JP4891411B2 - Polyimide resin, liquid crystal alignment film and polyimide film using the same - Google Patents

Polyimide resin, liquid crystal alignment film and polyimide film using the same Download PDF

Info

Publication number
JP4891411B2
JP4891411B2 JP2009541229A JP2009541229A JP4891411B2 JP 4891411 B2 JP4891411 B2 JP 4891411B2 JP 2009541229 A JP2009541229 A JP 2009541229A JP 2009541229 A JP2009541229 A JP 2009541229A JP 4891411 B2 JP4891411 B2 JP 4891411B2
Authority
JP
Japan
Prior art keywords
bis
polyimide
film
aminophenoxy
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009541229A
Other languages
Japanese (ja)
Other versions
JP2010513591A (en
Inventor
ギ ジョン,ハク
ウック パク,サン
ジュン パク,ヒョ
Original Assignee
コーロン インダストリーズ インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060129005A external-priority patent/KR101142692B1/en
Priority claimed from KR1020060128978A external-priority patent/KR101167337B1/en
Priority claimed from KR1020060129009A external-priority patent/KR101167341B1/en
Application filed by コーロン インダストリーズ インク filed Critical コーロン インダストリーズ インク
Publication of JP2010513591A publication Critical patent/JP2010513591A/en
Application granted granted Critical
Publication of JP4891411B2 publication Critical patent/JP4891411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、無色透明なポリイミド樹脂と、これを用いた液晶配向膜およびポリイミドフィルムに関する。   The present invention relates to a colorless and transparent polyimide resin, a liquid crystal alignment film and a polyimide film using the same.

一般に、ポリイミド(PI)樹脂とは、芳香族二無水物成分と芳香族ジアミン成分または芳香族ジイソシアネート成分とを溶液重合してポリアミド酸誘導体を製造した後、高温で閉環脱水させてイミド化することにより得られる高耐熱樹脂をいう。ポリイミド樹脂を製造するために、芳香族二無水物成分としてピロメリット酸二無水物(PMDA)またはビフェニルテトラカルボン酸二無水物(BPDA)などが使用されており、芳香族ジアミン成分としてはオキシジアニリン(ODA)、p−フェニレンジアミン(p−PDA)、m−フェニレンジアミン(m−PDA)、メチレンジアニリン(MDA)、ビスアミノフェニルヘキサフルオロプロパン(HFDA)などが使用されている。
ポリイミド樹脂は、不溶性、不熔融性および超高耐熱性の樹脂であって、例えば耐熱性、耐酸化性、耐放射線性、低温特性および耐薬品性などに優れた特性を持っており、自動車材料、航空素材、宇宙船素材などの耐熱先端素材、および例えば絶縁コーティング剤、絶縁膜、半導体、TFT−LCDの電極保護膜などの電子材料を含む広範囲な分野に使われる。最近では、ポリイミド樹脂は、光ファイバーや液晶配向膜などのディスプレイ材料、および高分子と導電性フィラーを混合しあるいは高分子フィルムの表面に導電性フィラーを塗布することにより作られる透明電極フィルムなどにも用いられている。
ところが、ポリイミド樹脂は、高い芳香族環の密度および電荷移動相互作用によって褐色または黄色に着色されているので、望ましからざることに、可視光線領域における透過度が低い。ポリイミド樹脂のこのような黄色または褐色のため、透明性が要求される分野への適用を困難にしている。
かかる問題点を解決するために、単量体および高純度溶媒を精製して重合を行う方法が試みられたが、透過率の改善は大きくなかった。
In general, a polyimide (PI) resin is obtained by solution polymerization of an aromatic dianhydride component and an aromatic diamine component or an aromatic diisocyanate component to produce a polyamic acid derivative, followed by ring-closing dehydration at high temperature and imidization. It refers to a high heat resistant resin obtained by In order to produce a polyimide resin, pyromellitic dianhydride (PMDA) or biphenyltetracarboxylic dianhydride (BPDA) is used as an aromatic dianhydride component, and an oxygen diamine component is used as an oxygen diamine component. Aniline (ODA), p-phenylenediamine (p-PDA), m-phenylenediamine (m-PDA), methylenedianiline (MDA), bisaminophenylhexafluoropropane (HFDA) and the like are used.
Polyimide resin is an insoluble, infusible and ultra-high heat resistant resin, and has excellent properties such as heat resistance, oxidation resistance, radiation resistance, low temperature characteristics and chemical resistance. It is used in a wide range of fields including heat-resistant advanced materials such as aviation materials and spacecraft materials, and electronic materials such as insulating coating agents, insulating films, semiconductors, and electrode protection films for TFT-LCDs. Recently, polyimide resin is also used in display materials such as optical fibers and liquid crystal alignment films, and transparent electrode films made by mixing polymers and conductive fillers or applying conductive fillers to the surface of polymer films. It is used.
However, polyimide resins are colored brown or yellow due to high aromatic ring density and charge transfer interactions, which undesirably has low transmittance in the visible region. The yellow or brown color of the polyimide resin makes it difficult to apply to fields where transparency is required.
In order to solve such a problem, a method of purifying a monomer and a high-purity solvent for polymerization was attempted, but the improvement in transmittance was not great.

米国特許第5053480号には、芳香族二無水物の代わりに脂環式二無水物成分を使用する方法が開示されている。この方法は、前記精製方法に比べて溶液相またはフィルム相における透明度および色を改善させるが、透過度の改善には限界があって高い透過度は実現しておらず、また、熱および機械的特性の低下をもたらす。
また、米国特許第4595548号、同第4603061号、同第4645824号、同第4895972号、同第5218083号、同第5093453号、同第5218077号、同第5367046号、同第5338826号、同第5986036号、同第6232428号、および韓国特許公開第2003−0009437号公報には、−O−、−SO−、CH−などの連結基、p−位ではなくm−位での連結による屈曲構造、または−CFなどの置換基を有する芳香族二無水物と芳香族ジアミン単量体を用いて、熱的特性が大きく低下しない範囲内で透過度および色の透明度を向上させた新規構造のポリイミドを製造したという報告があるが、このポリイミドは、半導体絶縁膜、TFT−LCD絶縁膜、電極保護膜、およびフレキシブルディスプレイ用基材へ使用するには機械的特性、黄変度および可視光線透過度が不十分であることが確認された。
U.S. Pat. No. 5,053,480 discloses a method using an alicyclic dianhydride component in place of an aromatic dianhydride. This method improves the transparency and color in the solution phase or film phase as compared to the purification method described above, but there is a limit to the improvement in the transmittance and does not realize a high transmittance. Degradation of characteristics is caused.
In addition, U.S. Pat. No. 5986036, No. 6232428, and Korean Patent Publication No. 2003-0009437 are based on linking groups such as —O—, —SO 2 —, CH 2 —, and the like in the m-position instead of the p-position. Use of aromatic dianhydride having a bent structure or a substituent such as —CF 3 and an aromatic diamine monomer, and improving transparency and color transparency within a range in which thermal characteristics are not greatly deteriorated There is a report that the polyimide of the structure was manufactured, but this polyimide is a semiconductor insulating film, TFT-LCD insulating film, electrode protective film, Mechanical properties to use the fine flexible display substrate for that yellowing degree and visible light transmittance is insufficient checked.

米国特許第5053480号明細書US Pat. No. 5,053,480 米国特許第4595548号明細書US Pat. No. 4,595,548 米国特許第4603061号明細書U.S. Pat. No. 4,603,061 米国特許第4645824号明細書US Pat. No. 4,645,824 米国特許第4895972号明細書US Pat. No. 4,895,972 米国特許第5218083号明細書US Pat. No. 5,218,083 米国特許第5093453号明細書US Pat. No. 5,093,453 米国特許第5218077号明細書U.S. Pat. No. 5218077 米国特許第5367046号明細書US Pat. No. 5,367,046 米国特許第5338826号明細書US Pat. No. 5,338,826 米国特許第5986036号明細書US Pat. No. 5,986,036 米国特許第6232428号明細書US Pat. No. 6,232,428 韓国特許公開第2003−0009437号公報Korean Patent Publication No. 2003-0009437

そこで、本発明は、機械的特性および熱安定性などの物性に優れた無色透明なポリイミド樹脂と、これを用いた液晶配向膜およびポリイミドフィルムを提供する。   Therefore, the present invention provides a colorless and transparent polyimide resin excellent in physical properties such as mechanical properties and thermal stability, and a liquid crystal alignment film and a polyimide film using the same.

本発明の第1態様によれば、芳香族二無水物成分と芳香族ジアミン成分とを重合して製造され、芳香族二無水物成分として2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6−FDA)および4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸二無水物(TDA)を含み、芳香族ジアミン成分として2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFDB)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFDB)、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン(DBSDA)、ビス(3−アミノフェニル)スルホン(3−DDS)、およびビス(4−アミノフェニル)スルホン(4−DDS)の中から選ばれた1種または2種以上の混合物を含む、ポリイミド樹脂が提供される。
第1態様に係るポリイミド樹脂は、芳香族ジアミン成分として、2,2’−ビス[4(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4−BDAF)、2,2’−ビス[3(3−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3−BDAF)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB−133)、1,3−ビス(4−アミノフェノキシ)ベンゼン(APB−134)、1,4−ビス(4−アミノフェノキシ)ベンゼン(APB−144)、および2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(6−HMDA)の中から選ばれた1種または2種以上の混合物をさらに含んでもよい。
第1態様において、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6−FDA)は、芳香族二無水物成分全量に対して1〜99モル%の量で用いられてもよい。
第1態様に係るポリイミド樹脂においては、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFDB)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFDB)、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン(DBSDA)、ビス(3−アミノフェニル)スルホン(3−DDS)、およびビス(4−アミノフェニル)スルホン(4−DDS)の中から選ばれた1種または2種以上の混合物がジアミン成分全量に対して10〜90モル%の量で用いられてもよい。
According to the first aspect of the present invention, it is produced by polymerizing an aromatic dianhydride component and an aromatic diamine component, and 2,2-bis (3,4-dicarboxyphenyl) is used as the aromatic dianhydride component. Hexafluoropropane dianhydride (6-FDA) and 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (TDA) ) And 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFDB), 3,3′-bis (trifluoromethyl) -4 as an aromatic diamine component , 4′-diaminobiphenyl (3,3′-TFDB), 4,4′-bis (3-aminophenoxy) diphenylsulfone (DBSDA), bis (3-aminophenyl) sulfone (3-DDS), and A polyimide resin comprising one or a mixture of two or more selected from bis (4-aminophenyl) sulfone (4-DDS) is provided.
The polyimide resin according to the first aspect includes 2,2′-bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF), 2,2′-bis [3 (3) as an aromatic diamine component. -Aminophenoxy) phenyl] hexafluoropropane (3-BDAF), 1,3-bis (3-aminophenoxy) benzene (APB-133), 1,3-bis (4-aminophenoxy) benzene (APB-134) , 1,4-bis (4-aminophenoxy) benzene (APB-144), and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (6-HMDA) Or you may further contain 2 or more types of mixtures.
In the first embodiment, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6-FDA) is used in an amount of 1 to 99 mol% based on the total amount of the aromatic dianhydride component. May be used.
In the polyimide resin according to the first embodiment, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFDB), 3,3′-bis (trifluoromethyl)- 4,4′-diaminobiphenyl (3,3′-TFDB), 4,4′-bis (3-aminophenoxy) diphenylsulfone (DBSDA), bis (3-aminophenyl) sulfone (3-DDS), and bis One or a mixture of two or more selected from (4-aminophenyl) sulfone (4-DDS) may be used in an amount of 10 to 90 mol% based on the total amount of the diamine component.

本発明の第2態様によれば、前記ポリイミド樹脂を含む液晶配向膜が提供される。
第2態様に係る液晶配向膜は、0〜2°のプレチルト角を持ってもよい。
本発明の第3態様によれば、前記ポリイミド樹脂を含むポリイミドフィルムが提供される。
According to the 2nd aspect of this invention, the liquid crystal aligning film containing the said polyimide resin is provided.
The liquid crystal alignment film according to the second aspect may have a pretilt angle of 0 to 2 °.
According to the 3rd aspect of this invention, the polyimide film containing the said polyimide resin is provided.

第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準としてUV分光計で透過度を測定したとき、380〜780nmにおける平均透過度が85%以上であり、551〜780nmにおける平均透過度が88%以上であってもよい。
第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準としてUV分光計で透過度を測定したとき、550nmにおける透過度が88%以上、500nmにおける透過度が85%以上、420nmにおける透過度が50%以上であってもよい。
第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準として黄変度が15以下であってもよい。
第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準として1GHzにおける誘電率が3.0以下であってもよい。
第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準として50〜200℃における平均熱膨張係数(CTE)が50ppm以下であってもよい。
第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準として弾性率が3.0GPa以上であってもよい。
第3態様に係るポリイミドフィルムは、フィルム厚さ50〜100μmを基準としてUVによる50%遮断波長(cut off wavelength)が400nm以下であってもよい。
The polyimide film according to the third aspect has an average transmittance at 380 to 780 nm of 85% or more and an average transmittance at 551 to 780 nm when the transmittance is measured with a UV spectrometer based on a film thickness of 50 to 100 μm. May be 88% or more.
When the transmittance of the polyimide film according to the third aspect is measured with a UV spectrometer based on a film thickness of 50 to 100 μm, the transmittance at 550 nm is 88% or more, the transmittance at 500 nm is 85% or more, and the transmittance at 420 nm. The degree may be 50% or more.
The polyimide film according to the third aspect may have a yellowing degree of 15 or less based on a film thickness of 50 to 100 μm.
The polyimide film according to the third aspect may have a dielectric constant of 3.0 or less at 1 GHz based on a film thickness of 50 to 100 μm.
The polyimide film according to the third aspect may have an average coefficient of thermal expansion (CTE) at 50 to 200 ° C. of 50 ppm or less based on a film thickness of 50 to 100 μm.
The polyimide film according to the third aspect may have an elastic modulus of 3.0 GPa or more based on a film thickness of 50 to 100 μm.
The polyimide film according to the third aspect may have a 50% cut-off wavelength by UV of 400 nm or less based on a film thickness of 50 to 100 μm.

本発明は、無色透明であり且つ機械的特性および熱安定性などの物性に優れるため、様々な分野、例えば半導体絶縁膜、TFT−LCD絶縁膜、パッシベーション膜、液晶配向膜、光通信用材料、太陽電池用保護膜、およびフレキシブルディスプレイ基板などに使用可能なポリイミド樹脂と、これを用いた液晶配向膜およびポリイミドフィルムを提供することができる。   Since the present invention is colorless and transparent and has excellent physical properties such as mechanical properties and thermal stability, various fields such as semiconductor insulating films, TFT-LCD insulating films, passivation films, liquid crystal alignment films, optical communication materials, A polyimide resin that can be used for a protective film for a solar cell, a flexible display substrate, and the like, and a liquid crystal alignment film and a polyimide film using the polyimide resin can be provided.

図1は本発明のポリイミド樹脂を用いて製造された液晶配向膜を示す。FIG. 1 shows a liquid crystal alignment film manufactured using the polyimide resin of the present invention.

以下、本発明をより詳しく説明する。
本発明は、ジアミン成分と二無水物成分との共重合体から構成されるポリイミド樹脂、およびこれを用いた液晶配向膜およびポリイミドフィルムを指向するものであり、特に無色透明なポリイミド樹脂とこれを用いた液晶配向膜およびポリイミドフィルムを指向するものである。
Hereinafter, the present invention will be described in more detail.
The present invention is directed to a polyimide resin composed of a copolymer of a diamine component and a dianhydride component, and a liquid crystal alignment film and a polyimide film using the polyimide resin. The liquid crystal alignment film and the polyimide film used are directed.

この目的のため、使用される芳香族二無水物成分は、2,2−ビス(3,4−ジカルボンキシフェニル)ヘキサフルオロプロパン二無水物(6−FDA)、および4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸無水物(TDA)を必須的に含む。
この際、前記FDA成分は、二無水物成分全量に対して1〜99モル%の範囲で、好ましくは10〜90モル%の量で使用される。
これにより、透明で、高い可視光線の透過度、低いUV吸収率および黄変度、ならびに高い粘度を有するポリアミド酸の製造が可能になる。
For this purpose, the aromatic dianhydride component used is 2,2-bis (3,4-dicarboxyxyphenyl) hexafluoropropane dianhydride (6-FDA), and 4- (2,5- Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (TDA) is essential.
At this time, the FDA component is used in an amount of 1 to 99 mol%, preferably 10 to 90 mol%, based on the total amount of the dianhydride component.
This makes it possible to produce polyamic acids that are transparent, have high visible light transmission, low UV absorption and yellowing, and high viscosity.

一方、本発明で使用される芳香族ジアミン成分は、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFDB)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFDB)、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン(DBSDA)、ビス(3−アミノフェニル)スルホン(3−DDS)、およびビス(4−アミノフェニル)スルホン(4−DDS)の中から選ばれた1種または2種以上の混合物を必須的に含む。   On the other hand, the aromatic diamine component used in the present invention is 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFDB), 3,3′-bis (tri Fluoromethyl) -4,4′-diaminobiphenyl (3,3′-TFDB), 4,4′-bis (3-aminophenoxy) diphenylsulfone (DBSDA), bis (3-aminophenyl) sulfone (3-DDS ), And a mixture of two or more selected from bis (4-aminophenyl) sulfone (4-DDS).

その他に、芳香族ジアミン成分は、2,2’−ビス[4(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4−BDAF)、2,2’−ビス[3(3−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3−BDAF)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB−133)、1,3−ビス(4−アミノフェノキシ)ベンゼン(APB−134)、1,4−ビス(4−アミノフェノキシ)ベンゼン(APB−144)、および2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(6−HMDA)の中から選ばれた1種または2種以上の混合物をさらに含むことができる。   In addition, aromatic diamine components include 2,2′-bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF), 2,2′-bis [3 (3-aminophenoxy) phenyl]. Hexafluoropropane (3-BDAF), 1,3-bis (3-aminophenoxy) benzene (APB-133), 1,3-bis (4-aminophenoxy) benzene (APB-134), 1,4-bis One or a mixture of two or more selected from (4-aminophenoxy) benzene (APB-144) and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (6-HMDA) Can further be included.

この際、前記2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFDB)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFDB)、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン(DBSDA)、ビス(3−アミノフェニル)スルホン(3−DDS)、およびビス(4−アミノフェニル)スルホン(4−DDS)の中から選ばれた1種または2種以上の混合物をジアミン成分全量に対して10〜90モル%、好ましくは20〜80モル%の量で使用することができる。これにより、高い透過度および透明度を実現でき、電気的特性、熱的特性および機械的特性が改善できる。   In this case, the 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFDB), 3,3′-bis (trifluoromethyl) -4,4′-diamino is used. Biphenyl (3,3′-TFDB), 4,4′-bis (3-aminophenoxy) diphenylsulfone (DBSDA), bis (3-aminophenyl) sulfone (3-DDS), and bis (4-aminophenyl) One or a mixture of two or more selected from sulfone (4-DDS) can be used in an amount of 10 to 90 mol%, preferably 20 to 80 mol%, based on the total amount of the diamine component. Thereby, high transparency and transparency can be realized, and electrical characteristics, thermal characteristics and mechanical characteristics can be improved.

前記の二無水物成分とジアミン成分は、有機溶媒中に等モル量で溶解させた後、反応させることにより、ポリアミド酸溶液を製造する。
反応条件は特に限定されないが、例えば、反応温度は−20〜80℃、反応時間は2〜48時間である。また、反応は、アルゴンや窒素などの不活性雰囲気下で実施されることが好ましい。
前述した単量体の溶液重合反応のための有機溶媒は、ポリアミド酸を溶解させる溶媒であれば特に限定されない。公知の反応溶媒として、m−クレゾール、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトン、ジエチルアセテートの中から選ばれた1種以上の極性溶媒が有用である。この他にも、テトラヒドロフラン(THF)やクロロホルムなどの低沸点溶液またはγ−ブチロラクトンなどの低吸収性溶媒を使用することができる。
有機溶媒の量は特に限定されないが、適切な分子量とポリアミド酸溶液の粘度を得るために、有機溶媒の量は、ポリアミド酸溶液全量に対して好ましくは50〜95重量%、より好ましくは70〜90重量%である。
このように製造されたポリアミド酸溶液をイミド化して、200〜350℃のガラス転移温度を有するポリイミド樹脂を製造する。
The dianhydride component and the diamine component are dissolved in an equimolar amount in an organic solvent and then reacted to produce a polyamic acid solution.
Although reaction conditions are not specifically limited, For example, reaction temperature is -20-80 degreeC, and reaction time is 2-48 hours. The reaction is preferably carried out under an inert atmosphere such as argon or nitrogen.
The organic solvent for the monomer solution polymerization reaction described above is not particularly limited as long as it is a solvent that dissolves polyamic acid. As a known reaction solvent, 1 selected from m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone and diethyl acetate More than one type of polar solvent is useful. In addition, a low-boiling point solution such as tetrahydrofuran (THF) or chloroform, or a low-absorbing solvent such as γ-butyrolactone can be used.
The amount of the organic solvent is not particularly limited, but in order to obtain an appropriate molecular weight and viscosity of the polyamic acid solution, the amount of the organic solvent is preferably 50 to 95% by weight, more preferably 70 to 70% by weight based on the total amount of the polyamic acid solution. 90% by weight.
The polyamic acid solution thus produced is imidized to produce a polyimide resin having a glass transition temperature of 200 to 350 ° C.

前記単量体から製造されたポリアミド酸を用いて液晶配向膜を形成するためには、前記ポリアミド酸をガラス基板(一般にITOガラス)上にスピンコートまたはロールコートした後、80℃/5分、250℃/20分で熱硬化工程を経て、溶剤を除去すると同時にポリイミド化させる。それによって、ガラス基板上に薄膜(通常10〜1000nm程度)を形成させる。この際、コーティング性または表面平坦性の改善および工程適用性のために、製造されたポリアミド酸溶液を適切なコーティング溶液粘度である10〜50cpsに希釈して使用する。この際、希釈のために用いられる溶剤は、重合用として使用された溶剤に限定されない。公知の希釈溶媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、γ−ブチロラクトン、および2−n−ブトキシエタノールなどの極性溶媒が挙げられ、これらは単独でまたは混合して使用することができる。   In order to form a liquid crystal alignment film using the polyamic acid produced from the monomer, the polyamic acid is spin-coated or roll-coated on a glass substrate (generally ITO glass), then 80 ° C./5 minutes, Through a thermosetting process at 250 ° C./20 minutes, the solvent is removed and at the same time polyimide is formed. Thereby, a thin film (usually about 10 to 1000 nm) is formed on the glass substrate. At this time, the prepared polyamic acid solution is diluted to an appropriate coating solution viscosity of 10 to 50 cps and used for improving coating property or surface flatness and process applicability. At this time, the solvent used for dilution is not limited to the solvent used for polymerization. Known diluent solvents include polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), γ-butyrolactone, and 2-n-butoxyethanol. Can be used alone or in admixture.

液晶配向膜の形成に有用であるように、前記単量体により製造されたポリアミド酸のコーティング液を下記に列挙した製造法の中から選ばれた一以上の方法によって製造することができる:
1.ポリアミド酸溶液を使用する方法、
2.ポリアミド酸重合体を熱および/または化学的硬化を経てポリイミド化した後、樹脂の形成のために沈殿させ、その後、有機溶媒に溶かし、それによってコーティング液としての溶液を得る方法、
3.2.と同様に、ポリアミド酸重合体をポリイミド化のための熱および/または化学的硬化に付し(樹脂化せず)、それによってコーティング液を得る方法、
4.1.の形態と2.または3.形態の溶液を混合して、それによってコーティング液を得る方法、
5.1.のポリアミド酸溶液に、2.の方法によって製造された樹脂を添加(溶解)してコーティング液を得る方法。
また、前述の方法で製造されたコーティング液は、コーティング工程の直前に、0.1〜5μmの範囲内で選択したポアサイズを有するフィルターおよびイオンフィルターを用いた2段階以上の濾過に付すことができる。
In order to be useful for the formation of a liquid crystal alignment film, the polyamic acid coating solution prepared from the monomer can be manufactured by one or more methods selected from the manufacturing methods listed below:
1. A method using a polyamic acid solution,
2. A method in which a polyamic acid polymer is polyimideized through heat and / or chemical curing and then precipitated for the formation of a resin, and then dissolved in an organic solvent, thereby obtaining a solution as a coating solution;
3.2. A method of subjecting the polyamic acid polymer to heat and / or chemical curing for polyimidization (without resinification), thereby obtaining a coating liquid,
4.1. And 2. Or 3. A method of mixing a solution of form, thereby obtaining a coating liquid,
5.1. To the polyamic acid solution of 2. A method of obtaining a coating liquid by adding (dissolving) the resin produced by the method of 1.
In addition, the coating solution produced by the above method can be subjected to two or more stages of filtration using a filter having a pore size selected within a range of 0.1 to 5 μm and an ion filter immediately before the coating process. .

本発明のポリイミド樹脂を用いて液晶配向膜を形成する場合、安定なプレチルト角(Pretilt angle)が実現される。用語「プレチルト角」とは、液晶に電圧を加えて液晶を一定の方向に配列させるとき、電圧に対する応答速度を速くするために、予め液晶をやや傾ける角のことをいう。本発明のポリイミド樹脂を含む液晶配向膜は、0〜2°の安定なプレチルト角を示すので、2°未満のプレチルト角を要求するIPS(In-Plane Switching)モード用配向膜として適用可能である。
さらに、前記ポリアミド酸溶液を用いてポリイミドフィルムを製造する場合、
When the liquid crystal alignment film is formed using the polyimide resin of the present invention, a stable pretilt angle is realized. The term “pretilt angle” refers to an angle at which the liquid crystal is slightly tilted in advance in order to increase the response speed to the voltage when applying a voltage to the liquid crystal and arranging the liquid crystal in a certain direction. Since the liquid crystal alignment film containing the polyimide resin of the present invention exhibits a stable pretilt angle of 0 to 2 °, it can be applied as an alignment film for an IPS (In-Plane Switching) mode that requires a pretilt angle of less than 2 °. .
Furthermore, when manufacturing a polyimide film using the polyamic acid solution,

ポリイミドフィルムの摺動性、熱伝導性、導電性、耐コロナ性などの様々な特性を改善させる目的で、ポリアミド酸溶液に充填剤を添加することができる。当該充填剤は、特に限定されないが、具体例としてシリカ、酸化チタン、層状シリカ、カーボンナノチューブ、アルミナ、窒化ケイ素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などを挙げることができる。
前記充填剤の粒径は、改質すべきフィルムの特性と添加する充填剤の種類によって異なり、特に限定されないが、一般には平均粒径が0.001〜50μm、好ましくは0.005〜25μm、さらに好ましくは0.01〜10μmである。この場合、ポリイミドフィルムの改質効果が現れ易く、ポリイミドフィルムにおいて良好な表面性、導電性および機械的特性を得ることができる。
また、前記充填剤の添加量も、改質すべきフィルム特性や充填剤の粒径などによって異なり、特に限定されない。一般に、充填剤の添加量はポリアミド酸溶液100重量部に対して0.001〜20重量部、好ましくは0.01〜10重量部である。
充填剤の添加方法は、特に限定されないが、例えば、重合前または重合後にポリアミド酸溶液に添加する方法、ポリアミド酸重合完了の後に3ロールミルなどを用いて充填剤を混練する方法、充填剤を含む分散液をポリアミド酸溶液と混合する方法などを挙げることができる。
A filler can be added to the polyamic acid solution for the purpose of improving various properties such as slidability, thermal conductivity, conductivity, and corona resistance of the polyimide film. The filler is not particularly limited, and specific examples include silica, titanium oxide, layered silica, carbon nanotube, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
The particle size of the filler varies depending on the properties of the film to be modified and the type of filler to be added, and is not particularly limited, but generally the average particle size is 0.001 to 50 μm, preferably 0.005 to 25 μm, Preferably it is 0.01-10 micrometers. In this case, the modification effect of the polyimide film is likely to appear, and good surface properties, conductivity and mechanical properties can be obtained in the polyimide film.
Further, the addition amount of the filler is not particularly limited and varies depending on the film characteristics to be modified, the particle size of the filler, and the like. Generally, the addition amount of the filler is 0.001 to 20 parts by weight, preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyamic acid solution.
The method of adding the filler is not particularly limited, but includes, for example, a method of adding to the polyamic acid solution before or after polymerization, a method of kneading the filler using a 3-roll mill after completion of polyamic acid polymerization, and a filler. Examples thereof include a method of mixing the dispersion with a polyamic acid solution.

得られたポリアミド酸溶液からポリイミドフィルムを製造する方法は、特に限定されず、慣用の公知方法を使用することができる。ポリアミド酸溶液をイミド化させる方法としては、熱イミド化法と化学イミド化法を挙げることができるが、化学イミド化法を使用することが好ましい。化学イミド化法は、ポリアミド酸溶液に、酸無水物(例えば酢酸無水物など)などの脱水剤と3級アミン類(例えばイソキノリン、β−ピコリン、ピリジンなど)などのイミド化触媒を適用させる方法である。化学イミド化法に熱イミド化法を併用してもよい。加熱条件はポリアミド酸溶液の種類やフィルムの厚さなどによって異なりうる。
ポリアミド酸溶液を支持体上で80〜200℃、好ましくは100〜180℃で加熱して脱水剤およびイミド化触媒を活性化することにより、部分的に硬化および乾燥させた後、ゲル状態のポリアミド酸フィルムを支持体から剥離して得、前記ゲル状態のフィルムを200〜400℃で5〜400秒間加熱してポリイミドフィルムを得る。
得られるポリイミドフィルムの厚さは、特に限定されないが、適用分野を考慮すれば10〜250μm、好ましくは25〜150μmである。
本発明で製造されたポリイミドフィルムは、フィルム厚さ50〜100μmを基準としてUV分光計で透過度を測定するとき、550nmにおける透過度が88%以上、500nmにおける透過度が85%以上、420nmにおける透過度が50%以上である。さらに、380〜780nmにおける平均透過度が85%以上、551〜780nmにおける平均透過度が88%以上であることが好ましい。
また、フィルム厚さ50〜100μmを基準として黄変度が15以下であることが好ましい。
The method for producing a polyimide film from the obtained polyamic acid solution is not particularly limited, and a commonly known method can be used. Examples of the method for imidizing the polyamic acid solution include a thermal imidization method and a chemical imidization method, but it is preferable to use a chemical imidization method. In the chemical imidization method, a polyhydric acid solution is applied with a dehydrating agent such as an acid anhydride (for example, acetic acid anhydride) and an imidization catalyst such as a tertiary amine (for example, isoquinoline, β-picoline, pyridine). It is. A thermal imidization method may be used in combination with the chemical imidization method. The heating conditions can vary depending on the type of polyamic acid solution and the thickness of the film.
The polyamide acid solution is partially cured and dried by heating the polyamic acid solution on the support at 80 to 200 ° C., preferably 100 to 180 ° C. to activate the dehydrating agent and imidization catalyst, and then the gel polyamide The acid film is peeled off from the support, and the gel film is heated at 200 to 400 ° C. for 5 to 400 seconds to obtain a polyimide film.
The thickness of the obtained polyimide film is not particularly limited, but is 10 to 250 μm, preferably 25 to 150 μm in consideration of the application field.
When the transmittance of a polyimide film manufactured in the present invention is measured with a UV spectrometer based on a film thickness of 50 to 100 μm, the transmittance at 550 nm is 88% or more, the transmittance at 500 nm is 85% or more, and at 420 nm. The transmittance is 50% or more. Furthermore, the average transmittance at 380 to 780 nm is preferably 85% or more, and the average transmittance at 551 to 780 nm is preferably 88% or more.
Moreover, it is preferable that a yellowing degree is 15 or less on the basis of film thickness 50-100micrometer.

前記透過度および黄変度を満足する本発明のポリイミドフィルムは、既存のポリイミドフィルムの黄色によりその使用が困難であった、透明性が要求される分野、すなわち保護膜、またはTFT−LCDにおける拡散板およびコーティング膜(例えば、TFT−LCDの中間層(interlayer)、ゲート絶縁膜(Gate Insulator)および液晶配向膜など)などに使用可能であり、液晶配向膜に前記透明ポリイミドを適用するときに開口率の増加に寄与して高コントラスト比のTFT−LCDの製造が可能になり、また、本発明のポリイミドフィルムは、フレキシブルディスプレイ基板用への使用が可能である。
また、本発明のポリイミドフィルムは、1GHzにおける誘電率が3.0以下であり、これにより半導体におけるパッシベーション(passivation)膜としての使用が可能になる。
本発明のポリイミドフィルムは、50〜200℃における平均熱膨張係数(CTE)が50ppm以下である。CTEが50ppmを超えると、フィルム上に薄膜トランジスタ(TFT)をのせるTFT配列(TFT array)工程に適用する場合に、工程温度の変化に応じてポリイミドフィルムが収縮または膨張して、電極ドーピング工程においてアラインメント(Allignment)が実現されない。また、フィルムが水平(平坦化)性を保つことができず、歪みが発生するという問題がある。したがって、CTE値が小さいほど、精密なTFT工程が可能である。
本発明のポリイミドフィルムは、弾性率が3.0GPa以上である。この場合、フレキシブルディスプレイ基板のためのロールツーロール(Roll to Roll)製造工程への適用がさらに容易である。ポリイミドフィルムをフレキシブルディスプレイ(flexible display)およびFCCL用の基板フィルムとして使用するとき、ロールツーロール工程を経る。この際、フィルムはロールからの巻き取りと巻き出しによる張力を受けるので、弾性率が3.0GPa未満の値を有するフィルムを使用すると、フィルムの破断が発生する恐れがある。
本発明のポリイミドフィルムは、UV分光計で透過度を測定するとき、50%遮断波長が400nm以下である。したがって、本発明のポリイミドフィルムは太陽電池などの表面保護膜としても使用可能である。
The polyimide film of the present invention that satisfies the above-mentioned transmittance and yellowing degree is difficult to use due to the yellow color of the existing polyimide film, and is required to be transparent, i.e., a protective film, or diffusion in a TFT-LCD. It can be used for a plate and a coating film (for example, an interlayer of a TFT-LCD, a gate insulating film, a liquid crystal alignment film, etc.), and has an opening when the transparent polyimide is applied to the liquid crystal alignment film. This contributes to an increase in the rate and enables the production of a TFT-LCD with a high contrast ratio, and the polyimide film of the present invention can be used for a flexible display substrate.
In addition, the polyimide film of the present invention has a dielectric constant of 1 or less at 1 GHz, and can be used as a passivation film in a semiconductor.
The polyimide film of the present invention has an average coefficient of thermal expansion (CTE) at 50 to 200 ° C. of 50 ppm or less. When the CTE exceeds 50 ppm, the polyimide film contracts or expands in accordance with the change in process temperature when applied to a TFT array (TFT array) process in which a thin film transistor (TFT) is placed on the film. Alignment is not realized. Moreover, there exists a problem that a film cannot maintain horizontal (flattening) property and distortion generate | occur | produces. Therefore, the smaller the CTE value, the more precise TFT process is possible.
The polyimide film of the present invention has an elastic modulus of 3.0 GPa or more. In this case, application to a roll-to-roll manufacturing process for a flexible display substrate is even easier. When a polyimide film is used as a flexible display and a substrate film for FCCL, a roll-to-roll process is performed. At this time, since the film receives tension from winding and unwinding from the roll, the use of a film having an elastic modulus of less than 3.0 GPa may cause breakage of the film.
The polyimide film of the present invention has a 50% cutoff wavelength of 400 nm or less when the transmittance is measured with a UV spectrometer. Therefore, the polyimide film of the present invention can also be used as a surface protective film for solar cells and the like.

以下、本発明を実施例によってさらに詳しく説明するが、これらの実施例は本発明の範囲を限定するものではない。
<実施例1>
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these Examples do not limit the scope of the present invention.
<Example 1>

攪拌機、窒素注入装置、滴下漏斗、温度調節器および濃縮機を取り付けた100mLの3口丸底フラスコ反応器に窒素を通過させながら33.5386gのN,N−ジメチルアセトアミド(DMAc)を入れた後、反応器の温度を0℃に低めた。そこに、3.62922g(0.007mol)の4−BDAF、および0.7449g(0.003mol)の3−DDSを溶解させ、この溶液を0℃に維持した。当該溶液に、3.1097g(0.007mol)の6−FDA、および0.90078g(0.003mol)のTDAを添加した後、6−FDAおよびTDAが完全に溶解するまで、前記混合物を1時間攪拌した。固形分の濃度は20重量%であった。得られた溶液を室温で8時間攪拌し、23℃における粘度が2200cpsのポリアミド酸溶液を得た。
その後、得られたポリアミド酸溶液をガラス基材上にドクターブレード(Doctor blade)を用いて500μm〜1000μmの厚さにキャスティングし、真空オーブンによって40℃で1時間、60℃で2時間乾燥させて自己支持(Self supporting film)を得た後、当該フィルムを高温オーブンを用いて5℃/minの昇温速度にて80℃で3時間、100℃で1時間、200℃で1時間、300℃で30分加熱して、厚さ50μmおよび100μmのポリイミドフィルムを得た。
After charging 33.5386 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 100 mL 3-neck round bottom flask reactor equipped with stirrer, nitrogen injector, dropping funnel, temperature controller and concentrator The reactor temperature was lowered to 0 ° C. There, 3.69222 g (0.007 mol) of 4-BDAF and 0.7449 g (0.003 mol) of 3-DDS were dissolved, and this solution was maintained at 0 ° C. After adding 3.1097 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA to the solution, the mixture was left for 1 hour until 6-FDA and TDA were completely dissolved. Stir. The solid content was 20% by weight. The resulting solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 2200 cps.
Thereafter, the obtained polyamic acid solution was cast on a glass substrate to a thickness of 500 μm to 1000 μm using a doctor blade, and dried in a vacuum oven at 40 ° C. for 1 hour and 60 ° C. for 2 hours. After obtaining a self supporting film, the film was heated at a rate of 5 ° C./min for 3 hours at 80 ° C. for 3 hours, 100 ° C. for 1 hour, 200 ° C. for 1 hour, 300 ° C. using a high temperature oven. For 30 minutes to obtain polyimide films having thicknesses of 50 μm and 100 μm.

<実施例2>
実施例1と同様に、33.5386gのDMAcに3.62922g(0.007mol)の4−BDAFを溶解させ、0.7449g(0.003mol)の4−DDSをそこに投入して完全に溶解させた。当該溶液に3.1097g(0.007mol)の6−FDA、および0.90078g(0.003mol)のTDAを順に投入して、6−FDAおよびTDAが完全に溶解するまで1時間攪拌した。当該溶液の固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が2100cpsのポリアミド酸溶液を得た。
その後、実施例1と同様の方法でポリイミドフィルムを製造した。
<Example 2>
As in Example 1, 3.69222 g (0.007 mol) of 4-BDAF was dissolved in 33.5386 g of DMAc, and 0.7449 g (0.003 mol) of 4-DDS was added thereto to be completely dissolved. I let you. To the solution, 3.1097 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and stirred for 1 hour until 6-FDA and TDA were completely dissolved. The concentration of the solid content of the solution was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 2100 cps.
Thereafter, a polyimide film was produced in the same manner as in Example 1.

<実施例3>
実施例1と同様に、27.20696gのDMAcに2.04631g(0.007mol)のAPB−133を溶解させ、0.7
449g(0.003mol)の3−DDSをそこに投入して完全に溶解させた。当該溶液に3.10975g(0.007mol)の6−FDA、および0.90078g(0.003mol)のTDAを順に投入して、6−FDAおよびTDAが完全に溶解するまで1時間攪拌した。当該溶液の固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1900cpsのポリアミド酸溶液を得た。
その後、実施例1と同様の方法でポリイミドフィルムを製造した。
<Example 3>
As in Example 1, 2.04631 g (0.007 mol) of APB-133 was dissolved in 27.20696 g of DMAc,
449 g (0.003 mol) of 3-DDS was added thereto and completely dissolved. To the solution, 3.10975 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and stirred for 1 hour until 6-FDA and TDA were completely dissolved. The concentration of the solid content of the solution was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1900 cps.
Thereafter, a polyimide film was produced in the same manner as in Example 1.

<実施例4>
実施例1と同様に、27.20696gのDMAcに2.04631g(0.007mol)のAPB−133を溶解させ、0.7449g(0.003mol)の4−DDSをそこに投入して完全に溶解させた。当該溶液に3.10975g(0.007mol)の6−FDA、および0.90078g(0.003mol)のTDAを順に投入して、6−FDAおよびTDAが完全に溶解するまで1時間攪拌した。固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1950cpsのポリアミド酸溶液を得た。
その後、実施例1と同様の方法でポリイミドフィルムを製造した。
<Example 4>
As in Example 1, 2.04631 g (0.007 mol) of APB-133 was dissolved in 27.20696 g of DMAc, and 0.7449 g (0.003 mol) of 4-DDS was added thereto and completely dissolved. I let you. To the solution, 3.10975 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and stirred for 1 hour until 6-FDA and TDA were completely dissolved. The solid content was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1950 cps.
Thereafter, a polyimide film was produced in the same manner as in Example 1.

<実施例5>
実施例1と同様に、27.98796gのDMAcに2.24161g(0.007mol)の2,2’−TFDBを溶解させ、0.7449g(0.003mol)の3−DDSをそこに投入して完全に溶解させた。当該溶液に3.1097g(0.007mol)の6−FDA、および0.90078g(0.003mol)のTDAを順に投入して、6−FDAおよびTDAが完全に溶解するまで1時間攪拌した。当該溶液の固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が2000cpsのポリアミド酸溶液を得た。
その後、実施例1と同様の方法でポリイミドフィルムを製造した。
<Example 5>
As in Example 1, 2.241161 g (0.007 mol) of 2,2′-TFDB was dissolved in 27.98796 g of DMAc, and 0.7449 g (0.003 mol) of 3-DDS was added thereto. It was completely dissolved. To the solution, 3.1097 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and stirred for 1 hour until 6-FDA and TDA were completely dissolved. The concentration of the solid content of the solution was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 2000 cps.
Thereafter, a polyimide film was produced in the same manner as in Example 1.

<実施例6>
実施例1と同様に、27.98796gのDMAcに2.24161g(0.007mol)の2,2’−TFDB、および0.7449g(0.003mol)の4−DDSを投入して完全に溶解させた。当該溶液に3.1097g(0.007mol)の6−FDA、および0.90078g(0.003mol)のTDAを順に投入して、6−FDAおよびTDAが完全に溶解するまで1時間攪拌した。固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が2000cpsのポリアミド酸溶液を得た。
その後、実施例1と同様の方法でポリイミドフィルムを製造した。
<Example 6>
As in Example 1, 2.241161 g (0.007 mol) of 2,2′-TFDB and 0.7449 g (0.003 mol) of 4-DDS were added to 27.98796 g of DMAc and completely dissolved. It was. To the solution, 3.1097 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and stirred for 1 hour until 6-FDA and TDA were completely dissolved. The solid content was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 2000 cps.
Thereafter, a polyimide film was produced in the same manner as in Example 1.

<比較例1>
実施例1と同様に、38.5084gのDMAcに5.1846g(0.01mol)の4−BDAFを溶解させ、その後4.4425g(0.01mol)の6−FDAを投入した。6−FDAが完全に溶解するまで当該溶液を1時間攪拌した。固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1300cpsのポリアミド酸溶液を得た。
その後、実施例1と同様の方法でポリイミドフィルムを製造し、厚さ25μm、50μmおよび100μmのポリイミドフィルムを得た。
<Comparative Example 1>
As in Example 1, 5.1846 g (0.01 mol) of 4-BDAF was dissolved in 38.5084 g of DMAc, and then 4.4425 g (0.01 mol) of 6-FDA was added. The solution was stirred for 1 hour until 6-FDA was completely dissolved. The solid content was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1300 cps.
Then, the polyimide film was manufactured by the method similar to Example 1, and the polyimide film of thickness 25micrometer, 50micrometer, and 100micrometer was obtained.

<比較例2>
実施例1と同様に、29.4632gのDMAcに2.9233g(0.01mol)のAPB−133を溶解させ、4.4425g(0.01mol)の6−FDAを投入した。6−FDAが完全に溶解するまで当該溶液を1時間攪拌した。固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1200cpsのポリアミド酸溶液を得た。
その後、比較例1と同様の方法でポリイミドフィルムを製造した。
<Comparative Example 2>
Similarly to Example 1, 2.9233 g (0.01 mol) of APB-133 was dissolved in 29.4632 g of DMAc, and 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour until 6-FDA was completely dissolved. The solid content was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1200 cps.
Thereafter, a polyimide film was produced in the same manner as in Comparative Example 1.

<比較例3>
実施例1と同様に、27.702gのDMAcに2.4830g(0.01mol)の3−DDSを溶解させ、4.4425g(0.01mol)の6−FDAを投入した後、6−FDAが完全に溶解するまで1時間攪拌した。当該溶液の固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1300cpsのポリアミド酸溶液を得た。
その後、比較例1と同様の方法でポリイミドフィルムを製造した。
<Comparative Example 3>
In the same manner as in Example 1, 2.4830 g (0.01 mol) of 3-DDS was dissolved in 27.702 g of DMAc, and 4.4425 g (0.01 mol) of 6-FDA was added thereto. Stir for 1 hour until completely dissolved. The concentration of the solid content of the solution was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1300 cps.
Thereafter, a polyimide film was produced in the same manner as in Comparative Example 1.

<比較例4>
実施例1と同様に、27.702gのDMAcに2.4830g(0.01mol)の4−DDSを溶解させ、4.4425g(0.01mol)の6−FDAを投入した。6−FDAが完全に溶解するまで当該溶液を1時間攪拌した。当該溶液の固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1400cpsのポリアミド酸溶液を得た。
その後、比較例1と同様の方法でポリイミドフィルムを製造した。
<Comparative Example 4>
In the same manner as in Example 1, 2.4830 g (0.01 mol) of 4-DDS was dissolved in 27.702 g of DMAc, and 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour until 6-FDA was completely dissolved. The concentration of the solid content of the solution was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1400 cps.
Thereafter, a polyimide film was produced in the same manner as in Comparative Example 1.

<比較例5>
実施例1と同様に、25.7796gのDMAcに2.0024g(0.01mol)の3,3’−ODAを溶解させ、4.4425g(0.01mol)の6−FDAを投入した後、得られた溶液を6−FDAが完全に溶解するまで1時間攪拌した。固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が1600cpsのポリアミド酸溶液を得た。
その後、比較例1と同様の方法でポリイミドフィルムを製造した。
<Comparative Example 5>
In the same manner as in Example 1, 2.0024 g (0.01 mol) of 3,3′-ODA was dissolved in 25.7796 g of DMAc, and 4.4425 g (0.01 mol) of 6-FDA was added. The resulting solution was stirred for 1 hour until 6-FDA was completely dissolved. The solid content was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity at 23 ° C. of 1600 cps.
Thereafter, a polyimide film was produced in the same manner as in Comparative Example 1.

<比較例6>
実施例1と同様に、16.7344gのDMAcに2.0024g(0.01mol)の4,4’−ODAを溶解させ、2.1812g(0.01mol)のPMDAを投入した後、得られた溶液をPMDAが完全に溶解するまで1時間攪拌した。固形分の濃度は20重量%であった。その後、溶液を室温で8時間攪拌し、23℃における粘度が2500poiseのポリアミド酸溶液を得た。
その後、比較例1と同様の方法でポリイミドフィルムを製造した。
<Comparative Example 6>
As in Example 1, 2.0024 g (0.01 mol) of 4,4′-ODA was dissolved in 16.7344 g of DMAc and obtained after adding 2.812 g (0.01 mol) of PMDA. The solution was stirred for 1 hour until the PMDA was completely dissolved. The solid content was 20% by weight. Thereafter, the solution was stirred at room temperature for 8 hours to obtain a polyamic acid solution having a viscosity of 2500 poise at 23 ° C.
Thereafter, a polyimide film was produced in the same manner as in Comparative Example 1.

これらの実施例および比較例で製造されたポリイミドフィルムの物性を次のように測定し、表1〜表5に示した。
(1)透過度および50%遮断波長
実施例で製造されたフィルムをUV分光計(Varian社、Cary100)を用いて可視光線透過度および50%遮断波長を測定した。
(2)黄変度
ASTM E313規格に従って黄変度を測定した。
(3)弾性率
Instron社のUniversal Testing Machine Model 1000を用いてJIS K 6301に準拠して測定した。
(4)ガラス転移温度(Tg)
示差走査熱量計(DSC、TA Instrument社、Q200)を用いてガラス転移温度を測定した。
(5)熱膨張係数(CTE)
TMA(TA Instrument社、Q400)を用いてTMA法によって50〜200℃における熱膨張係数を測定した。
(6)誘電率
ASTM D−150規格に準拠して誘電率を測定した。
(7)プレチルト角(Pretilt Angle)
実施例および比較例のポリアミド酸溶液を、希釈溶剤としてのγ−ブチロラクトンを用いて溶液粘度が10〜50cpsになるように希釈した後、2μm、0.45μm、0.2μmのサイズのフィルターおよびイオンフィルターを用いて濾過し、ガラス基板(ITO Glass)にコート(コーティング条件:スピンコーティング、400〜4,000rpm、10〜40秒)した。その後、80℃・5分間、次いで250℃・20分間の熱硬化工程を経て、溶剤を除去すると同時にポリイミド化を行い、ガラス基板上に薄膜(厚さ100nm)を形成させた。このコートされたガラス基板1、2を上下板とし、ガラス基板1、2間の空間に液晶分子4を注入して、液晶層5を含む液晶セルを製作し(図1参照)、結晶回転法(Crystal Rotation Method)を用いて各液晶セルのプレチルト角を測定した。その結果は表5に示す。
The physical properties of the polyimide films produced in these examples and comparative examples were measured as follows and are shown in Tables 1 to 5.
(1) Transmittance and 50% cut-off wavelength The films produced in the examples were measured for visible light transmittance and 50% cut-off wavelength using a UV spectrometer (Varian, Cary 100).
(2) Yellowing degree Yellowing degree was measured according to ASTM E313 standard.
(3) Elastic modulus It measured based on JISK6301 using Universal Testing Machine Model 1000 of Instron.
(4) Glass transition temperature (Tg)
The glass transition temperature was measured using a differential scanning calorimeter (DSC, TA Instrument, Q200).
(5) Coefficient of thermal expansion (CTE)
The thermal expansion coefficient at 50 to 200 ° C. was measured by TMA method using TMA (TA Instrument, Q400).
(6) Dielectric constant The dielectric constant was measured based on ASTM D-150 standard.
(7) Pretilt angle
After diluting the polyamic acid solutions of Examples and Comparative Examples with γ-butyrolactone as a diluent solvent so that the solution viscosity becomes 10 to 50 cps, filters and ions having sizes of 2 μm, 0.45 μm, and 0.2 μm Filtration was performed using a filter, and a glass substrate (ITO Glass) was coated (coating conditions: spin coating, 400 to 4,000 rpm, 10 to 40 seconds). Thereafter, after a thermosetting process at 80 ° C. for 5 minutes and then at 250 ° C. for 20 minutes, the solvent was removed and at the same time polyimideization was performed to form a thin film (thickness 100 nm) on the glass substrate. The coated glass substrates 1 and 2 are used as upper and lower plates, and liquid crystal molecules 4 are injected into the space between the glass substrates 1 and 2 to produce a liquid crystal cell including the liquid crystal layer 5 (see FIG. 1). The pretilt angle of each liquid crystal cell was measured using (Crystal Rotation Method). The results are shown in Table 5.


透過度および黄変度などの物性評価結果、本発明のポリイミドフィルムは、50μmおよび100μmの厚さにも拘わらず、透過度が可視光線領域の550nmで88%以上であり、500nmで85%以上であり、420nmで50%以上であった。また、380〜780nmにおける平均透過度が85%以上であり、551〜780nmにおける平均透過度が88%以上であって、一定して黄変度が低かった。これにより、本発明のポリイミドフィルムが非常に透明であることが確認された。
比較例は、厚さを問わず、可視光線領域の380〜780nmにおける平均透過度が85%以上である場合がなかった。また、比較例6の場合には、厚さ90μm以上のフィルム化が不可能であった。
本発明の実施例によって製造されたポリイミドフィルムは、透過度が50%となる波長が400nm以下であって、優れた可視光線透過度を有する無色透明なポリイミドフィルムを太陽電池などの表面保護膜として使用可能である。さらに、当該ポリイミドの平均熱膨張係数が50ppm以下なので、寸法安定性に優れるうえ、弾性率が3.0GPa以上なので、ロールツーロール(Roll to Roll)工程にも適用可能なフィルム特性を有し、フレキシブルディスプレイ基板素材および能動駆動型ディスプレイ素子の製作のためのTFT工程に適用可能である。また、誘電率が3.0以下なので、半導体パッシベーション膜として使用することができる。
本発明のポリイミド樹脂で製造した液晶配向膜のプレチルト角はいずれも2°以下なので、IPSモード用配向膜としても使用することができる。
As a result of evaluating physical properties such as transmittance and yellowing degree, the polyimide film of the present invention has a transmittance of 88% or more at 550 nm in the visible light region and 85% or more at 500 nm, despite the thickness of 50 μm and 100 μm. It was 50% or more at 420 nm. Further, the average transmittance at 380 to 780 nm was 85% or more, the average transmittance at 551 to 780 nm was 88% or more, and the yellowing degree was constantly low. Thereby, it was confirmed that the polyimide film of the present invention is very transparent.
In the comparative example, the average transmittance in the visible light region at 380 to 780 nm was not more than 85% regardless of the thickness. In Comparative Example 6, it was impossible to form a film having a thickness of 90 μm or more.
The polyimide film manufactured according to the embodiment of the present invention has a wavelength of 400 nm or less at which the transmittance is 50%, and uses a colorless and transparent polyimide film having excellent visible light transmittance as a surface protective film for solar cells or the like. It can be used. Furthermore, since the average thermal expansion coefficient of the polyimide is 50 ppm or less, it has excellent dimensional stability, and since the elastic modulus is 3.0 GPa or more, it has film characteristics applicable to a roll-to-roll process, The present invention can be applied to a TFT process for manufacturing a flexible display substrate material and an active drive type display element. Moreover, since a dielectric constant is 3.0 or less, it can be used as a semiconductor passivation film.
Since the liquid crystal alignment film manufactured with the polyimide resin of the present invention has a pretilt angle of 2 ° or less, it can also be used as an alignment film for IPS mode.

1,2:ガラス基板
3:配向膜
4:液晶分子
5:液晶層
α:プレチルト角
1, 2: Glass substrate 3: Alignment film 4: Liquid crystal molecule 5: Liquid crystal layer α: Pretilt angle

Claims (14)

芳香族二無水物成分と芳香族ジアミン成分との重合体から製造され、前記芳香族二無水物成分は2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6−FDA)および4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸二無水物(TDA)を含み、前記芳香族ジアミン成分は2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFDB)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFDB)、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン(DBSDA)、ビス(3−アミノフェニル)スルホン(3−DDS)、およびビス(4−アミノフェニル)スルホン(4−DDS)の中から選ばれた1種または2種以上の混合物を含む、ポリイミド樹脂。  It is produced from a polymer of an aromatic dianhydride component and an aromatic diamine component, and the aromatic dianhydride component is 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6 -FDA) and 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride (TDA), said aromatic diamine The component is 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFDB), 3,3′-bis (trifluoromethyl) -4,4′-diaminobiphenyl ( 3,3′-TFDB), 4,4′-bis (3-aminophenoxy) diphenylsulfone (DBSDA), bis (3-aminophenyl) sulfone (3-DDS), and bis (4-a Nofeniru) sulfone (4-DDS) 1 kind or a mixture of two or more of, a polyimide resin selected from among. 前記芳香族ジアミン成分は、2,2’−ビス[4(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(4−BDAF)、2,2’−ビス[3(3−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(3−BDAF)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB−133)、1,3−ビス(4−アミノフェノキシ)ベンゼン(APB−134)、1,4−ビス(4−アミノフェノキシ)ベンゼン(APB−144)、および2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(6−HMDA)の中から選ばれた1種または2種以上の混合物をさらに含むことを特徴とする、請求項1に記載のポリイミド樹脂。  The aromatic diamine component is 2,2′-bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF), 2,2′-bis [3 (3-aminophenoxy) phenyl] hexafluoro. Propane (3-BDAF), 1,3-bis (3-aminophenoxy) benzene (APB-133), 1,3-bis (4-aminophenoxy) benzene (APB-134), 1,4-bis (4 -Aminophenoxy) benzene (APB-144) and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (6-HMDA) The polyimide resin according to claim 1, wherein the polyimide resin is contained. 前記2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6−FDA)は芳香族二無水物成分全量に対して1〜99モル%の量で用いられることを特徴とする、請求項1に記載のポリイミド樹脂。  The 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6-FDA) is used in an amount of 1 to 99 mol% based on the total amount of aromatic dianhydride components. The polyimide resin according to claim 1. 前記2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(2,2’−TFDB)、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(3,3’−TFDB)、4,4’−ビス(3−アミノフェノキシ)ジフェニルスルホン(DBSDA)、ビス(3−アミノフェニル)スルホン(3−DDS)、およびビス(4−アミノフェニル)スルホン(4−DDS)の中から選ばれた1種または2種以上の混合物をジアミン成分全量に対して10〜90モル%の量で用いられることを特徴とする、請求項2に記載のポリイミド樹脂。  2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (2,2′-TFDB), 3,3′-bis (trifluoromethyl) -4,4′-diaminobiphenyl (3 , 3′-TFDB), 4,4′-bis (3-aminophenoxy) diphenylsulfone (DBSDA), bis (3-aminophenyl) sulfone (3-DDS), and bis (4-aminophenyl) sulfone (4 The polyimide resin according to claim 2, wherein one or a mixture of two or more selected from -DDS) is used in an amount of 10 to 90 mol% based on the total amount of the diamine component. 請求項1〜4のいずれか1項に記載のポリイミド樹脂を含む液晶配向膜。  The liquid crystal aligning film containing the polyimide resin of any one of Claims 1-4. プレチルト角が0〜2°であることを特徴とする、請求項5に記載の液晶配向膜。  The liquid crystal alignment film according to claim 5, wherein a pretilt angle is 0 to 2 °. 請求項1〜4のいずれか1項に記載のポリイミド樹脂を含むポリイミドフィルム。  The polyimide film containing the polyimide resin of any one of Claims 1-4. フィルム厚さ50〜100μmを基準としてUV分光計で透過度を測定するとき、380〜780nmにおける平均透過度が85%以上であり、551〜780nmにおける平均透過度が88%以上であることを特徴とする、請求項7に記載のポリイミドフィルム。  When the transmittance is measured with a UV spectrometer based on a film thickness of 50 to 100 μm, the average transmittance at 380 to 780 nm is 85% or more, and the average transmittance at 551 to 780 nm is 88% or more. The polyimide film according to claim 7. フィルム厚さ50〜100μmを基準としてUV分光計で透過度を測定するとき、550nmにおける透過度が88%以上、500nmにおける透過度が85%以上、420nmにおける透過度が50%以上であることを特徴とする、請求項7に記載のポリイミドフィルム。  When the transmittance is measured with a UV spectrometer based on a film thickness of 50 to 100 μm, the transmittance at 550 nm is 88% or more, the transmittance at 500 nm is 85% or more, and the transmittance at 420 nm is 50% or more. The polyimide film according to claim 7, which is characterized. フィルム厚さ50〜100μmを基準とした黄変度が15以下であることを特徴とする、請求項7に記載のポリイミドフィルム。  The polyimide film according to claim 7, wherein the degree of yellowing based on a film thickness of 50 to 100 µm is 15 or less. フィルム厚さ50〜100μmを基準とした1GHzにおける誘電率が3.0以下であることを特徴とする、請求項7に記載のポリイミドフィルム。  The polyimide film according to claim 7, wherein a dielectric constant at 1 GHz based on a film thickness of 50 to 100 μm is 3.0 or less. フィルム厚さ50〜100μmを基準とした50〜200℃における平均熱膨張係数(CTE)が50ppm以下であることを特徴とする、請求項7に記載のポリイミドフィルム。  The polyimide film according to claim 7, wherein an average coefficient of thermal expansion (CTE) at 50 to 200 ° C. based on a film thickness of 50 to 100 μm is 50 ppm or less. フィルム厚さ50〜100μmを基準とした弾性率が3.0GPa以上であることを特徴とする、請求項7に記載のポリイミドフィルム。  The polyimide film according to claim 7, wherein an elastic modulus based on a film thickness of 50 to 100 μm is 3.0 GPa or more. フィルム厚さ50〜100μmを基準としたUVによる50%遮断波長が400nm以下であることを特徴とする、請求項7に記載のポリイミドフィルム。  The polyimide film according to claim 7, wherein a 50% cutoff wavelength by UV based on a film thickness of 50 to 100 μm is 400 nm or less.
JP2009541229A 2006-12-15 2007-12-13 Polyimide resin, liquid crystal alignment film and polyimide film using the same Active JP4891411B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR1020060129005A KR101142692B1 (en) 2006-12-15 2006-12-15 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR1020060128978A KR101167337B1 (en) 2006-12-15 2006-12-15 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR10-2006-0128978 2006-12-15
KR1020060129009A KR101167341B1 (en) 2006-12-15 2006-12-15 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR10-2006-0129005 2006-12-15
KR10-2006-0129009 2006-12-15
PCT/KR2007/006512 WO2008072914A1 (en) 2006-12-15 2007-12-13 Polyimide resin and liquid crystal alignment layer and polyimide film using the same

Publications (2)

Publication Number Publication Date
JP2010513591A JP2010513591A (en) 2010-04-30
JP4891411B2 true JP4891411B2 (en) 2012-03-07

Family

ID=39511883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009541229A Active JP4891411B2 (en) 2006-12-15 2007-12-13 Polyimide resin, liquid crystal alignment film and polyimide film using the same

Country Status (3)

Country Link
JP (1) JP4891411B2 (en)
TW (1) TWI376392B (en)
WO (1) WO2008072914A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248671B1 (en) * 2008-09-23 2013-03-28 코오롱인더스트리 주식회사 Transparent electrode
KR101293346B1 (en) * 2008-09-26 2013-08-06 코오롱인더스트리 주식회사 Polyimide film
JP5741884B2 (en) * 2008-10-22 2015-07-01 学校法人東京工芸大学 Image display device and flexible transparent organic electroluminescence element
JP5315918B2 (en) * 2008-10-22 2013-10-16 日産化学工業株式会社 Production method of polyimide film
US8257901B2 (en) 2009-03-10 2012-09-04 Lg Chem, Ltd. Polyimide-based polymers, copolymers thereof and positive type photoresist compositions comprising the same
JP2015110684A (en) * 2012-03-22 2015-06-18 日産化学工業株式会社 Polyamic acid and polyimide
WO2013161970A1 (en) 2012-04-27 2013-10-31 宇部興産株式会社 Polyamic acid solution composition and polyimide
KR102276656B1 (en) 2015-02-12 2021-07-13 삼성전자주식회사 Composition of preparing poly(imide-benzoxasole)copolymer, poly(imide-benzoxasole)copolymer, article contatining poly(imide-benzoxasole)copolymer, and display device including same
JP6622287B2 (en) * 2015-03-31 2019-12-18 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
WO2019073628A1 (en) * 2017-10-11 2019-04-18 株式会社カネカ Polyimide resin and production method therefor, polyimide solution, and polyimide film and production method therefor
KR102097431B1 (en) * 2019-05-13 2020-04-07 에스케이씨코오롱피아이 주식회사 Polyimide and method for preparing the same
KR102224503B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition, polyimide comprising the same and coating material comprising the same
KR102224505B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition, polyimide comprising the same and coating material comprising the same
KR102224506B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
KR102224504B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
CN112062961B (en) * 2020-09-21 2021-12-14 华东理工大学 Preparation method of colorless transparent polyimide liquid crystal alignment film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114808A (en) * 1994-10-13 1996-05-07 Japan Synthetic Rubber Co Ltd Orienting agent for liquid crystal
JPH08120075A (en) * 1994-10-21 1996-05-14 Sumitomo Chem Co Ltd Production of copolyimide
JP2001064388A (en) * 1999-08-30 2001-03-13 Nissan Chem Ind Ltd Polyimide, polyimide solution and method for forming polyimide film
JP2002338686A (en) * 2002-04-30 2002-11-27 Jsr Corp Polyamic acid and polyimide
JP2010513592A (en) * 2006-12-15 2010-04-30 コーロン インダストリーズ,インコーポレイテッド Polyimide resin, liquid crystal alignment film and polyimide film using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292830B1 (en) * 1998-09-17 2001-07-12 김덕중 Organic light-emitting device having improved luminous efficiency
JP4336922B2 (en) * 2000-04-12 2009-09-30 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
WO2003022955A1 (en) * 2001-09-11 2003-03-20 Nessdisplay Co., Ltd. Organic electroluminescent device having a polyimide hole transport layer
JP2003107486A (en) * 2001-09-28 2003-04-09 Jsr Corp Liquid crystal aligning agent for transverse electric field system liquid crystal display element and transverse electric field system liquid crystal display element
JP2004093807A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic sensitive body, process cartridge and electrophotographic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114808A (en) * 1994-10-13 1996-05-07 Japan Synthetic Rubber Co Ltd Orienting agent for liquid crystal
JPH08120075A (en) * 1994-10-21 1996-05-14 Sumitomo Chem Co Ltd Production of copolyimide
JP2001064388A (en) * 1999-08-30 2001-03-13 Nissan Chem Ind Ltd Polyimide, polyimide solution and method for forming polyimide film
JP2002338686A (en) * 2002-04-30 2002-11-27 Jsr Corp Polyamic acid and polyimide
JP2010513592A (en) * 2006-12-15 2010-04-30 コーロン インダストリーズ,インコーポレイテッド Polyimide resin, liquid crystal alignment film and polyimide film using the same

Also Published As

Publication number Publication date
JP2010513591A (en) 2010-04-30
TWI376392B (en) 2012-11-11
TW200842143A (en) 2008-11-01
WO2008072914A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5053384B2 (en) Polyimide resin, liquid crystal alignment film and polyimide film using the same
JP4891411B2 (en) Polyimide resin, liquid crystal alignment film and polyimide film using the same
JP6705840B2 (en) Polyamide-imide precursor, polyamide-imide film, and display device including the same
USRE48141E1 (en) Transparent polyamide-imide resin and film using same
US9243119B2 (en) Polyimide film
US10662290B2 (en) Polyamide-imide precursor, polyamide-imide film and display device comprising same
KR102158223B1 (en) Polyamic acid solution, polyimde film, and method for manufacturing the same
KR101227317B1 (en) Polyimide film with improved thermal stability
US20100048861A1 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
EP3241860A1 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
WO2014189154A1 (en) Polyimide resin and polyimide film produced therefrom
KR102093696B1 (en) Polyimide resin composition having improved frictional property and Film thereof
KR102251518B1 (en) Polyamic acid, And Polyimide Resin And Polyimide Film
KR101292993B1 (en) Polyimide resin, and liquid crystal alignment layer and polyimide film using the same
WO2008072916A1 (en) Polyimide film
KR101167337B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR20090065750A (en) Transparent film
KR101142692B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR101167339B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR101167341B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4891411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250