US20160237214A1 - Composition of preparing poly(imide-benzoxasole) copolymer, poly(imide-benzoxasole) copolymer, article containing poly(imide-benzoxasole) copolymer, and display device including same - Google Patents
Composition of preparing poly(imide-benzoxasole) copolymer, poly(imide-benzoxasole) copolymer, article containing poly(imide-benzoxasole) copolymer, and display device including same Download PDFInfo
- Publication number
- US20160237214A1 US20160237214A1 US14/879,287 US201514879287A US2016237214A1 US 20160237214 A1 US20160237214 A1 US 20160237214A1 US 201514879287 A US201514879287 A US 201514879287A US 2016237214 A1 US2016237214 A1 US 2016237214A1
- Authority
- US
- United States
- Prior art keywords
- group
- unsubstituted
- substituted
- chemical formula
- organic group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001577 copolymer Polymers 0.000 title claims abstract description 87
- 239000000203 mixture Substances 0.000 title claims abstract description 37
- 239000000126 substance Substances 0.000 claims abstract description 190
- 150000004985 diamines Chemical class 0.000 claims abstract description 61
- -1 tetracarboxylic acid dianhydride Chemical class 0.000 claims abstract description 30
- 125000000962 organic group Chemical group 0.000 claims description 160
- 125000003118 aryl group Chemical group 0.000 claims description 131
- 125000001931 aliphatic group Chemical group 0.000 claims description 76
- 125000003545 alkoxy group Chemical group 0.000 claims description 38
- 229910052736 halogen Inorganic materials 0.000 claims description 34
- 150000002367 halogens Chemical class 0.000 claims description 34
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 31
- 229910052739 hydrogen Inorganic materials 0.000 claims description 25
- 239000001257 hydrogen Substances 0.000 claims description 25
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 24
- 125000002723 alicyclic group Chemical group 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 claims description 22
- 229910052717 sulfur Inorganic materials 0.000 claims description 22
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 21
- 125000004122 cyclic group Chemical group 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 19
- IPZJQDSFZGZEOY-UHFFFAOYSA-N dimethylmethylene Chemical compound C[C]C IPZJQDSFZGZEOY-UHFFFAOYSA-N 0.000 claims description 18
- 125000000524 functional group Chemical group 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 125000005567 fluorenylene group Chemical group 0.000 claims description 17
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 16
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 16
- 125000003342 alkenyl group Chemical group 0.000 claims description 15
- 125000000304 alkynyl group Chemical group 0.000 claims description 15
- 125000000732 arylene group Chemical group 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 125000006588 heterocycloalkylene group Chemical group 0.000 claims description 13
- 150000002431 hydrogen Chemical class 0.000 claims description 12
- 125000000623 heterocyclic group Chemical group 0.000 claims description 11
- QHHKLPCQTTWFSS-UHFFFAOYSA-N 5-[2-(1,3-dioxo-2-benzofuran-5-yl)-1,1,1,3,3,3-hexafluoropropan-2-yl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)(C(F)(F)F)C(F)(F)F)=C1 QHHKLPCQTTWFSS-UHFFFAOYSA-N 0.000 claims description 10
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 claims description 9
- 125000002252 acyl group Chemical group 0.000 claims description 9
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 9
- 125000001072 heteroaryl group Chemical group 0.000 claims description 8
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 8
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 7
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 claims description 6
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 claims description 6
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 6
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 6
- 125000005549 heteroarylene group Chemical group 0.000 claims description 6
- 125000004104 aryloxy group Chemical group 0.000 claims description 5
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 5
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims description 4
- JYCTWJFSRDBYJX-UHFFFAOYSA-N 5-(2,5-dioxooxolan-3-yl)-3a,4,5,9b-tetrahydrobenzo[e][2]benzofuran-1,3-dione Chemical compound O=C1OC(=O)CC1C1C2=CC=CC=C2C(C(=O)OC2=O)C2C1 JYCTWJFSRDBYJX-UHFFFAOYSA-N 0.000 claims description 4
- OAXARSVKYJPDPA-UHFFFAOYSA-N tert-butyl 4-prop-2-ynylpiperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(CC#C)CC1 OAXARSVKYJPDPA-UHFFFAOYSA-N 0.000 claims description 4
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 claims description 3
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 claims description 3
- 0 CCN.NCC1=NC2=C(C=CC=C2)O1.N[2*]N.O=C1OC(=O)[1*]12C(=O)OC2=O.[30*]C Chemical compound CCN.NCC1=NC2=C(C=CC=C2)O1.N[2*]N.O=C1OC(=O)[1*]12C(=O)OC2=O.[30*]C 0.000 description 39
- 238000000034 method Methods 0.000 description 19
- 239000010410 layer Substances 0.000 description 18
- 239000000178 monomer Substances 0.000 description 13
- 239000004642 Polyimide Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229920001721 polyimide Polymers 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 10
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 239000004952 Polyamide Substances 0.000 description 7
- 229920002647 polyamide Polymers 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000004093 cyano group Chemical group *C#N 0.000 description 5
- 150000003949 imides Chemical class 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 125000000392 cycloalkenyl group Chemical group 0.000 description 4
- 125000005724 cycloalkenylene group Chemical group 0.000 description 4
- 125000004185 ester group Chemical group 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 125000000468 ketone group Chemical group 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- BBOLNFYSRZVALD-UHFFFAOYSA-N Ic(cccc1)c1I Chemical compound Ic(cccc1)c1I BBOLNFYSRZVALD-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- UXOXUHMFQZEAFR-UHFFFAOYSA-N 2,2',5,5'-Tetrachlorobenzidine Chemical compound C1=C(Cl)C(N)=CC(Cl)=C1C1=CC(Cl)=C(N)C=C1Cl UXOXUHMFQZEAFR-UHFFFAOYSA-N 0.000 description 2
- UMGYJGHIMRFYSP-UHFFFAOYSA-N 2-(4-aminophenyl)-1,3-benzoxazol-5-amine Chemical compound C1=CC(N)=CC=C1C1=NC2=CC(N)=CC=C2O1 UMGYJGHIMRFYSP-UHFFFAOYSA-N 0.000 description 2
- ZGDMDBHLKNQPSD-UHFFFAOYSA-N 2-amino-5-(4-amino-3-hydroxyphenyl)phenol Chemical compound C1=C(O)C(N)=CC=C1C1=CC=C(N)C(O)=C1 ZGDMDBHLKNQPSD-UHFFFAOYSA-N 0.000 description 2
- FWOLORXQTIGHFX-UHFFFAOYSA-N 4-(4-amino-2,3,5,6-tetrafluorophenyl)-2,3,5,6-tetrafluoroaniline Chemical group FC1=C(F)C(N)=C(F)C(F)=C1C1=C(F)C(F)=C(N)C(F)=C1F FWOLORXQTIGHFX-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 2
- ZSQIQUAKDNTQOI-UHFFFAOYSA-N 4-[1-(4-aminophenyl)cyclohexyl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)CCCCC1 ZSQIQUAKDNTQOI-UHFFFAOYSA-N 0.000 description 2
- APXJLYIVOFARRM-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(C(O)=O)C(C(O)=O)=C1 APXJLYIVOFARRM-UHFFFAOYSA-N 0.000 description 2
- UTDAGHZGKXPRQI-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 UTDAGHZGKXPRQI-UHFFFAOYSA-N 0.000 description 2
- KIFDSGGWDIVQGN-UHFFFAOYSA-N 4-[9-(4-aminophenyl)fluoren-9-yl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 KIFDSGGWDIVQGN-UHFFFAOYSA-N 0.000 description 2
- SNCJAJRILVFXAE-UHFFFAOYSA-N 9h-fluorene-2,7-diamine Chemical compound NC1=CC=C2C3=CC=C(N)C=C3CC2=C1 SNCJAJRILVFXAE-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- 125000004419 alkynylene group Chemical group 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 2
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 125000004989 dicarbonyl group Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-methyl-PhOH Natural products CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-methyl phenol Natural products CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- HNEGJTWNOOWEMH-UHFFFAOYSA-N 1-fluoropropane Chemical group [CH2]CCF HNEGJTWNOOWEMH-UHFFFAOYSA-N 0.000 description 1
- QQHCDNARIZUFGB-UHFFFAOYSA-N 2-fluorobenzene-1,4-dicarbonyl chloride Chemical compound FC1=CC(C(Cl)=O)=CC=C1C(Cl)=O QQHCDNARIZUFGB-UHFFFAOYSA-N 0.000 description 1
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- GNIZQCLFRCBEGE-UHFFFAOYSA-N 3-phenylbenzene-1,2-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(Cl)=O GNIZQCLFRCBEGE-UHFFFAOYSA-N 0.000 description 1
- HUTNREKROSOVKF-UHFFFAOYSA-N C[I](c(cc1)cc([o]2)c1nc2[IH]N)N Chemical compound C[I](c(cc1)cc([o]2)c1nc2[IH]N)N HUTNREKROSOVKF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZFPOKMSMMQTPFY-UHFFFAOYSA-N IC1=CC=[I]C=C1 Chemical compound IC1=CC=[I]C=C1 ZFPOKMSMMQTPFY-UHFFFAOYSA-N 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N Ic1ccccc1 Chemical compound Ic1ccccc1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical group 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000131 cyclopropyloxy group Chemical group C1(CC1)O* 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 125000005597 hydrazone group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/22—Polybenzoxazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1039—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2479/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
- C08J2479/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2479/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
- C08J2479/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2479/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
Definitions
- This disclosure relates to a composition for preparing poly(imide-benzoxazole)copolymer, poly(imide-benzoxazole)copolymer, article containing poly(imide-benzoxazole) copolymer, and display device including the article.
- numerous constituting parts such as a substrate for the flexible display, organic or inorganic material to be processed, flexible electronics, encapsulating and packaging technology are strongly desired.
- a transparent plastic film for replacing conventional window cover glass have high hardness and good optical properties.
- hardness of the transmittance plastic film may be supplemented by coating a hard-coating layer on the transmittance plastic film, high tension modulus (hereinbelow, referred to as ‘modulus’) of the base film may be helpful to increase hardness of the final film.
- modulus high tension modulus
- Desired optical properties may include high transmittance for light, low haze, low yellowness index (YI), and the like.
- An embodiment relates to a composition for preparing a poly(imide-benzoxazole) copolymer.
- Another embodiment relates to a poly(imide-benzoxazole) copolymer.
- Another embodiment relates to an article including the poly(imide-benzoxazole) copolymer having high tension modulus and low yellowness index.
- Another embodiment relates to a display device including an article prepared from a poly(imide-benzoxazole) copolymer.
- composition for preparing a poly(imide-benzoxazole) copolymer including:
- R 1 and R 2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, a substituted or unsubstituted C
- L 1 and L 2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, and a combination thereof,
- R 30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be one or more selected from 3,3′,4,4′-biphenyltetracarboxylic dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-oxydiphthalic anhydride, pyromellitic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, and bis(3,4-dicarboxyphenyl)sulfone dianhydride.
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may include a combination of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride.
- the first diamine represented by Chemical Formula 2 may be one or more selected from chemical formulae:
- R 32 to R 45 are the same or different and may each independently be hydrogen, a halogen, a nitro group, a substituted or unsubstituted C1 to C15 alkyl group, a substituted or unsubstituted C1 to C15 alkoxy group, a substituted or unsubstituted C1 to C15 fluoroalkyl group, a substituted or unsubstituted C3 to C15 cycloalkyl group, a substituted or unsubstituted C3 to C15 heterocycloalkyl group, a substituted or unsubstituted C3 to C15 cycloalkoxy group, a substituted or unsubstituted C6 to C15 aryl group, a substituted or unsubstituted C6 to C15 aryloxy group, or a substituted or unsubstituted C2 to C15 heteroaryl group,
- X 2 to X 10 are the same or different and may each independently be a single bond, a substituted or unsubstituted C1 to C10 alkylene group, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C5 to C40 heterocycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, a substituted or unsubstituted C3 to C40 heteroarylene group, —SO 2 —, —O—, —C( ⁇ O)—, or a combination thereof,
- n35 to n37, and n40 to n49 are integers ranging from 0 to 4, and
- n38 and n39 are integers ranging from 0 to 3.
- the first diamine represented by Chemical Formula 2 may be 2,2′-bis(trifluoromethyl)benzidine.
- L 1 maybe phenylene group
- L 2 may be a single bond
- n21 may be 0.
- the mole ratio of the tetracarboxylic acid dianhydride represented by Chemical Formula 1 to the total moles of the first diamine represented by Chemical Formula 2 and the second diamine represented by Chemical Formula 3 may be about 1:1, where an amount of the second diamine represented by Chemical Formula 3 may be less than 10 mol % based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3.
- An amount of the second diamine represented by Chemical Formula 3 may be from about 0.1 mol % to about 8 mol % based on the total moles of the diamine represented by Chemical Formula 2 and the diamine represented by Chemical Formula 3.
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may include a mixture of about 10 mole percent to about 55 mole percent of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride and about 90 mole percent to about 45 mole percent of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride.
- a poly(imide-benzoxazole) copolymer prepared from the composition for preparing poly(imide-benzoxazole) copolymer.
- the poly(imide-benzoxazole) copolymer may include (i) a structural unit represented by Chemical Formula 4, Chemical Formula 5, or a combination thereof; and (ii) a structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof:
- R 1 and R 2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, a substituted or unsubstituted C
- L 1 and L 2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, and a combination thereof,
- R 30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and n21 is
- R 1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 or Chemical Formula 9:
- R 10 is the same or different in each structural unit, and is independently a single bond, a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 cyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group,
- R 12 and R 13 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 208 , wherein R 208 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 209 R 210 R 211 , wherein R 209 , R 210 , and R 211 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and
- n7 and n8 are independently integers ranging from 0 to 3.
- R 2 may be represented by one or more selected from Chemical Formulae 10 to 12:
- R a is the same or different in each structural unit, and is independently a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R 3 and R 4 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a C6 to C20 aromatic organic group, an alkoxy group of formula —OR 200 , wherein R 200 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 201 R 202 R 203 , wherein R 201 , R 202 , and R 203 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and n1 and n2 are independently integers ranging from 0 to 4.
- R 6 and R 7 are the same or different and each are independently an electron withdrawing group selected from —CF 3 , —CCl 3 , —CBr 3 , —Cl 3 , —F, —CI, —Br, —I, —NO 2 , —CN, —COCH 3 , and —CO 2 C 2 H 5 ,
- R 8 and R 9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 204 , wherein R 204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 205 R 206 R 207 , wherein R 205 , R 206 , and R 207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3
- n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3
- n4+n6 is an integer ranging from 1 to 4.
- R 14 is O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , C( ⁇ O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , and C( ⁇ O)NH
- R 16 and R 17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 212 , wherein R 212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 213 R 214 R 215 , wherein R 213 , R 214 , and R 215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and
- n9 and n10 are each independently an integer ranging from 0 to 4.
- R 1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 and Chemical Formula 9, where n7 and n8 is 0, and R 10 is C(CF 3 ) 2 .
- R 2 in Chemical Formula 4 and Chemical Formula 5 may be represented by Chemical Formula 13:
- L 1 may be a phenylene group
- L 2 may be a single bond
- n21 may be 0.
- the structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof may be included in an amount of less than about 10 mol % based on the mole number of the total structural units included in the poly(imide-benzoxazole) copolymer.
- R 1 may include the structural unit represented by Chemical Formula 8 in an amount of about 90 mol % to about 45 mol %, and the structural unit represented by Chemical Formula 9 in an amount of about 10 mol % to about 55 mol % in the poly(imide-benzoxazole) copolymer.
- the poly(imide-benzoxazole) copolymer may further include one or more selected from the structural unit represented by Chemical Formulae 14 to 17:
- R a is a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R 11 is a substituted or unsubstituted C6 to C30 aromatic organic group
- R 3 and R 4 are the same or different and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 200 , wherein R 200 is a C1 to C10 aliphatic organic group, a silyl group of formula —SiR 201 R 202 R 203 , wherein R 201 , R 202 , and R 203 are the same or different and each are independently a hydrogen, or a C1 to C10 aliphatic organic group, and
- n1 and n2 are the same or different and each are independently an integer ranging from 0 to 4.
- R 5 is a substituted or unsubstituted C6 to C30 aromatic organic group
- R 6 and R 7 are the same or different and each are independently an electron withdrawing group selected from —CF 3 , —CCl 3 , —CBr 3 , —Cl 3 , —F, —Cl, —Br, —I, —NO 2 , —CN, —COCH 3 , and —CO 2 C 2 H 5 ,
- R 8 and R 9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 204 , wherein R 204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 205 R 206 R 207 , n rein R 205 , R 206 , and R 207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3
- n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3
- n4+n6 is an integer ranging from 1 to 4.
- R 14 is O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , C( ⁇ O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , and C( ⁇ O)NH
- R 15 is a substituted or unsubstituted C6 to C30 aromatic organic group
- R 16 and R 17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 212 , wherein R 212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 213 R 214 R 215 , wherein R 213 , R 214 , and R 215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and n9 and n10 are each independently an integer ranging from 0 to 4.
- R 18 is O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , C( ⁇ O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , and C( ⁇ O)NH
- L 1 and L 2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, and a combination thereof,
- R 30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- the article may be a film, fiber, or coating or adhesive material.
- the article may be a film having a thickness of about 50 micrometers, and the film may have about less than 5.5 of YI, measured by using ASTM D1926, and about 4.0 GPa or higher of tension modulus, measured by ASTM D882.
- a display device including the article.
- first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments.
- Matture as used herein is inclusive of all types of combinations, including blends, alloys, solutions, and the like.
- substituted refers to a group or compound substituted with at least one substituent including a halogen (—F, —Br, —CI, or —I), a hydroxy group, a nitro group, a cyano group, an amino group (—NH 2 , —NH(R 100 ) or —N(R 101 )(R 102 ), wherein R 100 , R 101 , and R 102 are the same or different, and are each independently a C1 to C10 alkyl group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group, an ester group, a ketone group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alicyclic organic group, a substituted or unsubstituted aryl group, a substituted or unsubstituted al
- a halogen —F, —Br, —CI, or
- alkyl group refers to a straight or branched chain saturated aliphatic hydrocarbon having the specified number of carbon atoms and having a valence of at least one.
- Non-limiting examples of the alkyl group are methyl, ethyl, and propyl.
- fluoroalkyl group refers to an alkyl group as defined above, wherein one or more hydrogen atoms are substituted with a fluorine atom.
- fluoroalkyl group are fluoromethyl, 2-fluoroethyl, and 3-fluoropropyl.
- alkoxy group refers to “alkyl-O—”, wherein the term “alkyl” has the same meaning as described above.
- Non-limiting examples of the alkoxy group are methoxy, ethoxy, propoxy, cyclopropoxy, and cyclohexyloxy.
- cycloalkyl group refers to a monovalent group having one or more saturated rings in which all ring members are carbon.
- Non-limiting examples of the cycloalkyl group are cyclopentyl and cyclohexyl.
- heterocycloalkyl group refers to a cycloalkyl group as defined above, wherein one or more of the ring carbon atoms are replaced with a heteroatom selected from O, S, N, P, and Si.
- Non-limiting example of the heterocycloalkyl group is 2-oxacyclohexyl (2-tetrahydropyranyl).
- cycloalkoxy group refers to “cycloalkyl-O—”, wherein the term “cycloalkyl” has the same meaning as described above.
- Non-limiting examples of the cycloalkoxy group are cyclopropoxy and cyclohexyloxy.
- aryl group refers to an aromatic hydrocarbon containing at least one ring.
- Non-limiting examples of the aryl group are phenyl, naphthyl, and tetrahydronaphthyl.
- aryloxy group refers to “aryl-O—”, wherein the term “aryl” has the same meaning as described above.
- Non-limiting examples of the aryloxy group are phenoxy and naphthyloxy.
- heteroaryl group refers to an aryl group as defined above, wherein one or more of the ring carbon atoms are replaced with a heteroatom selected from O, S, N, P, and Si.
- Non-limiting example of the heterocycloalkyl group are 2-pyridyl and 2-furanyl.
- alkylene group refers to a divalent group respectively derived from an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, and a heteroaryl group as defined above.
- alkyl group refers to a C1 to C30 alkyl group, for example a C1 to C15 alkyl group
- fluoroalkyl group refers to a C1 to C30 fluoroalkyl group
- cycloalkyl group refers to a C3 to C30 cycloalkyl group, for example a C3 to C18 cycloalkyl group
- alkoxy group refer to a C1 to C30 alkoxy group, for example a C1 to C18 alkoxy group
- esteer group refers to a C2 to C30 ester group, for example a C2 to C18 ester group
- ketone group refers to a C2 to C30 ketone group, for example a C2 to C18 ketone group
- aryl group refers to a C6 to C30 aryl group, for example a C1 to C15 alkyl group
- fluoroalkyl group refers to a C1 to C30 fluor
- aliphatic refers to a C1 to C30 alkyl group, a C2 to C30 alkenyl group, a C2 to C30 alkynyl group, a C1 to C30 alkylene group, a C2 to C30 alkenylene group, or a C2 to C30 alkynylene group, for example a C1 to C15 alkyl group, a C2 to C15 alkenyl group, a C2 to C15 alkynyl group, a C1 to C15 alkylene group, a C2 to C15 alkenylene group, or a C2 to C15 alkynylene group
- alicyclic organic group refers to a C3 to C30 cycloalkyl group, a C3 to C30 cycloalkenyl group, a C3 to C30 cycloalkynyl group, a C3 to C30 cyclo
- aromatic organic group refers to a C6 to C30 group comprising one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings independently selected from the foregoing (a single aromatic ring or a condensed ring system) linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p —, wherein 1 ⁇ q ⁇ 10, —C(CF 2 ) q —, wherein 1 ⁇ q ⁇ 10, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, and —C( ⁇ O)NH—, for example through —S( ⁇ O) 2 —, for example an
- heterocyclic group refers to a C2 to C30 cycloalkyl group, a C2 to C30 cycloalkylene group, a C2 to C30 cycloalkenyl group, a C2 to C30 cycloalkenylene group, a C2 to C30 cycloalkynyl group, a C2 to C30 cycloalkynylene group, a C2 to C30 heteroaryl group, or a C2 to C30 heteroarylene group including 1 to 3 heteroatoms selected from O, S, N, P, Si, and a combination thereof in one ring, for example a C2 to C15 cycloalkyl group, a C2 to C15 cycloalkylene group, a C2 to C15 cycloalkenyl group, a C2 to C15 cycloalkenylene group, a C2 to C15 cycloalkyny
- the mark “*” may refer to a point of attachment to another atom.
- composition for preparing a poly(imide-benzoxazole) copolymer including:
- R 1 and R 2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, a substituted or unsubstituted C
- L 1 and L 2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, and a combination thereof,
- R 30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- transparent films In order to be used as a window film, transparent films should have high hardness and good optical properties. Although hardness may be supplemented by coating a hardcoating layer on the film, high tension modulus of the film may be helpful to increase hardness of the final film. Additionally desired optical properties may include high transmittance for light, low haze, low yellowness index (YI), and the like.
- Poly(imide-amide) copolymer has good mechanical, thermal, optical properties, and the like, and thus may be used as a substrate for display device, such as an organic light emitting diode (“OLED”), liquid crystal display (“LCD”), and the like.
- display device such as an organic light emitting diode (“OLED”), liquid crystal display (“LCD”), and the like.
- OLED organic light emitting diode
- LCD liquid crystal display
- mechanical and optical properties such as, hardness (or modulus), low YI, and the like, should further be improved.
- modulus and YI are in so-called “trade-off” relation, and thus it is very difficult to improve the two properties at the same time.
- a novel composition for preparing a polyimide including a diamine derived from a benzoxazole increases tension modulus of an article containing the polyimide, while at the same time, maintaining excellent optical properties of polyimide, for example, low YI.
- the composition includes a tetracarboxylic acid dianhydride represented by Chemical Formula 1, a diamine represented by Chemical Formula 2, and a diamine represented by Chemical Formula 3, which includes a benzoxazole group.
- the tension modulus of the film prepared from the composition unexpectedly improves, while the yellowness index (YI) of the film is maintained or slightly increased.
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be any dianhydride used to prepare a conventional polyimide.
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be one or more selected from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (“BPDA”), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (“BTDA”), 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (“DSDA”), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), 4,4′-oxydiphthalic anhydride (“ODPA”), pyromellitic dianhydride (“PMDA”), and 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (“DTDA”), and it is not limited thereto.
- BPDA
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (“BPDA”), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), or a combination thereof.
- BPDA 3,3′,4,4′-biphenyl tetracarboxylic dianhydride
- 6FDA 4,4′-(hexafluoroisopropylidene)diphthalic anhydride
- the diamine represented by Chemical Formula 2 may be any diamine used for preparing a conventional polyimide.
- the diamine represented by Chemical Formula 2 may be one or more selected from the following chemical formulae:
- R 32 to R 45 are the same or different and may each independently be hydrogen, a halogen, a nitro group, a substituted or unsubstituted C1 to C15 alkyl group, a substituted or unsubstituted C1 to C15 alkoxy group, a substituted or unsubstituted C1 to C15 fluoroalkyl group, a substituted or unsubstituted C3 to C15 cycloalkyl group, a substituted or unsubstituted C3 to C15 heterocycloalkyl group, a substituted or unsubstituted C3 to C15 cycloalkoxy group, a substituted or unsubstituted C6 to C15 aryl group, a substituted or unsubstituted C6 to C15 aryloxy group, or a substituted or unsubstituted C2 to C15 heteroaryl group,
- X 2 to X 10 are the same or different and may each independently be a single bond, a substituted or unsubstituted C1 to C10 alkylene group, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C5 to C40 heterocycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, a substituted or unsubstituted C3 to C40 heteroarylene group, —SO 2 —, —O—, —C( ⁇ O)—, or a combination thereof, n35 to n37, and n40 to n49, are integers ranging from 0 to 4, and n38 and n39 are integers ranging from 0 to 3.
- the first diamine represented by Chemical Formula 2 may be one or more selected from 2,2′-bis(trifluoromethyl)benzidine (“TFDB”), 4,4′-diaminodiphenyl sulfone (“DADPS”), 4,4′-(9-fluorenylidene)dianiline (“BAPF”), bis(4-(4-aminophenoxy)phenyl)sulfone (“BAPS”), 2,2′,5,5′-tetrachlorobenzidine, 2,7-diaminofluorene, 1,1-bis(4-aminophenyl)cyclohexane, 4,4′-methylenebis-(2-methylcyclohexylamine), 4,4-diaminooctafluorobiphenyl, 3,3′-dihydroxybenzidine, and 1,3-cyclohexanediamine, but is not limited thereto.
- TFDB 2,2′-bis(trifluoromethyl)benzidine
- DDPS 4,4′-
- the first diamine represented by Chemical Formula 2 may be 2,2′-bis(trifluoromethyl)benzidine (“TFDB”).
- L 1 maybe phenylene group
- L 2 may be a single bond
- n21 may be 0, and it is not limited thereto.
- the mole ratio of the tetracarboxylic acid dianhydride represented by Chemical Formula 1 to the first diamine represented by Chemical Formula 2 and the second diamine represented by Chemical Formula 3 may be about 1:1, where the second diamine represented by Chemical Formula 3 may be included in an amount of less than 10 mole percent (mol %) based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3.
- an article prepared from the composition may have improved tension modulus, while good optical properties, for example, low YI, are maintained.
- the diamine represented by Chemical Formula 3 may be included in an amount of about 0.1 mol % to about 8 mol %, for example, about 0.5 mol % to about 7 mol %, for example, about 1 mol % to about 5 mol %, for example, about 1 mol % to about 3 mol %, based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3.
- the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may include a mixture of about 10 mol % to about 55 mol % of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (“BPDA”) and about 90 mol % to about 45 mol % of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), where the diamine represented by Chemical Formula 2 may be 2,2′-bis(trifluoromethyl)benzidine (“TFDB”).
- BPDA 3,3′,4,4′-biphenyl tetracarboxylic dianhydride
- 6FDA 4,4′-(hexafluoroisopropylidene)diphthalic anhydride
- TFDB 2,2′-bis(trifluoromethyl)benzidine
- a poly(imide-benzoxazole) copolymer prepared from the composition for preparing poly(imide-benzoxazole) copolymer.
- the poly(imide-benzoxazole) copolymer may include:
- R 1 and R 2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, a substituted or unsubstituted C
- L 1 and L 2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, and a combination thereof,
- R 30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- R 1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 or Chemical Formula 9:
- R 10 is the same or different in each structural unit, and is independently a single bond, a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 cyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group,
- R 12 and R 13 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 208 , wherein R 208 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 209 R 210 R 211 , wherein R 209 , R 210 , and R 211 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and
- n7 and n8 are independently integers ranging from 0 to 3.
- R 2 may be represented by one or more selected from Chemical Formulae 10 to 12:
- R a is the same or different in each structural unit, and is independently a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R 3 and R 4 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a C6 to C20 aromatic organic group, an alkoxy group of formula —OR 200 , wherein R 200 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 201 R 202 R 203 , wherein R 201 , R 202 , and R 203 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and
- n1 and n2 are independently integers ranging from 0 to 4.
- R 6 and R 7 are the same or different and each are independently an electron withdrawing group selected from —CF 3 , —CCl 3 , —CBr 3 , —Cl 3 , —F, —CI, —Br, —I, —NO 2 , —CN, —COCH 3 , and —CO 2 C 2 H 5 ,
- R 8 and R 9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 204 , wherein R 204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 205 R 206 R 207 , wherein R 205 , R 206 , and R 207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3
- n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3
- n4+n6 is an integer ranging from 1 to 4.
- R 14 is 0, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , C( ⁇ O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, 0, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , and C( ⁇ O)NH,
- R 16 and R 17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 212 , wherein R 212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 213 R 214 R 215 , wherein R 213 , R 214 , and R 215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and
- n9 and n10 are each independently an integer ranging from 0 to 4.
- R 1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 and Chemical Formula 9, where n7 and n8 is 0, and R 10 is C(CF 3 ) 2 .
- R 2 in Chemical Formula 4 and Chemical Formula 5 may be represented by Chemical Formula 13:
- L 1 may be a phenylene group
- L 2 may be a single bond
- n21 may be 0.
- the structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof may be included in an amount of less than about 10 mol % based on the total mole number of the structural units included in the poly(imide-benzoxazole) copolymer.
- R 1 may include the structural unit represented by Chemical Formula 8 in an amount of about 90 mol % to about 45 mol %, and the structural unit represented by Chemical Formula 9 in an amount of about 10 mol % to about 55 mol % in the poly(imide-benzoxazole) copolymer.
- the poly(imide-benzoxazole) copolymer may further include one or more selected from the structural unit represented by Chemical Formulae 14 to 17:
- R a is a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R 11 is a substituted or unsubstituted C6 to C30 aromatic organic group
- R 3 and R 4 are the same or different and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 200 , wherein R 200 is a C1 to C10 aliphatic organic group, a silyl group of formula —SiR 201 R 202 R 203 , wherein R 201 , R 202 , and R 203 are the same or different and each are independently a hydrogen, or a C1 to C10 aliphatic organic group, and
- n1 and n2 are the same or different and each are independently an integer ranging from 0 to 4.
- R 5 is a substituted or unsubstituted C6 to C30 aromatic organic group
- R 6 and R 7 are the same or different and each are independently an electron withdrawing group selected from —CF 3 , —CCl 3 , —CBr 3 , —Cl 3 , —F, —CI, —Br, —I, —NO 2 , —CN, —COCH 3 , and —CO 2 C 2 H 5 ,
- R 8 and R 9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 204 , wherein R 204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 205 R 206 R 207 , wherein R 205 , R 206 , and R 207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3
- n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3
- n4+n6 is an integer ranging from 1 to 4.
- R 14 is 0, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , C( ⁇ O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, 0, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , and C( ⁇ O)NH,
- R 15 is a substituted or unsubstituted C6 to C30 aromatic organic group
- R 16 and R 17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR 212 , wherein R 212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR 213 R 214 R 215 , wherein R 213 , R 214 , and R 215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and
- n9 and n10 are each independently an integer ranging from 0 to 4.
- R 18 is O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) c , wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , C( ⁇ O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C( ⁇ O), CH(OH), S( ⁇ O) 2 , Si(CH 3 ) 2 , (CH 2 ) p wherein 1 ⁇ p ⁇ 10, (CF 2 ) q wherein 1 ⁇ q ⁇ 10, C(CH 3 ) 2 , C(CF 3 ) 2 , and C( ⁇ O
- L 1 and L 2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C( ⁇ O)—, —CH(OH)—, —S( ⁇ O) 2 —, —Si(CH 3 ) 2 —, —(CH 2 ) p — wherein 1 ⁇ p ⁇ 10, —(CF 2 ) q — wherein 1 ⁇ q ⁇ 10, —C(CF 3 ) 2 —, —C( ⁇ O)NH—, and a combination thereof,
- R 30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- the structural unit represented by one or more of Chemical Formulae 14 to 17 is an amide structural unit, and the copolymer further including one or more of the structural units represented by Chemical Formulae 14 to 17 may be a poly(imide-benzoxazole-amide) copolymer.
- the structural unit represented by one or more of Chemical Formulae 14 to 17 may be included in an amount of about 1 mol % to about 99 mol %, for example, about 5 mol % to about 95 mol %, for example, about 10 mol % to about 90 mol %, for example, about 20 mol % to about 80 mol %, for example, about 30 mol % to about 70 mol %, for example, about 40 mol % to about 60 mol %, based on the total mole number of the structural units.
- the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment may be prepared by various methods for preparing polyimide or poly(imide-amide) known by a person having ordinary skills in the related arts, which are not limited to the methods disclosed herein.
- an imide is generally prepared by using a method of preparing an amic acid, which is a precursor of the imide. Subsequently, the amic acid is imidized to produce the imide.
- an amic acid, the precursor of the imide may be prepared by reacting a tetracarboxylic acid dianhydride and a diamine, and may be converted to the polyimide by thermal or chemical imidization.
- the poly(imide-benzoxazole) copolymer according to an embodiment may be prepared by reacting a tetracarboxylic acid dianhydride represented by Chemical Formula 1 with the diamines represented by Chemical Formula 2 and Chemical Formula 3 in an aprotic bipolar solvent in the same way as in a method of preparing a conventional polyimide.
- the poly(imide-benzoxazole) copolymer according to an embodiment may be prepared by, for example, to the method as described above, in which a tetracarboxylic acid dianhydride represented by Chemical Formula 1, for example, one or more selected from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (“BPDA”), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (“BTDA”), 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (“DSDA”), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), 4,4′-oxydiphthalic anhydride (“ODPA”), pyromellitic dianhydride (“PMDA”), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,
- the aprotic bipolar solvent may include, for example, a sulfoxide solvent such as dimethyl sulfoxide and diethyl sulfoxide, a formamide solvent such as N,N-dimethyl formamide and N,N-diethyl formamide, an acetamide solvent such as N,N-dimethyl acetamide and N,N-diethyl acetamide, a pyrrolidone solvent such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, a phenol solvent such as phenol, o-, m-, or p-cresol, xylenol, halogenated phenol, and catechol, hexamethyl phosphoramide, ⁇ -butyrolactone, or a mixture thereof.
- a sulfoxide solvent such as dimethyl sulfoxide and diethyl sulfoxide
- a formamide solvent such as N,N-dimethyl formamide
- an aromatic hydrocarbon such as xylene and toluene may also be used.
- an alkali metal salt or an alkaline earth metal salt may be further added to the solvent in an amount of about 50 percent by weight (wt %) or less based on the total amount of the solvent.
- the amount and type of the tetracarboxylic acid dianhydride and the diamines may be appropriately selected according to a given (e.g., desired, or alternatively, predetermined) composition or use.
- the obtained copolymer may have an amino group at an end.
- composition further includes one or more of the structural units represented by Chemical Formulae 14 to 17, monomers for preparing a polyamide may be first added to produce the polyamide, and then the monomers for preparing a poly(amic acid-benzoxazole) may be added thereto to produce the poly(imide-benzoxazole-amide) copolymer.
- poly(imide-amide) or poly(imide-benzoxazole-amide) copolymer it may be advantageous to add the monomers for preparing an amide first, and then to add the monomer for preparing an amic acid or imide. If the amic acid-benzoxazole is first polymerized, monomers for preparing amide may further react with functional groups of amic acid-benzoxazole to produce gel.
- Methods for preparing polyamide may include, for example, a low temperature solution polymerization method, an interface polymerization method, a fusion polymerization method, a solid polymerization method, and the like, but is not limited thereto.
- a low-temperature solution polymerization method for preparing polyamide is further described.
- a polyamide is prepared by polymerizing a dicarboxylic acid dichloride and a diamine in an aprotic bipolar solvent.
- a dicarboxylic acid dichloride and a diamine capable of producing a structural unit represented by at least one of Chemical Formulae 14 to 17 may be used, and the diamine monomer may be the same as those used for preparing the poly(imide-benzoxazole) copolymer.
- the dicarboxylic acid dichloride may be selected from any one used for preparing the polyamide.
- the dicarboxylic acid dichloride may include terephthaloyl chloride (“TPCI”), isophthaloyl chloride (“IPCI”), biphenyl dicarbonyl chloride (“BPCI”), naphthalene dicarbonyl chloride, terphenyl dicarbonyl chloride, 2-fluoro-terephthaloyl chloride, and a combination thereof, but is not limited thereto.
- TPCI terephthaloyl chloride
- IPCI isophthaloyl chloride
- BPCI biphenyl dicarbonyl chloride
- naphthalene dicarbonyl chloride terphenyl dicarbonyl chloride
- 2-fluoro-terephthaloyl chloride 2-fluoro-terephthaloyl chloride
- the poly(imide-benzoxazole) copolymer is first polymerized, and in this case, poly(imide-benzoxazole) copolymer having amino group at each end thereof may be obtained by using excess diamine compared to tetracarboxylic acid dianhydride. Accordingly, the poly(imide-benzoxazole-amide)copolymer may be prepared by adding the above-mentioned monomers for preparing polyamide, that is, the dicarboxylic acid dichloride and additional diamine monomers, to the obtained poly(imide-benzoxazole) copolymer, which has amino group at each end.
- a molecular weight of the poly(imide-benzoxazole-imide) copolymer according to an embodiment may be adjusted appropriately according to its use, and thus an oligomer or high molecular weight polymer may be obtained.
- an article prepared from the poly(imide-benzoxazole) copolymer according to an embodiment may be a film, fiber, or coating or adhesive material.
- the article may be formed using the poly(imide-benzoxazole) copolymer through a dry-wet method, a dry method, or a wet method, but this disclosure is not limited thereto.
- the film when the article is a film, the film may be manufactured using the copolymer through the dry-wet method, where a layer is formed by extruding a solution dissolving the poly(imide-benzoxazole) copolymer from a mouth piece on a supporter, such as drum or an endless belt, drying the layer, and evaporating the solvent out of the layer until the layer has a self-maintenance property.
- the drying may be performed at about 25° C. to about 300° C. for about 1 hour or less.
- the surface of the drum and/or the endless belt used for the drying process becomes flat, a layer with a flat surface is formed.
- the layer obtained after the drying process is delaminated from the supporter, and treated according to a wet process, desalted and/or desolventized.
- the manufacturing of the film is completed as the layer is elongated, dried, and/or heat treated.
- the elongating conforms to a draw ratio, which may range from about 0.8 to about 8 in terms of surface ratio. According to an embodiment, the draw ratio may range from about 1.3 to about 8.
- the term “surface ratio” refers to a value obtained by dividing the area of a layer after the elongating, by an area of the layer before the elongating. A value of 1 or less denotes a relaxed state. According to an exemplary embodiment, the elongating may be performed not only in a surface direction but also in a thickness direction.
- the heat treatment may be performed at a temperature of about 200° C. to about 500° C., particularly at about 250° C. to about 400° C., for about a few seconds to about a few minutes.
- the layer after elongating and heat treatment may be cooled slowly, particularly at a speed of about 50° C./second or lower.
- the layer may be formed as a single layer or as multiple layers.
- An article including the poly(amide-benzoxazole) copolymer may have a total light transmittance of about 80% or higher, for example, of about 85% or higher, for example, of about 88% or higher, at a wavelength range of about 380 nanometers (nm) to about 750 nm.
- the article including the poly(amide-benzoxazole) copolymer may have a light transmittance of about 70% or higher, for example, of about 80% or higher, for example, of about 85% or higher, at a wavelength range of about 430 nm.
- the article When the light transmittance of the article including the poly(imide-benzoxazole) copolymer is within the above ranges, the article may have excellent or improved color reproducibility.
- the article may be a film having a thickness of about 50 micrometers, and the film may have YI of less than about 5.5, measured by using ASTM D1926.
- the article may be a film having a thickness of about 50 ⁇ m, and the film may have a tension modulus of about 4.0 giga Pascals (GPa) or higher, measured by using ASTM D882.
- GPa giga Pascals
- the article may be a film having a thickness of about 50 ⁇ m, and the film may have YI of less than about 3.8, measured by using ASTM D1926.
- the article may be a film having a thickness of about 50 ⁇ m, and the film may have a tension modulus of about 4.3 GPa or higher, measured by using ASTM D882.
- the article may have increased tension modulus, while excellent optical properties of polyimide or poly(imide-amide) copolymer are maintained, for example, low YI.
- the article When the tension modulus is within the range, the article may have high hardness. When the YI is within the range, the article may be transparent and colorless.
- a display device including the article.
- the article has increased tension modulus, while good optical properties are maintained, for example, low YI, it may be used as a window film of a flexible display device.
- N,N-dimethyl acetamide 833 grams of N,N-dimethyl acetamide (“DMAC”) is added in a 1 liter flask reactor, equipped with agitator, dropping funnel, temperature adjustor, N 2 -inputting apparatus, and cooler, under nitrogen atmosphere, and the temperature is set to 25° C.
- DMAC N,N-dimethyl acetamide
- TFDB 2,2′-bis(trifluoromethyl)benzidine
- 6ABO 5-amino-2-(4-aminophenyl)benzoxazole
- Each poly(imide-benzoxazole) copolymer solution prepared according to Examples 1 to 4 and Comparative Examples 1 and 2 is coated on a glass substrate, and maintained on a hot plate set at 80° C. for 1 hour for drying.
- the glass substrates coated with the solutions are placed in a furnace, heat treated from room temperature to about 250° C. at a heating rate of 3° C./minute, and slowly cooled to room temperature.
- the poly(imide-benzoxazole) films having thicknesses as described in Table 1 below are laminated from the substrates.
- YI is measured for a film having a thickness of 50 ⁇ m by using ASTM D1925.
- Tension modulus is measured by using ASTM D882.
- the films prepared from the compositions according to Examples 1 to 4, in which BPDA and 6FDA are included as monomers of tetracarboxylic acid dianhydride and TFDB and 6ABO including a benzoxazole group are included as monomers of diamine have increased tension moduli, while maintaining YI values in a certain desired range, in contrast to the films prepared from the compositions according to Comparative Examples 1 and 2, in which 6ABO is not included.
- N,N-dimethyl acetamide (“DMAC”) is added in a 1 liter flask reactor, equipped with agitator, dropping funnel, temperature adjustor, N 2 -inputting apparatus, and cooler, under nitrogen atmosphere, and the temperature is set to 25° C.
- DMAC N,N-dimethyl acetamide
- TFDB 2,2′-bis(trifluoromethyl)benzidine
- 6ABO 5-amino-2-(4-aminophenyl)benzoxazole
- TPCI Terephthaloyl chloride
- Each 12 gram portion of the poly(imide-benzoxazole-amide) copolymer powders according to Examples 5 to 7 and Comparative Examples 3 and 4 is dissolved in 88 grams of N,N-dimethylacetamide (DMAc) to obtain solutions having 12 weight % of solid contents, respectively.
- DMAc N,N-dimethylacetamide
- acetic anhydride is added to the obtained solution and the reaction mixture is agitated for 30 minutes.
- 0.9 grams of pyridine is added, and the reaction mixture is further agitated for 24 hours to produce poly(imide-benzoxazole-amide) copolymer solution.
- the obtained poly(imide-benzoxazole-amide) solution is coated on a glass substrate, and the coated glass substrate is maintained on a hot plate set on 80° C. for 1 hour for drying.
- the glass substrates coated with the solutions are placed in a furnace, heat treated from room temperature to about 250° C. at a heating rate of 3° C./minute, and slowly cooled to room temperature.
- the poly(imide-benzoxazole-amide) films having thickness values as described in Table 2 below are laminated from the substrates.
- YI is measured for a film having a thickness of 50 ⁇ m by using ASTM D1925.
- Tension modulus is measured by using ASTM D882.
- the films prepared from the compositions according to Examples 5 to 7, in which BPDA and 6FDA as monomers of tetracarboxylic acid dianhydride, TPCI as a monomer of a dicarboxylic acid dichloride, and TFDB and 6ABO including a benzoxazole group as monomers of diamine are included have increased tension moduli, while maintaining YI values in a certain desired range, in contrast to the films prepared from the compositions according to Comparative Examples 3 and 4, in which 6ABO is not included.
- the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment have increased tension modulus, while maintaining yellowness index in a predetermined range of polyimide or poly(imide-amide) copolymer.
- the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment may be advantageously used in an application requiring high light transmittance, as well as high hardness.
- the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment may be used as a window film of a flexible display device.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
- This application claims priority to Korean Patent Application No. 10-2015-0021853, filed on Feb. 12, 2015, and all the benefits accruing therefrom under 35 U.S.C. §119, the content of which is incorporated herein in its entirety by reference.
- 1. Field
- This disclosure relates to a composition for preparing poly(imide-benzoxazole)copolymer, poly(imide-benzoxazole)copolymer, article containing poly(imide-benzoxazole) copolymer, and display device including the article.
- 2. Description of the Related Art
- A need for a flexible, thin, light, and portable display, which requires low electric power, and which can be carried without being limited to the place or time, increases. In order to fabricate the flexible display, numerous constituting parts such as a substrate for the flexible display, organic or inorganic material to be processed, flexible electronics, encapsulating and packaging technology are strongly desired.
- To be applicable in a flexible display, it is desired that a transparent plastic film for replacing conventional window cover glass have high hardness and good optical properties.
- Although hardness of the transmittance plastic film may be supplemented by coating a hard-coating layer on the transmittance plastic film, high tension modulus (hereinbelow, referred to as ‘modulus’) of the base film may be helpful to increase hardness of the final film.
- Desired optical properties may include high transmittance for light, low haze, low yellowness index (YI), and the like.
- Thus, there remains a need for a polymer film having high modulus, low YI, and anti-UV color change properties.
- An embodiment relates to a composition for preparing a poly(imide-benzoxazole) copolymer.
- Another embodiment relates to a poly(imide-benzoxazole) copolymer.
- Another embodiment relates to an article including the poly(imide-benzoxazole) copolymer having high tension modulus and low yellowness index.
- Another embodiment relates to a display device including an article prepared from a poly(imide-benzoxazole) copolymer.
- According to an embodiment, provided is a composition for preparing a poly(imide-benzoxazole) copolymer, including:
- a tetracarboxylic acid dianhydride represented by Chemical Formula 1,
- a first diamine represented by Chemical Formula 2, and
- a second diamine represented by Chemical Formula 3:
- wherein in Chemical Formulae 1 and 2,
- R1 and R2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CH3)2—, —C(CF3)2—, —C(═O)NH—, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, and a combination thereof,
- wherein in Chemical Formula 3,
- L1 and L2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CF3)2—, —C(═O)NH—, and a combination thereof,
- R30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- The tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be one or more selected from 3,3′,4,4′-biphenyltetracarboxylic dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-oxydiphthalic anhydride, pyromellitic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, and bis(3,4-dicarboxyphenyl)sulfone dianhydride.
- For example, the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may include a combination of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride.
- The first diamine represented by Chemical Formula 2 may be one or more selected from chemical formulae:
- wherein in the above chemical formulae,
- R32 to R45 are the same or different and may each independently be hydrogen, a halogen, a nitro group, a substituted or unsubstituted C1 to C15 alkyl group, a substituted or unsubstituted C1 to C15 alkoxy group, a substituted or unsubstituted C1 to C15 fluoroalkyl group, a substituted or unsubstituted C3 to C15 cycloalkyl group, a substituted or unsubstituted C3 to C15 heterocycloalkyl group, a substituted or unsubstituted C3 to C15 cycloalkoxy group, a substituted or unsubstituted C6 to C15 aryl group, a substituted or unsubstituted C6 to C15 aryloxy group, or a substituted or unsubstituted C2 to C15 heteroaryl group,
- X2 to X10 are the same or different and may each independently be a single bond, a substituted or unsubstituted C1 to C10 alkylene group, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C5 to C40 heterocycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, a substituted or unsubstituted C3 to C40 heteroarylene group, —SO2—, —O—, —C(═O)—, or a combination thereof,
- n35 to n37, and n40 to n49, are integers ranging from 0 to 4, and
- n38 and n39 are integers ranging from 0 to 3.
- The first diamine represented by Chemical Formula 2 may be 2,2′-bis(trifluoromethyl)benzidine.
- In Chemical Formula 3,
- L1 maybe phenylene group,
- L2 may be a single bond, and
- n21 may be 0.
- The mole ratio of the tetracarboxylic acid dianhydride represented by Chemical Formula 1 to the total moles of the first diamine represented by Chemical Formula 2 and the second diamine represented by Chemical Formula 3 may be about 1:1, where an amount of the second diamine represented by Chemical Formula 3 may be less than 10 mol % based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3.
- An amount of the second diamine represented by Chemical Formula 3 may be from about 0.1 mol % to about 8 mol % based on the total moles of the diamine represented by Chemical Formula 2 and the diamine represented by Chemical Formula 3.
- The tetracarboxylic acid dianhydride represented by Chemical Formula 1 may include a mixture of about 10 mole percent to about 55 mole percent of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride and about 90 mole percent to about 45 mole percent of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride.
- According to another embodiment, provided is a poly(imide-benzoxazole) copolymer prepared from the composition for preparing poly(imide-benzoxazole) copolymer.
- The poly(imide-benzoxazole) copolymer may include (i) a structural unit represented by Chemical Formula 4, Chemical Formula 5, or a combination thereof; and (ii) a structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof:
- in Chemical Formulae 4 to 7,
- R1 and R2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CH3)2—, —C(CF3)2—, —C(═O)NH—, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, and a combination thereof,
- L1 and L2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CF3)2—, —C(═O)NH—, and a combination thereof,
- R30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and n21 is an integer from 0 to 3.
- R1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 or Chemical Formula 9:
- In Chemical Formula 8,
- R10 is the same or different in each structural unit, and is independently a single bond, a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 cyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group,
- In Chemical Formulae 8 and 9,
- R12 and R13 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR208, wherein R208 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR209R210R211, wherein R209, R210, and R211 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and
- n7 and n8 are independently integers ranging from 0 to 3.
- In Chemical Formula 4 or Chemical Formula 5, R2 may be represented by one or more selected from Chemical Formulae 10 to 12:
- In Chemical Formula 10,
- Ra is the same or different in each structural unit, and is independently a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R3 and R4 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a C6 to C20 aromatic organic group, an alkoxy group of formula —OR200, wherein R200 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR201R202R203, wherein R201, R202, and R203 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and n1 and n2 are independently integers ranging from 0 to 4.
- In Chemical Formula 11,
- R6 and R7 are the same or different and each are independently an electron withdrawing group selected from —CF3, —CCl3, —CBr3, —Cl3, —F, —CI, —Br, —I, —NO2, —CN, —COCH3, and —CO2C2H5,
- R8 and R9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR204, wherein R204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR205R206R207, wherein R205, R206, and R207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3,
- provided that n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3,
- provided that n4+n6 is an integer ranging from 1 to 4.
- In Chemical Formula 12,
- R14 is O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, C(═O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, and C(═O)NH,
- R16 and R17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR212, wherein R212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR213R214R215, wherein R213, R214, and R215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and
- n9 and n10 are each independently an integer ranging from 0 to 4.
- R1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 and Chemical Formula 9, where n7 and n8 is 0, and R10 is C(CF3)2.
- R2 in Chemical Formula 4 and Chemical Formula 5 may be represented by Chemical Formula 13:
- In Chemical Formula 6 and Chemical Formula 7, L1 may be a phenylene group, and L2 may be a single bond, and n21 may be 0.
- The structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof may be included in an amount of less than about 10 mol % based on the mole number of the total structural units included in the poly(imide-benzoxazole) copolymer.
- R1 may include the structural unit represented by Chemical Formula 8 in an amount of about 90 mol % to about 45 mol %, and the structural unit represented by Chemical Formula 9 in an amount of about 10 mol % to about 55 mol % in the poly(imide-benzoxazole) copolymer.
- The poly(imide-benzoxazole) copolymer may further include one or more selected from the structural unit represented by Chemical Formulae 14 to 17:
- In Chemical Formula 14,
- Ra is a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R11 is a substituted or unsubstituted C6 to C30 aromatic organic group,
- R3 and R4 are the same or different and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR200, wherein R200 is a C1 to C10 aliphatic organic group, a silyl group of formula —SiR201R202R203, wherein R201, R202, and R203 are the same or different and each are independently a hydrogen, or a C1 to C10 aliphatic organic group, and
- n1 and n2 are the same or different and each are independently an integer ranging from 0 to 4.
- In Chemical Formula 15,
- R5 is a substituted or unsubstituted C6 to C30 aromatic organic group,
- R6 and R7 are the same or different and each are independently an electron withdrawing group selected from —CF3, —CCl3, —CBr3, —Cl3, —F, —Cl, —Br, —I, —NO2, —CN, —COCH3, and —CO2C2H5,
- R8 and R9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR204, wherein R204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR205R206R207, n rein R205, R206, and R207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3,
- provided that n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3,
- provided that n4+n6 is an integer ranging from 1 to 4.
- In Chemical Formula 16,
- R14 is O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, C(═O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, and C(═O)NH,
- R15 is a substituted or unsubstituted C6 to C30 aromatic organic group,
- R16 and R17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR212, wherein R212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR213R214R215, wherein R213, R214, and R215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and n9 and n10 are each independently an integer ranging from 0 to 4.
- In Chemical Formula 17,
- R18 is O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, C(═O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, and C(═O)NH,
- L1 and L2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CF3)2—, —C(═O)NH—, and a combination thereof,
- R30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- According to yet another embodiment, provided is an article prepared from the poly(imide-benzoxazole) copolymer according to an embodiment.
- The article may be a film, fiber, or coating or adhesive material.
- The article may be a film having a thickness of about 50 micrometers, and the film may have about less than 5.5 of YI, measured by using ASTM D1926, and about 4.0 GPa or higher of tension modulus, measured by ASTM D882.
- According to still another embodiment, provided is a display device including the article.
- Hereinafter, further embodiments will be described in detail.
- This disclosure will be described more fully hereinafter with reference to the following embodiments. This disclosure may, however, be embodied in many different forms and is not to be construed as limited to the exemplary embodiments set forth herein.
- It will be understood that when an element is referred to as being “on” another element, it may be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
- It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments.
- The terminology used herein is for the purpose of describing present embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
- It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
- Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this general inventive concept belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
- “Mixture” as used herein is inclusive of all types of combinations, including blends, alloys, solutions, and the like.
- As used herein, when a specific definition is not otherwise provided, the term “substituted” refers to a group or compound substituted with at least one substituent including a halogen (—F, —Br, —CI, or —I), a hydroxy group, a nitro group, a cyano group, an amino group (—NH2, —NH(R100) or —N(R101)(R102), wherein R100, R101, and R102 are the same or different, and are each independently a C1 to C10 alkyl group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group, an ester group, a ketone group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alicyclic organic group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted heteroaryl group, and a substituted or unsubstituted heterocyclic group, in place of at least one hydrogen of a functional group, or the substituents may be linked to each other to provide a ring.
- As used herein, the term “alkyl group” refers to a straight or branched chain saturated aliphatic hydrocarbon having the specified number of carbon atoms and having a valence of at least one. Non-limiting examples of the alkyl group are methyl, ethyl, and propyl.
- As used herein, the term “fluoroalkyl group” refers to an alkyl group as defined above, wherein one or more hydrogen atoms are substituted with a fluorine atom. Non-limiting examples of the fluoroalkyl group are fluoromethyl, 2-fluoroethyl, and 3-fluoropropyl.
- As used herein, the term “alkoxy group” refers to “alkyl-O—”, wherein the term “alkyl” has the same meaning as described above. Non-limiting examples of the alkoxy group are methoxy, ethoxy, propoxy, cyclopropoxy, and cyclohexyloxy.
- As used herein, the term “cycloalkyl group” refers to a monovalent group having one or more saturated rings in which all ring members are carbon. Non-limiting examples of the cycloalkyl group are cyclopentyl and cyclohexyl.
- As used herein, the term “heterocycloalkyl group” refers to a cycloalkyl group as defined above, wherein one or more of the ring carbon atoms are replaced with a heteroatom selected from O, S, N, P, and Si. Non-limiting example of the heterocycloalkyl group is 2-oxacyclohexyl (2-tetrahydropyranyl).
- As used herein, the term “cycloalkoxy group” refers to “cycloalkyl-O—”, wherein the term “cycloalkyl” has the same meaning as described above. Non-limiting examples of the cycloalkoxy group are cyclopropoxy and cyclohexyloxy.
- As used herein, the term “aryl group”, which is used alone or in combination, refers to an aromatic hydrocarbon containing at least one ring. Non-limiting examples of the aryl group are phenyl, naphthyl, and tetrahydronaphthyl.
- As used herein, the term “aryloxy group” refers to “aryl-O—”, wherein the term “aryl” has the same meaning as described above. Non-limiting examples of the aryloxy group are phenoxy and naphthyloxy.
- As used herein, the term “heteroaryl group” refers to an aryl group as defined above, wherein one or more of the ring carbon atoms are replaced with a heteroatom selected from O, S, N, P, and Si. Non-limiting example of the heterocycloalkyl group are 2-pyridyl and 2-furanyl.
- As used herein, the terms “alkylene group”, “cycloalkylene group”, “heterocycloalkylene group”, “arylene” group”, and “heteroarylene group” refer to a divalent group respectively derived from an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, and a heteroaryl group as defined above.
- As used herein, when a specific definition is not otherwise provided, the term “alkyl group” refers to a C1 to C30 alkyl group, for example a C1 to C15 alkyl group, the term “fluoroalkyl group” refers to a C1 to C30 fluoroalkyl group, the term “cycloalkyl group” refers to a C3 to C30 cycloalkyl group, for example a C3 to C18 cycloalkyl group, the term “alkoxy group” refer to a C1 to C30 alkoxy group, for example a C1 to C18 alkoxy group, the term “ester group” refers to a C2 to C30 ester group, for example a C2 to C18 ester group, the term “ketone group” refers to a C2 to C30 ketone group, for example a C2 to C18 ketone group, the term “aryl group” refers to a C6 to C30 aryl group, for example a C6 to C18 aryl group, the term “alkenyl group” refers to a C2 to C30 alkenyl group, for example a C2 to C18 alkenyl group, the term “alkynyl group” refers to a C2 to C30 alkynyl group, for example a C2 to C18 alkynyl group, the term “alkylene group” refers to a C1 to C30 alkylene group, for example a C1 to C18 alkylene group, the term “cycloalkylene group” refers to a C3 to C30 cycloalkylene group, and the term “arylene group” refers to a C6 to C30 arylene group, for example a C6 to C16 arylene group.
- As used herein, when a specific definition is not otherwise provided, the term “aliphatic” refers to a C1 to C30 alkyl group, a C2 to C30 alkenyl group, a C2 to C30 alkynyl group, a C1 to C30 alkylene group, a C2 to C30 alkenylene group, or a C2 to C30 alkynylene group, for example a C1 to C15 alkyl group, a C2 to C15 alkenyl group, a C2 to C15 alkynyl group, a C1 to C15 alkylene group, a C2 to C15 alkenylene group, or a C2 to C15 alkynylene group, the term “alicyclic organic group” refers to a C3 to C30 cycloalkyl group, a C3 to C30 cycloalkenyl group, a C3 to C30 cycloalkynyl group, a C3 to C30 cycloalkylene group, a C3 to C30 cycloalkenylene group, or a C3 to C30 cycloalkynylene group, for example a C3 to C15 cycloalkyl group, a C3 to C15 cycloalkenyl group, a C3 to C15 cycloalkynyl group, a C3 to C15 cycloalkylene group, a C3 to C15 cycloalkenylene group, or a C3 to C15 cycloalkynylene group.
- As used herein when a definition is not otherwise provided, the term “aromatic organic group” refers to a C6 to C30 group comprising one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings independently selected from the foregoing (a single aromatic ring or a condensed ring system) linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p—, wherein 1≦q≦10, —C(CF2)q—, wherein 1≦q≦10, —C(CH3)2—, —C(CF3)2—, and —C(═O)NH—, for example through —S(═O)2—, for example an aryl group or a C6 to C30 arylene group, for example a C6 to C16 aryl group or a C6 to C16 arylene group such as phenylene. An example of an aromatic organic group is a fluorenylene group.
- As used herein, when a specific definition is not otherwise provided, the term “heterocyclic group” refers to a C2 to C30 cycloalkyl group, a C2 to C30 cycloalkylene group, a C2 to C30 cycloalkenyl group, a C2 to C30 cycloalkenylene group, a C2 to C30 cycloalkynyl group, a C2 to C30 cycloalkynylene group, a C2 to C30 heteroaryl group, or a C2 to C30 heteroarylene group including 1 to 3 heteroatoms selected from O, S, N, P, Si, and a combination thereof in one ring, for example a C2 to C15 cycloalkyl group, a C2 to C15 cycloalkylene group, a C2 to C15 cycloalkenyl group, a C2 to C15 cycloalkenylene group, a C2 to C15 cycloalkynyl group, a C2 to C15 cycloalkynylene group, a C2 to C15 heteroaryl group, or a C2 to C15 heteroarylene group including 1 to 3 heteroatoms selected from O, S, N, P, Si, and a combination thereof, in one ring.
- As used herein, when a definition is not otherwise provided, “combination” commonly refers to mixing or copolymerization.
- In addition, in the specification, the mark “*” may refer to a point of attachment to another atom.
- According to an embodiment, provided is a composition for preparing a poly(imide-benzoxazole) copolymer, including:
- a tetracarboxylic acid dianhydride represented by Chemical Formula 1,
- a first diamine represented by Chemical Formula 2, and
- a second diamine represented by Chemical Formula 3:
- wherein in Chemical Formulae 1 and 2,
- R1 and R2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CH3)2—, —C(CF3)2—, —C(═O)NH—, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, and a combination thereof,
- wherein in Chemical Formula 3,
- L1 and L2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CF3)2—, —C(═O)NH—, and a combination thereof,
- R30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- Studies for providing light in weight, flexible, and bendable mobile devices, such as smart phones and tablet PCs, are ongoing. In this regard, transparent and flexible window films having high hardness are desired to replace hard glass disposed on the uppermost place of the mobile devices.
- In order to be used as a window film, transparent films should have high hardness and good optical properties. Although hardness may be supplemented by coating a hardcoating layer on the film, high tension modulus of the film may be helpful to increase hardness of the final film. Additionally desired optical properties may include high transmittance for light, low haze, low yellowness index (YI), and the like.
- Poly(imide-amide) copolymer has good mechanical, thermal, optical properties, and the like, and thus may be used as a substrate for display device, such as an organic light emitting diode (“OLED”), liquid crystal display (“LCD”), and the like. In order to use such a poly(imide-amide) copolymer as a window film for flexible display device, mechanical and optical properties, such as, hardness (or modulus), low YI, and the like, should further be improved. However, modulus and YI are in so-called “trade-off” relation, and thus it is very difficult to improve the two properties at the same time.
- The inventors have found that a novel composition for preparing a polyimide including a diamine derived from a benzoxazole increases tension modulus of an article containing the polyimide, while at the same time, maintaining excellent optical properties of polyimide, for example, low YI.
- Particularly, the composition includes a tetracarboxylic acid dianhydride represented by Chemical Formula 1, a diamine represented by Chemical Formula 2, and a diamine represented by Chemical Formula 3, which includes a benzoxazole group.
- As shown in the examples, by adding a diamine including a benzoxazole group to the composition for preparing polyimide, the tension modulus of the film prepared from the composition unexpectedly improves, while the yellowness index (YI) of the film is maintained or slightly increased.
- Accordingly, the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be any dianhydride used to prepare a conventional polyimide.
- For example, the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be one or more selected from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (“BPDA”), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (“BTDA”), 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (“DSDA”), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), 4,4′-oxydiphthalic anhydride (“ODPA”), pyromellitic dianhydride (“PMDA”), and 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (“DTDA”), and it is not limited thereto.
- In an exemplary embodiment, the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may be 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (“BPDA”), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), or a combination thereof.
- Also, the diamine represented by Chemical Formula 2 may be any diamine used for preparing a conventional polyimide.
- The diamine represented by Chemical Formula 2 may be one or more selected from the following chemical formulae:
- In the above chemical formulae,
- R32 to R45 are the same or different and may each independently be hydrogen, a halogen, a nitro group, a substituted or unsubstituted C1 to C15 alkyl group, a substituted or unsubstituted C1 to C15 alkoxy group, a substituted or unsubstituted C1 to C15 fluoroalkyl group, a substituted or unsubstituted C3 to C15 cycloalkyl group, a substituted or unsubstituted C3 to C15 heterocycloalkyl group, a substituted or unsubstituted C3 to C15 cycloalkoxy group, a substituted or unsubstituted C6 to C15 aryl group, a substituted or unsubstituted C6 to C15 aryloxy group, or a substituted or unsubstituted C2 to C15 heteroaryl group,
- X2 to X10 are the same or different and may each independently be a single bond, a substituted or unsubstituted C1 to C10 alkylene group, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C5 to C40 heterocycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, a substituted or unsubstituted C3 to C40 heteroarylene group, —SO2—, —O—, —C(═O)—, or a combination thereof, n35 to n37, and n40 to n49, are integers ranging from 0 to 4, and n38 and n39 are integers ranging from 0 to 3.
- For example, the first diamine represented by Chemical Formula 2 may be one or more selected from 2,2′-bis(trifluoromethyl)benzidine (“TFDB”), 4,4′-diaminodiphenyl sulfone (“DADPS”), 4,4′-(9-fluorenylidene)dianiline (“BAPF”), bis(4-(4-aminophenoxy)phenyl)sulfone (“BAPS”), 2,2′,5,5′-tetrachlorobenzidine, 2,7-diaminofluorene, 1,1-bis(4-aminophenyl)cyclohexane, 4,4′-methylenebis-(2-methylcyclohexylamine), 4,4-diaminooctafluorobiphenyl, 3,3′-dihydroxybenzidine, and 1,3-cyclohexanediamine, but is not limited thereto.
- In an exemplary embodiment, the first diamine represented by Chemical Formula 2 may be 2,2′-bis(trifluoromethyl)benzidine (“TFDB”).
- In Chemical Formula 3,
- L1 maybe phenylene group,
- L2 may be a single bond, and
- n21 may be 0, and it is not limited thereto.
- The mole ratio of the tetracarboxylic acid dianhydride represented by Chemical Formula 1 to the first diamine represented by Chemical Formula 2 and the second diamine represented by Chemical Formula 3 may be about 1:1, where the second diamine represented by Chemical Formula 3 may be included in an amount of less than 10 mole percent (mol %) based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3.
- Within the above range of the diamine represented by Chemical Formula 3 based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3, an article prepared from the composition may have improved tension modulus, while good optical properties, for example, low YI, are maintained.
- Within the above range, the diamine represented by Chemical Formula 3 may be included in an amount of about 0.1 mol % to about 8 mol %, for example, about 0.5 mol % to about 7 mol %, for example, about 1 mol % to about 5 mol %, for example, about 1 mol % to about 3 mol %, based on the total mole number of the diamines represented by Chemical Formula 2 and Chemical Formula 3.
- In an exemplary embodiment, the tetracarboxylic acid dianhydride represented by Chemical Formula 1 may include a mixture of about 10 mol % to about 55 mol % of 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (“BPDA”) and about 90 mol % to about 45 mol % of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), where the diamine represented by Chemical Formula 2 may be 2,2′-bis(trifluoromethyl)benzidine (“TFDB”).
- According to another embodiment, provided is a poly(imide-benzoxazole) copolymer prepared from the composition for preparing poly(imide-benzoxazole) copolymer.
- The poly(imide-benzoxazole) copolymer may include:
- (i) a structural unit represented by Chemical Formula 4, Chemical Formula 5, or a combination thereof; and
- (ii) a structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof:
- wherein in Chemical Formulae 4 to 7,
- R1 and R2 are the same or different, and are each independently a substituted or unsubstituted C4 to C30 alicyclic organic group, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CH3)2—, —C(CF3)2—, —C(═O)NH—, a substituted or unsubstituted C3 to C10 cycloalkylene group, a substituted or unsubstituted C6 to C15 arylene group, and a combination thereof,
- L1 and L2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CF3)2—, —C(═O)NH—, and a combination thereof,
- R30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- R1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 or Chemical Formula 9:
- In Chemical Formula 8,
- R10 is the same or different in each structural unit, and is independently a single bond, a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 cyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group,
- wherein in Chemical Formulae 8 and 9,
- R12 and R13 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR208, wherein R208 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR209R210R211, wherein R209, R210, and R211 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and
- n7 and n8 are independently integers ranging from 0 to 3.
- In Chemical Formula 4 or Chemical Formula 5, R2 may be represented by one or more selected from Chemical Formulae 10 to 12:
- In Chemical Formula 10,
- Ra is the same or different in each structural unit, and is independently a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, or a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R3 and R4 are the same or different, and are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a C6 to C20 aromatic organic group, an alkoxy group of formula —OR200, wherein R200 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR201R202R203, wherein R201, R202, and R203 are the same or different, and are independently hydrogen or a C1 to C10 aliphatic organic group, and
- n1 and n2 are independently integers ranging from 0 to 4.
- In Chemical Formula 11,
- R6 and R7 are the same or different and each are independently an electron withdrawing group selected from —CF3, —CCl3, —CBr3, —Cl3, —F, —CI, —Br, —I, —NO2, —CN, —COCH3, and —CO2C2H5,
- R8 and R9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR204, wherein R204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR205R206R207, wherein R205, R206, and R207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3,
- provided that n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3,
- provided that n4+n6 is an integer ranging from 1 to 4.
- In Chemical Formula 12,
- R14 is 0, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, C(═O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, 0, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, and C(═O)NH,
- R16 and R17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR212, wherein R212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR213R214R215, wherein R213, R214, and R215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and
- n9 and n10 are each independently an integer ranging from 0 to 4.
- R1 in Chemical Formulae 4 to 7 may be represented by Chemical Formula 8 and Chemical Formula 9, where n7 and n8 is 0, and R10 is C(CF3)2.
- R2 in Chemical Formula 4 and Chemical Formula 5 may be represented by Chemical Formula 13:
- In Chemical Formula 6 and Chemical Formula 7,
- L1 may be a phenylene group,
- L2 may be a single bond, and
- n21 may be 0.
- The structural unit represented by Chemical Formula 6, Chemical Formula 7, or a combination thereof may be included in an amount of less than about 10 mol % based on the total mole number of the structural units included in the poly(imide-benzoxazole) copolymer.
- R1 may include the structural unit represented by Chemical Formula 8 in an amount of about 90 mol % to about 45 mol %, and the structural unit represented by Chemical Formula 9 in an amount of about 10 mol % to about 55 mol % in the poly(imide-benzoxazole) copolymer.
- The poly(imide-benzoxazole) copolymer may further include one or more selected from the structural unit represented by Chemical Formulae 14 to 17:
- In Chemical Formula 14,
- Ra is a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C2 to C30 heterocyclic group, or a substituted or unsubstituted C13 to C20 fluorenylene group,
- R11 is a substituted or unsubstituted C6 to C30 aromatic organic group,
- R3 and R4 are the same or different and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR200, wherein R200 is a C1 to C10 aliphatic organic group, a silyl group of formula —SiR201R202R203, wherein R201, R202, and R203 are the same or different and each are independently a hydrogen, or a C1 to C10 aliphatic organic group, and
- n1 and n2 are the same or different and each are independently an integer ranging from 0 to 4.
- In Chemical Formula 15,
- R5 is a substituted or unsubstituted C6 to C30 aromatic organic group,
- R6 and R7 are the same or different and each are independently an electron withdrawing group selected from —CF3, —CCl3, —CBr3, —Cl3, —F, —CI, —Br, —I, —NO2, —CN, —COCH3, and —CO2C2H5,
- R8 and R9 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR204, wherein R204 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR205R206R207, wherein R205, R206, and R207 are the same or different, and each are independently a hydrogen, a C1 to C10 aliphatic organic group,
- n3 is an integer ranging from 1 to 4,
- n5 is an integer ranging from 0 to 3,
- provided that n3+n5 is an integer ranging from 1 to 4,
- n4 is an integer ranging from 1 to 4, and
- n6 is an integer ranging from 0 to 3,
- provided that n4+n6 is an integer ranging from 1 to 4.
- In Chemical Formula 16,
- R14 is 0, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, C(═O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, 0, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, and C(═O)NH,
- R15 is a substituted or unsubstituted C6 to C30 aromatic organic group,
- R16 and R17 are the same or different, and each are independently a halogen, a hydroxy group, a substituted or unsubstituted C1 to C10 aliphatic organic group, a substituted or unsubstituted C6 to C20 aromatic organic group, an alkoxy group of formula —OR212, wherein R212 is a C1 to C10 aliphatic organic group, or a silyl group of formula —SiR213R214R215, wherein R213, R214, and R215 are the same or different, and each are independently a hydrogen or a C1 to C10 aliphatic organic group, and
- n9 and n10 are each independently an integer ranging from 0 to 4.
- In Chemical Formula 17,
- R18 is O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)c, wherein 1≦q≦10, C(CH3)2, C(CF3)2, C(═O)NH, or a substituted or unsubstituted C6 to C30 aromatic organic group, wherein the aromatic organic group includes one aromatic ring, two or more aromatic rings fused together to provide a condensed ring system, or two or more aromatic rings linked through a single bond or through a functional group selected from a fluorenylene group, O, S, C(═O), CH(OH), S(═O)2, Si(CH3)2, (CH2)p wherein 1≦p≦10, (CF2)q wherein 1≦q≦10, C(CH3)2, C(CF3)2, and C(═O)NH,
- L1 and L2 are the same or different, and are each independently selected from a substituted or unsubstituted C1 to C30 aliphatic organic group, a substituted or unsubstituted C3 to C30 alicyclic organic group, a substituted or unsubstituted C6 to C30 aromatic organic group, a substituted or unsubstituted C3 to C30 heterocycloalkylene group, —O—, —S—, —C(═O)—, —CH(OH)—, —S(═O)2—, —Si(CH3)2—, —(CH2)p— wherein 1≦p≦10, —(CF2)q— wherein 1≦q≦10, —C(CF3)2—, —C(═O)NH—, and a combination thereof,
- R30 is a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C1 to C30 alkoxy group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C2 to C30 heterocycloalkyl group, a substituted or unsubstituted C1 to C30 heteroalkyl group, a substituted or unsubstituted C7 to C20 arylakyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 acyl group, a hydroxy group, a nitro group, a halogen, and a combination thereof, and
- n21 is an integer from 0 to 3.
- The structural unit represented by one or more of Chemical Formulae 14 to 17 is an amide structural unit, and the copolymer further including one or more of the structural units represented by Chemical Formulae 14 to 17 may be a poly(imide-benzoxazole-amide) copolymer.
- The structural unit represented by one or more of Chemical Formulae 14 to 17 may be included in an amount of about 1 mol % to about 99 mol %, for example, about 5 mol % to about 95 mol %, for example, about 10 mol % to about 90 mol %, for example, about 20 mol % to about 80 mol %, for example, about 30 mol % to about 70 mol %, for example, about 40 mol % to about 60 mol %, based on the total mole number of the structural units.
- The poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment may be prepared by various methods for preparing polyimide or poly(imide-amide) known by a person having ordinary skills in the related arts, which are not limited to the methods disclosed herein.
- For example, according to a method of synthesis of a polyimide, an imide is generally prepared by using a method of preparing an amic acid, which is a precursor of the imide. Subsequently, the amic acid is imidized to produce the imide. For example, an amic acid, the precursor of the imide, may be prepared by reacting a tetracarboxylic acid dianhydride and a diamine, and may be converted to the polyimide by thermal or chemical imidization.
- In an exemplary embodiment, the poly(imide-benzoxazole) copolymer according to an embodiment may be prepared by reacting a tetracarboxylic acid dianhydride represented by Chemical Formula 1 with the diamines represented by Chemical Formula 2 and Chemical Formula 3 in an aprotic bipolar solvent in the same way as in a method of preparing a conventional polyimide.
- That is, the poly(imide-benzoxazole) copolymer according to an embodiment may be prepared by, for example, to the method as described above, in which a tetracarboxylic acid dianhydride represented by Chemical Formula 1, for example, one or more selected from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (“BPDA”), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (“BTDA”), 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (“DSDA”), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (“6FDA”), 4,4′-oxydiphthalic anhydride (“ODPA”), pyromellitic dianhydride (“PMDA”), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (“DTDA”), and bis(3,4-dicarboxyphenyl)sulfone dianhydride, is reacted with a diamine represented by Chemical Formula 2, for example, one or more selected from 2,2′-bis(trifluoromethyl)benzidine (“TFDB”), 4,4′-diaminodiphenyl sulfone (“DADPS”), 4,4′-(9-fluorenylidene)dianiline (“BAPF”), bis(4-(4-aminophenoxy)phenyl)sulfone (“BAPS”), 2,2′,5,5′-tetrachlorobenzidine, 2,7-diaminofluorene, 1,1-bis(4-aminophenyl)cyclohexane, 4,4′-methylenebis-(2-methylcyclohexylamine), 4,4-diaminooctafluorobiphenyl, and 3,3′-dihydroxybenzidine, 1,3-cyclohexanediamine, together with a diamine represented by Chemical Formula 3 including a benzoxazole group.
- The aprotic bipolar solvent may include, for example, a sulfoxide solvent such as dimethyl sulfoxide and diethyl sulfoxide, a formamide solvent such as N,N-dimethyl formamide and N,N-diethyl formamide, an acetamide solvent such as N,N-dimethyl acetamide and N,N-diethyl acetamide, a pyrrolidone solvent such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, a phenol solvent such as phenol, o-, m-, or p-cresol, xylenol, halogenated phenol, and catechol, hexamethyl phosphoramide, γ-butyrolactone, or a mixture thereof. However, this disclosure is not limited to these solvents, and an aromatic hydrocarbon such as xylene and toluene may also be used. Also, to promote the dissolution of a polymer, an alkali metal salt or an alkaline earth metal salt may be further added to the solvent in an amount of about 50 percent by weight (wt %) or less based on the total amount of the solvent.
- A person skilled in the art would readily understand that the amount and type of the tetracarboxylic acid dianhydride and the diamines may be appropriately selected according to a given (e.g., desired, or alternatively, predetermined) composition or use.
- When preparing the amic acid, if the diamines are used to exceed the tetracarboxylic acid dianhydride, the obtained copolymer may have an amino group at an end.
- Meanwhile, if the composition further includes one or more of the structural units represented by Chemical Formulae 14 to 17, monomers for preparing a polyamide may be first added to produce the polyamide, and then the monomers for preparing a poly(amic acid-benzoxazole) may be added thereto to produce the poly(imide-benzoxazole-amide) copolymer.
- When preparing poly(imide-amide) or poly(imide-benzoxazole-amide) copolymer, it may be advantageous to add the monomers for preparing an amide first, and then to add the monomer for preparing an amic acid or imide. If the amic acid-benzoxazole is first polymerized, monomers for preparing amide may further react with functional groups of amic acid-benzoxazole to produce gel.
- Methods for preparing polyamide may include, for example, a low temperature solution polymerization method, an interface polymerization method, a fusion polymerization method, a solid polymerization method, and the like, but is not limited thereto.
- Among the methods, for example, a low-temperature solution polymerization method for preparing polyamide is further described. According to the low-temperature solution polymerization method, a polyamide is prepared by polymerizing a dicarboxylic acid dichloride and a diamine in an aprotic bipolar solvent.
- Herein, in order to produce the poly(imide-benzoxazole-amide) copolymer, a dicarboxylic acid dichloride and a diamine capable of producing a structural unit represented by at least one of Chemical Formulae 14 to 17 may be used, and the diamine monomer may be the same as those used for preparing the poly(imide-benzoxazole) copolymer. The dicarboxylic acid dichloride may be selected from any one used for preparing the polyamide. For example, the dicarboxylic acid dichloride may include terephthaloyl chloride (“TPCI”), isophthaloyl chloride (“IPCI”), biphenyl dicarbonyl chloride (“BPCI”), naphthalene dicarbonyl chloride, terphenyl dicarbonyl chloride, 2-fluoro-terephthaloyl chloride, and a combination thereof, but is not limited thereto.
- As described above, according to an exemplary embodiment, the poly(imide-benzoxazole) copolymer is first polymerized, and in this case, poly(imide-benzoxazole) copolymer having amino group at each end thereof may be obtained by using excess diamine compared to tetracarboxylic acid dianhydride. Accordingly, the poly(imide-benzoxazole-amide)copolymer may be prepared by adding the above-mentioned monomers for preparing polyamide, that is, the dicarboxylic acid dichloride and additional diamine monomers, to the obtained poly(imide-benzoxazole) copolymer, which has amino group at each end.
- A molecular weight of the poly(imide-benzoxazole-imide) copolymer according to an embodiment may be adjusted appropriately according to its use, and thus an oligomer or high molecular weight polymer may be obtained.
- According to yet another embodiment, provided is an article prepared from the poly(imide-benzoxazole) copolymer according to an embodiment. The article may be a film, fiber, or coating or adhesive material.
- The article may be formed using the poly(imide-benzoxazole) copolymer through a dry-wet method, a dry method, or a wet method, but this disclosure is not limited thereto.
- According to an exemplary embodiment when the article is a film, the film may be manufactured using the copolymer through the dry-wet method, where a layer is formed by extruding a solution dissolving the poly(imide-benzoxazole) copolymer from a mouth piece on a supporter, such as drum or an endless belt, drying the layer, and evaporating the solvent out of the layer until the layer has a self-maintenance property. The drying may be performed at about 25° C. to about 300° C. for about 1 hour or less. When the surface of the drum and/or the endless belt used for the drying process becomes flat, a layer with a flat surface is formed. The layer obtained after the drying process is delaminated from the supporter, and treated according to a wet process, desalted and/or desolventized. The manufacturing of the film is completed as the layer is elongated, dried, and/or heat treated.
- The elongating conforms to a draw ratio, which may range from about 0.8 to about 8 in terms of surface ratio. According to an embodiment, the draw ratio may range from about 1.3 to about 8. As used herein, the term “surface ratio” refers to a value obtained by dividing the area of a layer after the elongating, by an area of the layer before the elongating. A value of 1 or less denotes a relaxed state. According to an exemplary embodiment, the elongating may be performed not only in a surface direction but also in a thickness direction.
- The heat treatment may be performed at a temperature of about 200° C. to about 500° C., particularly at about 250° C. to about 400° C., for about a few seconds to about a few minutes.
- Also, the layer after elongating and heat treatment may be cooled slowly, particularly at a speed of about 50° C./second or lower.
- The layer may be formed as a single layer or as multiple layers.
- An article including the poly(amide-benzoxazole) copolymer may have a total light transmittance of about 80% or higher, for example, of about 85% or higher, for example, of about 88% or higher, at a wavelength range of about 380 nanometers (nm) to about 750 nm.
- The article including the poly(amide-benzoxazole) copolymer may have a light transmittance of about 70% or higher, for example, of about 80% or higher, for example, of about 85% or higher, at a wavelength range of about 430 nm.
- When the light transmittance of the article including the poly(imide-benzoxazole) copolymer is within the above ranges, the article may have excellent or improved color reproducibility.
- The article may be a film having a thickness of about 50 micrometers, and the film may have YI of less than about 5.5, measured by using ASTM D1926.
- The article may be a film having a thickness of about 50 μm, and the film may have a tension modulus of about 4.0 giga Pascals (GPa) or higher, measured by using ASTM D882.
- The article may be a film having a thickness of about 50 μm, and the film may have YI of less than about 3.8, measured by using ASTM D1926.
- The article may be a film having a thickness of about 50 μm, and the film may have a tension modulus of about 4.3 GPa or higher, measured by using ASTM D882.
- That is, the article may have increased tension modulus, while excellent optical properties of polyimide or poly(imide-amide) copolymer are maintained, for example, low YI.
- When the tension modulus is within the range, the article may have high hardness. When the YI is within the range, the article may be transparent and colorless.
- According to yet another embodiment, provided is a display device including the article.
- As mentioned above, as the article has increased tension modulus, while good optical properties are maintained, for example, low YI, it may be used as a window film of a flexible display device.
- Hereafter, the technology of this disclosure is described in detail with reference to examples. The following examples and comparative examples are not restrictive but are illustrative.
- 833 grams of N,N-dimethyl acetamide (“DMAC”) is added in a 1 liter flask reactor, equipped with agitator, dropping funnel, temperature adjustor, N2-inputting apparatus, and cooler, under nitrogen atmosphere, and the temperature is set to 25° C. To the reactor, 2,2′-bis(trifluoromethyl)benzidine (“TFDB”) and 5-amino-2-(4-aminophenyl)benzoxazole (“6ABO”) are added in an amount described in Table 1 below and dissolved, while maintaining the temperature at 25° C. To the reactor, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (“6FDA”) and 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (“BPDA”) are added in an amount described in Table 1 below, and the reaction mixture is agitated to dissolve solid components, which are allowed to react with each other for a predetermined period. The temperature is maintained at 25° C. Upon completion of the reaction, poly (amic acid-benzoxazole) solution having a solid content of about 10 percent by weight (weight %) is obtained.
- 39 grams of acetic anhydride is added to the obtained poly amic acid solution and the reaction mixture is agitated for 30 minutes. Subsequently, 30 grams of pyridine is added and the reaction mixture is further agitated for 24 hours to produce poly(imide-benzoxazole) copolymer solution.
- Each poly(imide-benzoxazole) copolymer solution prepared according to Examples 1 to 4 and Comparative Examples 1 and 2 is coated on a glass substrate, and maintained on a hot plate set at 80° C. for 1 hour for drying. The glass substrates coated with the solutions are placed in a furnace, heat treated from room temperature to about 250° C. at a heating rate of 3° C./minute, and slowly cooled to room temperature. The poly(imide-benzoxazole) films having thicknesses as described in Table 1 below are laminated from the substrates.
- In order to evaluate the films, yellowness indices (YI at 50° C.) and tension moduli of the obtained films are measured and summarized in Table 1.
- YI is measured for a film having a thickness of 50 μm by using ASTM D1925.
- Tension modulus is measured by using ASTM D882.
-
TABLE 1 Composition (mol %) Thickness YI Tension modulus TFDB 6ABO BPDA 6FDA (μm) (@ 50 μm) (GPa) Comparative 100 0 20 80 55 1.5 3.9 Example 1 Example 1 99 1 20 80 56 1.6 4.3 Example 2 97 3 20 80 59 1.8 4.3 Comparative 90 10 20 80 53 2.8 3.8 Example 2 Example 3 99 1 40 60 49 2.0 4.2 Example 4 99 1 50 50 49 2.4 4.3 - As shown in Table 1, the films prepared from the compositions according to Examples 1 to 4, in which BPDA and 6FDA are included as monomers of tetracarboxylic acid dianhydride and TFDB and 6ABO including a benzoxazole group are included as monomers of diamine, have increased tension moduli, while maintaining YI values in a certain desired range, in contrast to the films prepared from the compositions according to Comparative Examples 1 and 2, in which 6ABO is not included.
- Meanwhile, if the amount of 6ABO exceeds 10 mol % based on the total mole number of the diamines, tension modulus of the film decreases, and YI of the film further increases.
- 670 grams of N,N-dimethyl acetamide (“DMAC”) is added in a 1 liter flask reactor, equipped with agitator, dropping funnel, temperature adjustor, N2-inputting apparatus, and cooler, under nitrogen atmosphere, and the temperature is set to 25° C. To the reactor, 2,2′-bis(trifluoromethyl)benzidine (“TFDB”) and 5-amino-2-(4-aminophenyl)benzoxazole (“6ABO”) are added in an amount described in Table 2 below and dissolved, while maintaining the temperature at 25° C. Terephthaloyl chloride (“TPCI”) is added every 5 minutes for 10 times and the reaction mixture is agitated for 2 hours. Then, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (“6FDA”) and 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (“BPDA”) are added in an amount described in Table 2 below, the reaction mixture is agitated to dissolve the solid components, which are allowed to react with each other for a predetermined period. The temperature is maintained at 25° C. Upon completion of the reaction, poly(amic acid-benzoxazole-amide) solution having a solid content of about 10 weight % is obtained.
- 39 grams of acetic anhydride is added to the obtained poly(amic acid-benzoxazole-amide) solution and the reaction mixture is agitated for 30 minutes. Subsequently, 30 grams of pyridine is added and the reaction mixture is further agitated for 24 hours to produce poly(imide-benzoxazole-amide) copolymer solution. The obtained solution is precipitated by water, and the precipitated solid contents are filtered and pyrolized 2 times. The finally obtained solid contents are dispersed in methanol and stirred for 30 minutes, and the powder obtained by filtration is dried at 120° C. for 24 hours to obtain poly(imide-benzoxazole-amide) copolymer powder.
- Each 12 gram portion of the poly(imide-benzoxazole-amide) copolymer powders according to Examples 5 to 7 and Comparative Examples 3 and 4 is dissolved in 88 grams of N,N-dimethylacetamide (DMAc) to obtain solutions having 12 weight % of solid contents, respectively. 1.2 grams of acetic anhydride is added to the obtained solution and the reaction mixture is agitated for 30 minutes. Then, 0.9 grams of pyridine is added, and the reaction mixture is further agitated for 24 hours to produce poly(imide-benzoxazole-amide) copolymer solution.
- The obtained poly(imide-benzoxazole-amide) solution is coated on a glass substrate, and the coated glass substrate is maintained on a hot plate set on 80° C. for 1 hour for drying. The glass substrates coated with the solutions are placed in a furnace, heat treated from room temperature to about 250° C. at a heating rate of 3° C./minute, and slowly cooled to room temperature. The poly(imide-benzoxazole-amide) films having thickness values as described in Table 2 below are laminated from the substrates.
- In order to evaluate the films, yellowness indices (YI at 50° C.) and tension moduli of the obtained films are measured and summarized in Table 2.
- YI is measured for a film having a thickness of 50 μm by using ASTM D1925.
- Tension modulus is measured by using ASTM D882.
-
TABLE 2 Composition (mol %) Thickness YI Tension modulus TFDB 6ABO TPCL BPDA 6FDA (μm) (@ 50 μm) (GPa) Comparative 100 0 55 18 27 49 2.2 5.6 Example 3 Example 5 99 1 55 18 27 52 2.4 6.2 Example 6 97 3 55 18 27 51 3.2 6.5 Example 7 95 5 55 18 27 50 3.8 6.5 Comparative 90 10 55 18 27 50 5.5 6.3 Example 4 - As shown from Table 2, the films prepared from the compositions according to Examples 5 to 7, in which BPDA and 6FDA as monomers of tetracarboxylic acid dianhydride, TPCI as a monomer of a dicarboxylic acid dichloride, and TFDB and 6ABO including a benzoxazole group as monomers of diamine are included, have increased tension moduli, while maintaining YI values in a certain desired range, in contrast to the films prepared from the compositions according to Comparative Examples 3 and 4, in which 6ABO is not included.
- Meanwhile, if the amount of 6ABO exceeds 10 mol % based on the total mole number of diamines, tension modulus of the film decreases, and YI of the film further increases, which is the same effect as observed in the poly(imide-benzoxazole) film.
- As shown from Examples 1 to 7 and Comparative Examples 1 to 4, the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment have increased tension modulus, while maintaining yellowness index in a predetermined range of polyimide or poly(imide-amide) copolymer.
- Accordingly, the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment may be advantageously used in an application requiring high light transmittance, as well as high hardness. For example, the poly(imide-benzoxazole) copolymer or poly(imide-benzoxazole-amide) copolymer according to an embodiment may be used as a window film of a flexible display device.
- While this disclosure has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the present inventive concept is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements which are included within the spirit and scope of the appended claims.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150021853A KR102276656B1 (en) | 2015-02-12 | 2015-02-12 | Composition of preparing poly(imide-benzoxasole)copolymer, poly(imide-benzoxasole)copolymer, article contatining poly(imide-benzoxasole)copolymer, and display device including same |
KR10-2015-0021853 | 2015-02-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160237214A1 true US20160237214A1 (en) | 2016-08-18 |
US10858482B2 US10858482B2 (en) | 2020-12-08 |
Family
ID=56620832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/879,287 Active 2037-10-12 US10858482B2 (en) | 2015-02-12 | 2015-10-09 | Composition of preparing poly(imide-benzoxazole) copolymer, poly(imide-benzoxazole) copolymer, article containing poly(imide-benzoxazole) copolymer, and display device including same |
Country Status (2)
Country | Link |
---|---|
US (1) | US10858482B2 (en) |
KR (1) | KR102276656B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028076A (en) * | 2016-08-10 | 2018-02-22 | 新日鉄住金化学株式会社 | Polyimide precursor and polyimide prepared from the same |
CN117430812A (en) * | 2023-12-21 | 2024-01-23 | 明士(北京)新材料开发有限公司 | Photosensitive polyamic acid ester resin, resin composition and application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018735A (en) * | 1974-07-10 | 1977-04-19 | Teijin Limited | Anisotropic dopes of aromatic polyamides |
US4978733A (en) * | 1989-03-09 | 1990-12-18 | Hoechst Celanese Corp. | Polyamide-polyamide-polyimide and polybenzoxazole-polyamide-polyimide polymer having at least one fluorine-containing linking group |
US5741585A (en) * | 1995-04-24 | 1998-04-21 | The Dow Chemical Company | Polyamic acid precursors and methods for preparing higher molecular weight polyamic acids and polyimidebenzoxazole |
US5919892A (en) * | 1994-10-31 | 1999-07-06 | The Dow Chemical Company | Polyamic acids and methods to convert polyamic acids into polyimidebenzoxazole films |
US6291635B1 (en) * | 1999-04-09 | 2001-09-18 | Central Glass Company, Limited | Fluorine-containing polybenzoxazole |
US20150159043A1 (en) * | 2013-12-05 | 2015-06-11 | Taimide Technology Incorporation | Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292635A (en) | 1999-04-02 | 2000-10-20 | Reiko Udagawa | Fluorinated polyimide resin and light waveguide using these |
US20040253520A1 (en) | 2003-05-13 | 2004-12-16 | Wensley C. Glen | Polyimide matrix electrolyte and improved batteries therefrom |
KR20070017001A (en) * | 2005-08-03 | 2007-02-08 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Low Color Polyimide Compositions Useful in Optical Type Applications and Methods and Compositions Relating Thereto |
US20090226642A1 (en) | 2005-08-03 | 2009-09-10 | E. I. Du Pont De Nemours And Company | Low color polyimide compositions useful in optical type applications and methods and compositions relating thereto |
JP2008088287A (en) * | 2006-10-02 | 2008-04-17 | Toyobo Co Ltd | Optical polyimide |
JP4891411B2 (en) | 2006-12-15 | 2012-03-07 | コーロン インダストリーズ インク | Polyimide resin, liquid crystal alignment film and polyimide film using the same |
KR101167337B1 (en) | 2006-12-15 | 2012-07-19 | 코오롱인더스트리 주식회사 | Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same |
KR101211857B1 (en) | 2006-12-15 | 2012-12-12 | 코오롱인더스트리 주식회사 | Colorless polyimide film |
KR101167483B1 (en) | 2006-12-15 | 2012-07-27 | 코오롱인더스트리 주식회사 | Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same |
US20100048861A1 (en) | 2006-12-15 | 2010-02-25 | Hak Gee Jung | Polyimide resin and liquid crystal alignment layer and polyimide film using the same |
KR101328838B1 (en) | 2010-03-30 | 2013-11-13 | 코오롱인더스트리 주식회사 | Polyimide film |
KR101523730B1 (en) * | 2011-05-18 | 2015-05-29 | 삼성전자 주식회사 | Poly(amide-imide) block copolymer, article including same, and display device including the article |
KR101339663B1 (en) | 2011-12-30 | 2013-12-10 | 웅진케미칼 주식회사 | Transparent polyimide with low coefficient of thermal expansion |
KR101339673B1 (en) | 2011-12-30 | 2013-12-10 | 웅진케미칼 주식회사 | Transparent polyimide with low coefficient of thermal expansion |
-
2015
- 2015-02-12 KR KR1020150021853A patent/KR102276656B1/en active IP Right Grant
- 2015-10-09 US US14/879,287 patent/US10858482B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018735A (en) * | 1974-07-10 | 1977-04-19 | Teijin Limited | Anisotropic dopes of aromatic polyamides |
US4978733A (en) * | 1989-03-09 | 1990-12-18 | Hoechst Celanese Corp. | Polyamide-polyamide-polyimide and polybenzoxazole-polyamide-polyimide polymer having at least one fluorine-containing linking group |
US5919892A (en) * | 1994-10-31 | 1999-07-06 | The Dow Chemical Company | Polyamic acids and methods to convert polyamic acids into polyimidebenzoxazole films |
US5741585A (en) * | 1995-04-24 | 1998-04-21 | The Dow Chemical Company | Polyamic acid precursors and methods for preparing higher molecular weight polyamic acids and polyimidebenzoxazole |
US6291635B1 (en) * | 1999-04-09 | 2001-09-18 | Central Glass Company, Limited | Fluorine-containing polybenzoxazole |
US20150159043A1 (en) * | 2013-12-05 | 2015-06-11 | Taimide Technology Incorporation | Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028076A (en) * | 2016-08-10 | 2018-02-22 | 新日鉄住金化学株式会社 | Polyimide precursor and polyimide prepared from the same |
JP7079076B2 (en) | 2016-08-10 | 2022-06-01 | 日鉄ケミカル&マテリアル株式会社 | Polyimide precursor and the polyimide resulting from it |
CN117430812A (en) * | 2023-12-21 | 2024-01-23 | 明士(北京)新材料开发有限公司 | Photosensitive polyamic acid ester resin, resin composition and application |
Also Published As
Publication number | Publication date |
---|---|
US10858482B2 (en) | 2020-12-08 |
KR20160099411A (en) | 2016-08-22 |
KR102276656B1 (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9988493B2 (en) | Poly(imide-amide) copolymer, article containing poly(imide-amide) copolymer, and display device including same | |
US10240002B2 (en) | Poly(imide-amide) copolymer, a method for preparing a poly(imide-amide) copolymer, and an article including a poly(imide-amide) copolymer | |
US9365694B2 (en) | Composition including polyimide block copolymer and inorganic particles, method of preparing same, article including same, and display device including the article | |
US10689513B2 (en) | Composition for preparing article including polyimide or poly(imide-amide) copolymer, article including polyimide or poly(imide-amide) copolymer, and electronic device including the article | |
US10072180B2 (en) | Composition for preparing article containing poly(imide-amide), method of preparing the same, and article containing poly(imide-amide) | |
US9902814B2 (en) | Transparent polymer film and electronic device including the same | |
EP3162837B1 (en) | Poly(imide-amide) copolymer, a method for preparing a poly(imide-amide) copolymer, and an article including a poly(imide-amide) copolymer | |
US20170183462A1 (en) | Poly(amide-imide) copolymer film, and display device including same | |
JP2019506478A (en) | Polyamic acid composition having improved adhesion and polyimide film containing the same | |
US9388279B2 (en) | Poly(imide-amide) copolymer, a method of preparing a poly(imide-amide) copolymer, and an article including a poly(imide-amide) copolymer | |
US20200223983A1 (en) | Poly(imide-amide) copolymer, a method for preparing a poly(imide-amide) copolymer, and an article including a poly(imide-amide) copolymer | |
US11535711B2 (en) | Poly(amide-imide) copolymer, composition for preparing same, article including same, and display device including the article | |
US10927218B2 (en) | Poly(amide-imide) copolymer, composition for preparing poly(amide-imide) copolymer, article including poly(amide-imide) copolymer, and display device including the article | |
US20170101509A1 (en) | Poly(imide-amide) copolymer, article containing poly(imide-amide) copolymer, and electronic device including same | |
US10858482B2 (en) | Composition of preparing poly(imide-benzoxazole) copolymer, poly(imide-benzoxazole) copolymer, article containing poly(imide-benzoxazole) copolymer, and display device including same | |
US20240034838A1 (en) | Polyamic acid resin and polyimide film using the same | |
US20190135980A1 (en) | Polyimide, composition for preparing polyimide, article including polyimide, and display device including the article | |
US11898012B2 (en) | Poly(amide-imide) copolymer, composition for preparing poly(amide-imide) copolymer, article including poly(amide-imide) copolymer, and display device including the article | |
US20180371184A1 (en) | Composition for preparing polyimide or poly(imide-amide) copolymer, polyimide or poly(imide-amide) copolymer, article including polyimide or poly(imide-amide) copolymer, and display device including the article | |
US10738164B2 (en) | Poly(amide-imide) copolymer, method of manufacturing the same, poly(amide-imide) copolymer film, window for display device, and display device | |
US20170081478A1 (en) | Polymer for optical film, and optical film including the same | |
US20180148543A1 (en) | Polyimide film, composition for preparing polyimede film, and display device including polyimide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONG, SUNG WOO;SOHN, BYUNG-HEE;SONG, SUN JIN;AND OTHERS;REEL/FRAME:036764/0728 Effective date: 20150609 Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONG, SUNG WOO;SOHN, BYUNG-HEE;SONG, SUN JIN;AND OTHERS;REEL/FRAME:036764/0728 Effective date: 20150609 |
|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE FIRST ASSIGNEE ZIP CODE PREVIOUSLY RECORDED AT REEL: 036764 FRAME: 0728. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HONG, SUNG WOO;SOHN, BYUNG-HEE;SONG, SUN JIN;AND OTHERS;REEL/FRAME:039312/0477 Effective date: 20150609 Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE FIRST ASSIGNEE ZIP CODE PREVIOUSLY RECORDED AT REEL: 036764 FRAME: 0728. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HONG, SUNG WOO;SOHN, BYUNG-HEE;SONG, SUN JIN;AND OTHERS;REEL/FRAME:039312/0477 Effective date: 20150609 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAMSUNG ELECTRONICS CO., LTD.;SAMSUNG SDI CO., LTD.;REEL/FRAME:051381/0016 Effective date: 20191216 Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAMSUNG ELECTRONICS CO., LTD.;SAMSUNG SDI CO., LTD.;REEL/FRAME:051381/0016 Effective date: 20191216 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |