US20160213230A1 - Reduced area imaging device incorporated within endoscopic devices - Google Patents
Reduced area imaging device incorporated within endoscopic devices Download PDFInfo
- Publication number
- US20160213230A1 US20160213230A1 US15/090,358 US201615090358A US2016213230A1 US 20160213230 A1 US20160213230 A1 US 20160213230A1 US 201615090358 A US201615090358 A US 201615090358A US 2016213230 A1 US2016213230 A1 US 2016213230A1
- Authority
- US
- United States
- Prior art keywords
- connector
- image sensor
- endoscope
- steering
- imaging device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003384 imaging method Methods 0.000 title abstract description 126
- 239000002775 capsule Substances 0.000 claims description 7
- 238000004873 anchoring Methods 0.000 abstract description 3
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 51
- 239000004020 conductor Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 21
- 238000004891 communication Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- 241000933095 Neotragus moschatus Species 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 2
- 238000002674 endoscopic surgery Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 241000183290 Scleropages leichardti Species 0.000 description 1
- 208000032370 Secondary transmission Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00121—Connectors, fasteners and adapters, e.g. on the endoscope handle
- A61B1/00124—Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00114—Electrical cables in or with an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
- A61B1/00135—Oversleeves mounted on the endoscope prior to insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
- A61B1/00137—End pieces at either end of the endoscope, e.g. caps, seals or forceps plugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
- A61B1/051—Details of CCD assembly
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0607—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for annular illumination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/555—Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
Definitions
- CMOS imagers which consist of randomly accessible pixels with an amplifier at each pixel site.
- active pixel-type imagers the amplifier placement results in lower noise levels than CCDs or other solid state imagers.
- Another major advantage is that these CMOS imagers can be mass produced on standard semiconductor production lines.
- One particularly notable advance in the area of CMOS imagers including active pixel-type arrays is the CMOS imager described in U.S. Pat. No. 5,471,515 to Fossum, et al. This CMOS imager can incorporate a number of other different electronic controls that are usually found on multiple circuit boards of much larger size.
- the timing and control circuitry and/or the processing circuitry may be placed in the handle of the endoscope. It is even completed that some circuitry could be placed in the handle of the endoscope while remaining circuitry is placed within the remote control box. Because of the small size of the elements making up the imaging device coupled with the ability to provide wireless communications between the elements, great diversification is provided for the combinations of locations at which the different elements may be employed.
- control wires 24 may communicate with a control mechanism (not shown) integrated on the handle portion 12 for manipulating the distal end 16 of the endoscope in a desired direction.
- the flexible tubular portion 14 coupled with a steerable feature enables the endoscope to be placed within winding bodily passages or other locations difficult to reach within the body.
- this chroma portion of the signal is sent to a delay line 126 where the signal is then further reduced by switch 128 .
- the output of switch 128 is sent through a balanced modulator 130 and also to the Y chroma mixer 132 where the processed chroma portion of the signal is mixed with the processed non-chroma portion.
- the output from the Y chroma mixer 132 is sent to the NTSC/PAL encoder 134 , commonly known in the art as a “composite” encoder.
- the composite frequencies are added to the signal leaving the Y chroma mixer 132 in encoder 134 to produce the post-video signal which may be accepted by a television or other video display device.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Endoscopes (AREA)
- Studio Devices (AREA)
Abstract
A reduced area imaging device is provided for use in medical or dental instruments such as an endoscope. The imaging device is provided in various configurations, and connections between the imaging device elements and a video display may be achieved by wired or wireless connections. A connector assembly located near the imaging device interconnects the imaging device to an image/power cable extending through the endoscope. The connector provides strain relief and stabilization for electrically interconnecting the imager to the cable. The connector also serves as the structure for anchoring the distal ends of steering wires extending through the body of the endoscopic device. The connector includes a strain relief member mounted over a body of the connector. The connector allows a steering wire capability without enlarging the profile of the distal tip of the endoscopic device.
Description
- This application is a continuation of U.S. Ser. No. 14/291,583 filed on May 30, 2014, which is a continuation of U.S. Ser. No. 13/732,908 filed on Jan. 2, 2013, now U.S. Pat. No. 8,885,034, which is a continuation of U.S. Ser. No. 12/889,287 filed on Sep. 23, 2010, which is a continuation-in-part of U.S. Ser. No. 11/245,960, filed on Oct. 6, 2005, which is a continuation of U.S. patent application Ser. No. 09/929,531, filed on Aug. 13, 2001, now U.S. Pat. No. 7,030,904, which is a continuation-in-part of U.S. Ser. No. 09/496,312 filed on Feb. 1, 2000, now U.S. Pat. No. 6,275,255, which is a continuation of U.S. Ser. No. 09/175,685 filed Oct. 20, 1998, now U.S. Pat. No. 6,043,839, which is a continuation-in-part of U.S. Ser. No. 08/944,322, filed Oct. 6, 1997, now U.S. Pat. No. 5,929,901.
- This invention relates to solid state image sensors incorporated within wireless endoscopes, and more particularly, to solid state image sensors which are incorporated within wireless endoscopes that wirelessly transmit video images for viewing.
- In recent years, endoscopic surgery has become the accepted standard for conducting many types of surgical procedures, both in the medical and dental arenas. The availability of imaging devices enabling a surgeon or dentist to view a particular surgical area through a small diameter endoscope which is introduced into small cavities or openings in the body results in much less patient trauma as well as many other advantages.
- In many hospitals, the rod lens endoscope is still used in endoscopic surgery. The rod lens endoscope includes a very precise group of lenses in an elongate and rigid tube which are able to accurately transmit an image to a remote camera in line with the lens group. The rod lens endoscope, because of its cost of manufacture, failure rate, and requirement to be housed within a rigid and straight housing, is being increasingly replaced by solid state imaging technology which enables the image sensor to be placed at the distal tip of the investigating device. The three most common solid state image sensors include charged coupled devices (CCD), charge injection devices (CID) and photo diode arrays (PDA). In the mid-1980s, complementary metal oxide semiconductors (CMOS) were developed for industrial use. CMOS imaging devices offer improved functionality and simplified system interfacing. Furthermore, many CMOS imagers can be manufactured at a fraction of the cost of other solid state imaging technologies.
- One particular advance in CMOS technology has been in the active pixel-type CMOS imagers which consist of randomly accessible pixels with an amplifier at each pixel site. One advantage of active pixel-type imagers is that the amplifier placement results in lower noise levels than CCDs or other solid state imagers. Another major advantage is that these CMOS imagers can be mass produced on standard semiconductor production lines. One particularly notable advance in the area of CMOS imagers including active pixel-type arrays is the CMOS imager described in U.S. Pat. No. 5,471,515 to Fossum, et al. This CMOS imager can incorporate a number of other different electronic controls that are usually found on multiple circuit boards of much larger size. For example, timing circuits, and special functions such as zoom and anti-jitter controls can be placed on the same circuit board containing the CMOS pixel array without significantly increasing the overall size of the host circuit board. Furthermore, this particular CMOS imager requires 100 times less power than a CCD-type imager. In short, the CMOS imager disclosed in Fossum, et al. has enabled the development of a “camera on a chip.”
- Passive pixel-type CMOS imagers have also been improved so that they too can be used in an imaging device which qualifies as a “camera on a chip.” In short, the major difference between passive and active CMOS pixel arrays is that a passive pixel-type imager does not perform signal amplification at each pixel site. One example of a manufacturer which has developed a passive pixel array with performance nearly equal to known active pixel devices and being compatible with the read out circuitry disclosed in the U.S. Pat. No. 5,471,515 is VLSI Vision, Ltd., 1190 Saratoga Avenue,
Suite 180, San Jose, Calif. 95129. A further description of this passive pixel device may be found in applicant's U.S. Pat. No. 5,986,693 entitled “Reduced Area Imaging Devices Incorporated Within Surgical Instruments,” which is hereby incorporated by reference. - In addition to the active pixel-type CMOS imager which is disclosed in U.S. Pat. No. 5,471,515, there have been developments in the industry for other solid state imagers which have resulted in the ability to have a “camera on a chip.” For example, Suni Microsystems, Inc. of Mountain View, Calif., has developed a CCD/CMOS hybrid which combines the high quality image processing of CCDs with standard CMOS circuitry construction. In short, Suni Microsystems, Inc. has modified the standard CMOS and CCD manufacturing processes to create a hybrid process providing CCD components with their own substrate which is separate from the P well and N well substrates used by the CMOS components. Accordingly, the CCD and CMOS components of the hybrid may reside on different regions of the same chip or wafer. Additionally, this hybrid is able to run on a low power source (5 volts) which is normally not possible on standard CCD imagers which require 10 to 30 volt power supplies. A brief explanation of this CCD/CMOS hybrid can be found in the article entitled “Startup Suni Bets on Integrated Process” found in Electronic News, Jan. 20, 1997 issue. This reference is hereby incorporated by reference for purposes of explaining this particular type of imaging processor.
- Another example of a recent development in solid state imaging is the development of a CMOS imaging sensor which is able to achieve analog to digital conversion on each of the pixels within the pixel array. This type of improved CMOS imager includes transistors at every pixel to provide digital instead of analog output that enable the delivery of decoders and sense amplifiers much like standard memory chips. With this new technology, it may, therefore, be possible to manufacture a true digital “camera on a chip.” This CMOS imager has been developed by a Stanford University joint project and is headed by Professor Abbas el-Gamal.
- A second approach to creating a CMOS-based digital imaging device includes the use of an over-sample converter at each pixel with a one bit comparator placed at the edge of the pixel array instead of performing all of the analog to digital functions on the pixel. This new design technology has been called MOSAD (multiplexed over sample analog to digital) conversion. The result of this new process is low power usage, along with the capability to achieve enhanced dynamic range, possibly up to 20 bits. This process has been developed by Amain Electronics of Simi Valley, Calif. A brief description of both of the processes developed by Stanford University and Amain Electronics can be found in an article entitled “A/D Conversion Revolution for CMOS Sensor?,” September 1998 issue of Advanced Imaging. This reference is also hereby incorporated by reference for purposes of explaining these particular types of imaging processors.
- The above-mentioned developments in solid state imaging technology have shown that “camera on a chip” devices will continue to be enhanced not only in terms of the quality of imaging which may be achieved, but also in the specific construction of the devices which may be manufactured by new breakthrough processes.
- Although the “camera on a chip” concept is one which has great merit for application in many industrial areas, a need still exists for a reduced area imaging device which can be used in even the smallest type of endoscopic instruments in order to view areas in the body that are particularly difficult to access, and to further minimize patient trauma by an even smaller diameter invasive instrument.
- It is one general object of this invention to provide a wireless endoscope incorporating reduced area imaging devices which take advantage of “camera on a chip” technology, but rearrange the circuitry in a stacked relationship so that there is a minimum profile presented when used within a surgical instrument or other investigative device. It is another object of this invention to provide a wireless endoscope utilizing low cost imaging devices which may be “disposable.” It is yet another object of this invention to provide reduced area imaging devices capable of wireless communications which may be used in conjunction with standard endoscopes by placing the imaging device through channels which normally receive other surgical devices, or receive liquids or gases for flushing a surgical area. It is yet another object of this invention to provide a surgical device with imaging capability which may be battery powered and may wirelessly communicate for viewing video images.
- In addition to the intended use of the wireless endoscope with respect to surgical procedures conducted by medical doctors, it is also contemplated that the invention described herein has great utility with respect to oral surgery and general dental procedures wherein a very small imaging device can be used to provide an image of particularly difficult to access locations. Additionally, while the foregoing invention has application with respect to the medical and dental fields, it will also be appreciated by those skilled in the art that the small size of the imaging device set forth herein coupled with the wireless communication feature can be applied to other functional disciplines wherein the imaging device can be used to view difficult to access locations for industrial equipment and the like. Therefore, the imaging device of this invention could be used to replace many industrial boroscopes.
- The “camera on a chip” technology can be furthered improved with respect to reducing its profile area and incorporating such a reduced area imaging device into very small investigative instruments which can be used in the medical, dental, or other industrial fields.
- In accordance with the present invention, reduced area imaging devices are provided. The term “imaging device” as used herein describes the imaging elements and processing circuitry which is used to produce a video signal which may be accepted by a standard video device such as a television or video monitor accompanying a personal computer. The term “image sensor” as used herein describes the components of a solid state imaging device which captures images and stores them within the structure of each of the pixels in the array of pixels found in the imaging device. As further discussed below, the timing and control circuits can be placed either on the same planar structure as the pixel array, in which case the image sensor can also be defined as an integrated circuit, or the timing and control circuitry can be placed remote from the pixel array. The terms “signal” or “image signal” as used herein, and unless otherwise more specifically defined, refer to an image which at some point during its processing by the imaging device, is found in the form of electrons which have been placed in a specific format or domain. The term “processing circuitry” as used herein refers to the electronic components within the imaging device which receive the image signal from the image sensor and ultimately place the image signal in a usable format. The terms “timing and control circuits” or “circuitry” as used herein refer to the electronic components which control the release of the image signal from the pixel array.
- In a first embodiment of the endoscope, the imaging device utilizes wired connections for interconnecting the various elements of the imaging device, and utilizes wired connections for transferring video images to a video display.
- In a second embodiment of the endoscope, a wireless communications means may be used to allow various elements of the imaging device to communicate with one another. Transfer of video images to a video display can also be achieved by the wireless communications means. Thus in the second embodiment, the endoscope does not have to be physically connected to other operating room equipment which greatly enhances the ease of using the wireless endoscope. Particularly in endoscopic procedures which are conducted in hard to reach locations within the body, a wireless endoscope is advantageous because there are no trailing cables or sterile drapes which otherwise complicate maneuvering of the endoscope. In general, enhanced maneuverability of the endoscope is provided by the wireless communications.
- One particularly advantageous wireless technology usable with the endoscope of this invention is known as “Bluetooth”. Another recent wireless technology which is usable with the invention is a wireless protocol known as “IEEE 802.15.13”. This wireless standard is developing under the joint efforts of Kodak, Motorola, Cisco and the International Electronic and Electrical Engineers Standards Association (IEEE) Wireless Personal Area Network Working Group (WPAN). Bluetooth technology provides a universal radio interface in the 2.4 GHz frequency band that enables portable electronic devices to connect and communicate wirelessly via short-range ad hoc networks. Bluetooth radios operate in an unlicenced Instrumentation, Scientific, Medical (ISM) band at 2.4 Ghz. Bluetooth is a combination of circuit and packet switching. Slots can be reserved for synchronous packets. Each packet is transmitted in a different hop frequency. A packet nominally covers a single slot, but can be extended to cover up to five slots. Bluetooth can support an asynchronous data channel, up to three simultaneous synchronous voice channels, or a channel that simultaneously supports asynchronous data and synchronous voice. Spectrum spreading is accomplished by frequency hopping 79 hops displaced by 1 MHZ starting at 2.402 Ghz and stopping at 2.480 GHz. The maximum frequency hopping rate is 1600 hops per second. The nominal link range is 10 centimeters to 10 meters, but can be extended to more than 100 meters by increasing the transmit power. A shaped binary FM modulation is applied to minimize transceiver complexity. The gross data rate is 1 Mb/second. A time division multiplex scheme is used for full-duplex transmission. Additional information describing the Bluetooth global specification is found on the world wide web at www.bluetooth.com. Additional information regarding the technical specification for the IEEE 802.15.13 standard may be found www.ieee802.org/15 under the link for the Task Force Three (TG3). The content of both of these websites is hereby incorporated by reference for purposes of disclosing these types of communication standards.
- In a first arrangement of the imaging device, the image sensor, with or without the timing and control circuitry, may be placed at the distal tip of the endoscopic instrument while the remaining processing circuitry may be found in a small remote control box which may wirelessly communicate with the image sensor.
- In a second arrangement of the imaging device, the image sensor and the processing circuitry may all be placed in a stacked arrangement of circuit boards and positioned at the distal tip of the endoscopic instrument. In this second arrangement, the pixel array of the image sensor may be placed by itself on its own circuit board while the timing and control circuitry and processing circuitry are placed on one or more other circuit boards. Alternatively, the circuitry for timing and control may be placed with the pixel array on one circuit board, while the remaining processing circuitry can be placed on one or more of the other circuit boards.
- In another alternative arrangement, the imaging device may be adapted for use with a standard rod lens endoscope wherein the imaging device is placed within a standard camera housing which is configured to connect to a standard “C” or “V” mount connector.
- In yet another arrangement, the timing and control circuitry and/or the processing circuitry may be placed in the handle of the endoscope. It is even completed that some circuitry could be placed in the handle of the endoscope while remaining circuitry is placed within the remote control box. Because of the small size of the elements making up the imaging device coupled with the ability to provide wireless communications between the elements, great diversification is provided for the combinations of locations at which the different elements may be employed.
- A simplified endoscope may be used which includes a very small diameter tubular portion which is inserted within the patient. The tubular portion may be made of a flexible material having a central lumen or opening therein for receiving the elements of the imaging device. The tubular portion may be modified to include an additional concentric tube placed within the central lumen and which enables a plurality of light fibers to be placed circumferentially around the periphery of the distal end of the tubular portion. Additionally, control wires may extend along the tubular portion in order to make the endoscope steerable. The material used to make the endoscope can be compatible with any desired sterilization protocol, or the entire endoscope can be made sterile and disposable after use.
- In the second embodiment of the endoscope wherein processing circuitry is housed within the endoscope, and for the arrangement of the imaging device which calls for the array of pixels and the timing and control circuitry to be placed on the same circuit board, only one conductor is required in order to electrically transfer the image signal to the processing circuitry. In the other configuration of the imaging device wherein the timing and control circuits are incorporated onto other circuit boards, a plurality of connections are required in order to connect the timing and control circuitry to the pixel array and the one conductor is also required to transfer the image signal.
- In each of the different arrangements of the imaging device where circuitry is housed in the handle of the endoscope, the handle can have one or more channels or bores for making space available for such circuitry.
- Thus, the wireless communications made integral with the endoscope of the second embodiment provides an improved endoscope wherein the improvement comprises variations of wireless communications for transmission of image signals that are viewed on a desired video display.
- In another aspect of the invention, the imaging device is housed within an endoscopic instrument in which the endoscope is steerable by incorporating a steering connector assembly located near the imaging device. The connector assembly is constructed so that it does not enlarge the profile of the capsule that houses the imaging device, yet the connector assembly facilitates precise and accurate control of the distal end of the endoscope with a four-way deflection capability. More specifically, the image sensor has a frontal profile defined by a length and width dimension, and the connector assembly does not extend beyond this frontal profile or a slightly larger frontal profile defined by the length and width dimension of the capsule.
- The connector assembly has dual functionality in providing a means to anchor the distal ends of the steering wires as well as to provide a structure for attaching the electrical leads of an image/power cable to electrical traces housed in the connector assembly that extend to electrically contact electrical connection points on the imaging device.
-
FIG. 1a illustrates a first arrangement of the imaging device including a fragmentary cross-sectional view of a generic endoscopic instrument in the first embodiment, and a fragmentary perspective view of a control box, the endoscope and control box each incorporating elements of a reduced area imaging device; -
FIG. 1b is an enlarged fragmentary partially exploded perspective view of the distal end of the endoscopic instrument specifically illustrating the arrangement of the image sensor with respect to the other elements of the tubular portion of the endoscope; -
FIG. 2a is a fragmentary cross-sectional view of the endoscope in the first embodiment, and a second arrangement of the imaging device wherein the imaging device is incorporated in its entirety at the distal tip of the endoscope; -
FIG. 2b is an enlarged fragmentary partially exploded perspective view of the distal end of the endoscope ofFIG. 2a illustrating the imaging device; -
FIG. 3a is a fragmentary cross-sectional view of the image sensor incorporated with a standard camera housing for connection to a rod lens endoscope; -
FIG. 3b is a fragmentary cross-sectional view of the imaging device incorporated within the camera housing ofFIG. 3 a; -
FIG. 3c is a fragmentary cross-sectional view similar to that ofFIG. 3b illustrating a battery as an alternate source of power; -
FIG. 4 is a schematic diagram of the functional electronic components which make up the imaging device; -
FIG. 4a is an enlarged schematic diagram of a circuit board which may include the array of pixels and the timing and control circuitry; -
FIG. 4b is an enlarged schematic diagram of a video processing board having placed thereon the processing circuitry which processes the pre-video signal generated by the array of pixels and which converts the pre-video signal to a post-video signal which may be accepted by a standard video device; -
FIGS. 5a-5e are schematic diagrams that illustrate an example of specific circuitry which may be used to make the imaging device. -
FIG. 6 is a fragmentary cross-sectional view of an endoscope in the second embodiment wherein image signals in a desired video ready format are wirelessly transmitted to a remote video display monitor for viewing by a user; -
FIG. 6a is another fragmentary cross-sectional view of the endoscope ofFIG. 6 showing an alternate source of light in the form of a fiber optic cable connected to an external light source; -
FIG. 6b is another fragmentary cross-sectional view of the endoscope ofFIG. 6 showing processing circuitry incorporated within the handle of the endoscope as opposed to the circuitry placed within the tubular portion of the endoscope; -
FIG. 7 illustrates a transceiver radio module which receives image signals transmitted by the wireless endoscope ofFIG. 6 \FIG. 6a , and conditions the received image signals for direct reception by a display monitor; -
FIG. 8 illustrates another endoscope of the second embodiment wherein some image signal processing is conducted remote from the endoscope; -
FIG. 8a illustrates a removable battery housing which may be recharged by removing the housing and plugging it into the recharge receptacle on the control box ofFIG. 9 ; and -
FIG. 9 illustrates the arrangement of the imaging device which incorporates the control box wherein image signals from the endoscope inFIG. 8 are in a first or pre-format and are transmitted wirelessly to the control box, circuitry in the control box processes the image signals in a second or final format, and the control box then wirelessly transmits the image signals to a secondary receiver which receives the image signals and conditions the image signals for direct reception by the display monitor. -
FIG. 10 is a partially exploded fragmentary perspective view of an endoscopic instrument incorporating the imaging device of the present invention, along with a connector assembly to facilitate steering of the instrument; -
FIG. 11 is a greatly enlarged fragmentary perspective view ofFIG. 10 showing further details of the connector assembly; -
FIG. 12 is another greatly enlarged fragmentary perspective view illustrating details of the connector assembly; and -
FIG. 13 is a fragmentary perspective view illustrating the endoscopic instrument connected to a conventional steering device enabling precise and accurate steering of the distal tip of the endoscopic instrument. - In accordance with one arrangement of the imaging device as shown in
FIG. 1a , anendoscope 10 in the first embodiment is provided which incorporates a reducedarea imaging device 11, shown inFIG. 1b . As further discussed below, the elements of the imaging device may all be found at one location or the elements may be separated from one another and interconnected by the appropriate cable(s). The array of pixels making up the image sensor captures images and stores them in the form of electrical energy by conversion of light photons to electrons. This conversion takes place by the photo diodes in each pixel which communicate with one or more capacitors which store the electrons. The structure of theendoscope 10 in the first embodiment includes a flexible or rigidtubular portion 14 which is inserted into the body of the patient and is placed at the appropriate location for viewing a desired surgical area. Thetubular portion 14 attaches at its proximal end to ahandle portion 12 which may be grasped by a surgeon who is conducting the endoscopic procedure. Thehandle 12 may include a central lumen orchannel 13 which receives one or more cables or other structures which extend to thedistal end 16 oftubular portion 14.Handle portion 12 may further include asupplementary channel 15 which intersects withcentral channel 13 and which may provide another point of entry for other cables, fluids or operative instruments to be placed through the endoscope. -
FIG. 1b illustrates the distal end of theendoscope 16. Thedistal end 16 may be characterized by anouter tube 18 which traverses the length of thetubular portion 14 and connects to thehandle portion 12. Placed concentrically within theouter tube 18 may be one or moreinner tubes 20. InFIG. 1b , the gap betweeninner tube 20 andouter tube 18 forms a space in which one or morelight fibers 22 orcontrol wires 24 may be placed. As well understood by those skilled in the art, a plurality of circumferentially spaced light fibers as illustrated inFIG. 1b can be used to illuminate the surgical site. Additionally, thecontrol wires 24 may communicate with a control mechanism (not shown) integrated on thehandle portion 12 for manipulating thedistal end 16 of the endoscope in a desired direction. The flexibletubular portion 14 coupled with a steerable feature enables the endoscope to be placed within winding bodily passages or other locations difficult to reach within the body. - An
image sensor 40 may be placed within the central channel defined byinner tube 20. In the configuration shown inFIG. 1b , acable 26 is used to house the conductors which communicate with theimage sensor 40. Anintermediate support tube 28 may be placed concentrically outside ofcable 26 and concentrically withininner tube 20 to provide the necessary support for thecable 26 as it traverses through the inner channel defined byinner tube 20. In lieu ofsupport tube 28, other well-known means may be provided to stabilize thecable 26 such as clips or other fastening means which may attach to the inner concentric surface ofinner tube 20. - A
control box 30 may be placed remote from theendoscope 10. Thecontrol box 30 contains some of the processing circuitry which is used to process the image signal produced byimage sensor 40. Therefore, theimaging device 11 as previously defined would include the processing circuitry withincontrol box 30 and theimage sensor 40 located at the distal tip of the endoscope.Control box 30 communicates withimage sensor 40 by means ofcable 32 which may simply be an insulated and shielded cable which houses thereincable 26.Cable 32 is stabilized with respect to thehandle portion 12 by means of a fitting 34 which ensures thatcable 32 cannot be inadvertently pushed or pulled withinchannel 13. Additionally, anadditional fitting 35 may be provided to stabilize the entry of alight cable 36 which houses the plurality oflight fibers 22.Light cable 36 runs alongcable 32 to the distal end of the endoscope, orlight cable 36 can joincable 32 within thechannel 13 as shown inFIG. 1a . Thuscable 32 would house both the light fibers and the conductors which interconnect thecontrol box 30 to theimage sensor 40. -
Image sensor 40 is illustrated as being a planar and square shaped member. However, the image sensor may be modified to be in a planar and circular shape to better fit within the channel defined byinner tube 20. Accordingly,FIG. 1b further shows an alternate shapedimage sensor 40′ which is round. A lens group orsystem 42 may be incorporated at the distal end of the endoscope in order to manipulate the image prior to it being impinged upon the array of pixels on theimage sensor 40. Thislens system 42 may be sealed at thedistal end 16 of the endoscope so that thetubular portion 14 is impervious to fluids entering through thedistal end 16. In the configuration of theimaging device 11 inFIGS. 1a and 1b , there are only three conductors which are necessary for providing power to theimage sensor 40, and for transmitting an image from theimage sensor 40 back to the processing circuitry found withincontrol box 30. Namely, there is apower conductor 44, a groundingconductor 46, and animage signal conductor 48 each of which are hard wired to the image sensor. Thus,cable 26 may simply be a three-conductor 50 ohm cable. -
Image sensor 40 can be as small as 1 mm in its largest dimension. However, a more preferable size for most endoscopic procedures would dictate that theimage sensor 40 be between 4 mm to 8 mm in its largest dimension. The image signal electrically transmitted from the image sensor throughconductor 48 is also herein referred to as a pre-video signal. Once the pre-video signal has been electrically transmitted fromimage sensor 40 by means ofconductor 48, it is received byvideo processing board 50.Video processing board 50 then carries out all the necessary conditioning of the pre-video signal and places it in a form so that it may be viewed directly on a standard video device, television or standard computer video monitor. The signal produced by thevideo processing board 50 can be further defined as a post-video signal which can be accepted by a standard video device. As shown inFIG. 1a , aconductor 49 is provided which electrically transmits the post-video signal to anoutput connector 58 on the exterior surface ofcontrol box 30. The cable (not shown) extending from the desired video device (not shown) may receive the post-video signal by means ofconnector 58.Power supply board 52 may convert incoming power received throughpower source 54 into the desired voltage. In the preferred imager incorporated in this invention, the power to the imaging device is simply a direct current which can be a 1.5 volt to a 12 volt source. Incoming power from, for example, a wall receptacle, communicates withpower supply board 52 byconnector 56.Power supply board 52 takes the incoming power source and regulates it to the desired level. Additionally,ground 46 is also shown as extending back to the source of power throughconnector 56. -
FIG. 2a illustrates a second arrangement of the imaging device wherein the imaging device is self-contained entirely within thedistal end 16 of the endoscope, and a power source which drives the circuitry within the imaging device may come from abattery 66 housed withinhandle portion 12. - As shown in
FIG. 2b , thevideo processing board 50 may be placed directly behindimage sensor 40. A plurality ofpin connectors 62 serve to electricallycouple image sensor 40 withvideo processing board 50 depending upon the specific configuration ofimage sensor 40,pin connectors 62 may be provided either for structural support only, or to provide a means by which image signals are electrically transmitted betweenimage sensor 40 andboard 50. When necessary, one or moresupplementary boards 60 may be provided which further contain processing circuitry to process the image signal and present it in a form which may be directly received by a desired video device. The area which is occupied byimage sensor 40 may be defined as the profile area of the imaging device and which determines its critical dimensions. Any imaging elements that are found onboards image sensor 40 along longitudinal axis XX. If the profile area is not critical in terms of limiting the largest sized imaging element within the imaging device, then theadditional circuit boards image sensor 40 can be aligned in an offset manner or may be larger than the profile area ofimage sensor 40. In the configuration ofFIG. 2b , it is desirable thatelements image sensor 40 may be bonded tolens system 42 in order to provide further structural support to theimaging device 11 when mounted within thedistal end 16. - Referring back to the
handle portion 12 inFIG. 2a , an additional channel 64 may be provided in order that apower supply cable 68 may communicate withbattery 66. Conveniently,battery 66 may itself be mounted within a well 65 formed inhandle portion 12.Cable 68 carries theconductor 44 andground 46.Cable 68 may intersect with cable 33 withinchannel 13,cables 68 and 33 extending then to thedistal end 16. Cable 33 can be a single conductor cable which transmits the post-video signal to a desired video device. In other words, cable 33 may simply be an insulated and shielded housing forconductor 49 which carries the post-video signal. Because a preferred image sensor of theimaging device 11 may only require a 5 volt power supply, a battery is an ideal power source in lieu of a conductor which would trail the endoscope. Accordingly, the endoscope is made more mobile and easier to handle by eliminating at least one of the trailing cables. -
FIG. 3a illustrates yet another arrangement or configuration of the imaging device wherein the imaging device can be used in conjunction with a standardrod lens endoscope 70. As shown,rod lens endoscope 70 includes alens train 72 which includes a plurality of highly precise lenses (not shown) which are able to transmit an image from the distal end of the endoscope, to a camera in line with the endoscope. The rod lens endoscope is equipped with a lightguide coupling post 74. Light guide post 74 connects to a source of light in the form of acable 77 having a plurality of fiber optic strands (not shown) which communicate with a source of light (not shown). The most common arrangement of the rod lens endoscope also includes a “C” or “V”mount connector 78 which attaches to theeyepiece 76. The “C” or “V” mount attaches at its other end to acamera group 80. Thecamera group 80 houses one or more of the elements of the imaging device. In this configuration, the small size of the imaging device is not a critical concern since the imaging device is not being placed at the distal end of the endoscope. However, the incorporation of the imaging device in a housing which would normally hold a traditional camera still provides an advantageous arrangement. As shown, thecamera group 80 may include ahousing 82 which connects to a power/video cable 86. Fitting 87 is provided to couplecable 86 to the interior elements of thecamera group 80 found withinhousing 82.FIG. 3a illustrates an arrangement of theimaging device 11 wherein theimage sensor 40 is placed by itself within thehousing 82 and the processing circuitry of the imaging device can be positioned in a remote control box as shown inFIG. 1a . Accordingly, only threeconductors image sensor 40 and for transmitting the pre-video signal to the control box. Alternatively, as shown inFIG. 3b , theentire imaging device 11 may be incorporated withincamera group 80, each of the elements of the imaging device being placed in the stacked arrangement similar toFIG. 2b . As discussed above, size is not as much of a concern in the embodiment ofFIGS. 3a and 3b since thecamera group housing 82 is much larger than the distal tip of the endoscope ofFIGS. 1a and 2 a. -
FIG. 3c also illustrates the use of abattery 66 which provides source of power to the imaging device in eitherFIG. 3a or 3 b. In this arrangement,housing 82 is altered to include abattery housing 69 which houses thebattery 66 therein.Battery housing 69 may include a very small diameter channel which may allowconductor FIG. 1a may incorporate the use of abattery 66 as the source of power. Thus, handle 12 inFIG. 1a may be altered in the same way ashousing 82 to allow a battery to be attached to thehandle portion 12. - In all of the arrangements of the imaging device discussed above with respect to the first embodiment of the endoscope, each of the elements or components of the imaging device electrically communicate with one another through a wired connection.
-
FIG. 4 is a schematic diagram illustrating one way in which theimaging device 11 may be constructed. As illustrated, theimage sensor 40 may include the timing and control circuits on the same planar structure. Power is supplied to imagesensor 40 bypower supply board 52. The connection betweenimage sensor 40 andboard 52 may simply be a cable having two conductors therein, one for ground and another for transmitting the desired voltage. These are illustrated asconductors image sensor 40 in the form of the pre-video signal is input tovideo processor board 50 by means of theconductor 48. In the configuration ofFIG. 4 ,conductor 48 may simply be a 50 ohm conductor. Power and ground also are supplied tovideo processing board 50 byconductors power supply board 52. The output signal from thevideo processor board 50 is in the form of the post-video signal and which may be carried byconductor 49 which can also be a 50 ohm conductor. - In the first arrangement of the imaging device illustrated in
FIG. 1a ,cable 32 can be used to houseconductors FIG. 2a , cable 33 can be used tohouse conductor 49 by itself when a battery power source is used, or alternatively, cable 33 may houseconductors FIG. 2a utilizes a power source fromboard 52. - Optionally, a
supplementary processing board 60 may be provided to further enhance the pre-video signal. As shown inFIG. 4 , thesupplementary board 60 may be placed such that the pre-video signal fromimage sensor 40 is first sent to the supplementary board and then output to thevideo processor board 50. In this case, the output fromboard 50 can be carried alongconductor 51. This output can be defined as an enhanced pre-video signal. Furthermore, the post-video signal fromvideo processor board 50 may return to thesupplementary board 60 for further processing, as further discussed below. The conductor used to electrically transmit the post-video signal back to the supplementary board is shown asconductor 59. Thepower supply board 52 may also provide power to the supplementary board in the same manner as to imagesensor 40 andboard 50. That is, a simple hard-wired connection is made onto the supplementary board for the ground and voltage carrying conductors. As discussed above,image sensor 40 may be placed remotely fromboards image sensor 40, andboards - Although
FIG. 4 illustrates the image sensor and the timing and control circuits being placed on the same planar structure, it is possible to separate the timing and control circuits from the pixel array and place the timing and control circuits ontovideo processing board 50. The advantage in placing the timing and control circuits on the same planar structure as the image sensor is that only three connections are required betweenimage sensor 40 and the rest of the imaging device, namely,conductors video processing board 50 in order to transmit the clock signals and other control signals to the pixel array. For example, a ribbon-type cable (not shown) or a plurality of 50 ohm coaxial cables (not shown) must be used in order to control the downloading of information from the pixel array. Each of these additional connections would be hard wired between the boards. -
FIG. 4a is a more detailed schematic diagram ofimage sensor 40 which contains an array ofpixels 90 and the timing and control circuits 92. One example of apixel array 90 which can be used within the invention is similar to that which is disclosed in U.S. Pat. No. 5,471,515 to Fossum, et al., said patent being incorporated by reference herein. More specifically, FIG. 3 of Fossum, et al. illustrates the circuitry which makes up each pixel in the array ofpixels 90. The array ofpixels 90 as described in Fossum, et al. is an active pixel group with intra-pixel charged transfer. The image sensor made by the array of pixels is formed as a monolithic complementary metal oxide semiconductor integrated circuit which may be manufactured in an industry standard complementary metal oxide semiconductor process. The integrated circuit includes a focal plane array of pixel cells, each one of the cells including a photo gate overlying the substrate for accumulating the photo generated charges. In broader terms, as well understood by those skilled in the art, an image impinges upon the array of pixels, the image being in the form of photons which strike the photo diodes in the array of pixels. The photo diodes or photo detectors convert the photons into electrical energy or electrons which are stored in capacitors found in each pixel circuit. Each pixel circuit has its own amplifier which is controlled by the timing and control circuitry discussed below. The information or electrons stored in the capacitors is unloaded in the desired sequence and at a desired frequency, and then sent to thevideo processing board 50 for further processing. - Although the active pixel array disclosed in U.S. Pat. No. 5,471,515 is mentioned herein, it will be understood that the hybrid CCD/CMOS described above, or any other solid state imaging device may be used wherein timing and control circuits can be placed either on the same planar structure with the pixel array, or may be separated and placed remotely. Furthermore, it will be clearly understood that the invention claimed herein is not specifically limited to an image sensor as disclosed in the U.S. Pat. No. 5,471,515, but encompasses any image sensor which may be configured for use in conjunction with the other processing circuitry which makes up the imaging device of this invention.
- The timing and control circuits 92 are used to control the release of the image information or image signal stored in the pixel array. In the image sensor of Fossum, et al., the pixels are arranged in a plurality of rows and columns. The image information from each of the pixels is first consolidated in a row by row fashion, and is then downloaded from one or more columns which contain the consolidated information from the rows. As shown in
FIG. 4a , the control of information consolidated from the rows is achieved bylatches 94, counter 96, anddecoder 98. The operation of the latches, counter and decoder is similar to the operation of similar control circuitry found in other imaging devices. That is, a latch is a means of controlling the flow of electrons from each individual addressed pixel in the array of pixels. When alatch 94 is enabled, it will allow the transfer of electrons to thedecoder 98. Thecounter 96 is programmed to count a discrete amount of information based upon a clock input from the timing and control circuits 92. When thecounter 96 has reached its set point or overflows, the image information is allowed to pass through thelatches 94 and be sent to thedecoder 98 which places the consolidated information in a serial format. Once thedecoder 98 has decoded the information and placed it in the serial format, then therow driver 100 accounts for the serial information from each row and enables each row to be downloaded by the column or columns. In short, thelatches 94 will initially allow the information stored in each pixel to be accessed. Thecounter 96 then controls the amount of information flow based upon a desired time sequence. Once the counter has reached its set point, thedecoder 98 then knows to take the information and place it in the serial format. The whole process is repeated, based upon the timing sequence that is programmed. When therow driver 100 has accounted for each of the rows, the row driver reads out each of the rows at the desired video rate. - The information released from the column or columns is also controlled by a series of
latches 102, acounter 104 and adecoder 106. As with the information from the rows, the column information is also placed in a serial format which may then be sent to thevideo processing board 50. This serial format of column information is the pre-video signal carried byconductor 48. Thecolumn signal conditioner 108 places the column serial information in a manageable format in the form of desired voltage levels. In other words, thecolumn signal conditioner 108 only accepts desired voltages from the downloaded column(s). - The clock input to the timing and control circuits 92 may simply be a quartz crystal timer. This clock input is divided into many other frequencies for use by the various counters. The run input to the timing and control circuit 92 may simply be an on/off control. The default input can allow one to input the pre-video signal to a video processor board which may run at a frequency of other than 30 hertz. The data input controls functions such as zoom. At least for a CMOS type active pixel array which can be accessed in a random manner, features such as zoom are easily manipulated by addressing only those pixels which locate a desired area of interest by the surgeon.
- A further discussion of the timing and control circuitry which may be used in conjunction with an active pixel array is disclosed in U.S. Pat. No. 5,471,515 and is also described in an article entitled “Active Pixel Image Sensor Integrated With Readout Circuits” appearing in NASA Tech Briefs, October 1996, pp. 38 and 39. This particular article is also incorporated by reference.
- Once
image sensor 40 has created the pre-video signal, it is sent to thevideo processing board 50 for further processing. Atboard 50, as shown inFIG. 4b , the pre-video signal is passed through a series of filters. One common filter arrangement may include two low pass filters 114 and 116, and aband pass filter 112. The band pass filter only passes low frequency components of the signal. Once these low frequency components pass, they are then sent todetector 120 andwhite balance circuit 124, the white balance circuit distinguishing between the colors of red and blue. The white balance circuit helps the imaging device set its normal, which is white. The portion of the signal passing throughlow pass filter 114 then travels throughgain control 118 which reduces the magnitude or amplitude of this portion to a manageable level. The output fromgain control 118 is then fed back to thewhite balance circuit 124. The portion of the signal traveling throughfilter 116 is placed through theprocessor 122. In theprocessor 122, the portion of the signal carrying the luminance or non-chroma is separated and sent to theY chroma mixer 132. Any chroma portion of the signal is held inprocessor 122. - Referring to the output of the
white balance circuit 124, this chroma portion of the signal is sent to adelay line 126 where the signal is then further reduced byswitch 128. The output ofswitch 128 is sent through abalanced modulator 130 and also to theY chroma mixer 132 where the processed chroma portion of the signal is mixed with the processed non-chroma portion. Finally, the output from theY chroma mixer 132 is sent to the NTSC/PAL encoder 134, commonly known in the art as a “composite” encoder. The composite frequencies are added to the signal leaving theY chroma mixer 132 inencoder 134 to produce the post-video signal which may be accepted by a television or other video display device. - Referring back to
FIG. 4 , it further illustratessupplementary board 60 which may be used to digitally enhance or otherwise further condition the pre-video signal produced fromimage sensor 40. For example, digital enhancement can brighten or otherwise clarify the edges of an image viewed on a video screen. Additionally, the background images may be removed thus leaving only the foreground images or vice versa. The connection betweenimage sensor 40 andboard 60 may simply be theconductor 48 which may also transfer the pre-video signal to board 50. Once the pre-video signal has been digitally enhanced onsupplementary board 60, it is then sent to thevideo processor board 50 by means of anotherconductor 51. The pre-video signal is an analog signal. The digitally enhanced pre-video signal may either be a digital signal or it may be converted back to the analog domain prior to being sent toboard 50. - In addition to digital enhancement,
supplementary board 60 may further include other circuitry which may further condition the post-video signal so that it may be viewed in a desired format other than NTSC/PAL. As shown inFIG. 4 ,intermediate conductor 59 may transmit the signal output fromY chroma mixer 132 back to thesupplementary board 60 where the signal is further encoded for viewing in a particular format. One common encoder which can be used includes anRGB encoder 154. The RGB encoder separates the signal into three separate colors (red, green and blue) so that the surgeon may selectively choose to view only those images containing one or more of the colors. Particularly in tissue analysis where dyes are used to color the tissue, the RGB encoder may help the surgeon to identify targeted tissue. - The next encoder illustrated in
FIG. 4 is a SVHS encoder 156 (super video home system). This encoder splits or separates the luminance portion of the signal and the chroma portion of the signal prior to entering the video device. Some observers believe that a cleaner signal is input to the video device by such a separation which in turn results in a more clear video image viewed on the video device. The last encoder illustrated inFIG. 4 is aVGA encoder 158 which enables the signal to be viewed on a standard VGA monitor which is common to many computer monitors. - One difference between the arrangement of
image sensor 40 and the outputs found in FIG. 3 of the Fossum, et al. patent is that in lieu of providing two analog outputs [namely, VS out (signal) and VR out (reset)], the reset function takes place in the timing and control circuitry 92. Accordingly, the pre-video signal only requires oneconductor 48. -
FIGS. 5a-5e illustrate in more detail one example of circuitry which may be used in thevideo processing board 50 in order to produce a post-video signal which may be directly accepted by a video device such as a television. The circuitry disclosed inFIGS. 5a-5e is very similar to circuitry which is found in a miniature quarter-inch Panasonic camera, Model KS-162. It will be understood by those skilled in the art that the particular arrangement of elements found inFIGS. 5a-5e are only exemplary of the type of video processing circuitry which may be incorporated in order to take the pre-video signal and condition it to be received by a desired video device. - As shown in
FIG. 5 a, 5 volt power is provided along with a ground byconductors board 50. The pre-video signal carried byconductor 48 is buffered atbuffer 137 and then is transferred to amplifyinggroup 138.Amplifying group 138 amplifies the signal to a usable level as well as achieving impedance matching for the remaining circuitry. - The next major element is the
automatic gain control 140 shown inFIG. 5b .Automatic gain control 140 automatically controls the signal from amplifyinggroup 138 to an acceptable level and also adds other characteristics to the signal as discussed below. More specifically,automatic gain control 140 conditions the signal based upon inputs from a 12 channel digital toanalog converter 141.Converter 141 retrieves stored information from EEPROM (electrically erasable programmable read only memory) 143.EEPROM 143 is a non-volatile memory element which may store user information, for example, settings for color, tint, balance and the like. Thus,automatic gain control 140 changes the texture or visual characteristics based upon user inputs. The signal leaving theautomatic gain control 140 is an analog signal until being converted by analog todigital converter 142. -
Digital signal processor 144 ofFIG. 5c further processes the converted signal into a serial type digital signal. One function of themicroprocessor 146 is to control the manner in whichdigital signal processor 144 sorts the digital signals emanating fromconverter 142.Microprocessor 146 also controls analog todigital converter 142 in terms of when it is activated, when it accepts data, when to release data, and the rate at which data should be released.Microprocessor 146 may also control other functions of the imaging device such as white balance. Themicroprocessor 146 may selectively receive the information stored in theEEPROM 143 and carry out its various commands to further control the other elements within the circuitry. - After the signal is processed by
digital signal processor 144, the signal is sent todigital encoder 148 illustrated inFIG. 5d . Some of the more important functions ofdigital encoder 148 are to encode the digital signal with synchronization, modulated chroma, blanking, horizontal drive, and the other components necessary so that the signal may be placed in a condition for reception by a video device such as a television monitor. As also illustrated inFIG. 5d , once the signal has passed throughdigital encoder 148, the signal is reconverted into an analog signal through digital toanalog converter 150. - This reconverted analog signal is then buffered at
buffers 151 and then sent toamplifier group 152 ofFIG. 5e which amplifies the signal so that it is readily accepted by a desired video device. Specifically, as shown inFIG. 5e , one SVHS outlet is provided at 160, and two composite or NTSC outlets are provided at 162 and 164, respectively. - Now turning to a discussion of the endoscope of the second embodiment, attention is first directed to
FIG. 6 . In this second embodiment, like reference numerals denote matching elements from the endoscope of the first embodiment. The endoscope of the second embodiment also can be characterized as a common or generic endoscope except for the imaging device and the wireless communications means incorporated in this second embodiment.FIG. 6 more specifically illustrates the arrangement of the imaging device wherein processing of the image signals is conducted within the endoscope such that a post-video signal is ready for transmission to a display monitor. As shown,video processing board 50 is mounted adjacent theimage sensor 40 in the distal tip of the endoscope. As discussed above, one or moresupplementary boards 60 may also be mounted adjacent thevideo processing board 50 for further processing of the image signals to produce a post-video signal of a desired format. Alternatively, and as further discussed below, some or all of the processing circuitry may be mounted within thehandle 12, in a specified portion of thechannel 13. There is ample room withinchannel 13, or some other bore which could be formed in the handle to receive processing circuitry. The construction of the distal tip of the endoscope in the second embodiment can be the same as in the first embodiment. Thus, steering wires (not shown) and circumferentially spaced light fibers (not shown) may be incorporated in the endoscope.Cable 32 carrying the post-video signals electrically connects to atransceiver radio element 170 which is housed withinchannel 13 towards the proximal end of thehandle 12.Transceiver radio element 170 conditions the post video signals in accordance with the desired wireless standard. More specifically, the transceiver radio element adds a high frequency carrier signal and baseband protocol to the post video signals, and then wirelessly transmits the post video signals viaantennae 174 to thetransceiver radio module 178. Thetransceiver radio module 178 authenticates the received signals, strips the signals of the carrier frequency, and then routs the signals in the final video format to adisplay monitor 196. It should also be understand that the communications between thetransceiver radio element 170 and thetransceiver radio module 178 are not simply one-way communications; rather, the communications are two way in accordance with the Bluetooth standard or IEEE standard. For example, not only does thetransceiver radio element 170 transmit image signals, but thetransceiver radio element 170 also receives and processes authentication signals from theradio transceiver module 178. Similarly, not only does thetransceiver radio module 178 receive and process image signals, but themodule 178 also transmits authentication signals. A power switch (not shown) may also be incorporated within the endoscope to selectively energize or de-energize theimage sensor 40 and thetransceiver radio element 170. -
Transceiver radio module 178 receives the post-video signals viaantennae 180, decodes the signals, and then electrically transmits them to themonitor 196 for viewing by the user. The endoscope in this second embodiment is powered by abattery 176 which is housed adjacent theantennae 174. Electrical leads (not shown) extend from thebattery 176 to power the image sensor and thetransceiver radio element 170. As discussed further below,antennae 174 andbattery 176 may be secured within their own casing orhousing 172 which then connects to thehandle 12 of the endoscope.Transceiver radio module 178 may simply be powered by the same electrical power source (not shown) which powers thedisplay monitor 196, such as conventional 110 volt, 3 phase power. In order to recharge thebattery 176 of the endoscope, the transceiver radio module may be a combination unit which also has abattery charge circuit 182 for rechargingbattery 176.Charge circuit 182 would also be powered by a conventional power source, preferably the same power source powering thetransceiver module 178 and thedisplay monitor 196.Circuit 182 would have a charging receptacle, shown schematically asreceptacle 186, for receiving thebattery 176.FIG. 6 also shows a self-contained white light source in the form oflight source 192 which is housed inchannel 15 betweeninterior plug 194 and exterior plug oraccess cover 195. Alternatively, as shown inFIG. 6a , an exterior source of light 198 could be used which transmits light through thecable 36. The self containedlight source 192 is preferred because the endoscope is then free from all trailing cables or other wiring. -
FIG. 6b illustrates the endoscope having another cavity or opening 210 formed therein for housing some or all of the processing circuitry. As shown, thevideo processor board 50 has been moved to theopening 210 and is supported in the opening bysupport 212 which is placed in theopening 210 at a selected depth to accommodate the particular sized circuitry placed in the opening.Conductor 214 interconnects theboard 50 withimage sensor 40, andconductor 214 can run coterminously withcable 32. Accordingly, the only imaging device element remaining in the distal end of the endoscope is theimage sensor 40. Additionally, the timing and control circuits 92 could also be placed in theopening 210 along with the video processing circuitry. The co-pending application Ser. No. 09/368,246 is also incorporated herein by reference for purposes of disclosing circuitry placed in the handle of the endoscope. -
FIGS. 8 and 9 illustrate another arrangement of the imaging device incorporated within the endoscope of the second embodiment. In preface,FIGS. 8 and 9 illustrate the arrangement in which some elements of the imaging device are placed within the endoscope, and remaining elements of the imaging device are placed within thecontrol box 30. Wireless transmission of image signals takes place between the endoscope and the control box. Final transmission of the post-video signal can then be conducted either electrically through a cable interconnecting the display monitor and the control box, or final transmission may take place via another wireless transmission of the post-video signal from the control box to the display monitor. - Referring first to
FIG. 8 , the endoscope is shown which is identical to the endoscope shown inFIG. 6 with the exception that there is novideo processor board 50 or other associated video processing circuitry housed within the endoscope. Thus, thetransceiver radio element 170 receives a pre-video signal form theimage sensor 40, and then wirelessly transmits the pre-video signal to thecontrol box 30. Thetransceiver radio module 178 receives the pre-video signal and transfers the same tovideo processor board 50.Video processor board 50 alone or in conjunction with other processing circuitry such as a supplementary processing board 60 (not shown) places the image signal in a post-video format for direct reception by thedisplay monitor 196. Additionally, it is also contemplated that the timing and control circuitry 92 could be placed in thecontrol box 30. In such a case, thetransceiver radio module 178 would not only transmit authentication signals, but also signals generated from the timing and control circuitry 92 for controlling theimage sensor 40. - In lieu of a camera battery charge circuit incorporated within a unit which is co-located with the display monitor as shown in
FIG. 7 , thecharge circuit 182 may be housed within thecontrol box 30. Accordingly,circuit 182 could be powered bypower supply board 52. Additionally, acamera power switch 184 could be included withincontrol box 30 to selectively energize or de-energize the video processor board and its function in converting pre-video signals to post-video signals. As in the endoscope ofFIG. 6 , the endoscope ofFIG. 8 could also have its own power switch (not shown) to energize or de-energize functioning of the imaging elements and thetransceiver radio module 170. -
FIG. 9 also illustrates a secondary communications scheme whereby the post video signals could be wirelessly transmitted to thedisplay monitor 196. Optionally, video processor board 50 (or other processing circuitry) could electrically communicate with asecondary RF transmitter 200 which would transmit the post-video signals viaantennae 202. These post-video signals would then be received viaantennae 206 by asecondary RF receiver 204 mounted adjacent thedisplay monitor 196. For this secondary transmission, Bluetooth could be used; however, it would be preferable to use a different transmission standard between the primary and the secondary communications to prevent potential interference. One example of a secondary RF transmitter which could be used is an rf-video transmitter model no. SDX-22, manufactured by RF-Video.com of Toronto, Canada. This type of transmitter also operates in the 2.4 GHz frequency, and provides 80 mW of RF power. An example of an acceptable secondary RF receiver which could be used is an rf-video receiver model no. VRX-24 also manufactured by RF-Video.com. This type of receiver has an adjustable frequency of 2.2 to 2.7 Ghz. -
FIG. 8a illustrates that thebattery 176 may be removed from the endoscope for recharge. As shown,housing 172 carries both theantennae 174 and thebattery 176; however, it shall be understood that thehousing 176 could alternatively only carry thebattery 176, while theantennae 174 could be housed withinchannel 13 of the endoscope. One practical reason for placingantennae 174 withinhousing 172 is that the antennae is more easily replaced if it is located within a removable element. The distal end of thehousing 172 is received within well or bore 208 in the endoscope. Well 208 could be threaded to match external threads on the distal end of thehousing 172, or other means such as a clip or a friction fit could be used as understood by those skilled in the art in order to connecthousing 172 to the endoscope. Similarly, the proximal end of thehousing 172 could be threaded or otherwise adapted so that the proximal end of thehousing 172 could be received byreceptacle 186 for recharge of thebattery 176. As yet another option for recharge of thebattery 176, arecharge cable 188 including respective fittings/connectors 190 at each end of thecable 188 could be used to interconnectbattery 176 withreceptacle 186. Thus ifcable 188 were used,housing 172 could remain attached to the endoscope. One situation which might lend itself for use ofcable 188 would be ifbattery 176 became discharged to the point where it failed or was in danger of failing to provide enough potential to the image sensor and transceiver radio element during a surgical procedure.Cable 188 could then be used to provide instantaneous power to the endoscope. - Referring to
FIGS. 10-12 , in another aspect of the present invention, a steering connector assembly is provided in combination with the imaging device to provide a steering capability for the endoscope without increasing the size of the profile for the endoscopic device. One common prior art method of incorporating a steering capability involves the use of externally mounted steering wires and a yoke or bracket that is fitted over the distal end of the endoscope. The use of an externally mounted steering device greatly enlarges the front profile of the endoscope, and thereby prevents use of the endoscope in small passages or cavities within the body. Additionally, externally mounted steering devices can complicate overall maneuverability of the endoscope by further limiting the flexibility of the endoscope. The connector assembly of the present invention provides a fully contained or internally isolated steering capability that avoids these disadvantages of the prior art. Referring to theFIGS. 10-12 , an endoscopic device is illustrated including asteering connector assembly 300 that interconnects aCMOS camera module 302 with the body of the endoscopic device. Apolymer jacket 304 houses the camera elements shown in phantom lines. The endoscopic device includes one or more flexibledistal body portions 306 that may articulate or bend based upon control of thesteering wires 310 that extend through passages formed in the sheath of the endoscope. Preferably, thesteering wires 310 run through the jacket or sheath of the endoscopic device from the proximal end as shown inFIG. 10 to the distal end as shown inFIGS. 11 and 12 . The endoscopic device may also include a more rigidproximal body portion 308 that connects to asteering assembly 340 as shown inFIG. 13 . - Referring to
FIG. 11 , details of thesteering connector assembly 300 are shown. The connector assembly includes a connector body orbase 320 that may be a molded piece characterized by a plurality of transverse or laterally extendingflanges 324 interconnected by an orthogonally extendingcenter member 325. Theconnector body 320 provides gaps or spaces in whichelectrical traces 322 may be housed. Theelectrical traces 322 electrically interconnect theCMOS imager 316 to theelectrical wires 315 of the image/power cable 314, as also shown inFIG. 12 . The distal end of theconnector body 320 includes animager support base 318 that is used to mount theCMOS imager 316. Theelectrical traces 322 therefore also extend through themount 318 and connect to the various electrical pins or connections (not shown) of theimager 316. The proximal end of thebody 320 has a smaller width dimension defined by a pair of cutouts or notches formed on opposite lateral sides of the proximal end. A strain relief member orcap 326 is mounted over the proximal end of thebody 320 at the location of the notches. Thestrain relief member 326 serves to protect theelectrical traces 322, and also serves as the anchoring point for the distal ends of thesteering wires 310. As shown, thestrain relief member 326 may be two channel shaped elements that attach to the opposite lateral sides of thebody 320 at its proximal end. The exterior lateral edges of themember 326 are substantially planer with the exterior lateral edges of the distal end of thebody 320. As illustrated, the distal ends 328 of thesteering wires 310 may be embedded within the facing surface of thestrain relief member 326, and the steering wires then extend proximally through the sheath of thedistal body portion 306 of the endoscopic device. As illustrated, four steering wires are arranged in a rectangular arrangement and located at corners of the rectangular arrangement. Thestrain relief member 326 as mounted results in a frontal profile for theconnector assembly 300 that does not extend beyond the frontal profile of the imaging device or thecapsule 302. As shown inFIG. 11 , the upper surface of thestrain relief member 326 is mounted over the upper surface of thebody 320, and this arrangement is also repeated with respect to the lower surface of themember 326. Therefore, the strain relief member extends slightly beyond the upper and lower surfaces of thebody 320. Theimaging device 316 has a slightly larger frontal profile than that of the distal end of thebody 320, so the strain relief member can be incorporated to not extend beyond the profile of the imaging device since the thickness of the strain relief elements are very small. Therefore, the strain relief member fits easily within thejacket 304 of thecapsule 302 and the capsule size does not have to be enlarged. - Also referring to
FIG. 12 , in the reverse perspective view, a plurality ofopenings 330 can be seen that are formed through the sheath to receive thesteering wires 310. The image/power cable 314 is also illustrated that houses the plurality ofwires 315. Thesewires 315 carry the power and electronic signals to and from the CMOS imager. For clarity,FIG. 11 does not show theelectrical cable 314 andwires 315. In use, the distal ends of the wires 315 (not shown) are anchored in the gaps between theflanges 324, and these wires make contact with theelectrical traces 322 that also extend through thegaps 324. - Referring to
FIG. 13 , the endoscopic device is illustrated as connected to aconventional steering assembly 340 that is used to facilitate a number of functions for the endoscopic device, to include steering of the endoscopic device and the introduction of various fluids or instruments through the endoscopic device. Accordingly, thesteering assembly 340 is illustrated with conventional controls, to include, steering controls 342 which can tension or loosen the wires to effect a desired articulation of the distal end of the endoscope. For example, one of the knobs/dials can control transverse movement while the other knob/dial can control longitudinal movement. TheFIG. 13 also shows other conventional controls such as frame and shutter controls 344 for the imaging device, and various ports to receive gas, fluids and/or instruments. For example, theFIG. 13 shows asuction port 346, anair port 348, anauxiliary port 350, and abiopsy port 352. Theports - The
connector assembly 300 provides a structure for anchoring steering wires and for stabilizing and supporting electrical connections between the imaging device and the image/power cable. The connector assembly facilitates a steering capability but does not enlarge the frontal profile of the imaging device since the steering wires are housed within the sheath of the endoscope and are anchored internally within the distal end of the endoscope. Accordingly, the imaging device is maintained in a very small configuration which provides great advantages in terms of reducing the invasive nature of surgical procedures, as well as providing additional options for use of the imaging device to be steered into an optimal location for imaging difficult to access locations within a body. Additionally, the location at which the steering wires are anchored, namely, at the connector assembly itself, allows for optimum control in which the distal end of the endoscopic device can be maneuvered. In summary, the connector assembly fulfills two distinct purposes, namely, providing strain relief and support to the electrical traces and electrical wires, and serving to anchor the distal ends of the steering wires. The steering capability provided is usable with any of the imaging embodiments disclosed herein, to include both wired and wireless imaging capabilities. - From the foregoing, it is apparent that an entire imaging device may be incorporated within the distal tip of an endoscope, or may have some elements of the imaging device being placed in a small remote box adjacent to the endoscope. Based upon the type of image sensor used, the profile area of the imaging device may be made small enough to be placed into an endoscope which has a very small diameter tube. Additionally, the imaging device may be placed into the channels of existing endoscopes to provide additional imaging capability without increasing the size of the endoscope. The imaging device may be powered by a standard power input connection in the form of a power cord, or a small battery may be used. In order to enhance the freedom of using the endoscope without trailing cables, the endoscope may include wireless transmission capabilities. A wireless endoscope also has advantages with respect to overall surgical efficiency in conducting procedures by minimizing requirements to drape or shield cables in the sterile field, and by providing an endoscope which has unlimited movement capabilities without having to orient or otherwise handle the endoscope to account for twisted cables, drapes, or other components which are normally associated with endoscopic devices. A wireless transmission of post-video signals from the endoscope directly to the video display can be done to provide video images. Alternatively, the imaging device can be separated into components which are located in the endoscope and in a remote control box. Pre-video signals are wirelessly transmitted to the control box, and then post-video signals are provided to the video display either through a secondary wireless transmission, or by a conventional hard wired connection.
- This invention has been described in detail with reference to particular embodiments thereof, but it will be understood that various other modifications can be effected within the spirit and scope of this invention.
Claims (10)
1. An endoscopic device including an image sensor for producing images of a surgical site, said device comprising:
a tubular portion including a distal end, a proximal end, and a central passageway extending through said tubular portion;
a CMOS image sensor positioned in said tubular portion for receiving images of a surgical site, said image sensor producing an image signal;
a connector for interconnecting electrical leads of the CMOS image sensor to electrical wires of an image/power cable that transmits image signals from the image sensor through the cable to a video device, said connector having a body and a plurality of transverse extensions and at least one orthogonal center member connecting the lateral extensions, a plurality of gaps formed between each of said lateral extensions, said connector having a proximal end thereof with a smaller width dimension;
a plurality of electrical traces extending though the gaps of said connector for electrically interconnecting the image sensor to the electrical wires of the image/power cable;
a strain relief cap connected to said connector, said strain relief cap covering at least of portion of said electrical traces extending through said connector; and
a plurality of steering wires extending through said tubular portion for steering a distal end of the endoscopic device to position the image sensor, said steering wires having distal ends connected to said strain relief cap and proximal ends extending through said tubular portion.
2. A device as claimed in claim 1 , wherein:
said strain relief cap includes a pair of channels secured over opposite lateral sides of said proximal end of said connector, and said steering wires being anchored to a facing surface of said strain relief cap.
3. A device, as claimed in claim 1 , wherein:
said plurality of steering wires include four steering wires, said steering wires arranged in a rectangular arrangement and located at corners of the rectangular arrangement.
4. A device, as claimed in claim 1 , wherein:
said image sensor has a frontal profile defined by a length and width dimension, and said strain relief cap being secured to said connector such that the connector and strain relief cap when connected do not extend beyond said frontal profile.
5. A device, as claimed in claim 1 , wherein:
said image/power cable are located radially interior of said steering wires.
6. A device, as claimed in claim 1 , wherein:
said connector further includes a portion thereof attached to said image sensor for mounting of the image sensor to the connector.
7. A device, as claimed in claim 1 , wherein:
a capsule covers said image sensor at said distal end of said tubular portion, and said capsule has a frontal profile defined by a length and width dimension, and said strain relief cap being secured to said connector such that the connector and strain relief cap when connected do not extend beyond said frontal profile.
8. A device, as claimed in claim 1 , further including:
a steering assembly attached at a proximal end of said tubular portion for receiving said steering wires and said cable, said steering assembly providing a steering capability to said endoscope through manipulation of said steering wires.
9. An endoscopic device including an image sensor for producing images of a surgical site, said device comprising:
a tubular portion including a distal end, a proximal end, and a central passageway extending through said tubular portion;
a CMOS image sensor positioned in said tubular portion for receiving images of a surgical site, said image sensor producing an image signal;
a connector for interconnecting electrical leads of the image sensor to electrical wires of an image/power cable that transmits image signals from the image sensor through the cable to a video device, said connector having a body;
a plurality of electrical traces extending though the gaps of said connector for electrically interconnecting the image sensor to the electrical wires of the image/power cable;
a strain relief cap connected to said connector, said strain relief cap covering at least of portion of said electrical traces extending through said connector;
a plurality of steering wires extending through said tubular portion for steering a distal end of the endoscopic device to position the image sensor, said steering wires having distal ends connected to said strain relief cap and proximal ends extending through said tubular portion; and
a steering assembly attached at a proximal end of said tubular portion for receiving said steering wires and said cable, said steering assembly providing a steering capability to said endoscope through manipulation of said steering wires.
10. A device, as claimed in claim 9 , wherein:
said connector body has a plurality of transverse extensions and at least one orthogonal center member connecting the lateral extensions, a plurality of gaps formed between each of said lateral extensions, said connector having a proximal end thereof with a smaller width dimension; and
said strain relief cap includes a pair of channels secured over opposite lateral sides of said proximal end of said connector, and said steering wires being anchored to a facing surface of said strain relief cap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/090,358 US20160213230A1 (en) | 1997-10-06 | 2016-04-04 | Reduced area imaging device incorporated within endoscopic devices |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/944,322 US5929901A (en) | 1997-10-06 | 1997-10-06 | Reduced area imaging devices incorporated within surgical instruments |
US09/175,685 US6043839A (en) | 1997-10-06 | 1998-10-20 | Reduced area imaging devices |
US09/496,312 US6275255B1 (en) | 1997-10-06 | 2000-02-01 | Reduced area imaging devices |
US09/929,531 US7030904B2 (en) | 1997-10-06 | 2001-08-13 | Reduced area imaging device incorporated within wireless endoscopic devices |
US11/245,960 US20060022234A1 (en) | 1997-10-06 | 2005-10-06 | Reduced area imaging device incorporated within wireless endoscopic devices |
US12/889,287 US20110034769A1 (en) | 1997-10-06 | 2010-09-23 | Reduced area imaging device incorporated within wireless endoscopic devices |
US13/732,908 US8885034B2 (en) | 1997-10-06 | 2013-01-02 | Reduced area imaging device incorporated within endoscopic devices |
US14/291,583 US9307895B2 (en) | 1997-10-06 | 2014-05-30 | Reduced area imaging device incorporated within endoscopic devices |
US15/090,358 US20160213230A1 (en) | 1997-10-06 | 2016-04-04 | Reduced area imaging device incorporated within endoscopic devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/291,583 Continuation US9307895B2 (en) | 1997-10-06 | 2014-05-30 | Reduced area imaging device incorporated within endoscopic devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160213230A1 true US20160213230A1 (en) | 2016-07-28 |
Family
ID=26871479
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/175,685 Expired - Lifetime US6043839A (en) | 1997-09-11 | 1998-10-20 | Reduced area imaging devices |
US09/496,312 Expired - Lifetime US6275255B1 (en) | 1997-09-11 | 2000-02-01 | Reduced area imaging devices |
US15/090,358 Abandoned US20160213230A1 (en) | 1997-10-06 | 2016-04-04 | Reduced area imaging device incorporated within endoscopic devices |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/175,685 Expired - Lifetime US6043839A (en) | 1997-09-11 | 1998-10-20 | Reduced area imaging devices |
US09/496,312 Expired - Lifetime US6275255B1 (en) | 1997-09-11 | 2000-02-01 | Reduced area imaging devices |
Country Status (1)
Country | Link |
---|---|
US (3) | US6043839A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190357758A1 (en) * | 2017-02-15 | 2019-11-28 | Infinite Arthroscopy, Inc. Limited | Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source |
US11096774B2 (en) | 2016-12-09 | 2021-08-24 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra |
USD938584S1 (en) | 2020-03-30 | 2021-12-14 | Lazurite Holdings Llc | Hand piece |
US11246245B2 (en) * | 2017-10-17 | 2022-02-08 | Panasonic Intellectual Property Management Co., Ltd. | Camera |
USD972176S1 (en) | 2020-08-06 | 2022-12-06 | Lazurite Holdings Llc | Light source |
US11890213B2 (en) | 2019-11-19 | 2024-02-06 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra |
US11931010B2 (en) | 2017-03-24 | 2024-03-19 | Covidien Lp | Endoscopes and methods of treatment |
Families Citing this family (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6211904B1 (en) | 1997-09-11 | 2001-04-03 | Edwin L. Adair | Surgical devices incorporating reduced area imaging devices |
US20110034769A1 (en) | 1997-10-06 | 2011-02-10 | Micro-Imaging Solutions Llc | Reduced area imaging device incorporated within wireless endoscopic devices |
US8317689B1 (en) | 1999-09-13 | 2012-11-27 | Visionscope Technologies Llc | Miniature endoscope system |
IL132944A (en) | 1999-11-15 | 2009-05-04 | Arkady Glukhovsky | Method for activating an image collecting process |
ATE511785T1 (en) * | 2000-03-08 | 2011-06-15 | Given Imaging Ltd | DEVICE FOR INVIVO IMAGING |
US6958766B2 (en) | 2000-04-06 | 2005-10-25 | Gendex Corporation | Dental video imaging system |
US6692430B2 (en) * | 2000-04-10 | 2004-02-17 | C2Cure Inc. | Intra vascular imaging apparatus |
IL135571A0 (en) * | 2000-04-10 | 2001-05-20 | Doron Adler | Minimal invasive surgery imaging system |
JP2002076314A (en) * | 2000-08-30 | 2002-03-15 | Texas Instr Japan Ltd | Ultra-miniature imaging device |
US6532328B1 (en) * | 2000-10-31 | 2003-03-11 | International Business Machines Corporation | Network cable with optical identification element |
JP2005503228A (en) * | 2001-04-06 | 2005-02-03 | デンツプリー・インターナショナル・インコーポレーテッド | Dental video imaging system |
WO2002102224A2 (en) * | 2001-06-18 | 2002-12-27 | Given Imaging Ltd. | In vivo sensing device with a circuit board having rigid sections and flexible sections |
IL159616A0 (en) * | 2001-06-28 | 2004-06-01 | Given Imaging Ltd | In vivo imaging device with a small cross sectional area |
US6863651B2 (en) * | 2001-10-19 | 2005-03-08 | Visionscope, Llc | Miniature endoscope with imaging fiber system |
US20070167681A1 (en) | 2001-10-19 | 2007-07-19 | Gill Thomas J | Portable imaging system employing a miniature endoscope |
US8038602B2 (en) * | 2001-10-19 | 2011-10-18 | Visionscope Llc | Portable imaging system employing a miniature endoscope |
US10595710B2 (en) * | 2001-10-19 | 2020-03-24 | Visionscope Technologies Llc | Portable imaging system employing a miniature endoscope |
US7588535B2 (en) * | 2001-12-11 | 2009-09-15 | C2Cure Inc. | Apparatus, method and system for intravascular photographic imaging |
US20030216622A1 (en) * | 2002-04-25 | 2003-11-20 | Gavriel Meron | Device and method for orienting a device in vivo |
US6665468B2 (en) * | 2002-04-30 | 2003-12-16 | The Curators Of The University Of Missouri | Focal plane array optical data extraction and memory |
US7662094B2 (en) * | 2002-05-14 | 2010-02-16 | Given Imaging Ltd. | Optical head assembly with dome, and device for use thereof |
US8194121B2 (en) * | 2002-05-16 | 2012-06-05 | C2Cure, Inc. | Miniature camera head |
EP1540641A2 (en) * | 2002-06-26 | 2005-06-15 | VKB Inc. | Multifunctional integrated image sensor and application to virtual interface technology |
US7248281B2 (en) * | 2002-07-16 | 2007-07-24 | Fujinon Corporation | Electronic endoscope apparatus which superimposes signals on power supply |
AU2003249551A1 (en) * | 2002-08-13 | 2004-02-25 | Given Imaging Ltd. | System for in vivo sampling and analysis |
AU2003269438A1 (en) * | 2002-09-30 | 2004-04-19 | Given Imaging Ltd. | In-vivo sensing system |
AU2003264858A1 (en) * | 2002-09-30 | 2004-04-19 | Given Imaging Ltd. | Reduced size imaging device |
US7866322B2 (en) * | 2002-10-15 | 2011-01-11 | Given Imaging Ltd. | Device, system and method for transfer of signals to a moving device |
US20080045788A1 (en) * | 2002-11-27 | 2008-02-21 | Zvika Gilad | Method and device of imaging with an in vivo imager |
JP4549865B2 (en) * | 2002-12-26 | 2010-09-22 | ギブン イメージング リミテッド | In-vivo imaging device and manufacturing method thereof |
ATE547976T1 (en) * | 2002-12-26 | 2012-03-15 | Given Imaging Ltd | IMMOBILIZABLE IN-VIVO MEASUREMENT DEVICE |
US7833151B2 (en) * | 2002-12-26 | 2010-11-16 | Given Imaging Ltd. | In vivo imaging device with two imagers |
US7591783B2 (en) | 2003-04-01 | 2009-09-22 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
US20040199052A1 (en) | 2003-04-01 | 2004-10-07 | Scimed Life Systems, Inc. | Endoscopic imaging system |
US7578786B2 (en) | 2003-04-01 | 2009-08-25 | Boston Scientific Scimed, Inc. | Video endoscope |
US8118732B2 (en) | 2003-04-01 | 2012-02-21 | Boston Scientific Scimed, Inc. | Force feedback control system for video endoscope |
US20050245789A1 (en) | 2003-04-01 | 2005-11-03 | Boston Scientific Scimed, Inc. | Fluid manifold for endoscope system |
US7604589B2 (en) * | 2003-10-01 | 2009-10-20 | Given Imaging, Ltd. | Device, system and method for determining orientation of in-vivo devices |
JP4104523B2 (en) * | 2003-10-02 | 2008-06-18 | オリンパス株式会社 | Video signal generator |
WO2005043231A2 (en) * | 2003-10-31 | 2005-05-12 | Vkb Inc. | Optical apparatus for virtual interface projection and sensing |
US20050137468A1 (en) * | 2003-12-18 | 2005-06-23 | Jerome Avron | Device, system, and method for in-vivo sensing of a substance |
US7821564B2 (en) * | 2003-12-30 | 2010-10-26 | Given Imaging Ltd. | Assembly for aligning an optical system |
US7647090B1 (en) | 2003-12-30 | 2010-01-12 | Given Imaging, Ltd. | In-vivo sensing device and method for producing same |
US8702597B2 (en) * | 2003-12-31 | 2014-04-22 | Given Imaging Ltd. | Immobilizable in-vivo imager with moveable focusing mechanism |
WO2005062717A2 (en) | 2003-12-31 | 2005-07-14 | Given Imaging Ltd. | In-vivo sensing device with detachable part |
US7596403B2 (en) | 2004-06-30 | 2009-09-29 | Given Imaging Ltd. | System and method for determining path lengths through a body lumen |
US20060015013A1 (en) * | 2004-06-30 | 2006-01-19 | Zvika Gilad | Device and method for in vivo illumination |
US7643865B2 (en) * | 2004-06-30 | 2010-01-05 | Given Imaging Ltd. | Autonomous in-vivo device |
US8500630B2 (en) * | 2004-06-30 | 2013-08-06 | Given Imaging Ltd. | In vivo device with flexible circuit board and method for assembly thereof |
US7300397B2 (en) * | 2004-07-29 | 2007-11-27 | C2C Cure, Inc. | Endoscope electronics assembly |
US7241263B2 (en) | 2004-09-30 | 2007-07-10 | Scimed Life Systems, Inc. | Selectively rotatable shaft coupler |
US8083671B2 (en) | 2004-09-30 | 2011-12-27 | Boston Scientific Scimed, Inc. | Fluid delivery system for use with an endoscope |
US8353860B2 (en) | 2004-09-30 | 2013-01-15 | Boston Scientific Scimed, Inc. | Device for obstruction removal with specific tip structure |
US8199187B2 (en) | 2004-09-30 | 2012-06-12 | Boston Scientific Scimed, Inc. | Adapter for use with digital imaging medical device |
US7479106B2 (en) | 2004-09-30 | 2009-01-20 | Boston Scientific Scimed, Inc. | Automated control of irrigation and aspiration in a single-use endoscope |
EP1799094A2 (en) | 2004-09-30 | 2007-06-27 | Boston Scientific Scimed, Inc. | Multi-functional endoscopic system for use in electrosurgical applications |
US20060095093A1 (en) * | 2004-11-04 | 2006-05-04 | Ido Bettesh | Apparatus and method for receiving device selection and combining |
US20060164510A1 (en) * | 2005-01-24 | 2006-07-27 | Doron Adler | Sensor with narrow mounting profile |
US7860555B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue visualization and manipulation system |
US11478152B2 (en) | 2005-02-02 | 2022-10-25 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US8050746B2 (en) * | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US8137333B2 (en) | 2005-10-25 | 2012-03-20 | Voyage Medical, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US9510732B2 (en) | 2005-10-25 | 2016-12-06 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US8078266B2 (en) | 2005-10-25 | 2011-12-13 | Voyage Medical, Inc. | Flow reduction hood systems |
US20080015569A1 (en) | 2005-02-02 | 2008-01-17 | Voyage Medical, Inc. | Methods and apparatus for treatment of atrial fibrillation |
US7860556B2 (en) * | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue imaging and extraction systems |
US10064540B2 (en) * | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
US7930016B1 (en) | 2005-02-02 | 2011-04-19 | Voyage Medical, Inc. | Tissue closure system |
US7918787B2 (en) | 2005-02-02 | 2011-04-05 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
IL167782A (en) * | 2005-03-31 | 2011-12-29 | Given Imaging Ltd | Antenna for in-vivo imaging system |
US20060221218A1 (en) * | 2005-04-05 | 2006-10-05 | Doron Adler | Image sensor with improved color filter |
JP4015666B2 (en) * | 2005-04-07 | 2007-11-28 | オリンパスメディカルシステムズ株式会社 | In-subject information acquisition system |
US8097003B2 (en) * | 2005-05-13 | 2012-01-17 | Boston Scientific Scimed, Inc. | Endoscopic apparatus with integrated variceal ligation device |
US7846107B2 (en) | 2005-05-13 | 2010-12-07 | Boston Scientific Scimed, Inc. | Endoscopic apparatus with integrated multiple biopsy device |
IL176231A (en) * | 2005-06-14 | 2010-12-30 | Given Imaging Ltd | Modulator and method for producing a modulated signal |
US20070019103A1 (en) * | 2005-07-25 | 2007-01-25 | Vkb Inc. | Optical apparatus for virtual interface projection and sensing |
IL177045A (en) | 2005-07-25 | 2012-12-31 | Daniel Gat | Device, system and method of receiving and recording and displaying in-vivo data with user entered data |
US20070019099A1 (en) * | 2005-07-25 | 2007-01-25 | Vkb Inc. | Optical apparatus for virtual interface projection and sensing |
US8052597B2 (en) | 2005-08-30 | 2011-11-08 | Boston Scientific Scimed, Inc. | Method for forming an endoscope articulation joint |
US8221310B2 (en) * | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US20070129602A1 (en) * | 2005-11-22 | 2007-06-07 | Given Imaging Ltd. | Device, method and system for activating an in-vivo imaging device |
US7896805B2 (en) * | 2005-11-23 | 2011-03-01 | Given Imaging Ltd. | In-vivo imaging device and optical system thereof |
WO2007063550A2 (en) * | 2005-12-02 | 2007-06-07 | Given Imaging Ltd. | System and device for in vivo procedures |
US20070167834A1 (en) * | 2005-12-29 | 2007-07-19 | Amit Pascal | In-vivo imaging optical device and method |
US20070156051A1 (en) * | 2005-12-29 | 2007-07-05 | Amit Pascal | Device and method for in-vivo illumination |
US9320417B2 (en) | 2005-12-29 | 2016-04-26 | Given Imaging Ltd. | In-vivo optical imaging device with backscatter blocking |
US7967759B2 (en) | 2006-01-19 | 2011-06-28 | Boston Scientific Scimed, Inc. | Endoscopic system with integrated patient respiratory status indicator |
US8888684B2 (en) | 2006-03-27 | 2014-11-18 | Boston Scientific Scimed, Inc. | Medical devices with local drug delivery capabilities |
US7955255B2 (en) | 2006-04-20 | 2011-06-07 | Boston Scientific Scimed, Inc. | Imaging assembly with transparent distal cap |
US8202265B2 (en) | 2006-04-20 | 2012-06-19 | Boston Scientific Scimed, Inc. | Multiple lumen assembly for use in endoscopes or other medical devices |
US20070270651A1 (en) * | 2006-05-19 | 2007-11-22 | Zvika Gilad | Device and method for illuminating an in vivo site |
US9055906B2 (en) | 2006-06-14 | 2015-06-16 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
JP2010502313A (en) * | 2006-09-01 | 2010-01-28 | ボエッジ メディカル, インコーポレイテッド | Method and apparatus for the treatment of atrial fibrillation |
US20080097476A1 (en) | 2006-09-01 | 2008-04-24 | Voyage Medical, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US10004388B2 (en) * | 2006-09-01 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
US10335131B2 (en) | 2006-10-23 | 2019-07-02 | Intuitive Surgical Operations, Inc. | Methods for preventing tissue migration |
JP5395671B2 (en) | 2006-11-16 | 2014-01-22 | ストライカー・コーポレーション | Wireless endoscope camera |
US20080183036A1 (en) | 2006-12-18 | 2008-07-31 | Voyage Medical, Inc. | Systems and methods for unobstructed visualization and ablation |
US8814779B2 (en) | 2006-12-21 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Stereoscopic endoscope |
US8556807B2 (en) * | 2006-12-21 | 2013-10-15 | Intuitive Surgical Operations, Inc. | Hermetically sealed distal sensor endoscope |
US8131350B2 (en) * | 2006-12-21 | 2012-03-06 | Voyage Medical, Inc. | Stabilization of visualization catheters |
US9226648B2 (en) | 2006-12-21 | 2016-01-05 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US20080161647A1 (en) * | 2006-12-27 | 2008-07-03 | Amit Pascal | Device and method for multiple illumination fields of an in-vivo imaging device |
US9155452B2 (en) | 2007-04-27 | 2015-10-13 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US8657805B2 (en) * | 2007-05-08 | 2014-02-25 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US8709008B2 (en) * | 2007-05-11 | 2014-04-29 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US20090030276A1 (en) * | 2007-07-27 | 2009-01-29 | Voyage Medical, Inc. | Tissue visualization catheter with imaging systems integration |
US8495999B2 (en) | 2007-08-04 | 2013-07-30 | John Adam Law | Airway intubation device |
US20090046171A1 (en) * | 2007-08-16 | 2009-02-19 | C2Cure, Inc. | Non-linear color correction |
US8235985B2 (en) | 2007-08-31 | 2012-08-07 | Voyage Medical, Inc. | Visualization and ablation system variations |
US20090062790A1 (en) * | 2007-08-31 | 2009-03-05 | Voyage Medical, Inc. | Direct visualization bipolar ablation systems |
US20090105532A1 (en) * | 2007-10-22 | 2009-04-23 | Zvika Gilad | In vivo imaging device and method of manufacturing thereof |
US20090125022A1 (en) * | 2007-11-12 | 2009-05-14 | Voyage Medical, Inc. | Tissue visualization and ablation systems |
US20090143640A1 (en) * | 2007-11-26 | 2009-06-04 | Voyage Medical, Inc. | Combination imaging and treatment assemblies |
US8858609B2 (en) | 2008-02-07 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US8515507B2 (en) * | 2008-06-16 | 2013-08-20 | Given Imaging Ltd. | Device and method for detecting in-vivo pathology |
US20090326572A1 (en) * | 2008-06-27 | 2009-12-31 | Ruey-Feng Peh | Apparatus and methods for rapid tissue crossing |
US9101735B2 (en) * | 2008-07-07 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Catheter control systems |
US20100022824A1 (en) | 2008-07-22 | 2010-01-28 | Cybulski James S | Tissue modification devices and methods of using the same |
US8333012B2 (en) | 2008-10-10 | 2012-12-18 | Voyage Medical, Inc. | Method of forming electrode placement and connection systems |
US8894643B2 (en) | 2008-10-10 | 2014-11-25 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
US20100121139A1 (en) | 2008-11-12 | 2010-05-13 | Ouyang Xiaolong | Minimally Invasive Imaging Systems |
US9468364B2 (en) | 2008-11-14 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Intravascular catheter with hood and image processing systems |
US8864654B2 (en) | 2010-04-20 | 2014-10-21 | Jeffrey B. Kleiner | Method and apparatus for performing retro peritoneal dissection |
US9717403B2 (en) | 2008-12-05 | 2017-08-01 | Jeffrey B. Kleiner | Method and apparatus for performing retro peritoneal dissection |
US20100256629A1 (en) * | 2009-04-06 | 2010-10-07 | Voyage Medical, Inc. | Methods and devices for treatment of the ostium |
US7931149B2 (en) * | 2009-05-27 | 2011-04-26 | Given Imaging Ltd. | System for storing and activating an in vivo imaging capsule |
US9901244B2 (en) | 2009-06-18 | 2018-02-27 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US8926502B2 (en) | 2011-03-07 | 2015-01-06 | Endochoice, Inc. | Multi camera endoscope having a side service channel |
US9706903B2 (en) | 2009-06-18 | 2017-07-18 | Endochoice, Inc. | Multiple viewing elements endoscope system with modular imaging units |
US9872609B2 (en) | 2009-06-18 | 2018-01-23 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
WO2012056453A2 (en) | 2010-10-28 | 2012-05-03 | Peermedical Ltd. | Optical systems for multi-sensor endoscopes |
US9101287B2 (en) | 2011-03-07 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi camera endoscope assembly having multiple working channels |
US9642513B2 (en) | 2009-06-18 | 2017-05-09 | Endochoice Inc. | Compact multi-viewing element endoscope system |
US11864734B2 (en) | 2009-06-18 | 2024-01-09 | Endochoice, Inc. | Multi-camera endoscope |
US9554692B2 (en) | 2009-06-18 | 2017-01-31 | EndoChoice Innovation Ctr. Ltd. | Multi-camera endoscope |
WO2012038958A2 (en) | 2010-09-20 | 2012-03-29 | Peermedical Ltd. | Multi-camera endoscope having fluid channels |
US10165929B2 (en) | 2009-06-18 | 2019-01-01 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US9713417B2 (en) | 2009-06-18 | 2017-07-25 | Endochoice, Inc. | Image capture assembly for use in a multi-viewing elements endoscope |
US11547275B2 (en) | 2009-06-18 | 2023-01-10 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US11278190B2 (en) | 2009-06-18 | 2022-03-22 | Endochoice, Inc. | Multi-viewing element endoscope |
US9492063B2 (en) | 2009-06-18 | 2016-11-15 | Endochoice Innovation Center Ltd. | Multi-viewing element endoscope |
US9101268B2 (en) | 2009-06-18 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US9402533B2 (en) | 2011-03-07 | 2016-08-02 | Endochoice Innovation Center Ltd. | Endoscope circuit board assembly |
US8516691B2 (en) * | 2009-06-24 | 2013-08-27 | Given Imaging Ltd. | Method of assembly of an in vivo imaging device with a flexible circuit board |
US8648932B2 (en) * | 2009-08-13 | 2014-02-11 | Olive Medical Corporation | System, apparatus and methods for providing a single use imaging device for sterile environments |
US9179831B2 (en) * | 2009-11-30 | 2015-11-10 | King Systems Corporation | Visualization instrument |
US8694071B2 (en) | 2010-02-12 | 2014-04-08 | Intuitive Surgical Operations, Inc. | Image stabilization techniques and methods |
EP2550799A4 (en) | 2010-03-25 | 2014-09-17 | Olive Medical Corp | System and method for providing a single use imaging device for medical applications |
US9814522B2 (en) | 2010-04-06 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Apparatus and methods for ablation efficacy |
CN106037624B (en) | 2010-09-08 | 2018-09-07 | Kpr美国有限责任公司 | Conduit with image-forming assembly |
US9560953B2 (en) | 2010-09-20 | 2017-02-07 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
EP3420886B8 (en) | 2010-12-09 | 2020-07-15 | EndoChoice, Inc. | Flexible electronic circuit board multi-camera endoscope |
US11889986B2 (en) | 2010-12-09 | 2024-02-06 | Endochoice, Inc. | Flexible electronic circuit board for a multi-camera endoscope |
CN103348470B (en) | 2010-12-09 | 2017-05-03 | 恩多巧爱思创新中心有限公司 | Flexible electronic circuit board for a multi-camera endoscope |
EP2672878B1 (en) | 2011-02-07 | 2017-11-22 | Endochoice Innovation Center Ltd. | Multi-element cover for a multi-camera endoscope |
US8873816B1 (en) | 2011-04-06 | 2014-10-28 | Given Imaging Ltd. | Method and system for identification of red colored pathologies in vivo |
US8749686B2 (en) | 2011-04-29 | 2014-06-10 | Truesense Imaging, Inc. | CCD image sensors and methods |
JP6180405B2 (en) | 2011-05-03 | 2017-08-16 | エンドーシー コーポレイションEndosee Corporation | Methods and apparatus for hysteroscopy and endometrial biopsy |
JP6083051B2 (en) | 2011-05-12 | 2017-02-22 | デピュー シンセス プロダクツ, インコーポレーテッドDePuy Synthes Products, Inc. | Improved image sensor for endoscope |
US9572571B2 (en) | 2011-09-09 | 2017-02-21 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US10010319B2 (en) | 2011-09-09 | 2018-07-03 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
EP2604172B1 (en) | 2011-12-13 | 2015-08-12 | EndoChoice Innovation Center Ltd. | Rotatable connector for an endoscope |
EP2604175B1 (en) | 2011-12-13 | 2019-11-20 | EndoChoice Innovation Center Ltd. | Removable tip endoscope |
WO2013101912A1 (en) | 2011-12-29 | 2013-07-04 | Cook Medical Technoloies Llc | Space-optimized visualization catheter with camera train holder |
EP2797490B1 (en) * | 2011-12-29 | 2016-11-09 | Cook Medical Technologies LLC | Space-optimized visualization catheter having a camera train holder in a catheter with off-centered lumens |
US9668643B2 (en) | 2011-12-29 | 2017-06-06 | Cook Medical Technologies Llc | Space-optimized visualization catheter with oblong shape |
US9622646B2 (en) | 2012-06-25 | 2017-04-18 | Coopersurgical, Inc. | Low-cost instrument for endoscopically guided operative procedures |
US9560954B2 (en) | 2012-07-24 | 2017-02-07 | Endochoice, Inc. | Connector for use with endoscope |
WO2014018948A2 (en) | 2012-07-26 | 2014-01-30 | Olive Medical Corporation | Camera system with minimal area monolithic cmos image sensor |
US10568496B2 (en) | 2012-07-26 | 2020-02-25 | DePuy Synthes Products, Inc. | Continuous video in a light deficient environment |
CN104619237B (en) | 2012-07-26 | 2018-03-30 | 德普伊辛迪斯制品公司 | The pulse modulated illumination schemes of YCBCR in light deficiency environment |
USD735343S1 (en) | 2012-09-07 | 2015-07-28 | Covidien Lp | Console |
USD716841S1 (en) | 2012-09-07 | 2014-11-04 | Covidien Lp | Display screen with annotate file icon |
US9517184B2 (en) | 2012-09-07 | 2016-12-13 | Covidien Lp | Feeding tube with insufflation device and related methods therefor |
US9198835B2 (en) | 2012-09-07 | 2015-12-01 | Covidien Lp | Catheter with imaging assembly with placement aid and related methods therefor |
USD717340S1 (en) | 2012-09-07 | 2014-11-11 | Covidien Lp | Display screen with enteral feeding icon |
WO2014144986A1 (en) | 2013-03-15 | 2014-09-18 | Olive Medical Corporation | Scope sensing in a light controlled environment |
WO2014144947A1 (en) | 2013-03-15 | 2014-09-18 | Olive Medical Corporation | Super resolution and color motion artifact correction in a pulsed color imaging system |
CN105246394B (en) | 2013-03-15 | 2018-01-12 | 德普伊新特斯产品公司 | It is synchronous without the imaging sensor of input clock and data transfer clock |
EP2967286B1 (en) | 2013-03-15 | 2021-06-23 | DePuy Synthes Products, Inc. | Minimize image sensor i/o and conductor counts in endoscope applications |
EP2967300A4 (en) | 2013-03-15 | 2016-11-23 | Olive Medical Corp | Controlling the integral light energy of a laser pulse |
US9986899B2 (en) | 2013-03-28 | 2018-06-05 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US9993142B2 (en) | 2013-03-28 | 2018-06-12 | Endochoice, Inc. | Fluid distribution device for a multiple viewing elements endoscope |
US10499794B2 (en) | 2013-05-09 | 2019-12-10 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
US9257763B2 (en) | 2013-07-02 | 2016-02-09 | Gyrus Acmi, Inc. | Hybrid interconnect |
US9510739B2 (en) | 2013-07-12 | 2016-12-06 | Gyrus Acmi, Inc. | Endoscope small imaging system |
US9324145B1 (en) | 2013-08-08 | 2016-04-26 | Given Imaging Ltd. | System and method for detection of transitions in an image stream of the gastrointestinal tract |
US11547446B2 (en) | 2014-01-13 | 2023-01-10 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
US9370295B2 (en) | 2014-01-13 | 2016-06-21 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
US10342579B2 (en) | 2014-01-13 | 2019-07-09 | Trice Medical, Inc. | Fully integrated, disposable tissue visualization device |
AU2015230978B2 (en) | 2014-03-21 | 2020-01-23 | DePuy Synthes Products, Inc. | Card edge connector for an imaging sensor |
CN104288848B (en) * | 2014-10-31 | 2017-04-05 | 陈舒华 | Eustachian tube check and treatment device |
WO2016086145A1 (en) | 2014-11-26 | 2016-06-02 | Marmor David B | Apparatus, system and methods for proper transesophageal echocardiography probe positioning by using camera for ultrasound imaging |
US10045758B2 (en) | 2014-11-26 | 2018-08-14 | Visura Technologies, LLC | Apparatus, systems and methods for proper transesophageal echocardiography probe positioning by using camera for ultrasound imaging |
EP3267674B1 (en) * | 2015-03-04 | 2019-08-21 | Sony Corporation | Image pickup device |
JP6072389B1 (en) * | 2015-06-03 | 2017-02-01 | オリンパス株式会社 | Endoscope connector |
CN113243977A (en) | 2015-08-11 | 2021-08-13 | 特里斯医疗有限公司 | Fully integrated disposable tissue visualization device |
JPWO2017072862A1 (en) * | 2015-10-27 | 2018-08-16 | オリンパス株式会社 | Imaging unit and endoscope |
WO2017087448A1 (en) | 2015-11-16 | 2017-05-26 | Infinite Arthroscopy Inc, Limited | Wireless medical imaging system |
US10702305B2 (en) | 2016-03-23 | 2020-07-07 | Coopersurgical, Inc. | Operative cannulas and related methods |
EP3773235B1 (en) | 2018-03-29 | 2023-07-19 | Trice Medical, Inc. | Fully integrated endoscope with biopsy capabilities |
CA3100240A1 (en) | 2018-05-17 | 2019-11-21 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603697A (en) * | 1995-02-14 | 1997-02-18 | Fidus Medical Technology Corporation | Steering mechanism for catheters and methods for making same |
US6141037A (en) * | 1998-03-18 | 2000-10-31 | Linvatec Corporation | Video camera system and related method |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US33854A (en) * | 1861-12-03 | Improvement in portable body-batteries | ||
US4491865A (en) * | 1982-09-29 | 1985-01-01 | Welch Allyn, Inc. | Image sensor assembly |
DE3715417A1 (en) * | 1986-05-13 | 1987-11-19 | Olympus Optical Co | SEMICONDUCTOR IMAGE GENERATION DEVICE, AND ENDOSCOPE HERE EQUIPPED WITH IT |
JPS6363426A (en) * | 1986-09-04 | 1988-03-19 | オリンパス光学工業株式会社 | Electronic endoscope |
IL83213A (en) * | 1987-07-16 | 1991-08-16 | Technion Res & Dev Foundation | Intelligent scan image sensor |
US4814648A (en) * | 1987-09-24 | 1989-03-21 | Texas Instruments Incorporated | Low 1/f noise amplifier for CCD imagers |
US4854302A (en) * | 1987-11-12 | 1989-08-08 | Welch Allyn, Inc. | Video equipped endoscope with needle probe |
US4869246A (en) * | 1987-12-11 | 1989-09-26 | Adair Edwin Lloyd | Method for controllably embolyzing blood vessels |
US5116317A (en) * | 1988-06-16 | 1992-05-26 | Optimed Technologies, Inc. | Angioplasty catheter with integral fiber optic assembly |
USRE33854E (en) | 1989-02-03 | 1992-03-24 | sterilizable sheathpe with .[.heat.]. | |
US5162913A (en) * | 1990-02-26 | 1992-11-10 | Medical Concepts, Inc. | Apparatus for modulating the output of a ccd camera |
JP3216650B2 (en) * | 1990-08-27 | 2001-10-09 | オリンパス光学工業株式会社 | Solid-state imaging device |
JPH0775400B2 (en) * | 1990-12-28 | 1995-08-09 | 松下電器産業株式会社 | Camera head of solid-state imaging device and method of manufacturing the same |
US5251613A (en) * | 1991-05-06 | 1993-10-12 | Adair Edwin Lloyd | Method of cervical videoscope with detachable camera |
DE4214283A1 (en) * | 1992-04-30 | 1993-11-04 | Schneider Co Optische Werke | Contactless length measuring camera - contains semiconducting transducer moved axially within camera body during focussing |
US5630782A (en) * | 1992-09-01 | 1997-05-20 | Adair; Edwin L. | Sterilizable endoscope with separable auxiliary assembly |
US5402768A (en) * | 1992-09-01 | 1995-04-04 | Adair; Edwin L. | Endoscope with reusable core and disposable sheath with passageways |
CA2143639C (en) * | 1992-09-01 | 2004-07-20 | Edwin L. Adair | Sterilizable endoscope with separable disposable tube assembly |
EP0587514A1 (en) * | 1992-09-11 | 1994-03-16 | Welch Allyn, Inc. | Processor module for video inspection probe |
US5381784A (en) * | 1992-09-30 | 1995-01-17 | Adair; Edwin L. | Stereoscopic endoscope |
US5471515A (en) * | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5605531A (en) * | 1994-04-08 | 1997-02-25 | Tilane Corporation | Apparatus for use with endoscopy and fluoroscopy for automatic switching between video modes |
US5630783A (en) * | 1995-08-11 | 1997-05-20 | Steinberg; Jeffrey | Portable cystoscope |
US5682199A (en) * | 1996-03-28 | 1997-10-28 | Jedmed Instrument Company | Video endoscope with interchangeable endoscope heads |
US5754313A (en) * | 1996-07-17 | 1998-05-19 | Welch Allyn, Inc. | Imager assembly |
US5734418A (en) * | 1996-07-17 | 1998-03-31 | Welch Allyn, Inc. | Endoscope with tab imager package |
-
1998
- 1998-10-20 US US09/175,685 patent/US6043839A/en not_active Expired - Lifetime
-
2000
- 2000-02-01 US US09/496,312 patent/US6275255B1/en not_active Expired - Lifetime
-
2016
- 2016-04-04 US US15/090,358 patent/US20160213230A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603697A (en) * | 1995-02-14 | 1997-02-18 | Fidus Medical Technology Corporation | Steering mechanism for catheters and methods for making same |
US6141037A (en) * | 1998-03-18 | 2000-10-31 | Linvatec Corporation | Video camera system and related method |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11096774B2 (en) | 2016-12-09 | 2021-08-24 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra |
US12090040B2 (en) | 2016-12-09 | 2024-09-17 | Zenflow, Inc. | Methods for deployment of an implant |
US11998438B2 (en) | 2016-12-09 | 2024-06-04 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra |
US11903859B1 (en) | 2016-12-09 | 2024-02-20 | Zenflow, Inc. | Methods for deployment of an implant |
US10610089B2 (en) * | 2017-02-15 | 2020-04-07 | Infinite Arthroscopy, Inc. Limited | Wireless imaging system comprising a head unit and a light cable that comprises an integrated light source |
AU2018221566B2 (en) * | 2017-02-15 | 2020-07-23 | Infinite Arthroscopy Inc. Limited | Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source |
US10932658B2 (en) | 2017-02-15 | 2021-03-02 | Infinite Arthroscopy, Inc. Limited | Wireless imaging system comprising a head unit and a light cable that comprises an integrated light source |
AU2020250242B2 (en) * | 2017-02-15 | 2021-07-22 | Infinite Arthroscopy Inc. Limited | Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source |
US20190357758A1 (en) * | 2017-02-15 | 2019-11-28 | Infinite Arthroscopy, Inc. Limited | Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source |
US11889987B2 (en) | 2017-02-15 | 2024-02-06 | Lazurite Holdings Llc | Wireless imaging system |
US11931010B2 (en) | 2017-03-24 | 2024-03-19 | Covidien Lp | Endoscopes and methods of treatment |
US11246245B2 (en) * | 2017-10-17 | 2022-02-08 | Panasonic Intellectual Property Management Co., Ltd. | Camera |
US11890213B2 (en) | 2019-11-19 | 2024-02-06 | Zenflow, Inc. | Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra |
USD938584S1 (en) | 2020-03-30 | 2021-12-14 | Lazurite Holdings Llc | Hand piece |
USD972176S1 (en) | 2020-08-06 | 2022-12-06 | Lazurite Holdings Llc | Light source |
Also Published As
Publication number | Publication date |
---|---|
US6043839A (en) | 2000-03-28 |
US6275255B1 (en) | 2001-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9667896B2 (en) | Reduced area imaging device incorporated within endoscopic devices | |
US20170302874A1 (en) | Reduced area imaging device incorporated within endoscopic devices | |
US20160213230A1 (en) | Reduced area imaging device incorporated within endoscopic devices | |
US7030904B2 (en) | Reduced area imaging device incorporated within wireless endoscopic devices | |
US6310642B1 (en) | Reduced area imaging devices incorporated within surgical instruments | |
EP1575092B1 (en) | Reduced area images devices incorporated within surgical instruments | |
US5929901A (en) | Reduced area imaging devices incorporated within surgical instruments | |
US6211904B1 (en) | Surgical devices incorporating reduced area imaging devices | |
US6982740B2 (en) | Reduced area imaging devices utilizing selected charge integration periods | |
US7002621B2 (en) | Communication devices incorporating reduced area imaging devices | |
US6982742B2 (en) | Hand-held computers incorporating reduced area imaging devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICRO-IMAGING SOLUTIONS, LLC, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAIR, JEFFREY L.;WIGGINS, KEVIN EWING;REEL/FRAME:038189/0726 Effective date: 20100920 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |