JP5028436B2 - Battery controller potential fixing method - Google Patents

Battery controller potential fixing method Download PDF

Info

Publication number
JP5028436B2
JP5028436B2 JP2009014873A JP2009014873A JP5028436B2 JP 5028436 B2 JP5028436 B2 JP 5028436B2 JP 2009014873 A JP2009014873 A JP 2009014873A JP 2009014873 A JP2009014873 A JP 2009014873A JP 5028436 B2 JP5028436 B2 JP 5028436B2
Authority
JP
Japan
Prior art keywords
battery
control device
battery control
communication circuit
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009014873A
Other languages
Japanese (ja)
Other versions
JP2010178400A (en
Inventor
裕 有田
誠司 石田
尊善 西野
豊田  瑛一
裕 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009014873A priority Critical patent/JP5028436B2/en
Priority to GB1001067A priority patent/GB2467231B/en
Priority to CN2010101050137A priority patent/CN101789530B/en
Publication of JP2010178400A publication Critical patent/JP2010178400A/en
Application granted granted Critical
Publication of JP5028436B2 publication Critical patent/JP5028436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、単電池を直列に接続して組電池を形成し、その組電池を直列に接続して構成した蓄電池の高電圧化に対して、単電池の状態の監視及び制御を行う制御システムの小型化を実現する電池システムに関する。   The present invention relates to a control system that monitors and controls the state of a single cell with respect to an increase in the voltage of a storage battery that is formed by connecting single cells in series to form an assembled battery and connecting the assembled batteries in series. The present invention relates to a battery system that realizes downsizing.

自動車や鉄道などの動力機器やバックアップ用のUPSなどに搭載される鉛,ニッケル水素,リチウム電池などの2次電池に関し、必要な電圧及び電流を得るために、単電池を直列及び並列に接続した構成が知られている。   In order to obtain the necessary voltage and current for secondary batteries such as lead, nickel metal hydride, and lithium batteries installed in power equipment such as automobiles and railways and UPS for backup, etc., the cells are connected in series and in parallel. The configuration is known.

文献1,2の例は共にハイブリッド自動車用の電池システムに関する特許である。   Examples of Documents 1 and 2 are both patents relating to a battery system for a hybrid vehicle.

文献1においては、ニッケル水素の単電池を直列に接続した構成において、単電池とその単電池の電圧を監視する電圧監視用ユニットの組を直列に接続する。各電圧監視用ユニットは監視する単電池より、電力の供給をうける。   In Document 1, in a configuration in which nickel-metal hydride cells are connected in series, a set of a cell and a voltage monitoring unit that monitors the voltage of the cell is connected in series. Each voltage monitoring unit is supplied with power from the cell to be monitored.

また、電圧監視ユニット間は、通信線で数珠繋ぎとし、電圧監視用ユニット内でフォトカプラにより絶縁し耐圧を持たせている。このようにして、電圧監視ユニットは、監視する対象のニッケル水素電池の電圧が12V程度であることから、通信線側の絶縁のみで済み、電圧監視ユニットに全直列分の電圧がかかることを防ぎ、安全性を高めている。   Further, the voltage monitoring units are connected in a daisy chain by communication lines, and are insulated by a photocoupler in the voltage monitoring unit to have a withstand voltage. In this way, the voltage monitoring unit has a voltage of about 12V for the nickel metal hydride battery to be monitored, so only the insulation on the communication line side is required, and it is possible to prevent the voltage monitoring unit from being applied with the voltage for the entire series. , Enhance safety.

また、文献2においては、リチウム単電池を直列に接続した構成において、単電池の電圧監視と、直列全体で単電池の充電量を推定することで、電池の過充放電を防ぐ方式をとっている。単電池の電圧監視回路と電池状態推定装置間をフォトカプラで絶縁し、電池状態推定装置は外部より給電を受けることで、電池状態推定装置自体に直列分の電圧がかかることを防ぎ、安全性を高めている。   Moreover, in the literature 2, in the structure which connected the lithium cell in series, the system which prevents the overcharge / discharge of a battery by taking the voltage monitoring of a cell and estimating the charge amount of a cell in the whole series is taken. Yes. The cell voltage monitoring circuit and the battery state estimation device are insulated by a photocoupler, and the battery state estimation device is supplied with power from the outside, preventing the voltage of the battery state estimation device itself from being applied in series and safety. Is increasing.

特開平9−139237号公報Japanese Patent Laid-Open No. 9-139237 特開2003−70179号公報JP 2003-70179 A

しかしながら、ハイブリッド自動車に搭載される蓄電池は、500V程度までなのに対し、鉄道車両に搭載される蓄電池では、1500〜2000Vが要求される。そのため、その蓄電池をそのまま適用すると、電池監視ユニットの絶縁部分が、1500〜2000Vに対応できるものでなければならなくなる。その結果、単電池の電圧監視回路と電池状態推定装置間の絶縁耐圧が大きくなり、電池状態推定装置側の絶縁部分のコストおよび絶縁部分のサイズが増大するという問題がある。   However, while the storage battery mounted on the hybrid vehicle is up to about 500V, the storage battery mounted on the railway vehicle requires 1500 to 2000V. Therefore, if the storage battery is applied as it is, the insulation part of the battery monitoring unit must be able to handle 1500 to 2000V. As a result, there is a problem that the withstand voltage between the voltage monitoring circuit of the single cell and the battery state estimation device is increased, and the cost of the insulation part on the battery state estimation device side and the size of the insulation part are increased.

また、高電圧化及び大容量化に伴い、高電圧部が存在するため、保守時に感電などの危険性が伴う。   In addition, as the voltage increases and the capacity increases, a high voltage portion exists, which causes a risk of electric shock during maintenance.

そこで、本発明では、単電池を直列に接続した組電池を直並列に接続して構成された蓄電池の高電圧化および大容量化に対応して、装置の小型化および低コスト化を達成した電池制御システムおよび電池システムを提供することを目的とする。   Therefore, in the present invention, downsizing and cost reduction of the device have been achieved in response to the increase in voltage and capacity of the storage battery configured by connecting the assembled batteries in which the cells are connected in series in series and parallel. An object is to provide a battery control system and a battery system.

上記目的を達成するために、少なくとも電池制御装置は、制御部分と、一方側で接続する電池制御装置と通信する第1通信回路と、他方側で接続する電池制御装置と通信する第2通信回路と、組電池から電力供給を受けて電池制御装置の制御回路用の電力と第2通信回路用の電力とを生成する電源回路と、制御部分と第1通信回路とを絶縁する第1の絶縁手段と、制御部分と第2通信回路とを絶縁する第2の絶縁手段と、を備え、電池制御装置における第1の通信回路と、前記一方側で接続する電池制御装置における第2の通信回路と、は接続され、第1通信回路と電池制御装置に接続された組電池の負極端子とは配線により電気的に接続されて、第1通信回路の電位と電池制御装置に接続された組電池の負極端子の電位とは同電位とされ、各組電池の負極側端子をグラウンドに接続するスイッチを有し、各組電池の接続を遮断する際に、スイッチを切り替えて各組電池の負極側端子を接地させることにより、通信線の電位を接地電位とする。 To achieve the above object, at least the battery control device includes a control part, a first communication circuit communicating with the battery control device connected on one side, and a second communication circuit communicating with the battery control device connected on the other side. A power supply circuit that receives power supply from the assembled battery and generates power for the control circuit of the battery control device and power for the second communication circuit, and a first insulation that insulates the control portion from the first communication circuit And a second communication circuit in the battery control device connected on the one side with the first communication circuit in the battery control device, and a second insulation circuit for insulating the control portion and the second communication circuit. Are connected , and the first communication circuit and the negative terminal of the assembled battery connected to the battery control device are electrically connected by wiring, and the assembled battery connected to the potential of the first communication circuit and the battery control device The negative electrode terminal has the same potential as It has a switch that connects the negative terminal of the battery pack to the ground. When the connection of each battery pack is cut off, the switch is switched to ground the negative terminal of each battery pack so that the potential of the communication line is grounded. Set to potential.

本発明によれば、単電池を直列に接続して組電池を形成し、その組電池を直並列に接続して構成した蓄電池の高電圧化に対応して、装置の小型化および低コスト化を達成した電池制御システムおよび電池制御方法を提供する。   According to the present invention, a battery is connected in series to form an assembled battery, and the battery is configured to be connected in series and parallel. A battery control system and a battery control method are provided.

本発明における電池制御システムの一つの実施例の構成を示す図。The figure which shows the structure of one Example of the battery control system in this invention. 図1における電池制御装置の電位及び絶縁を示す図。The figure which shows the electric potential and insulation of the battery control apparatus in FIG. 図2における電池制御装置内の各電位を示す図。The figure which shows each electric potential in the battery control apparatus in FIG. 本発明における電池制御システムの別実施例の構成を示す図。The figure which shows the structure of another Example of the battery control system in this invention. 図4における電池制御装置内の各電位を示す図。The figure which shows each electric potential in the battery control apparatus in FIG. 本発明における電池制御システムの別実施例の構成を示す図。The figure which shows the structure of another Example of the battery control system in this invention. 図6における電池制御装置内の各電位を示す図。The figure which shows each electric potential in the battery control apparatus in FIG. 本発明における電池制御システムの別実施例の構成を示す図。The figure which shows the structure of another Example of the battery control system in this invention. 図8における電池制御装置内の各電位を示す図。The figure which shows each electric potential in the battery control apparatus in FIG. 図1の電池制御システムを2並列に接続した電池システムの構成図。The block diagram of the battery system which connected the battery control system of FIG. 1 2 parallelly. 図10の電池制御システムを他の方法で2並列に接続した電池システムの構成図。The block diagram of the battery system which connected the battery control system of FIG. 10 two parallel by another method. 図10での電池制御システムにおける電池制御装置間を他の方法により接続した構成図。The block diagram which connected between the battery control apparatuses in the battery control system in FIG. 10 by another method.

本発明を実施するための最良の形態について、図面を用い説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

本発明の電池制御システムについて、図1〜図12を用いて実施例を説明する。   Examples of the battery control system of the present invention will be described with reference to FIGS.

図1は、本発明における電池制御システムの一つの実施例の構成を示す図である。   FIG. 1 is a diagram showing a configuration of one embodiment of a battery control system according to the present invention.

電池制御システム1000は、電池制御装置1と組電池2との組が直列に接続された構成である。組電池2は単電池21が複数直列接続された構成であり、出力電圧は数百Vオーダーである。また、組電池2は、正極側端子23及び負極側端子24を持ち、各単電池21に蓄えられた電力はこの端子23,24を介して、放電及び充電される。   The battery control system 1000 has a configuration in which a set of the battery control device 1 and the assembled battery 2 is connected in series. The assembled battery 2 has a configuration in which a plurality of single cells 21 are connected in series, and the output voltage is on the order of several hundred volts. The assembled battery 2 has a positive electrode side terminal 23 and a negative electrode side terminal 24, and the electric power stored in each unit cell 21 is discharged and charged via these terminals 23 and 24.

電池制御装置1は、単電池21を監視する処理を行い、隣り合う電池制御装置1と電池制御装置1−a同士は通信線50にて接続される。また、電池制御装置1−aは、監視処理結果を上位の制御装置4に報告する。   The battery control device 1 performs a process of monitoring the unit cell 21, and the adjacent battery control device 1 and the battery control device 1-a are connected to each other via the communication line 50. Further, the battery control device 1-a reports the monitoring processing result to the upper control device 4.

また、電池制御装置1は、電源線3により組電池2と接続され、電池制御装置1が処理に必要な電力は組電池2より供給される。   In addition, the battery control device 1 is connected to the assembled battery 2 by the power line 3, and the battery control device 1 is supplied with electric power necessary for processing by the assembled battery 2.

また、電位的に隣接する2つの組電池2,2−aに接続された2つの電池制御装置1,1−aとを通信線50にて接続し、かつ絶縁することで、2つの電池制御装置1,1−a間の電位差は、直列数に関係なく、組電池2の電位差に抑えることができる。つまり、電池制御装置1に組電池2の電圧分の耐圧を持たせることで、組電池2の直列数に依存することなく、電池制御システムを構築することができる。また、図1においては、1つの組電池2に対して、電池制御装置1を接続しているが、複数の組電池2を直列接続した単位と、電池制御装置1とを、電源線3を介して接続しても良い。   Moreover, two battery control devices are connected by connecting the two battery control devices 1 and 1 -a connected to the two assembled batteries 2 and 2-a which are adjacent to each other through the communication line 50 and insulating them. The potential difference between the devices 1 and 1-a can be suppressed to the potential difference of the assembled battery 2 regardless of the number in series. That is, by providing the battery control device 1 with a withstand voltage corresponding to the voltage of the assembled battery 2, a battery control system can be constructed without depending on the series number of the assembled batteries 2. Further, in FIG. 1, the battery control device 1 is connected to one assembled battery 2, but the unit in which a plurality of assembled batteries 2 are connected in series and the battery control device 1 are connected to the power supply line 3. You may connect via.

以下に、電池制御装置1の構成について説明する。   Below, the structure of the battery control apparatus 1 is demonstrated.

電池制御装置1は、電源回路10,MPU(Micro Processor Unit)20,通信回路31,32,絶縁素子であるフォトカプラ41,42,リレー100、及び分圧用の直列抵抗である中間電位生成回路110から構成される。なお、通信回路31と通信線50を介して電池制御装置1と接続される電池制御装置を(電位的に)下位の電池制御装置1−a,通信回路32と通信線50−bを介して電池制御装置1と接続される電池制御装置を(電位的に)上位の電池制御装置1−bとする。   The battery control device 1 includes a power supply circuit 10, an MPU (Micro Processor Unit) 20, communication circuits 31 and 32, photocouplers 41 and 42 that are insulating elements, a relay 100, and an intermediate potential generation circuit 110 that is a series resistor for voltage division. Consists of The battery control device connected to the battery control device 1 via the communication circuit 31 and the communication line 50 is (potentially) connected to the lower battery control device 1-a, the communication circuit 32 and the communication line 50-b. The battery control device connected to the battery control device 1 is (potentially) an upper battery control device 1-b.

電源回路10は、組電池2からの電力供給を受け、数VのMPU20用の駆動電力及び、通信回路32と上位の電池制御装置1−bの通信回路31−b用の駆動電力をそれぞれ生成し、電源線131にてMPU20に、電源線132にて通信回路32と上位の電池制御装置1−bの通信回路31−bにそれぞれ供給する。つまり、通信回路31の電源は、下位の電池制御装置1−aの電源回路10−aより供給される。この際、電源回路内では生成したMPU20用の駆動電力と、通信回路32と上位の電池制御装置1−bの通信回路31−b用の駆動電力とは絶縁される。   The power supply circuit 10 receives power supply from the assembled battery 2 and generates drive power for the MPU 20 of several volts and drive power for the communication circuit 31-b of the communication circuit 32 and the upper battery control device 1-b. Then, the power line 131 supplies the MPU 20 and the power line 132 supplies the communication circuit 32 and the communication circuit 31-b of the upper battery control apparatus 1-b. That is, the power of the communication circuit 31 is supplied from the power circuit 10-a of the lower battery control device 1-a. At this time, the generated drive power for the MPU 20 is insulated from the communication circuit 32 and the drive power for the communication circuit 31-b of the host battery control device 1-b in the power supply circuit.

一方、MPU20と通信回路31は、絶縁用のフォトカプラ41を介して、MPU20と通信回路32は、絶縁用のフォトカプラ42を介して、それぞれ接続される。   On the other hand, the MPU 20 and the communication circuit 31 are connected via an insulating photocoupler 41, and the MPU 20 and the communication circuit 32 are connected via an insulating photocoupler 42, respectively.

電源線3は、組電池2の負極側端子24とリレー100を介して、中間電位生成回路110および電源回路10に接続される。リレー100は、下位の電池制御装置1−aからの信号線135−aより、ON/OFF制御され、信号線135−aに所定の電流を流れることでON、信号線135−aを流れる電流が所定電流以下の場合OFFとなる機能をもつ。また、MPU20に供給する電力の電位を決定する配線133及び、下位の電池制御装置1−aと通信線50で接続される通信回路31の電位を決定する配線134がある。この配線134により、通信回路31などの機器の電位が組電池2の負極側端子24の電位と同等となる。   The power supply line 3 is connected to the intermediate potential generation circuit 110 and the power supply circuit 10 via the negative electrode side terminal 24 of the assembled battery 2 and the relay 100. The relay 100 is ON / OFF controlled by the signal line 135-a from the lower battery control device 1-a, and is turned on when a predetermined current flows through the signal line 135-a, and the current flowing through the signal line 135-a. Has a function of turning OFF when is below a predetermined current. In addition, there are a wiring 133 for determining the potential of the power supplied to the MPU 20 and a wiring 134 for determining the potential of the communication circuit 31 connected to the lower battery control device 1-a by the communication line 50. With the wiring 134, the potential of a device such as the communication circuit 31 becomes equal to the potential of the negative terminal 24 of the assembled battery 2.

本電池制御システム1000における電源の投入シーケンスは、制御装置4によりリレー100−aがONされると、電源回路10−aが起動され、MPU20−a及び通信回路32−a及び通信回路31に電源が供給させる。起動したMPU20−aより、フォトカプラ42−aを介して通信回路32−aに対し、上位の電池制御装置1の電源ON指令が出ると、通信回路32−aは、信号線135−aに所定の電流を流すことで、リレー100をONとし、電池制御装置1の電源回路10を起動させる。このように、下位から上位へと順々に電源をONしていく。   In this battery control system 1000, the power-on sequence is such that when the control device 4 turns on the relay 100-a, the power circuit 10-a is activated, and the MPU 20-a, the communication circuit 32-a, and the communication circuit 31 are powered. To supply. When the activated MPU 20-a issues a power ON command for the host battery control device 1 to the communication circuit 32-a via the photocoupler 42-a, the communication circuit 32-a is connected to the signal line 135-a. By flowing a predetermined current, the relay 100 is turned on and the power supply circuit 10 of the battery control device 1 is activated. In this way, the power is turned on sequentially from the lower order to the higher order.

また、電源OFFのシーケンスは、制御装置4より、電源OFF指令が出ると、通信線50を介して、全ての電池制御装置1に伝わり、全ての電池制御装置1のMPU20にて終了処理が実行される。最上位の電池制御装置1は、終了処理が終わると、通信線50を介して、下位の電池制御装置1に終了処理完の旨を伝える。これを受けて、下位の電池制御装置1は、信号線135により最上位の出電池制御装置1内のリレー100をOFFとする。その後、MPU20の終了処理が完了するのを受け、更に下位の電池制御装置1に終了処理完の旨を伝える。   The power-off sequence is transmitted to all the battery control devices 1 via the communication line 50 when a power-off command is issued from the control device 4, and the termination process is executed by the MPUs 20 of all the battery control devices 1. Is done. When the uppermost battery control device 1 finishes the end process, the uppermost battery control device 1 notifies the lower battery control device 1 that the end process has been completed via the communication line 50. In response to this, the lower battery control device 1 turns off the relay 100 in the uppermost battery control device 1 through the signal line 135. Thereafter, upon completion of the termination process of the MPU 20, the lower battery control apparatus 1 is informed of the completion of the termination process.

このように、最上位より順々に電源をOFFして行き、最後に制御装置4が、最下位の電池制御装置1−aから終了処理完を受け取ると、信号線135により、リレー100−aをOFFとし、全ての電池制御装置1をOFFとする。   In this way, the power is turned off sequentially from the highest level, and finally, when the control device 4 receives completion of the end process from the lowest level battery control device 1-a, the signal line 135 causes the relay 100-a. Is turned off and all battery control devices 1 are turned off.

また、異常発生時などに緊急に全ての電池制御装置1をOFFにする場合には、制御装置4は最下位の電池制御装置1−a内のリレー100−aのON/OFF制御する信号線135の電流を遮断し、リレー100をOFFとする。これにより、電池制御装置1の電源回路10が停止するため、通信回路32も停止し、上位の電池制御装置1−bのリレー100−bへの信号線135の電流が遮断される。そのため、リレー100−bがOFFとなり、電池制御装置1−bの電源回路10−bが停止する。このように、リレー100を制御する信号線135を流れる電流を遮断することにより、それより上位の電池制御装置1を全てOFFにすることが可能となる。   When all battery control devices 1 are turned off urgently when an abnormality occurs, the control device 4 is a signal line for controlling ON / OFF of the relay 100-a in the lowest-order battery control device 1-a. The current of 135 is cut off and the relay 100 is turned off. Thereby, since the power supply circuit 10 of the battery control device 1 is stopped, the communication circuit 32 is also stopped, and the current of the signal line 135 to the relay 100-b of the host battery control device 1-b is cut off. Therefore, the relay 100-b is turned off, and the power supply circuit 10-b of the battery control device 1-b is stopped. Thus, by cutting off the current flowing through the signal line 135 that controls the relay 100, it is possible to turn off all the battery control devices 1 that are higher than that.

図2を用いて、電池制御装置1が持つ4つ電位及び絶縁について詳細に説明する。電池制御装置1は、電源回路10のある電源電位150,MPU20のあるマイコン電位151,通信回路31のある通信L電位152,通信回路32のある通信H電位153である。電源電位150は、組電池2の負極側端子24の電位,マイコン電位151は、中間電位生成回路110からの配線130,配線133により決定され、組電池2の出力電圧の中間電位となる。   The four potentials and insulation of the battery control device 1 will be described in detail with reference to FIG. The battery control device 1 has a power supply potential 150 with the power supply circuit 10, a microcomputer potential 151 with the MPU 20, a communication L potential 152 with the communication circuit 31, and a communication H potential 153 with the communication circuit 32. The power supply potential 150 is determined by the potential of the negative terminal 24 of the assembled battery 2, and the microcomputer potential 151 is determined by the wiring 130 and the wiring 133 from the intermediate potential generating circuit 110 and becomes an intermediate potential of the output voltage of the assembled battery 2.

一方、通信L電位152は、組電池2の負極側端子24からの配線134により決定され、組電池2の負極側端子24の電位と同等となる。通信H電位153は、上位の電池制御装置1−bの通信L電位152−b(つまり、組電池2−bの負極側端子24−bの電位)と同等となる。すなわち、通信L電位152と下位の電池制御装置1−aの通信H電位は同電位となり、通信H電位153と上位の電池制御装置1−bの通信L電位152−bは同電位となる。   On the other hand, the communication L potential 152 is determined by the wiring 134 from the negative electrode side terminal 24 of the assembled battery 2 and is equivalent to the potential of the negative electrode side terminal 24 of the assembled battery 2. The communication H potential 153 is equivalent to the communication L potential 152-b (that is, the potential of the negative terminal 24-b of the assembled battery 2-b) of the host battery control device 1-b. That is, the communication L potential 152 and the communication H potential of the lower battery control device 1-a are the same potential, and the communication H potential 153 and the communication L potential 152-b of the upper battery control device 1-b are the same potential.

先述のとおり、電源電位150とマイコン電位151及び通信H電位153は、電源回路10により、マイコン電位151になるMPU20と、通信L電位152にある通信回路31間の絶縁はフォトカプラ41により行い、MPU20と通信H電位153にある通信回路32間の絶縁はフォトカプラ42により行う。また、電源電位150と通信L電位152との間は、リレー100により絶縁するとともに、リレー100により電源回路10の電源ON/OFFが可能である。   As described above, the power supply potential 150, the microcomputer potential 151, and the communication H potential 153 are insulated by the photocoupler 41 between the MPU 20 that becomes the microcomputer potential 151 and the communication circuit 31 at the communication L potential 152 by the power supply circuit 10. Insulation between the MPU 20 and the communication circuit 32 at the communication H potential 153 is performed by the photocoupler 42. Further, the power supply potential 150 and the communication L potential 152 are insulated by the relay 100, and the power supply circuit 10 can be turned on / off by the relay 100.

通信L電位152とマイコン電位151間を絶縁し、さらにマイコン電位151と通信H電位153間を絶縁する2段階絶縁により、マイコンと通信回路の1段絶縁に比べ、耐圧の小さなフォトカプラを使用することが可能となり、小型及びコストを下げることができる。   A two-stage insulation that insulates between the communication L potential 152 and the microcomputer potential 151, and further insulates between the microcomputer potential 151 and the communication H potential 153, and uses a photocoupler having a lower withstand voltage than the one-stage insulation between the microcomputer and the communication circuit. It is possible to reduce the size and cost.

図3は、図2に示す構成におけるリレー100のON/OFF時に対する150〜153の各電位をまとめた表である。なお、組電池2の正極側端子23の電圧をVH、負極側端子24の電圧をVLとする。リレー100がOFFのとき、電源回路10は、組電池2の負極側端子24と接続されていないため、電源電位150は、正極側端子23の電位VHとなる。また、リレー100がONの時は、電源回路10と組電池2の負極側端子24が接続されるため、電源電位150はVLとなる。つまり、リレー100の両端にかかる電圧は、リレー100がOFF時はVH−VLであり、リレー100がONの時は、リレー100の両端ともVLであるため、リレー100の両端にかかる電圧はゼロV(同電位)である。さらに、リレー100のON/OFF制御信号135−aは、配線134により常にVLであるため、リレー100がON時は、リレー100の回りの電圧は全てVLとなる。つまり、リレー100に電流が流れるON時にリレー100に余計な負荷がかからず、リレー100の寿命化に寄与できる。 FIG. 3 is a table summarizing each potential of 150 to 153 with respect to ON / OFF of the relay 100 in the configuration shown in FIG. In addition, the voltage of the positive electrode side terminal 23 of the assembled battery 2 is set to VH , and the voltage of the negative electrode side terminal 24 is set to VL . When the relay 100 is OFF, since the power supply circuit 10 is not connected to the negative electrode side terminal 24 of the assembled battery 2, the power supply potential 150 becomes the potential V H of the positive electrode side terminal 23. Further, when the relay 100 is ON, the power supply circuit 150 and the negative electrode side terminal 24 of the assembled battery 2 are connected, so the power supply potential 150 is VL . That is, the voltage applied to both ends of the relay 100 is V H −V L when the relay 100 is OFF, and both the ends of the relay 100 are V L when the relay 100 is ON. The voltage is zero V (the same potential). Further, since the ON / OFF control signal 135-a of the relay 100 is always VL due to the wiring 134, when the relay 100 is ON, all the voltages around the relay 100 are VL . That is, when the current flows through the relay 100, an extra load is not applied to the relay 100, and the life of the relay 100 can be increased.

また、リレー100がOFF時に、フォトカプラ42の両端にかかる電圧はゼロV(同電位)であり、フォトカプラ41の両端にかかる電圧はVH−VLである。リレー100がON時は、フォトカプラ42の両端にかかる電圧及びフォトカプラ41の両端にかかる電圧はいずれも(VH−VL)/2である。つまり、電流が流れる際に、フォトカプラ42の両端にかかる電圧およびフォトカプラ41の両端にかかる電圧は低くなる。 When the relay 100 is OFF, the voltage applied to both ends of the photocoupler 42 is zero V (the same potential), and the voltage applied to both ends of the photocoupler 41 is V H −V L. When the relay 100 is ON, the voltage applied to both ends of the photocoupler 42 and the voltage applied to both ends of the photocoupler 41 are both (V H −V L ) / 2. That is, when a current flows, the voltage applied to both ends of the photocoupler 42 and the voltage applied to both ends of the photocoupler 41 are lowered.

以上のように、組電池2の両端電圧の差であるVH−VLの耐圧を持つフォトカプラ42,41を用いて、電位153と電位152の間を2段絶縁することで、複数の組電池2を直列接続した電池制御システムを小耐圧のフォトカプラを用いて構築することができ、小型化および安価とすることができる。 As described above, by using the photocouplers 42 and 41 having a withstand voltage of V H −V L which is the difference between the voltages at both ends of the assembled battery 2, the potential 153 and the potential 152 are insulated in two stages, thereby A battery control system in which the assembled batteries 2 are connected in series can be constructed using a photocoupler with a low withstand voltage, and can be reduced in size and cost.

さらに、図2に示すように通信L電位152を、組電池2の負極側端子24からの配線134により決定する構成とすることにより、組電池2の負極側端子24と同電位となる。この機能により、各組電池の接続を遮断してメンテナンスを行う際には、各組電池2の負極側端子24をグランドに接続することで、各電池制御装置の通信線の電位は、常にグランド電位となり、メンテナンス時において、電池制御システムの高電圧部をなくすことができ、感電などの事故を未然に防止することができる。   Further, as shown in FIG. 2, the communication L potential 152 is determined by the wiring 134 from the negative electrode side terminal 24 of the assembled battery 2, so that it has the same potential as the negative electrode side terminal 24 of the assembled battery 2. With this function, when maintenance is performed by cutting off the connection of each assembled battery, the potential of the communication line of each battery control device is always grounded by connecting the negative terminal 24 of each assembled battery 2 to the ground. At the time of maintenance, the high voltage part of the battery control system can be eliminated, and accidents such as electric shock can be prevented in advance.

続いて、図4,図5を用いて、組電池2及び2−aを並列接続した場合について、説明する。   Then, the case where the assembled batteries 2 and 2-a are connected in parallel is demonstrated using FIG. 4, FIG.

組電池2及び2−aを並列接続した場合、組電池2及び2−aの負極側端子24と24−aの電位は同電位となる。従って、同電位である電池制御装置1の通信L電位152及び電池制御装置1−aの通信H電位153−aはいずれもVLとなる(以下、通信H電位153−aと記す)。 When the assembled batteries 2 and 2-a are connected in parallel, the negative electrodes 24 and 24-a of the assembled batteries 2 and 2-a have the same potential. Accordingly, the communication L potential 152 of the battery control device 1 and the communication H potential 153-a of the battery control device 1-a that are the same potential are both V L (hereinafter referred to as the communication H potential 153-a).

図5に電池制御装置1−aの各電位について、リレー100のON/OFFについてそれぞれ示す。リレー100のON/OFFに関わらず、通信H電位153−aの電位はVLとなる。この場合においても、リレー100のON時は、リレー周りの電圧は全てVLと同電位となる。また、リレー100がOFF時は、フォトカプラ42の両端にかかる電圧はVH−VL、フォトカプラ41の両端にかかる電圧はVH−VLとなる。リレー100がON時は、フォトカプラ42の両端にかかる電圧およびフォトカプラ41の両端にかかる電圧は(VH−VL)/2となる。 FIG. 5 shows each potential of the battery control device 1-a and ON / OFF of the relay 100. Regardless of ON / OFF of the relay 100, the potential of the communication H potential 153-a becomes VL . Even in this case, when the relay 100 is ON, the voltages around the relay are all at the same potential as V L. When the relay 100 is OFF, the voltage applied to both ends of the photocoupler 42 is V H −V L , and the voltage applied to both ends of the photocoupler 41 is V H −V L. When the relay 100 is ON, the voltage applied to both ends of the photocoupler 42 and the voltage applied to both ends of the photocoupler 41 are (V H −V L ) / 2.

従って、組電池2を直列及び並列に接続した場合でも同じ各電位150〜153間の電位差は同じとなり、本実施例の構成である電池制御装置1は、直列でも並列接続でも使用可能であることがわかる。   Therefore, even when the assembled battery 2 is connected in series and in parallel, the potential difference between the same potentials 150 to 153 is the same, and the battery control device 1 which is the configuration of the present embodiment can be used in series or in parallel connection. I understand.

以上から、本電池制御装置1を用いることで、多並列時でも実現することができ、高電圧及び大容量の電池制御システムの低コスト化が実現できる。   From the above, by using this battery control device 1, it can be realized even in a multi-parallel state, and the cost reduction of a high voltage and large capacity battery control system can be realized.

また、電池制御装置1,1−aを接続する通信線50の電位が、組電池2,2−aの負極側端子24,24−aと同電位となり、通信線50の電位を低くすることができる。   Further, the potential of the communication line 50 connecting the battery control devices 1, 1-a is the same as that of the negative terminals 24, 24-a of the assembled batteries 2, 2-a, and the potential of the communication line 50 is lowered. Can do.

続いて、図6〜図9に本発明の他の実施例として、本実施例とは異なる方法で150〜153の各電位を決定する電池制御装置1′の構成について説明する。上述した本実施例との違いは、通信H電位153と通信L電位152の決め方である。   Subsequently, as another embodiment of the present invention, a configuration of a battery control device 1 ′ that determines each potential of 150 to 153 by a method different from the present embodiment will be described with reference to FIGS. The difference from the above-described embodiment is how to determine the communication H potential 153 and the communication L potential 152.

図6は組電池2と電池制御装置1′との組が直列に接続された構成である。   FIG. 6 shows a configuration in which a set of the assembled battery 2 and the battery control device 1 ′ is connected in series.

図6においては、通信H電位153は、組電池2の正極側端子23からの配線136により決定され、組電池2の正極側端子23の電位レベルとなる。一方、通信L電位152は、下位の電池制御装置1−aの通信H電位153−a(つまり、組電池2−aの正極側端子23−aの電位レベル)となる。なお、通信L電位152と下位の電池制御装置1−aの通信H電位は同電位である。通信H電位153と上位の電池制御装置1−aの通信L電位は同電位となる。   In FIG. 6, the communication H potential 153 is determined by the wiring 136 from the positive terminal 23 of the assembled battery 2 and becomes the potential level of the positive terminal 23 of the assembled battery 2. On the other hand, the communication L potential 152 becomes the communication H potential 153-a of the lower battery control device 1-a (that is, the potential level of the positive terminal 23-a of the assembled battery 2-a). The communication L potential 152 and the communication H potential of the lower battery control device 1-a are the same potential. The communication H potential 153 and the communication L potential of the upper battery control device 1-a are the same potential.

図1の場合と同様に、電源電位150とマイコン電位151及び通信H電位153は、電源回路10により、マイコン電位151になるMPU20と、通信L電位152にある通信回路31との間の絶縁はフォトカプラ41により、MPU20と通信H電位153にある通信回路32との間の絶縁はフォトカプラ42により行う。また、電源電位150と通信L電位152間は、リレー100により絶縁するとともに、リレー100により電源回路10の電源ON/OFFが可能である。   As in the case of FIG. 1, the power supply potential 150, the microcomputer potential 151, and the communication H potential 153 are insulated from the MPU 20 that becomes the microcomputer potential 151 by the power supply circuit 10 and the communication circuit 31 at the communication L potential 152. The photocoupler 41 provides insulation between the MPU 20 and the communication circuit 32 at the communication H potential 153 by the photocoupler 42. Further, the power supply potential 150 and the communication L potential 152 are insulated by the relay 100, and the power supply circuit 10 can be turned on / off by the relay 100.

図6に示すように、通信H電位153を、組電池2の正極側端子23からの配線136により決定する構成とすることにより、組電池2の正極側端子23と同電位となる。つまり、メンテナンスを行う際に、各組電池の接続を遮断し各電池制御装置の通信線の電位は、常にグランド電位から一つの組電池分の電位上昇した電位となってしまう。   As shown in FIG. 6, the communication H potential 153 is determined by the wiring 136 from the positive terminal 23 of the assembled battery 2, so that the same potential as that of the positive terminal 23 of the assembled battery 2 is obtained. That is, when performing maintenance, the connection of each assembled battery is cut off, and the potential of the communication line of each battery control device is always a potential that is increased from the ground potential by one assembled battery.

図7に、リレー100がON/OFFした際の、図6に記載の構成における150〜153の各電位についてまとめた。なお、組電池2の正極側端子23の電圧をVH、負極側端子24の電圧をVLとする。リレー100がOFFのとき、電源回路10は、組電池2の負極側端子24と接続されていないため、電源電位150は、正極側端子23の電位VHとなる。また、リレー100がONの時は、電源回路10と組電池2の負極側端子24が接続されるため、電源電位150はVLとなる。つまり、リレー100の両端にかかる電圧は、リレー100がOFF時はVH−VLとであり、リレー100がONの時はリレー100の両端ともにVLでありリレー100の両端にかかる電圧は0V(同電位)である。さらに、リレー100のON/OFF制御信号135−aは、常にVLであるため、リレー100がON時は、リレー100回りの電圧は全てVLとなり、リレー100に電流が流れるON時に余計な負荷がかからず、リレー100の寿命化に寄与できる。 FIG. 7 summarizes the potentials 150 to 153 in the configuration shown in FIG. 6 when the relay 100 is turned ON / OFF. In addition, the voltage of the positive electrode side terminal 23 of the assembled battery 2 is set to VH , and the voltage of the negative electrode side terminal 24 is set to VL . When the relay 100 is OFF, since the power supply circuit 10 is not connected to the negative electrode side terminal 24 of the assembled battery 2, the power supply potential 150 becomes the potential V H of the positive electrode side terminal 23. Further, when the relay 100 is ON, the power supply circuit 150 and the negative electrode side terminal 24 of the assembled battery 2 are connected, so the power supply potential 150 is VL . That is, the voltage applied to both ends of the relay 100 is V H −V L when the relay 100 is OFF, and the voltage applied to both ends of the relay 100 is V L at both ends of the relay 100 when the relay 100 is ON. 0 V (same potential). Further, since the ON / OFF control signal 135-a of the relay 100 is always V L , when the relay 100 is ON, all the voltages around the relay 100 become V L , which is unnecessary when the current flows through the relay 100. The load is not applied and the life of the relay 100 can be increased.

次に、図8に、他の実施例として、電池制御装置1′を用いて組電池2,2−aを並列接続した実施例を示す。   Next, FIG. 8 shows an embodiment in which the assembled batteries 2 and 2-a are connected in parallel using the battery control device 1 ′ as another embodiment.

図9は、リレー100がON/OFFした際の、図8に記載の構成における150〜153の各電位についてまとめた。リレー100のON/OFFに関わらず、通信L電位152はVHとなる。これは、通信L電位152と同電位となる電池制御装置1′−aの電位153−aが、136−aにより、組電池2−aの正極側端子23−aの電位となるためである。この場合、リレー100のON時は、リレー100の両端の電位はVLであるが、リレー100のON/OFF制御信号135−aの電位は、VHとなる。従って、リレー100のON時に、VH−VLの負荷がかかる。また、フォトカプラ41,42の両端にかかる電圧は、リレー100がOFF時は、フォトカプラ42は0V、フォトカプラ41はVH−VLとなり、リレー100がON時は、フォトカプラ42,41共に、(VH−VL)/2となる。従って、図6の場合には、フォトカプラ42の耐圧を(VH−VL)/2まで下げることが可能となる。 FIG. 9 summarizes the potentials 150 to 153 in the configuration shown in FIG. 8 when the relay 100 is turned ON / OFF. Regardless of ON / OFF of the relay 100, the communication L potential 152 becomes V H. This is because the potential 153-a of the battery control device 1 ′ -a that is the same potential as the communication L potential 152 becomes the potential of the positive terminal 23-a of the assembled battery 2-a due to 136-a. . In this case, when the relay 100 is ON, the potential at both ends of the relay 100 is VL , but the potential of the ON / OFF control signal 135-a of the relay 100 is VH . Therefore, when the relay 100 is turned on, a load of V H −V L is applied. The voltage applied to both ends of the photocouplers 41 and 42 is 0V for the photocoupler 42 and VHVL for the photocoupler 41 when the relay 100 is OFF, and the photocouplers 42 and 41 when the relay 100 is ON. Both are (V H −V L ) / 2. Therefore, in the case of FIG. 6, it is possible to reduce the breakdown voltage of the photocoupler 42 to (V H −V L ) / 2.

以上から、図6や図8に示した本電池制御装置1′を用いることで、多並列時でも実現することができ、高電圧及び大容量の電池制御システムの低コスト化が実現できる。   From the above, by using this battery control device 1 ′ shown in FIG. 6 and FIG. 8, it can be realized even in a multi-parallel state, and cost reduction of a high voltage and large capacity battery control system can be realized.

その一方で、電池制御装置1′,1′−aを接続する通信線50の電位が、組電池2,2−aの正極側端子23,23−aと同電位となるため、図1や図4に示した実施例の電池制御装置1と比較して通信線50の電位が高くなってしまう。   On the other hand, the potential of the communication line 50 connecting the battery control devices 1 'and 1'-a is the same as that of the positive terminals 23 and 23-a of the assembled batteries 2 and 2-a. Compared with the battery control device 1 of the embodiment shown in FIG. 4, the potential of the communication line 50 becomes higher.

続いて、図10に複数の電池制御システムを並列接続した際の更に大容量の電池制御システムを構築することを示す。   Next, FIG. 10 shows that a battery control system with a larger capacity when a plurality of battery control systems are connected in parallel is constructed.

図10に、電池制御装置1を用い電池制御システム1001を構成した電池システム2000の例を示す。電池システム2000は、電池制御システム1001と1001−aを最上位のコントローラ5で接続した構成である。本例では、電池システム2000は2つの電池制御システム1001と1001−1から構成されるが、複数の電池制御システムは同様の構成である。   FIG. 10 shows an example of a battery system 2000 that constitutes a battery control system 1001 using the battery control device 1. The battery system 2000 has a configuration in which the battery control systems 1001 and 1001-a are connected by the uppermost controller 5. In this example, the battery system 2000 includes two battery control systems 1001 and 1001-1, but a plurality of battery control systems have the same configuration.

各電池制御システム1001において、複数の組電池2はスイッチ62を介して、直列接続されており、各組電池2はそれぞれ電池制御装置1と電源線3で接続されている。   In each battery control system 1001, a plurality of assembled batteries 2 are connected in series via a switch 62, and each assembled battery 2 is connected to the battery control device 1 through a power line 3.

また、直列接続された最上位の組電池2−aの正極側端子は、端子81と、最下位の組電池2−cの負極側端子24は、端子82と接続され、この端子81,82を介して、各組電池2が保持する電力が充放電される。また、組電池2−aと組電池2−bはスイッチ62−aを介して接続されており、スイッチ62−aは、組電池2−aと組電池2−bを接続するか、組電池2−aの負極側を、抵抗63−aを介して、グランド83に接続するかを切り替える。また、スイッチ61は、組電池2−aの正極側端子と端子81との接続と切り離しを行う。さらに、スイッチ61,62−a,62−b,62−cは連動して動作する。   The positive terminal of the uppermost assembled battery 2-a connected in series is connected to the terminal 81, and the negative terminal 24 of the lowermost assembled battery 2-c is connected to the terminal 82. The electric power held by each assembled battery 2 is charged and discharged via the. The assembled battery 2-a and the assembled battery 2-b are connected via a switch 62-a, and the switch 62-a connects the assembled battery 2-a and the assembled battery 2-b, or Whether to connect the negative electrode side of 2-a to the ground 83 via the resistor 63-a is switched. The switch 61 connects and disconnects the positive electrode side terminal and the terminal 81 of the assembled battery 2-a. Further, the switches 61, 62-a, 62-b, and 62-c operate in conjunction with each other.

一方、電池制御装置1同士は通信線50により数珠繋ぎで接続されており、最下位の電池制御装置1−cは、この電池システム2000全体を制御する上位の制御装置4に、通信線50−dにより接続されている。また電池制御システム1001内に設置され、組電池2を冷却するファンや端子82,83間の端子間電圧及び電流を計測する電圧センサや電流センサなどを含む装置6は、上位制御装置4と接続され、上位制御装置4は、各種センサからのデータ入力や電池制御装置1からの情報により装置6を制御する。   On the other hand, the battery control devices 1 are connected to each other by a communication line 50, and the lowest-order battery control device 1-c is connected to the upper control device 4 that controls the entire battery system 2000 with the communication line 50-d. Connected by. A device 6 installed in the battery control system 1001 and including a fan for cooling the assembled battery 2 and a voltage sensor and a current sensor for measuring the voltage and current between the terminals 82 and 83 is connected to the host control device 4. The host control device 4 controls the device 6 based on data input from various sensors and information from the battery control device 1.

また上位制御装置4同士は通信線51により接続されている。図10では、上位制御装置4同士は、マルチドロップで接続されているが、個別接続でもよい。   The host control devices 4 are connected to each other by a communication line 51. In FIG. 10, the host control devices 4 are connected by multi-drop, but may be connected individually.

本電池制御システム2000では、電池制御装置1は、各組電池2の状態情報を取得し、そのデータを、通信線50を介して、上位制御装置4と通信する。例えば、電池制御装置1−aは、通信線50−a,電池制御装置1−b,通信線50−b,50−c,電池制御装置1−c,通信線50−dを介して、上位制御装置4と通信する。   In the battery control system 2000, the battery control device 1 acquires state information of each assembled battery 2 and communicates the data with the host control device 4 via the communication line 50. For example, the battery control device 1-a is connected via the communication line 50-a, the battery control device 1-b, the communication lines 50-b, 50-c, the battery control device 1-c, and the communication line 50-d. It communicates with the control device 4.

つまり、電池制御装置1−bは、組電池2−bの状態情報データに加え、電池制御装置1−aからの状態情報データを通信線50−bに送信する。このように、各状態制御装置は、接続された組電池2の情報データと受信した情報制御データと合わせて、送信する。   That is, the battery control device 1-b transmits the state information data from the battery control device 1-a to the communication line 50-b in addition to the state information data of the assembled battery 2-b. In this way, each state control device transmits the information data of the connected assembled battery 2 together with the received information control data.

また、スイッチ61が切り離され、スイッチ62−a,62−b,62−cが抵抗63側と接続した際、各組電池2の負極側端子は、すべてグランド83に接続される。これにより、電池制御装置1の通信L電位及び通信線50の電位はすべてグランド83と同じとなると共に、端子81は組電池2−aの正極側と切り離されるため、組電池2や通信線50の取り外し及び交換の際に、感電などの危険性をなくし、安全に作業を行うことができる。   Further, when the switch 61 is disconnected and the switches 62-a, 62-b, 62-c are connected to the resistor 63 side, all the negative electrode side terminals of each assembled battery 2 are connected to the ground 83. Accordingly, the communication L potential of the battery control device 1 and the potential of the communication line 50 are all the same as the ground 83, and the terminal 81 is disconnected from the positive electrode side of the assembled battery 2-a. When removing and replacing the battery, there is no danger of electric shock and the work can be performed safely.

ここで、スイッチ62−a,62−b,62−cが抵抗63側と接続した瞬間は、各組電池の直列分の電圧が回路に残存しているため、大電流がグランドへ流れ感電などの危険性が残る。そのため、抵抗63をスイッチ62−a,62−b,62−cとグランド83の間に設けることにより大電流が流れることを防止し、感電などの危険性を排除することを可能としている。   Here, at the moment when the switches 62-a, 62-b, and 62-c are connected to the resistor 63 side, the series voltage of each assembled battery remains in the circuit, so that a large current flows to the ground, etc. The danger remains. Therefore, by providing the resistor 63 between the switches 62-a, 62-b, 62-c and the ground 83, it is possible to prevent a large current from flowing and to eliminate dangers such as electric shock.

続いて、図11及び図12に電池制御システム1001の別の接続方法について示す。図11は、1つの電子制御システム1001内で電池制御装置などを2並列に接続した場合の構成を示す。1列目は、組電池2−a〜2−cと当該組電池2に接続された電池制御装置1−a〜1−cから構成され、2列目は、組電池2−a−1〜2−c−1と電池制御装置1−a−1〜1−c−1となっている。また、上位制御装置4は、電池制御装置1−cと1−c−1に通信線50−d及び50−d−1により接続される。なお、電池制御システム1001に含まれる装置類6は、上位制御装置4に接続される。   Next, another connection method of the battery control system 1001 is shown in FIGS. FIG. 11 shows a configuration when two battery control devices and the like are connected in parallel in one electronic control system 1001. The first row is composed of assembled batteries 2-a to 2-c and battery control devices 1-a to 1-c connected to the assembled battery 2, and the second row is assembled batteries 2-a-1 to 2-a-1. 2-c-1 and battery control devices 1-a-1 to 1-c-1. The host control device 4 is connected to the battery control devices 1-c and 1-c-1 by communication lines 50-d and 50-d-1. Note that the devices 6 included in the battery control system 1001 are connected to the host control device 4.

図11では2並列構成の例であるが、同様の接続方法で3並列構成以上とすることも可能である。   Although FIG. 11 shows an example of a two-parallel configuration, it is possible to achieve a three-parallel configuration or more with a similar connection method.

また、図11では、並列ごとに電池制御装置1同士を通信線50で接続した例であるが、図12は、同じ電位にある電池制御装置1を接続して、その後上の電位群の電池制御装置1に接続する方式である。図12の例は2並列であるが、同様の接続で3並列以上とすることも可能である。   FIG. 11 shows an example in which the battery control devices 1 are connected to each other by the communication line 50 in parallel, but FIG. 12 shows a battery in the potential group above that is connected to the battery control device 1 at the same potential. This is a method of connecting to the control device 1. Although the example of FIG. 12 has two parallels, it is possible to have three or more parallels with the same connection.

図10と同様に、図11及び図12においてもスイッチ62がグランド83側と接続すると、すべての組電池2の負極側端子がグランド83に接続される。そのため、通信線50の電位はすべてグランド83と同じになり、組電池2交換などの保守作業での安全性を確保できる。   Similarly to FIG. 10, in FIGS. 11 and 12, when the switch 62 is connected to the ground 83 side, the negative electrode side terminals of all the assembled batteries 2 are connected to the ground 83. Therefore, the potential of the communication line 50 is all the same as that of the ground 83, and safety in maintenance work such as replacement of the assembled battery 2 can be ensured.

上記した実施例は、大容量の蓄電装置を用いる分野に適用可能である。特に、大容量でかつ小型化が要求され、メンテナンスを必要とする鉄道分野に適用すると大きな効果を奏すると考えられる。   The above-described embodiments can be applied to the field using a large capacity power storage device. In particular, it is considered to have a great effect when applied to the railway field requiring large capacity and downsizing and requiring maintenance.

1 電池制御装置
2 組電池
3 電源線
4 上位制御装置
10 電源回路
20 MPU
21 単電池
30 通信回路
40 フォトカプラ
50 通信線
100 リレー
110 中間電位生成回路
DESCRIPTION OF SYMBOLS 1 Battery control apparatus 2 Assembly battery 3 Power supply line 4 High-order control apparatus 10 Power supply circuit 20 MPU
21 Cell 30 Communication Circuit 40 Photocoupler 50 Communication Line 100 Relay 110 Intermediate Potential Generation Circuit

Claims (10)

複数の単電池を直列に接続した組電池に接続され前記組電池の状態を監視する電池制御装置を複数備え、
前記組電池が複数個接続された蓄電池を監視する電池制御システムであって、
前記電池制御装置は、制御部分と、
一方側で接続する電池制御装置と通信する第1通信回路と、
他方側で接続する電池制御装置と通信する第2通信回路と、
前記組電池から電力供給を受けて前記電池制御装置の制御回路用の電力と第2通信回路用の電力とを生成する電源回路と、
前記制御部分と前記第1通信回路とを絶縁する第1の絶縁手段と、
前記制御部分と前記第2通信回路とを絶縁する第2の絶縁手段と、を備え、
前記電池制御装置における第1の通信回路と、前記一方側で接続する電池制御装置における第2の通信回路と、は接続され
前記第1通信回路と当該電池制御装置に接続された前記組電池の負極端子とは配線により電気的に接続されて、前記第1通信回路の電位と当該電池制御装置に接続された前記組電池の負極端子の電位とは同電位とされ、
前記各組電池の負極側端子をグラウンドに接続するスイッチを有し、前記各組電池の接続を遮断する際に、前記スイッチを切り替えて前記各組電池の負極側端子を接地させることにより、前記通信線の電位を接地電位とすることを特徴とする電池制御システム。
A plurality of battery control devices that are connected to an assembled battery in which a plurality of cells are connected in series and monitor the state of the assembled battery,
A battery control system for monitoring a storage battery in which a plurality of the assembled batteries are connected,
The battery control device includes a control part,
A first communication circuit communicating with a battery control device connected on one side;
A second communication circuit communicating with the battery control device connected on the other side;
A power supply circuit that receives power supply from the assembled battery and generates power for the control circuit of the battery control device and power for the second communication circuit;
First insulating means for insulating the control portion and the first communication circuit;
A second insulating means for insulating the control portion and the second communication circuit;
The first communication circuit in the battery control device and the second communication circuit in the battery control device connected on the one side are connected ,
The first communication circuit and the negative terminal of the assembled battery connected to the battery control device are electrically connected by wiring, and the assembled battery connected to the potential of the first communication circuit and the battery control device. The negative electrode terminal has the same potential as
It has a switch for connecting the negative electrode side terminal of each assembled battery to the ground, and when the connection of each assembled battery is cut off, by switching the switch and grounding the negative electrode side terminal of each assembled battery, A battery control system characterized in that a potential of a communication line is set to a ground potential .
請求項1において、
前記電池制御装置に接続された前記組電池の正極端子と負極端子の間に接続された分圧用直列抵抗である中間電位生成回路により、前記組電池の正極端子と負極端子の中間電位を前記制御回路の電位とすることを特徴とする電池制御システム。
In claim 1,
The intermediate potential generation circuit, which is a series resistor for voltage division connected between the positive terminal and the negative terminal of the assembled battery connected to the battery control device, controls the intermediate potential between the positive terminal and the negative terminal of the assembled battery. A battery control system characterized by having a circuit potential .
請求項1または請求項2において、
前記スイッチと前記グラウンドとの間に抵抗を備え、前記スイッチを切り替えて前記各組電池の負極側端子を接地する際に、グラウンドへ大電流が流れることを抑制することを特徴とする電池制御システム。
In claim 1 or claim 2 ,
A battery control system comprising a resistor between the switch and the ground, wherein a large current is suppressed from flowing to the ground when the switch is switched to ground the negative electrode side terminal of each assembled battery. .
請求項1乃至請求項3のいずれかにおいて、
前記電源回路は、生成する制御回路用の電力と、第2通信回路用の電力とを絶縁することを特徴とする電池制御システム。
In any one of Claim 1 thru | or 3 ,
The battery control system , wherein the power supply circuit insulates the generated power for the control circuit from the power for the second communication circuit .
請求項1乃至請求項3のいずれかにおいて、
前記電池制御装置は、前記電源回路の電源のON/OFFを制御するリレー回路を備え、
前記電池制御装置は、前記リレー回路は、前記第1通信回路と接続される隣接する電池制御装置における第2通信回路によりON/OFF制御されることを特徴とする電源制御システム。
In any one of Claim 1 thru | or 3 ,
The battery control device includes a relay circuit that controls ON / OFF of the power supply of the power supply circuit,
In the battery control device, the relay circuit is ON / OFF controlled by a second communication circuit in an adjacent battery control device connected to the first communication circuit .
請求項5において、
前記電池制御システムの最も端に配置された電池制御装置における第1通信回路は、上位制御装置に接続されており、
前記リレー回路は、前記上位制御装置側から順番に電源ONされることを特徴とする電源制御システム。
In claim 5,
The first communication circuit in the battery control device arranged at the extreme end of the battery control system is connected to the host control device,
The power supply control system according to claim 1, wherein the relay circuit is powered on in order from the host controller side .
請求項1乃至請求項3のいずれかにおいて、
前記第1通信回路の電源は、前記第1通信回路と接続される隣接する前記電池制御装置の電源回路より供給されることを特徴とする電池制御システム。
In any one of Claim 1 thru | or 3 ,
The battery control system according to claim 1, wherein power of the first communication circuit is supplied from a power supply circuit of the battery control device adjacent to the first communication circuit .
複数の単電池を直列に接続した組電池が複数個接続された蓄電池と、A storage battery in which a plurality of assembled batteries in which a plurality of cells are connected in series are connected;
前記組電池にそれぞれ接続されて前記組電池の状態を監視する複数の電池制御装置と、A plurality of battery control devices each connected to the assembled battery and monitoring the state of the assembled battery;
を備える電池システムであって、A battery system comprising:
電池システムは、複数の前記電池制御装置を通信線で数珠状に接続した電池制御装置群の一端に、上位制御装置を備え、The battery system includes a host control device at one end of a group of battery control devices in which a plurality of the battery control devices are connected in a rosary shape with a communication line,
前記電池制御装置は、制御部分と、The battery control device includes a control part,
数珠状に接続する上位制御装置側の電池制御装置と通信する第1通信回路と、A first communication circuit that communicates with a battery controller on the host controller side connected in a bead shape;
数珠状に接続する他方側の電池制御装置と通信する第2通信回路と、A second communication circuit communicating with the battery control device on the other side connected in a bead shape;
前記組電池から電力供給を受けて前記電池制御装置の制御回路と第2通信回路とに電力を供給する電源回路と、A power supply circuit that receives power supply from the assembled battery and supplies power to the control circuit of the battery control device and the second communication circuit;
前記制御部分と前記第1通信回路とを絶縁する第1の絶縁手段と、First insulating means for insulating the control portion and the first communication circuit;
前記制御部分と前記第2通信回路とを絶縁する第2の絶縁手段と、Second insulating means for insulating the control portion and the second communication circuit;
前記第1通信回路と当該電池制御装置に接続された前記組電池の負極端子とを電気的に接続し、前記第1通信回路の電位と当該電池制御装置に接続された前記組電池の負極端子の電位とを同電位とする配線と、The first communication circuit and the negative terminal of the assembled battery connected to the battery control device are electrically connected, and the potential of the first communication circuit and the negative terminal of the assembled battery connected to the battery control device A wiring having the same potential as
前記各組電池の負極側端子を接地するスイッチと、を備え、A switch for grounding the negative electrode side terminal of each assembled battery,
前記各組電池の直列接続を遮断する際に、前記スイッチを切り替えて前記各組電池の負極側端子を接地させることにより、前記通信線の電位を接地電位とすることを特徴とする電池システム。The battery system is characterized in that when the series connection of each assembled battery is interrupted, the potential of the communication line is set to the ground potential by switching the switch and grounding the negative electrode side terminal of each assembled battery.
複数の単電池を直列に接続した組電池を複数個直列に接続した直列単位を、さらに複数並列に接続した蓄電池と、A storage unit in which a plurality of battery units connected in series, and a plurality of battery units connected in series;
前記組電池にそれぞれ接続されて前記組電池を監視する複数の電池制御装置と、を備える電池システムであって、A plurality of battery control devices connected to the assembled battery and monitoring the assembled battery, respectively,
前記直列単位ごとに数珠繋ぎで通信可能に接続される複数の前記電池制御装置と、A plurality of the battery control devices connected so as to communicate with each other in series with each other in series,
当該数珠繋ぎの一端に位置する前記電池制御装置に通信可能に接続される上位制御装置と、を備え、A host control device communicably connected to the battery control device located at one end of the bead chain,
前記電池制御装置は、制御部分と、The battery control device includes a control part,
数珠繋ぎで接続された隣接する前記上位制御装置に近い側の前記電池制御装置と通信する第1通信回路と、A first communication circuit that communicates with the battery control device on the side close to the adjacent upper control device connected by a daisy chain;
数珠繋ぎで接続された隣接する前記上位制御装置と遠い側の前記電池制御装置と通信する第2通信回路と、A second communication circuit that communicates with the adjacent higher-order control device connected by a rosary connection and the battery control device on the far side;
前記組電池からの電力供給を受け、前記電池制御装置の制御回路と第2通信回路が駆動する電源を生成する電源回路と、備え、A power supply circuit that receives power supply from the assembled battery and generates a power supply that is driven by a control circuit of the battery control device and a second communication circuit;
前記第1通信回路は、隣接する前記電池制御装置の前記第2通信回路と接続して数珠繋ぎを構成し、The first communication circuit is connected to the second communication circuit of the adjacent battery control device to form a daisy chain,
前記第1通信回路と前記電池制御装置に接続された前記組電池の負極端子とは配線により電気的に接続されて、前記第1通信回路の電位と当該電池制御装置に接続された前記組電池の負極端子の電位とは同電位とされ、The first communication circuit and the negative terminal of the assembled battery connected to the battery control device are electrically connected by wiring, and the assembled battery connected to the potential of the first communication circuit and the battery control device. The negative electrode terminal has the same potential as
前記各組電池の負極側端子を接地可能なスイッチを有し、前記各組電池の接続を遮断する際に、前記スイッチを切り替えて前記各組電池の負極側端子を接地させることにより、前記通信線の電位を接地電位とすることを可能とすることを特徴とする電池システム。A switch capable of grounding a negative electrode side terminal of each assembled battery, and switching the switch to ground the negative electrode side terminal of each assembled battery when the connection of each assembled battery is cut off. A battery system characterized in that a potential of a wire can be set to a ground potential.
複数の単電池を直列に接続した組電池を複数個直列に接続した直列単位を、さらに複数並列に接続した蓄電池と、A storage unit in which a plurality of battery units connected in series, and a plurality of battery units connected in series;
前記組電池にそれぞれ接続されて前記組電池を監視する複数の電池制御装置と、を備える電池システムであって、A plurality of battery control devices connected to the assembled battery and monitoring the assembled battery, respectively,
数珠繋ぎで通信可能に接続される複数の前記電池制御装置と、A plurality of the battery control devices connected in a communicable manner in a daisy chain;
当該数珠繋ぎの一端に位置する前記電池制御装置に通信可能に接続される上位制御装置と、を備え、A host control device communicably connected to the battery control device located at one end of the bead chain,
前記電池制御装置は、制御部分と、The battery control device includes a control part,
数珠繋ぎで接続された隣接する前記上位制御装置に近い側の前記電池制御装置と通信する第1通信回路と、A first communication circuit that communicates with the battery control device on the side close to the adjacent upper control device connected by a daisy chain;
数珠繋ぎで接続された隣接する前記上位制御装置と遠い側の前記電池制御装置と通信する第2通信回路と、A second communication circuit that communicates with the adjacent higher-order control device connected by a rosary connection and the battery control device on the far side;
前記組電池からの電力供給を受け、前記電池制御装置の制御回路と第2通信回路が駆動する電源を生成する電源回路と、備え、A power supply circuit that receives power supply from the assembled battery and generates a power supply that is driven by a control circuit of the battery control device and a second communication circuit;
前記第1通信回路は、隣接する前記電池制御装置の前記第2通信回路と接続して数珠繋ぎを構成し、The first communication circuit is connected to the second communication circuit of the adjacent battery control device to form a daisy chain,
前記第1通信回路と前記電池制御装置に接続された前記組電池の負極端子とは配線により電気的に接続されて、前記第1通信回路の電位と当該電池制御装置に接続された前記組電池の負極端子の電位とは同電位とされ、The first communication circuit and the negative terminal of the assembled battery connected to the battery control device are electrically connected by wiring, and the assembled battery connected to the potential of the first communication circuit and the battery control device. The negative electrode terminal has the same potential as
前記各組電池の負極側端子を接地可能なスイッチを有し、前記各組電池の接続を遮断する際に、前記スイッチを切り替えて前記各組電池の負極側端子を接地させることにより、前記通信線の電位を接地電位とすることを可能とすることを特徴とする電池システム。A switch capable of grounding a negative electrode side terminal of each assembled battery, and switching the switch to ground the negative electrode side terminal of each assembled battery when the connection of each assembled battery is cut off. A battery system characterized in that a potential of a wire can be set to a ground potential.
JP2009014873A 2009-01-27 2009-01-27 Battery controller potential fixing method Expired - Fee Related JP5028436B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009014873A JP5028436B2 (en) 2009-01-27 2009-01-27 Battery controller potential fixing method
GB1001067A GB2467231B (en) 2009-01-27 2010-01-22 Battery control system and battery system
CN2010101050137A CN101789530B (en) 2009-01-27 2010-01-27 Method for fixing potential of battery controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014873A JP5028436B2 (en) 2009-01-27 2009-01-27 Battery controller potential fixing method

Publications (2)

Publication Number Publication Date
JP2010178400A JP2010178400A (en) 2010-08-12
JP5028436B2 true JP5028436B2 (en) 2012-09-19

Family

ID=42045939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014873A Expired - Fee Related JP5028436B2 (en) 2009-01-27 2009-01-27 Battery controller potential fixing method

Country Status (3)

Country Link
JP (1) JP5028436B2 (en)
CN (1) CN101789530B (en)
GB (1) GB2467231B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638311B2 (en) * 2010-08-18 2014-12-10 ラピスセミコンダクタ株式会社 Battery pack system, voltage monitoring system, voltage monitoring device, and semiconductor device
JP5510228B2 (en) * 2010-09-15 2014-06-04 ミツミ電機株式会社 Protection circuit
FR2972304A1 (en) * 2011-03-02 2012-09-07 Commissariat Energie Atomique BATTERY WITH INDIVIDUAL MANAGEMENT OF CELLS
JP5787997B2 (en) * 2011-05-31 2015-09-30 日立オートモティブシステムズ株式会社 Battery system monitoring device
JP5742524B2 (en) * 2011-07-08 2015-07-01 ソニー株式会社 Control device, power storage system, electronic device, electric vehicle, and power system
JP6168803B2 (en) * 2012-03-30 2017-07-26 ラピスセミコンダクタ株式会社 Battery monitoring system and semiconductor device
CN103358926B (en) * 2012-03-30 2016-12-28 拉碧斯半导体株式会社 Battery monitoring system and semiconductor device
JP5931567B2 (en) * 2012-04-26 2016-06-08 株式会社東芝 Battery module
JP5903645B2 (en) * 2013-03-25 2016-04-13 パナソニックIpマネジメント株式会社 Battery management system
JP2016135030A (en) * 2015-01-20 2016-07-25 株式会社東芝 Railway storage battery device
CN106494418B (en) * 2016-12-07 2018-08-03 中车株洲电力机车有限公司 A kind of low-voltage control circuit and train of train auxiliary system
KR102249887B1 (en) * 2016-12-22 2021-05-07 삼성에스디아이 주식회사 Voltage detecting ic and battery management system including the same
CN109786640A (en) * 2019-03-12 2019-05-21 江西清华泰豪三波电机有限公司 Ups power battery fast wiring mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930171B2 (en) * 1998-12-03 2007-06-13 株式会社日本自動車部品総合研究所 Battery monitoring device
JP3581825B2 (en) * 2000-09-28 2004-10-27 日立ホーム・アンド・ライフ・ソリューション株式会社 Power storage device
JP2005110439A (en) * 2003-09-30 2005-04-21 Nippon Chemicon Corp Electric double layer capacitor device
EP1806592B1 (en) * 2005-12-29 2017-01-18 Semiconductor Components Industries, LLC Method and system for monitoring battery stacks

Also Published As

Publication number Publication date
GB201001067D0 (en) 2010-03-10
CN101789530A (en) 2010-07-28
JP2010178400A (en) 2010-08-12
GB2467231B (en) 2011-05-04
GB2467231A (en) 2010-07-28
CN101789530B (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5028436B2 (en) Battery controller potential fixing method
KR102292357B1 (en) Discharging of a battery comprising at least two battery modules and a battery module comprising at least two battery cells
KR101616233B1 (en) Charging/discharging device
US10326288B2 (en) Method and device for the voltage-controlled self-deactivation of electronic components or battery cells
EP2664480A2 (en) Method and system for servicing high voltage battery packs
US20140117939A1 (en) Secondary battery management system and method for exchanging battery cell information
JP2011127969A (en) Secondary battery apparatus and vehicle
JP2019009982A (en) Safe vehicular energy supply device
CN111245041A (en) Power supply system
JP5569418B2 (en) Battery monitoring device
JP4845756B2 (en) Power supply for vehicle
US9472941B2 (en) Battery module
JP6733783B2 (en) Power supply device and diagnostic method for diagnosing abnormality of power supply device
CN111245044A (en) Power supply system
JP2014183671A (en) Abnormality detection device for battery pack
CN111245045A (en) Power supply system
CN111699605A (en) Battery control device
JP6003722B2 (en) Battery monitoring device
KR20100023364A (en) Apparatus and method for diagnosis of cell balancing circuit using flying capacitor
EP3540902B1 (en) Power supply system including high-voltage system and low-voltage system
JP2011029010A (en) Lithium ion secondary battery system and power supply method to management device
JP6056553B2 (en) Battery monitoring device
JP2009213248A (en) Battery device and control method therefor
US12046930B2 (en) Battery system
JP7438031B2 (en) Automotive battery control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees