit 28, a level shift circuit 30, and a voltage adjustment circuit 34.
  • In the embodiment, the logic circuit 24 is a circuit having a function of decoding the command signal input thereto. More specifically, the logic circuit 24 has a function of decoding the command signal input thereto, and of determining whether the voltage measurement of the semiconductor circuit 20 is instructed. The A/D conversion circuit 26 is a circuit having a function of performing an A/D (analog/digital) conversion on the signal input thereto. In the embodiment, the cell selection circuit 28 is a circuit having a function of selecting one of the battery cells 17 whose voltage is to be measured according to the command signal, and of outputting a voltage value of the one of the battery cells 17 thus selected (described in more detail later). The level shift circuit 30 is a circuit having a function of performing a level shift on a level of the signal between the GND-VDD level on the low potential side and the VCC1-VCC2 level on the high potential side. The voltage adjustment circuit 34 is a circuit having a function of outputting a VDD voltage to be as a power source voltage of the IO circuit 22.
  • In the battery monitoring system in the embodiment, the semiconductor circuit 20 further includes a VCC terminal; a VCC1 terminal; a VCC2 terminal; a VDD terminal; and Vn terminals (n=0 to n, n is an integer).
  • In the embodiment, the VCC terminal is connected to a power source line 13 of the battery 14 through an RC filter 19 to stabilize a power source voltage VCC for supplying the power source voltage VCC to the logic circuit 24, the cell selection circuit 28, the level shift circuit 30, and the voltage adjustment circuit 34. The VCC1 terminal is directly connected to the power source line 13 for supplying a reference voltage VCC1 of the IO circuit 32. The VCC2 terminal is connected to the semiconductor circuit 20 at the higher stage for receiving an output voltage VDD output from the voltage adjustment circuit 34 of the semiconductor circuit 20 at the higher stage, and for supplying a power source voltage of the IO circuit 32. The Vn terminals are provided for connecting a positive electrode and a negative electrode of each of the battery cells 17. A LPF (low pass filter) 18 is disposed between each of the Vn terminals and the power source line 13 for stabilizing the power source voltage.
  • An operation of the battery monitoring system for measuring the voltage of the battery cells 17 will be explained. In the following description, one of the battery cells 17 2 (17 12 to 17 n2) of the battery cell group 15 2 will be explained.
  • In the battery monitoring system, when the voltage of the battery cells 17 12-n2 is measured, the control semiconductor circuit 12 transmits the command signal for measuring the voltage of the battery cell 17 12-n2. It is noted that the command signal contains information pertaining to which one of the battery cell 17 12-n2 is measured.
  • When the command signal is input to the IO circuit 22 2 of the semiconductor circuit 20 2 through a communication terminal 35 2, the logic circuit 24 1 decodes the command signal to determine whether the command signal is the command signal for instructing the measurement of the voltage of the battery cell 17 12-n2 connected to the semiconductor circuit 20 2.
  • When the logic circuit 24 2 determines that the command signal is the command signal for instructing the measurement of the voltage of the battery cell 17 12-n2 connected to the semiconductor circuit 20 2, the logic circuit 24 2 outputs the control signal to the A/D conversion circuit 26 2 and the cell selection circuit 28 2. The cell selection circuit 28 2 selects one of the battery cell 17 2 (17 21-n2) specified according to the control signal through an internal switch (switching). Then, the cell selection circuit 28 1 outputs the voltage of the one of the battery cell 117 12-n2 to the A/D conversion circuit 26 2.
  • FIG. 2 is a circuit diagram showing the cell selection circuit 28 of the semiconductor circuit 20 of the battery monitoring system according to the first embodiment of the present invention.
  • As shown in FIG. 2, the cell selection circuit 28 includes an analog level shifter 40 and a cell selection switch 42. The cell selection circuit 28 is connected to the power source line 13 on the positive electrode side of the battery cells 17 n, so that the power source voltage VCC is supplied from the power source line 13 to the cell selection circuit 28. Both end portions of each of the battery cells 17 n are connected to input terminals of the cell selection switch 42 of the cell selection circuit 28 through the LPFs 18. Output terminals of the cell selection switch 42 are connected to the analog level shifter 40. The analog level shifter 40 is formed of a detection resistor, an amplifier 44, and a dummy switch. The dummy switch is turned on all the time.
  • In the embodiment, when the voltage of the battery cell 17 n is measured, switching elements SWn and SWn-1 _ 1 of the cell selection switch 42 are turned on, and other switching elements are turned off. The analog level shifter 40 converts the voltage of the battery cell 17 n (equal to Vn-Vn-1), so that the voltage of the battery cell 17 n becomes Vout and is converted to the voltage with the GND reference, thereby outputting to the A/D conversion circuit 26.
  • In the embodiment, when the voltage of the battery cell 17 other than the battery cell 17 n is measured, similar to the process described above, a switching element connected to the positive side of the battery cell 17 and a switching element connected to the negative side of the battery cell 17 are turned on, and other switching elements are turned off.
  • In the embodiment, when the voltage of the battery cell 17 2 thus selected is output from the cell selection circuit 28 2 to the A/D conversion circuit 26 2, the A/D conversion circuit 26 2 outputs the data signal, in which the voltage thus input is converted to a digital value, to the logic circuit 24 2. Further, the data signal returns back through the path of the command signal transmission, and is output to the control semiconductor circuit 12.
  • An operation of the battery monitoring system will be explained with reference to FIG. 3 in a case that a noise, in which the battery voltage changes suddenly, is generated due to a load current or a charging current generated in a regenerative brake system when a brake is applied. FIG. 3 is a graph for explaining the operation of the semiconductor device 10 of the battery monitoring system according to the first embodiment of the present invention.
  • In the embodiment, when the battery voltage decreases due to the sudden current change, a voltage V70 (the GND level (GND2) of the semiconductor circuit 20 2) decreases, thereby decreasing the voltage. When the GND level (GND2) of the semiconductor circuit 20 2 changes, the voltage VCC21 (the GND level (GND2) of the semiconductor circuit 20 2) input into the VCC21 terminal of the semiconductor circuit 20 1 decreases as well.
  • In the embodiment, the VCC11 terminal of the semiconductor circuit 20 1 is directly connected to the power source line 13 1. Accordingly, the sudden voltage change is generated as well without cutting the noise. As a result, the voltage VCC21 changes, and the voltage VCC11 changes as well. Therefore, a potential difference between the voltage VCC21 and the voltage VCC11 becomes constant regardless of the voltage change. Accordingly, the communication signal input into the IO circuit 32 1 does not change, and the logic inversion does not take place, thereby preventing the false operation.
  • As explained above, in the embodiment, the semiconductor circuit 20 includes the VCC terminal connected to the VDD output of the semiconductor circuit 20 at the higher stage, and the VCC1 terminal directly connected to the power source line 13. Further, the power source voltage VCC2 is supplied to the IO circuit 32 on the high potential side from the VCC2 terminal, and the reference voltage VCC1 is supplied to the IO circuit 32 on the high potential side from the VCC1 terminal. Further, the semiconductor circuit 20 includes the VCC terminal connected to the power source line 13 of the battery 14 through the RC filter 19, so that the power source voltage VCC is supplied from the terminal VCC to the logic circuit 24, the A/D conversion circuit 26, the cell selection circuit 28, the level shift circuit 30, and the voltage adjustment circuit 34.
  • In general, a terminal for supplying a power source voltage is connected to a power source line through an LPF to cut the high frequency component, so that the power source voltage is stabilized. In the embodiment, the VCC terminal is connected to the power source line 13 of the battery 14 through the RC filter 19 to stabilize the power source voltage VCC for supplying the power source voltage VCC to the logic circuit 24, the A/D conversion circuit 26, the cell selection circuit 28, the level shift circuit 30, and the voltage adjustment circuit 34. With the configuration, it is possible to stably operate the logic circuit 24, the A/D conversion circuit 26, the cell selection circuit 28, the level shift circuit 30, and the voltage adjustment circuit 34.
  • In the conventional battery monitoring system shown in FIG. 5, it is desirable to stably supply the power source voltage and the reference voltage, thereby stabilizing the operation of the conventional battery monitoring system. Accordingly, the terminal for supplying the power source voltage to the IO circuit 132 is connected to the power source line 113 through the RC filter 119.
  • On the other hand, in the embodiment, the terminal VCC1 is directly connected to the power source line 13, and the reference voltage VCC1 is supplied to the IC circuit 32 from the terminal VCC1. Accordingly, the reference voltage VCC1 changes according to the change in the battery voltage due to the load current. However, the power source voltage VCC2 that is supplied to the IC circuit 32 from the semiconductor circuit 20 at the higher stage through the terminal VCC2 changes as well. Therefore, the potential difference between the voltage VCC21 and the voltage VCC11 becomes constant. Accordingly, the communication signal is not affected, and the false operation is prevented, thereby properly performing the signal communication regardless of the battery voltage change.
  • In the embodiment, the terminal VCC1 is directly connected to the power source line 13. Alternatively, in a case that the power source line 13 is extended to a large extent to cause a delay and a shift between the signal transmitted to the power source voltage VCC2 and the signal transmitting the reference voltage VCC1 is generated, a filter such as an LPF may be disposed between the terminal VCC1 and the power source line 13 such that the shift is reduced. In this case, the voltage change value of the power source voltage VCC2 does not become equal to the voltage change value of the reference voltage VCC1. Even when the potential difference is generated to some extent, as far as the potential difference thus generated does not exceed the threshold value of the logic level inversion, it is expected to cause no serious problem, and it is possible to obtain an effect of the present invention.
  • Second Embodiment
  • A second embodiment of the present invention will be explained next with reference to FIG. 4. FIG. 4 is a block diagram showing a configuration of a battery monitoring system according to the second embodiment of the present invention. The battery monitoring system according to the second embodiment of the present invention has the configuration similar to that of the battery monitoring system according to the first embodiment of the present invention. Accordingly, components in the second embodiment similar to those in the first embodiment are designated with the same reference numerals, and explanations thereof are omitted.
  • As shown in FIG. 4, in the second embodiment, a semiconductor circuit 60 of the battery monitoring system includes an IO circuit 62 and an IO circuit 64 of a differential type, instead of the IO circuit 22 and the IO circuit 32 of the single end type in the first embodiment. Accordingly, while the signal is transmitted and received through one single signal line in the first embodiment, the signal is transmitted and received through two signal lines in the second embodiment.
  • In the second embodiment, the data is transmitted between the semiconductor circuits 60 with the differential signal using the two signal lines. Accordingly, it is possible to reduce the noise other than the voltage change due to the battery voltage change such as the radiation noise as described above. As a result, it is possible to perform the data communication more properly.
  • The disclosure of Japanese Patent Application No. 2010-183292, filed on Aug. 18, 2010, is incorporated in the application by reference.
  • While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.

Claims (3)

What is claimed is:
1. A semiconductor device comprising:
a power source line connected in series to a plurality of power source supply portions;
a semiconductor chip including a first communication circuit connected to a lower stage semiconductor chip, a second communication circuit connected to a higher stage semiconductor chip, and a terminal connected to the second communication circuit; and
a connecting line directly connected to the power source line and the terminal of the semiconductor chip without disposing any grounded circuitry element in parallel to the terminal and the power source line.
2. The semiconductor device according to claim 1, wherein said first communication circuit and said second communication circuit are configured to operate according to a differential signal.
3. The semiconductor device according to claim 1, further comprising a selection circuit connected to each of the power source supply portions through a filter for selecting one of the power source supply portions.
US15/215,707 2010-08-18 2016-07-21 Semiconductor circuit and semiconductor device Abandoned US20160329616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/215,707 US20160329616A1 (en) 2010-08-18 2016-07-21 Semiconductor circuit and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-183292 2010-08-18
JP2010183292A JP5638311B2 (en) 2010-08-18 2010-08-18 Battery pack system, voltage monitoring system, voltage monitoring device, and semiconductor device
US13/211,463 US9423466B2 (en) 2010-08-18 2011-08-17 Semiconductor circuit and semiconductor device
US15/215,707 US20160329616A1 (en) 2010-08-18 2016-07-21 Semiconductor circuit and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/211,463 Continuation US9423466B2 (en) 2010-08-18 2011-08-17 Semiconductor circuit and semiconductor device

Publications (1)

Publication Number Publication Date
US20160329616A1 true US20160329616A1 (en) 2016-11-10

Family

ID=45593583

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/211,463 Active 2033-12-02 US9423466B2 (en) 2010-08-18 2011-08-17 Semiconductor circuit and semiconductor device
US15/215,707 Abandoned US20160329616A1 (en) 2010-08-18 2016-07-21 Semiconductor circuit and semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/211,463 Active 2033-12-02 US9423466B2 (en) 2010-08-18 2011-08-17 Semiconductor circuit and semiconductor device

Country Status (2)

Country Link
US (2) US9423466B2 (en)
JP (1) JP5638311B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6051542B2 (en) * 2012-03-07 2016-12-27 ミツミ電機株式会社 Battery voltage monitoring circuit
JP5952043B2 (en) * 2012-03-16 2016-07-13 ラピスセミコンダクタ株式会社 Semiconductor circuit, battery monitoring system, diagnostic program, and diagnostic method
JP5926143B2 (en) 2012-07-18 2016-05-25 ラピスセミコンダクタ株式会社 Battery monitoring system and semiconductor device
DE102012213273B4 (en) 2012-07-27 2021-08-05 Hydac Technology Gmbh Energy storage device
JP6026371B2 (en) * 2013-08-23 2016-11-16 日立オートモティブシステムズ株式会社 Battery monitoring device
DE102013112350A1 (en) * 2013-11-11 2015-05-13 Karlsruher Institut für Technologie System for monitoring and influencing electrically connected in series cells of an electrochemical battery or a capacitor bank
JP6378003B2 (en) 2014-08-27 2018-08-22 ラピスセミコンダクタ株式会社 Semiconductor device, battery monitoring system, and semiconductor device startup method
CN106329600B (en) * 2015-07-03 2018-12-14 华润矽威科技(上海)有限公司 Battery management AFE(analog front end), battery management system and method
JP6628552B2 (en) * 2015-10-28 2020-01-08 ラピスセミコンダクタ株式会社 Semiconductor device and method for measuring cell voltage
KR102249887B1 (en) * 2016-12-22 2021-05-07 삼성에스디아이 주식회사 Voltage detecting ic and battery management system including the same
KR102256602B1 (en) * 2017-12-14 2021-05-26 주식회사 엘지에너지솔루션 Apparatus and method for measuring voltage
JP2019219718A (en) * 2018-06-15 2019-12-26 セイコーエプソン株式会社 Circuit device, electronic apparatus and moving body
CN111790645B (en) * 2020-06-18 2022-04-15 杭州意能电力技术有限公司 Method for sorting power batteries by gradient utilization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011881A1 (en) * 2000-02-07 2001-08-09 Hitachi, Ltd. Power storage device and method of measuring voltage of storage battery
US20070145951A1 (en) * 2004-07-14 2007-06-28 Renesas Technology Corp. Battery-voltage monitoring integrated-circuit and battery-voltage monitoring system
US20080001257A1 (en) * 2006-06-30 2008-01-03 Infineon Technologies Austria Ag Semiconductor device with a field stop zone
US20110075712A1 (en) * 2009-09-30 2011-03-31 Kazuto Kuroda Communication circuit, assembled battery unit, and vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307782A (en) * 2000-04-19 2001-11-02 Tokyo R & D Co Ltd Battery characteristic data transmitting method and battery managing system
JP4605952B2 (en) 2001-08-29 2011-01-05 株式会社日立製作所 Power storage device and control method thereof
JP4000098B2 (en) * 2003-07-09 2007-10-31 三洋電機株式会社 Power supply device having battery protection circuit
US7417405B2 (en) * 2004-10-04 2008-08-26 Black & Decker Inc. Battery monitoring arrangement having an integrated circuit with logic controller in a battery pack
US7679324B2 (en) * 2005-02-04 2010-03-16 O2Micro International Limited Non-common ground series bus physical layer implementation
KR100991084B1 (en) * 2005-12-15 2010-10-29 주식회사 엘지화학 Multi battery pack system and control method thereof, and battery pack using the same
KR100649570B1 (en) * 2005-12-19 2006-11-27 삼성에스디아이 주식회사 Battery management system and method, and battery system
EP1806592B1 (en) * 2005-12-29 2017-01-18 Semiconductor Components Industries, LLC Method and system for monitoring battery stacks
JP4508145B2 (en) * 2006-04-10 2010-07-21 株式会社デンソー Battery management device
JP4749290B2 (en) * 2006-09-07 2011-08-17 三洋電機株式会社 Power supply device and voltage management IC used therefor
JP4237804B2 (en) * 2007-03-28 2009-03-11 株式会社東芝 Battery pack protection device and battery pack device
JP2010003536A (en) * 2008-06-20 2010-01-07 Toshiba Corp Battery pack system
JP5028436B2 (en) * 2009-01-27 2012-09-19 株式会社日立製作所 Battery controller potential fixing method
US20110068735A1 (en) * 2009-09-22 2011-03-24 Texas Instruments Incorporated Systems and Methods of Accurate Control of Battery Pre-charge Current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011881A1 (en) * 2000-02-07 2001-08-09 Hitachi, Ltd. Power storage device and method of measuring voltage of storage battery
US20070145951A1 (en) * 2004-07-14 2007-06-28 Renesas Technology Corp. Battery-voltage monitoring integrated-circuit and battery-voltage monitoring system
US20080001257A1 (en) * 2006-06-30 2008-01-03 Infineon Technologies Austria Ag Semiconductor device with a field stop zone
US20110075712A1 (en) * 2009-09-30 2011-03-31 Kazuto Kuroda Communication circuit, assembled battery unit, and vehicle

Also Published As

Publication number Publication date
US9423466B2 (en) 2016-08-23
US20120044010A1 (en) 2012-02-23
JP5638311B2 (en) 2014-12-10
JP2012044768A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US20160329616A1 (en) Semiconductor circuit and semiconductor device
KR101555383B1 (en) Battery state monitoring circuit and battery device
JP5350238B2 (en) Method and system for monitoring and balancing cells in a battery pack
JP4656152B2 (en) Battery system
US9735567B2 (en) Semiconductor device and battery voltage monitoring device
JP4982274B2 (en) Battery state monitoring circuit and battery device
JP4702331B2 (en) Semiconductor integrated circuit device
US7834635B2 (en) Car power source apparatus
US20050052802A1 (en) Complementary metal oxide semiconductor structure for battery protection circuit and battery protection circuit having the same
US20110196632A1 (en) Battery pack monitoring apparatus
JP2006149068A (en) Battery pack management device
JP5326973B2 (en) Battery monitoring device
US8462005B2 (en) Communication circuit to measure and communicate the state of a battery unit in a vehicle
US9279860B2 (en) Battery monitoring system and semiconductor device
US20180024198A1 (en) Battery monitoring system
CN107110895B (en) Integrated circuit with built-in state monitoring unit and power supply device
JP2012018037A (en) Voltage measuring circuit and method
US9136847B2 (en) Signal transmitting-receiving control circuit and secondary battery protection circuit
JP2006353020A (en) Power supply device for vehicle
JP2007218680A (en) Charging and discharging monitoring system
KR101333378B1 (en) Battery state monitoring circuit and battery device
JP6932108B2 (en) Control device and control method
JP2012138213A (en) Battery pack module and vehicle

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION