US20160097569A1 - Heat pump apparatus - Google Patents
Heat pump apparatus Download PDFInfo
- Publication number
- US20160097569A1 US20160097569A1 US14/892,052 US201414892052A US2016097569A1 US 20160097569 A1 US20160097569 A1 US 20160097569A1 US 201414892052 A US201414892052 A US 201414892052A US 2016097569 A1 US2016097569 A1 US 2016097569A1
- Authority
- US
- United States
- Prior art keywords
- mineral oil
- hfc
- based mineral
- heat pump
- pump apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/042—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/30—Windings characterised by the insulating material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/11—Reducing heat transfers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/02—Compressor arrangements of motor-compressor units
- F25B31/026—Compressor arrangements of motor-compressor units with compressor of rotary type
Definitions
- the present invention relates to a heat pump apparatus, and more particularly, to a heat pump apparatus including a compressor with a sealed container accommodating an electric motor, and being configured to perform a refrigeration cycle.
- an apparatus for performing a refrigeration cycle by sequentially connecting a compressor for compressing refrigerant, a condenser, an expansion mechanism, and an evaporator, to thereby transfer heating energy or cooling energy of the refrigerant to a heat medium (perform heat transfer) in the condenser or the evaporator.
- the compressor includes a compression mechanism and an electric motor for rotating and driving the compression mechanism, and the compression mechanism and the electric motor are accommodated in a sealed container.
- High-pressure and high-temperature refrigerant compressed by the compression mechanism is temporarily discharged into the sealed container. Therefore, the electric motor is exposed to the high-pressure and high-temperature refrigerant.
- a machine oil hereinafter referred to as “refrigerating machine oil” is stored in the sealed container.
- the electric motor includes a stator fixed to the sealed container and a rotator surrounded by the stator and configured to rotate.
- the rotator is connected to the compression mechanism.
- the stator has a tubular shape and includes a back yoke portion forming an outer periphery of the stator, a plurality of tooth portions projecting from the back yoke portion to the center, and a winding (electric wire) wound around the tooth portions through intermediation of an insulating material (insulator).
- insulator As the insulating material (insulator), there is disclosed an invention using polyphenylene sulfide (PPS) not having an ester bond (see, for example, Patent Literature 1).
- PPS polyphenylene sulfide
- insulating material there is disclosed an invention using polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) having an ester bond (see, for example, Patent Literature 2).
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2000-324728 (Page 6, FIG. 2 .)
- Patent Literature 2 Japanese Unexamined Patent Application Publication No. 2001-227827 (Pages 3-4, FIG. 2 .)
- PPS not having an ester bond which is a heat insulator disclosed in Patent Literature 1
- PPS has characteristics of relatively excellent heat resistance, no risk of hydrolysis, high heat resistance, satisfactory moldability, and high strength and stiffness.
- the productivity is degraded owing to a low solidification speed, burrs are liable to occur, and PPS is decomposed in a trace amount to generate a sulfur gas, to thereby corrode a mold.
- PET and PEN each having an ester bond which are heat insulators disclosed in Patent Literature 2, and polybutylene terephthalate (PBT) have hydrolyzability. Therefore, it is necessary to absorb water in a refrigerant circuit during circulation of refrigerant in the refrigerant circuit through use of a refrigerating machine oil having water absorbability, and there is a problem in that, in the case where the refrigerating machine oil has high hygroscopicity and a large saturated water amount, hydrolysis may be caused.
- the present invention has been made to solve the above-mentioned problems, and a first object thereof is to obtain long-term reliability of a heat pump apparatus by using an insulating material that is less liable to be hydrolyzed even when a refrigerating machine oil having high hygroscopicity and a high water content in oil is used.
- a second object of the present invention is to obtain the long-term reliability of the heat pump apparatus at low cost by using an insulating material having satisfactory productivity without causing burrs and generating a gas containing sulfur during a production step of the insulating material, such as melt molding.
- a heat pump apparatus including: a compressor; a condenser; an expansion mechanism; and an evaporator, the compressor, the condenser, the expansion mechanism, and the evaporator being configured to perform a refrigeration cycle, the heat pump apparatus being configured to perform heat transfer in the condenser or the evaporator,
- the compressor includes: a sealed container; a compression mechanism mounted inside the sealed container; and an electric motor for rotating and driving the compression mechanism, the compression mechanism being configured to compress refrigerant, and to be lubricated by a refrigerating machine oil
- the electric motor includes: a stator fixed to the sealed container with a winding being wound around the stator through intermediation of an insulating material; and a rotator surrounded by the stator, in which the insulating material includes wholly aromatic liquid crystal polyester (LCP) containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer and having a main chain
- the insulating material for the electric motor is wholly aromatic liquid crystal polyester (LCP) containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer component having an ester bond and having a main chain of a molecule formed by linking p-hydroxybenzoic acid and, as another monomer, only a monomer having a benzene ring, through an ester bond. Therefore, the insulating material has a very low water absorption rate of 0.01% and a degradation in insulation function caused by hydrolysis is less liable to occur through use of a refrigerating machine oil having a water content in oil of 1% or less, and hence a heat pump apparatus excellent in long-term reliability can be provided.
- LCP wholly aromatic liquid crystal polyester
- PHB p-hydroxybenzoic acid
- FIG. 1 is a refrigerant circuit diagram illustrating a basic configuration of a heat pump apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a side sectional view illustrating a part (compressor) of the heat pump apparatus illustrated in FIG. 1 .
- FIG. 3 is a characteristic graph showing hydrolysis resistance of a part (heat insulator) of the heat pump apparatus illustrated in FIG. 1 .
- FIG. 1 and FIG. 2 illustrate a heat pump apparatus according to Embodiment 1 of the present invention.
- FIG. 1 is a refrigerant circuit diagram illustrating a basic configuration of the heat pump apparatus
- FIG. 2 is a side sectional view illustrating a part of the heat pump apparatus (compressor). Note that, each figure is illustrated schematically, and the present invention is not limited to the illustrated forms.
- a heat pump apparatus 100 includes a compressor 1 for compressing refrigerant, a condenser 3 for condensing the refrigerant flowing out from the compressor, an expansion mechanism 4 for subjecting the refrigerant flowing out from the condenser 3 to adiabatic expansion, an evaporator 5 for evaporating the refrigerant flowing out from the expansion mechanism 4 , and a refrigerant pipe 2 that sequentially connects the compressor 1 , the condenser 3 , the expansion mechanism 4 , and the evaporator 5 to circulate the refrigerant.
- a switching valve (such as a four-way valve) for changing a flow direction of the refrigerant may be installed in the refrigerant pipe 2 , or an air-sending device for sending air to the condenser 3 and the evaporator 5 or other devices may be arranged in the refrigerant pipe 2 .
- the compressor 1 includes a sealed container 10 , a compression mechanism 9 arranged in the sealed container 10 , and an electric motor 6 for rotating and driving the compression mechanism 9 .
- High-pressure and high-temperature refrigerant compressed by the compression mechanism 9 is temporarily discharged into the sealed container 10 .
- the electric motor 6 is exposed to the high-pressure and high-temperature refrigerant.
- an oil reservoir 8 for storing a machine oil (hereinafter referred to as “refrigerating machine oil”) is formed in a bottom portion of the sealed container 10 .
- the compression mechanism 9 includes a sealed space (to be exact, an inflow port for the inflow of the refrigerant and an outflow port for the outflow of the refrigerant are formed) formed by a main bearing (upper bearing) 9 m , an auxiliary bearing (lower bearing) 9 s , and a cylinder 9 c having both end surfaces in close contact with the main bearing 9 m and the auxiliary bearing 9 s , and an eccentric cylinder 9 e arranged in the sealed space.
- a sealed space to be exact, an inflow port for the inflow of the refrigerant and an outflow port for the outflow of the refrigerant are formed
- a drive shaft 9 a is fixed to the eccentric cylinder 9 e , and is rotatably supported by the main bearing 9 m and the auxiliary bearing 9 s . Therefore, the eccentric cylinder 9 e is rotated eccentrically by the rotation of the drive shaft 9 a.
- a plurality of vanes 9 b are arranged in a freely advancing and retracting manner in a plurality of grooves (not shown) formed radially in the cylinder 9 c , and are pressed against an outer peripheral surface of the eccentric cylinder 9 e . That is, a plurality of spaces are each formed between a pair of vanes, and the volume of the space is changed by the rotation of the eccentric cylinder 9 e , to thereby form a compression chamber.
- the electric motor 6 includes a stator 6 s fixed to the sealed container and a rotator 6 r surrounded by the stator 6 s and configured to rotate.
- the drive shaft 9 a forming the compression mechanism 9 is fixed to the rotator 6 r.
- the stator 6 s has a tubular shape, and includes a back yoke portion (not shown) forming an outer periphery of the stator 6 s , a plurality of tooth portions (not shown) projecting from the back yoke portion to the center, and a winding (electric wire) 6 w wound around the tooth portions through intermediation of an insulating material (insulator) 7 .
- the refrigerant contains at least one kind of the following substances (a single substance of the following substances or a combination of two or more kinds thereof).
- the refrigerating machine oil is stored in the oil reservoir 8 of the sealed container 10 , and is at least one kind of an ester-based mineral oil, an ether-based mineral oil, a glycol-based mineral oil, an alkyl benzene-based mineral oil, a poly- ⁇ -olefin-based mineral oil, a polyvinyl ether-based mineral oil, a fluorine-based mineral oil, a naphthene-based mineral oil, and a paraffin-based mineral oil. That is, the refrigerating machine oil is a single substance of any one kind thereof or a combination of any two or more kinds thereof.
- the insulating material 7 is formed of “LCP”.
- LCP is a collective term of polymers that exhibit liquid crystallinity during melting.
- LCP has a plurality of molecular structures, and the heat resistance and strength thereof are not constant because the heat resistance and strength depend on monomers for forming LCP.
- LCP for forming the insulating material 7 is a thermoplastic resin obtained by copolymerization (polycondensation) of a total of two or more components, the components containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer component and having added thereto at least one of the following additive components.
- PHB p-hydroxybenzoic acid
- the additive component is at least one component of the following five kinds.
- the insulating material 7 is formed of “LCP-A” that is a two-component system of PHB and BON6 or “LCP-B” obtained by polycondensation of monomers (PHB, BP, HQ, TPA, IPA, BON6) of a six-component system including the essential component and all the additive components.
- LCP-A and LCP-B each have the following characteristics.
- the heat resistance and extractability are excellent, and the flow characteristics in the case of being thin is excellent by virtue of a low melt viscosity during molding.
- the heat transfer amount from a molten state to a solidified state is small, and hence the solidification speed is very high and burrs are less liable to occur during a production step.
- LCP-A and LCP-B each have a latent heat of crystallization measured by a differential scanning calorimeter (DSC) of 10 J/g or less, and hence their solidification speeds are high and burrs are less liable to occur during their production steps.
- DSC differential scanning calorimeter
- LCP is hydrolyzed in terms of a molecular structure owing to the ester bond
- LCP is not in a state in which molecules are tangled in a rubber form as in an ordinary resin but a liquid crystal resin in which stiff molecules are linearly oriented densely.
- LCP has a very low water absorption rate.
- the water absorption rate of an engineering plastic, such as PBT, is “0.1%”, whereas the water absorption rate of LCP is “0.01% (after immersion in water at 23 degrees Celsius for 24 hours), which is a value smaller by a digit or more than the former.
- LCP for forming the insulating material 7 is excellent in heat resistance and extractability, and hence the stability thereof is high with respect to any of the above-mentioned refrigerating machine oils and refrigerant.
- FIG. 3 is a characteristic graph showing hydrolysis resistance of a part (heat insulator) of the heat pump apparatus according to Embodiment 1 of the present invention.
- the vertical axis represents a tensile strength retention ratio (ratio of strength after a test with respect to the initial strength), and the horizontal axis represents a water content in oil of the refrigerating machine oil, that is, water content in oil (%) at 40 degrees Celsius and a relative humidity of 80%.
- Ether oil having high hygroscopicity is used as the refrigerating machine oil
- R32 refrigerant is used as the refrigerant.
- LCP-A, LCP-B, and PBT for comparison are each immersed in a container in which the ether oil and R32 refrigerant are put at 150 degrees Celsius for 500 hours to determine a tensile strength retention ratio.
- the tensile strength retention ratio of PBT which is a comparative material
- the tensile strength retention ratio of PBT is only about 60%, even when the water content in oil is 0.1%. Further, when the water content in oil reaches 0.2%, the tensile strength retention ratio decreases drastically. When the water content in oil reaches 0.5% or more, the tensile strength retention ratio is a low value of 10%.
- each tensile strength retention ratio of LCP-A and LCP-B of the present invention decreases along with an increase in water content in oil.
- the tensile strength retention ratio is kept at 70% or more when the saturated water amount falls within a range of 2% or less.
- LCP-A and LCP-B of the present invention keep a sufficient insulation function as long as the saturated water amount of the refrigerating machine oil is 2% or less, and can provide the electric motor 6 with high reliability and the heat pump apparatus 100 with high reliability.
- LCP-A that is a two-component system
- LCP-B that is a six-component system exhibit similar hydrolysis resistance characteristics.
- the similar hydrolysis resistance characteristics are obtained in the case of monomers of all the combinations of a three-component system and monomers of all the combinations of a four-component system or a five-component system as long as PHB is included.
- LCP is a resin that exhibits an intermediate state between a solid and a liquid in a molten state, that is, a resin in a state in which a number of rod-like molecules are arranged, and has a feature of being solidified in a state close to the molten state.
- LPC is excellent in hydrolyzability for the following reason. LPC is subjected to a shearing force caused by injection or extrusion in a molten state, and molecules are oriented further densely, with the result that water molecules are prevented from entering or permeating a gap between the molecules. Thus, only with LCP, the hydrolyzability is significantly advantageous with respect to an ordinary resin having an ester bond, such as PET or PBT.
- LCP is wholly aromatic LCP formed of a molecule having a strong skeleton in which all the six monomer components themselves have aromatic rings, and hence is less liable to be hydrolyzed.
- compressor 2 refrigerant pipe 3 condenser 4 expansion mechanism 5 evaporator 6 electric motor 6 r rotator 6 s stator 6 w winding 7 insulating material 8 oil reservoir 9 compression mechanism 9 a drive shaft 9 b vane 9 c cylinder 9 e eccentric cylinder
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Compressor (AREA)
- Lubricants (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
To obtain long-term reliability of a heat pump apparatus by using an insulating material that is less liable to be hydrolyzed even when a refrigerating machine oil having high hygroscopicity and a high water content in oil is used, an electric motor of a compressor includes: a stator fixed to a sealed container with a winding being wound around the stator through intermediation of an insulating material; and a rotator surrounded by the stator. The insulating material includes wholly aromatic liquid crystal polyester (LCP) containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer and having a main chain of a molecule formed by linking p-hydroxybenzoic acid and, as another monomer, only a monomer having a benzene ring, through an ester bond. A saturated water amount of the refrigerating machine oil is 1% or less at 40 degrees Celsius and a relative humidity of 80%.
Description
- The present invention relates to a heat pump apparatus, and more particularly, to a heat pump apparatus including a compressor with a sealed container accommodating an electric motor, and being configured to perform a refrigeration cycle.
- Hitherto, as a heat pump apparatus, there has been provided an apparatus for performing a refrigeration cycle by sequentially connecting a compressor for compressing refrigerant, a condenser, an expansion mechanism, and an evaporator, to thereby transfer heating energy or cooling energy of the refrigerant to a heat medium (perform heat transfer) in the condenser or the evaporator.
- The compressor includes a compression mechanism and an electric motor for rotating and driving the compression mechanism, and the compression mechanism and the electric motor are accommodated in a sealed container. High-pressure and high-temperature refrigerant compressed by the compression mechanism is temporarily discharged into the sealed container. Therefore, the electric motor is exposed to the high-pressure and high-temperature refrigerant. Further, to smooth the rotation of the compression mechanism, a machine oil (hereinafter referred to as “refrigerating machine oil”) is stored in the sealed container.
- The electric motor includes a stator fixed to the sealed container and a rotator surrounded by the stator and configured to rotate. The rotator is connected to the compression mechanism. The stator has a tubular shape and includes a back yoke portion forming an outer periphery of the stator, a plurality of tooth portions projecting from the back yoke portion to the center, and a winding (electric wire) wound around the tooth portions through intermediation of an insulating material (insulator).
- In addition, as the insulating material (insulator), there is disclosed an invention using polyphenylene sulfide (PPS) not having an ester bond (see, for example, Patent Literature 1).
- Further, as the insulating material (insulator), there is disclosed an invention using polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) having an ester bond (see, for example, Patent Literature 2).
- Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2000-324728 (
Page 6,FIG. 2 .) - Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2001-227827 (Pages 3-4,
FIG. 2 .) - PPS not having an ester bond, which is a heat insulator disclosed in
Patent Literature 1, is a thermoplastic crystalline engineering plastic having a repeating unit of [-ph-S-] obtained by allowing p-dichlorobenzene and an alkali sulfide to react with each other under high temperature and high pressure. PPS has characteristics of relatively excellent heat resistance, no risk of hydrolysis, high heat resistance, satisfactory moldability, and high strength and stiffness. However, there are problems in that, during melt molding, the productivity is degraded owing to a low solidification speed, burrs are liable to occur, and PPS is decomposed in a trace amount to generate a sulfur gas, to thereby corrode a mold. - On the other hand, PET and PEN each having an ester bond, which are heat insulators disclosed in
Patent Literature 2, and polybutylene terephthalate (PBT) have hydrolyzability. Therefore, it is necessary to absorb water in a refrigerant circuit during circulation of refrigerant in the refrigerant circuit through use of a refrigerating machine oil having water absorbability, and there is a problem in that, in the case where the refrigerating machine oil has high hygroscopicity and a large saturated water amount, hydrolysis may be caused. - The present invention has been made to solve the above-mentioned problems, and a first object thereof is to obtain long-term reliability of a heat pump apparatus by using an insulating material that is less liable to be hydrolyzed even when a refrigerating machine oil having high hygroscopicity and a high water content in oil is used.
- Further, a second object of the present invention is to obtain the long-term reliability of the heat pump apparatus at low cost by using an insulating material having satisfactory productivity without causing burrs and generating a gas containing sulfur during a production step of the insulating material, such as melt molding.
- According to one embodiment of the present invention, there is provided a heat pump apparatus, including: a compressor; a condenser; an expansion mechanism; and an evaporator, the compressor, the condenser, the expansion mechanism, and the evaporator being configured to perform a refrigeration cycle, the heat pump apparatus being configured to perform heat transfer in the condenser or the evaporator, in which the compressor includes: a sealed container; a compression mechanism mounted inside the sealed container; and an electric motor for rotating and driving the compression mechanism, the compression mechanism being configured to compress refrigerant, and to be lubricated by a refrigerating machine oil, in which the electric motor includes: a stator fixed to the sealed container with a winding being wound around the stator through intermediation of an insulating material; and a rotator surrounded by the stator, in which the insulating material includes wholly aromatic liquid crystal polyester (LCP) containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer and having a main chain of a molecule formed by linking p-hydroxybenzoic acid and, as another monomer, only a monomer having a benzene ring, through an ester bond, and in which a saturated water amount of the refrigerating machine oil is 1% or less at 40 degrees Celsius and a relative humidity of 80%.
- According to the one embodiment of the present invention, the insulating material for the electric motor is wholly aromatic liquid crystal polyester (LCP) containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer component having an ester bond and having a main chain of a molecule formed by linking p-hydroxybenzoic acid and, as another monomer, only a monomer having a benzene ring, through an ester bond. Therefore, the insulating material has a very low water absorption rate of 0.01% and a degradation in insulation function caused by hydrolysis is less liable to occur through use of a refrigerating machine oil having a water content in oil of 1% or less, and hence a heat pump apparatus excellent in long-term reliability can be provided.
-
FIG. 1 is a refrigerant circuit diagram illustrating a basic configuration of a heat pump apparatus according toEmbodiment 1 of the present invention. -
FIG. 2 is a side sectional view illustrating a part (compressor) of the heat pump apparatus illustrated inFIG. 1 . -
FIG. 3 is a characteristic graph showing hydrolysis resistance of a part (heat insulator) of the heat pump apparatus illustrated inFIG. 1 . -
FIG. 1 andFIG. 2 illustrate a heat pump apparatus according toEmbodiment 1 of the present invention.FIG. 1 is a refrigerant circuit diagram illustrating a basic configuration of the heat pump apparatus, andFIG. 2 is a side sectional view illustrating a part of the heat pump apparatus (compressor). Note that, each figure is illustrated schematically, and the present invention is not limited to the illustrated forms. - (Refrigerant Circuit)
- In
FIG. 1 , aheat pump apparatus 100 includes acompressor 1 for compressing refrigerant, a condenser 3 for condensing the refrigerant flowing out from the compressor, an expansion mechanism 4 for subjecting the refrigerant flowing out from the condenser 3 to adiabatic expansion, anevaporator 5 for evaporating the refrigerant flowing out from the expansion mechanism 4, and arefrigerant pipe 2 that sequentially connects thecompressor 1, the condenser 3, the expansion mechanism 4, and theevaporator 5 to circulate the refrigerant. Note that, as necessary, a switching valve (such as a four-way valve) for changing a flow direction of the refrigerant may be installed in therefrigerant pipe 2, or an air-sending device for sending air to the condenser 3 and theevaporator 5 or other devices may be arranged in therefrigerant pipe 2. - (Compressor)
- In
FIG. 2 , thecompressor 1 includes a sealedcontainer 10, acompression mechanism 9 arranged in the sealedcontainer 10, and anelectric motor 6 for rotating and driving thecompression mechanism 9. High-pressure and high-temperature refrigerant compressed by thecompression mechanism 9 is temporarily discharged into the sealedcontainer 10. Thus, theelectric motor 6 is exposed to the high-pressure and high-temperature refrigerant. - Further, to smooth the rotation of the
compression mechanism 9, anoil reservoir 8 for storing a machine oil (hereinafter referred to as “refrigerating machine oil”) is formed in a bottom portion of the sealedcontainer 10. - (Compression Mechanism)
- The
compression mechanism 9 includes a sealed space (to be exact, an inflow port for the inflow of the refrigerant and an outflow port for the outflow of the refrigerant are formed) formed by a main bearing (upper bearing) 9 m, an auxiliary bearing (lower bearing) 9 s, and acylinder 9 c having both end surfaces in close contact with the main bearing 9 m and the auxiliary bearing 9 s, and aneccentric cylinder 9 e arranged in the sealed space. - A
drive shaft 9 a is fixed to theeccentric cylinder 9 e, and is rotatably supported by the main bearing 9 m and the auxiliary bearing 9 s. Therefore, theeccentric cylinder 9 e is rotated eccentrically by the rotation of thedrive shaft 9 a. - Further, a plurality of
vanes 9 b are arranged in a freely advancing and retracting manner in a plurality of grooves (not shown) formed radially in thecylinder 9 c, and are pressed against an outer peripheral surface of theeccentric cylinder 9 e. That is, a plurality of spaces are each formed between a pair of vanes, and the volume of the space is changed by the rotation of theeccentric cylinder 9 e, to thereby form a compression chamber. - (Electric Motor)
- The
electric motor 6 includes astator 6 s fixed to the sealed container and arotator 6 r surrounded by thestator 6 s and configured to rotate. Thedrive shaft 9 a forming thecompression mechanism 9 is fixed to therotator 6 r. - The
stator 6 s has a tubular shape, and includes a back yoke portion (not shown) forming an outer periphery of thestator 6 s, a plurality of tooth portions (not shown) projecting from the back yoke portion to the center, and a winding (electric wire) 6 w wound around the tooth portions through intermediation of an insulating material (insulator) 7. - (Refrigerant)
- The refrigerant contains at least one kind of the following substances (a single substance of the following substances or a combination of two or more kinds thereof).
- Difluoromethane (HFC-32)
- 1,1,1,2,2-Pentafluoroethane (HFC-125)
- 1,1,1,2-Tetrafluoroethane (HFC-134a)
- 1,1,1-Trifluoroethane (HFC-143a)
- 2,2-Dichloro-1,1,1-trifluoroethane (HFC-123)
- Trifluoromethane (HFC-23)
- 1,1-Difluoroethane (HFC-152a)
- 1,1,2 Trifluoroethylene (R1123)
- trans-1,2, Difluoroethylene (R1132(E))
- cis-1,2 Difluoroethylene (R1132(Z))
- 1,1 Difluoroethylene (R1132a)
- 2,3,3,3-Tetrafluoro-1-propane (HFO-1234yf)
- Chlorodifluoromethane (HFC-22)
- Carbon dioxide
- Ammonia
- Dimethyl ether
- Propane (R-290)
- Isobutane (R-600a)
- Butane (R-600)
- (Refrigerating Machine Oil)
- The refrigerating machine oil is stored in the
oil reservoir 8 of the sealedcontainer 10, and is at least one kind of an ester-based mineral oil, an ether-based mineral oil, a glycol-based mineral oil, an alkyl benzene-based mineral oil, a poly-α-olefin-based mineral oil, a polyvinyl ether-based mineral oil, a fluorine-based mineral oil, a naphthene-based mineral oil, and a paraffin-based mineral oil. That is, the refrigerating machine oil is a single substance of any one kind thereof or a combination of any two or more kinds thereof. - (Insulating Material)
- The insulating
material 7 is formed of “LCP”. LCP is a collective term of polymers that exhibit liquid crystallinity during melting. LCP has a plurality of molecular structures, and the heat resistance and strength thereof are not constant because the heat resistance and strength depend on monomers for forming LCP. - LCP for forming the insulating
material 7 is a thermoplastic resin obtained by copolymerization (polycondensation) of a total of two or more components, the components containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer component and having added thereto at least one of the following additive components. - That is, the additive component is at least one component of the following five kinds.
- 4,4′-Biphenol (BP)
- Hydroquinone (HQ)
- Terephthalic acid (TPA)
- Isophthalic acid (IPA)
- 6-Hydroxy-2-naphthoic acid (BON6)
- For example, the insulating
material 7 is formed of “LCP-A” that is a two-component system of PHB and BON6 or “LCP-B” obtained by polycondensation of monomers (PHB, BP, HQ, TPA, IPA, BON6) of a six-component system including the essential component and all the additive components. -
TABLE 1 Water Latent heat Kind of Raw material monomer of LCP absorption of resin PHB BP BON6 HQ TPA IPA rate crystallization LCP-A ∘ — ∘ — — — 0.01% 3 J/g LCP-B ∘ ∘ ∘ ∘ ∘ ∘ 0.01% 3 J/g PBT — — — — — — 0.10% 30 J/g - In Table 1, the absorption rate and the latent heat of crystallization of LCP-A and LCP-B are smaller values than those of PBT alone (polybutylene terephthalate). Thus, LCP-A and LCP-B each have the following characteristics. The heat resistance and extractability are excellent, and the flow characteristics in the case of being thin is excellent by virtue of a low melt viscosity during molding. The heat transfer amount from a molten state to a solidified state is small, and hence the solidification speed is very high and burrs are less liable to occur during a production step.
- Further, LCP-A and LCP-B each have a latent heat of crystallization measured by a differential scanning calorimeter (DSC) of 10 J/g or less, and hence their solidification speeds are high and burrs are less liable to occur during their production steps. Thus, LCP-A and LCP-B each have features of enabling high-cycle molding and having satisfactory productivity.
- Specifically, although LCP is hydrolyzed in terms of a molecular structure owing to the ester bond, LCP is not in a state in which molecules are tangled in a rubber form as in an ordinary resin but a liquid crystal resin in which stiff molecules are linearly oriented densely. Thus, LCP has a very low water absorption rate. The water absorption rate of an engineering plastic, such as PBT, is “0.1%”, whereas the water absorption rate of LCP is “0.01% (after immersion in water at 23 degrees Celsius for 24 hours), which is a value smaller by a digit or more than the former.
- Thus, LCP for forming the insulating
material 7 is excellent in heat resistance and extractability, and hence the stability thereof is high with respect to any of the above-mentioned refrigerating machine oils and refrigerant. -
FIG. 3 is a characteristic graph showing hydrolysis resistance of a part (heat insulator) of the heat pump apparatus according toEmbodiment 1 of the present invention. - In
FIG. 3 , the vertical axis represents a tensile strength retention ratio (ratio of strength after a test with respect to the initial strength), and the horizontal axis represents a water content in oil of the refrigerating machine oil, that is, water content in oil (%) at 40 degrees Celsius and a relative humidity of 80%. - Ether oil having high hygroscopicity is used as the refrigerating machine oil, and R32 refrigerant is used as the refrigerant. LCP-A, LCP-B, and PBT for comparison are each immersed in a container in which the ether oil and R32 refrigerant are put at 150 degrees Celsius for 500 hours to determine a tensile strength retention ratio.
- In this case, as is apparent from
FIG. 3 , the tensile strength retention ratio of PBT, which is a comparative material, is only about 60%, even when the water content in oil is 0.1%. Further, when the water content in oil reaches 0.2%, the tensile strength retention ratio decreases drastically. When the water content in oil reaches 0.5% or more, the tensile strength retention ratio is a low value of 10%. - On the other hand, each tensile strength retention ratio of LCP-A and LCP-B of the present invention decreases along with an increase in water content in oil. However, the tensile strength retention ratio is kept at 70% or more when the saturated water amount falls within a range of 2% or less.
- Thus, LCP-A and LCP-B of the present invention keep a sufficient insulation function as long as the saturated water amount of the refrigerating machine oil is 2% or less, and can provide the
electric motor 6 with high reliability and theheat pump apparatus 100 with high reliability. - Note that, in the foregoing, LCP-A that is a two-component system and LCP-B that is a six-component system exhibit similar hydrolysis resistance characteristics. Thus, the similar hydrolysis resistance characteristics are obtained in the case of monomers of all the combinations of a three-component system and monomers of all the combinations of a four-component system or a five-component system as long as PHB is included.
- Note that, LCP is a resin that exhibits an intermediate state between a solid and a liquid in a molten state, that is, a resin in a state in which a number of rod-like molecules are arranged, and has a feature of being solidified in a state close to the molten state. Specifically, LPC is excellent in hydrolyzability for the following reason. LPC is subjected to a shearing force caused by injection or extrusion in a molten state, and molecules are oriented further densely, with the result that water molecules are prevented from entering or permeating a gap between the molecules. Thus, only with LCP, the hydrolyzability is significantly advantageous with respect to an ordinary resin having an ester bond, such as PET or PBT.
- Further, LCP is wholly aromatic LCP formed of a molecule having a strong skeleton in which all the six monomer components themselves have aromatic rings, and hence is less liable to be hydrolyzed.
- 1
compressor 2 refrigerant pipe 3 condenser 4expansion mechanism 5evaporator 6electric motor 6r rotator 6 s stator 6 w winding 7 insulatingmaterial 8oil reservoir 9compression mechanism 9 adrive shaft 9b vane 9c cylinder 9 e eccentric cylinder - 9 m main bearing (upper bearing) 9 s auxiliary bearing (lower bearing) 10 sealed
container 100 heat pump apparatus
Claims (9)
1. A heat pump apparatus, comprising:
a compressor;
a condenser;
an expansion mechanism; and
an evaporator,
the compressor, the condenser, the expansion mechanism, and the evaporator being configured to perform a refrigeration cycle,
the heat pump apparatus being configured to perform heat transfer in the condenser or the evaporator,
wherein the compressor includes
a sealed container,
a compression mechanism mounted inside the sealed container, and
an electric motor configured to rotate and drive the compression mechanism,
the compression mechanism being configured to compress refrigerant, and to be lubricated by a refrigerating machine oil,
wherein the electric motor includes
a stator fixed to the sealed container with a winding being wound around the stator through intermediation of an insulating material, and
a rotator surrounded by the stator,
wherein the insulating material includes a liquid crystal polymer having a main chain of a molecule obtained by ester bonding, the liquid crystal polymer being obtained by polycondensation of a total of two or more kinds of monomers, the monomers containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer component having an ester bond and containing, as an additive component, one or more kinds of a following five kinds: 4,4′-biphenol (BP), hydroquinone (HQ), terephthalic acid (TPA), isophthalic acid (IPA), and 6-hydroxy-2-naphthoic acid (BON6), and
wherein a saturated water amount of the refrigerating machine oil is 0.5% or more and 1% or less at 40 degrees Celsius and a relative humidity of 80%.
2. The heat pump apparatus of claim 1 , wherein a liquid crystal polymer serving as the insulating material has a latent heat of crystallization measured by a differential scanning calorimeter (DSC) of 10 J/g or less.
3. (canceled)
4. The heat pump apparatus of claim 1 , wherein the refrigerating machine oil includes a single substance or a combination of substances including at least one kind of an ester-based mineral oil, an ether-based mineral oil, a glycol-based mineral oil, an alkyl benzene-based mineral oil, a poly-α-olefin-based mineral oil, a polyvinyl ether-based mineral oil, a fluorine-based mineral oil, a naphthene-based mineral oil, and a paraffin-based mineral oil.
5. The heat pump apparatus of claim 1 , wherein the refrigerant includes a single substance or a combination of substances including at least one kind of difluoromethane (HFC-32), 1,1,1,2,2-pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 2,2-dichloro-1,1,1-trifluoroethane (HFC-123), trifluoromethane (HFC-23), 1,1-difluoroethane (HFC-152a), 1,1,2 trifluoroethylene (R1123), trans-1,2-difluoroethylene (R1132(E)), cis-1,2 difluoroethylene (R1132(Z)), 1,1-difluoroethylene (R1132a), 2,3,3,3-tetrafluoro-l-propane (HFO-1234yf), chlorodifluoromethane (HFC-22), carbon dioxide, ammonia, dimethyl ether, propane (R-290), isobutane (R-600a), and butane (R-600).
6. A heat pump apparatus, comprising:
a compressor;
a condenser;
an expansion mechanism; and
an evaporator,
the compressor, the condenser, the expansion mechanism, and the evaporator being configured to perform a refrigeration cycle,
the heat pump apparatus being configured to perform heat transfer in the condenser or the evaporator,
wherein the compressor includes
a sealed container,
a compression mechanism mounted inside the sealed container, and
an electric motor configured to rotate and drive the compression mechanism,
the compression mechanism being configured to compress refrigerant, and to be lubricated by a refrigerating machine oil,
wherein the electric motor includes
a stator fixed to the sealed container with a winding being wound around the stator through intermediation of an insulating material, and
a rotator surrounded by the stator,
wherein the insulating material includes a liquid crystal polymer having a main chain of a molecule obtained by ester bonding, the liquid crystal polymer being obtained by polycondensation of monomers, the monomers containing, as an essential component, p-hydroxybenzoic acid (PHB) as a monomer component having an ester bond and containing, as an additive component, a following five kinds: 4,4′-biphenol (BP), hydroquinone (HQ), terephthalic acid (TPA), isophthalic acid (IPA), and 6-hydroxy-2-naphthoic acid (BON6), and
wherein a saturated water amount of the refrigerating machine oil is 0.5% or more and 1% or less at 40 degrees Celsius and a relative humidity of 80%.
7. The heat pump apparatus of claim 6 , wherein a liquid crystal polymer serving as the insulating material has a latent heat of crystallization measured by a differential scanning calorimeter (DSC) of 10 J/g or less.
8. The heat pump apparatus of claim 6 , wherein the refrigerating machine oil includes a single substance or a combination of substances including at least one kind of an ester-based mineral oil, an ether-based mineral oil, a glycol-based mineral oil, an alkyl benzene-based mineral oil, a poly-α-olefin-based mineral oil, a polyvinyl ether-based mineral oil, a fluorine-based mineral oil, a naphthene-based mineral oil, and a paraffin-based mineral oil.
9. The heat pump apparatus of claim 6 , wherein the refrigerant includes a single substance or a combination of substances including at least one kind of difluoromethane (HFC-32), 1,1,1,2,2-pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 2,2-dichloro-1,1,1-trifluoroethane (HFC-123), trifluoromethane (HFC-23), 1,1-difluoroethane (HFC-152a), 1,1,2 trifluoroethylene (R1123), trans-1,2-difluoroethylene (R1132(E)), cis-1,2 difluoroethylene (R1132(Z)), 1,1-difluoroethylene (R1132a), 2,3,3,3-tetrafluoro-1-propane (HFO-1234yf), chlorodifluoromethane (HFC-22), carbon dioxide, ammonia, dimethyl ether, propane (R-290), isobutane (R-600a), and butane (R-600).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156732 | 2013-07-29 | ||
JP2013-156732 | 2013-07-29 | ||
PCT/JP2014/063707 WO2015015881A1 (en) | 2013-07-29 | 2014-05-23 | Heat pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160097569A1 true US20160097569A1 (en) | 2016-04-07 |
Family
ID=52431427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/892,052 Abandoned US20160097569A1 (en) | 2013-07-29 | 2014-05-23 | Heat pump apparatus |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160097569A1 (en) |
EP (1) | EP3029395A4 (en) |
JP (1) | JP6282276B2 (en) |
CN (1) | CN104344605A (en) |
AU (2) | AU2014297674B2 (en) |
WO (1) | WO2015015881A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190113256A1 (en) * | 2016-05-17 | 2019-04-18 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
US20200224071A1 (en) * | 2017-08-10 | 2020-07-16 | Mexichem Fluor S.A. De C.V. | Compositions |
CN112437803A (en) * | 2018-08-06 | 2021-03-02 | 引能仕株式会社 | Lubrication method |
US11015840B2 (en) * | 2016-09-07 | 2021-05-25 | AGC Inc. | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
US11248152B2 (en) * | 2018-04-25 | 2022-02-15 | Daikin Industries, Ltd. | Composition containing coolant, heat transfer medium and heat cycle system |
CN114072987A (en) * | 2019-07-17 | 2022-02-18 | 三菱电机株式会社 | Stator, motor, compressor, and air conditioner |
US20220127507A1 (en) * | 2019-02-11 | 2022-04-28 | Mexichem Fluor S.A. De C.V. | Compositions |
US20220214085A1 (en) * | 2019-09-30 | 2022-07-07 | Daikin Industries, Ltd. | Evaporator and refrigeration cycle apparatus including the same |
US11827833B2 (en) | 2019-02-06 | 2023-11-28 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
US11834602B2 (en) | 2019-02-05 | 2023-12-05 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
US11834601B2 (en) | 2019-01-30 | 2023-12-05 | Daikin Industries, Ltd. | Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device |
US11840658B2 (en) | 2019-01-30 | 2023-12-12 | Daikin Industries, Ltd. | Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device |
US11912922B2 (en) | 2018-07-17 | 2024-02-27 | Daikin Industries, Ltd. | Refrigerant cycle apparatus |
US11920077B2 (en) | 2018-07-17 | 2024-03-05 | Daikin Industries, Ltd. | Refrigeration cycle device for vehicle |
US11939515B2 (en) | 2018-07-17 | 2024-03-26 | Daikin Industries, Ltd. | Refrigerant-containing composition, heat transfer medium, and heat cycle system |
EP4375098A3 (en) * | 2019-04-16 | 2024-08-21 | Daikin Industries, Ltd. | Composition including refrigerant, use thereof, refrigerator having same, and method for operating said refrigerator |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015174033A1 (en) * | 2014-05-12 | 2015-11-19 | パナソニックIpマネジメント株式会社 | Compressor and refrigeration cycle device using same |
MY190130A (en) * | 2014-05-12 | 2022-03-30 | Panasonic Ip Man Co Ltd | Compressor and refrigeration cycle device using same |
US9877824B2 (en) * | 2015-07-23 | 2018-01-30 | Elwha Llc | Intraocular lens systems and related methods |
IT201600099499A1 (en) * | 2016-10-04 | 2018-04-04 | Carel Ind Spa | DEVICE FOR DETECTING A LUBRICATION CONDITION THAT CAN BE OPTIMIZED IN A COMPRESSOR OF A REFRIGERANT SYSTEM, COMPRESSOR UNIT THAT INCLUDES IT AND METHOD FOR DETECTING A LUBRICATION CONDITION THAT CAN BE OPTIMIZED IN A COMPRESSOR OF A REFRIGERANT SYSTEM |
GB2562509B (en) * | 2017-05-17 | 2020-04-29 | Mexichem Fluor Sa De Cv | Heat transfer compositions |
US20200339856A1 (en) * | 2017-12-18 | 2020-10-29 | Daikin Industries, Ltd. | Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil |
US20190203093A1 (en) * | 2017-12-29 | 2019-07-04 | Trane International Inc. | Lower gwp refrigerant compositions |
CN114450538A (en) * | 2019-10-02 | 2022-05-06 | 三菱电机株式会社 | Refrigeration cycle device |
CN118160212A (en) * | 2021-11-01 | 2024-06-07 | 三菱电机株式会社 | Motor driving device and refrigeration cycle application device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5531080A (en) * | 1993-04-27 | 1996-07-02 | Mitsubishi Denki Kabushiki Kaisha | Refrigerant circulating system |
US20020134092A1 (en) * | 2000-02-16 | 2002-09-26 | Hideki Matsuura | Freezer |
US6656386B2 (en) * | 2001-02-23 | 2003-12-02 | Kabushiki Kaisha Ueno Seiyaku Oyo Kenkujo | Wholly aromatic heat-stable liquid crystalline polyester resin composition with improved melt flowability |
EP2207254A2 (en) * | 2009-01-13 | 2010-07-14 | Mitsubishi Electric Corporation | Hermetic compressor and refrigerating cycle apparatus |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08149729A (en) * | 1994-11-25 | 1996-06-07 | Kuraray Co Ltd | Motor for coolant compressor |
JPH08284829A (en) * | 1995-04-14 | 1996-10-29 | Kuraray Co Ltd | Refrigerant compressing motor |
JP3407504B2 (en) * | 1995-10-20 | 2003-05-19 | 東レ株式会社 | Insulator molding of electric motor |
JPH09151851A (en) * | 1995-12-01 | 1997-06-10 | Kuraray Co Ltd | Refrigerant compression device for refrigerator |
JPH09252556A (en) * | 1996-03-14 | 1997-09-22 | Kuraray Co Ltd | Lead wire part for motor in refrigerant compression device for refrigerator |
CN2266833Y (en) * | 1996-05-01 | 1997-11-05 | 成崇才 | Oil-charging submersible electric pump |
JP3895413B2 (en) * | 1996-11-30 | 2007-03-22 | 株式会社テクノ大西 | Refrigerant compressor for refrigerator |
JP3760674B2 (en) | 1999-05-14 | 2006-03-29 | 三菱電機株式会社 | Stator core, stator, electric motor, compressor, and stator core manufacturing method |
JP2001055979A (en) * | 1999-08-11 | 2001-02-27 | Toshiba Kyaria Kk | Cooling medium compressor |
US6514611B1 (en) * | 2001-08-21 | 2003-02-04 | Ticona Llc | Anisotropic melt-forming polymers having a high degree of stretchability |
JP2004052730A (en) * | 2002-07-24 | 2004-02-19 | Matsushita Electric Ind Co Ltd | Closed type electric compressor |
JP3801132B2 (en) * | 2002-12-26 | 2006-07-26 | 三菱電機株式会社 | Electric motor, refrigeration / air conditioner, and electric motor manufacturing method |
CN101041719A (en) * | 2006-03-23 | 2007-09-26 | 住友化学株式会社 | Granule useful for highly thermal-conductive resin composition |
CN101649044B (en) * | 2009-09-04 | 2011-05-18 | 金发科技股份有限公司 | Wholly aromatic liquid crystal polymer and preparation method thereof |
JP2011140638A (en) * | 2009-12-10 | 2011-07-21 | Sumitomo Chemical Co Ltd | Insulating film for electromagnetic coil, and motor and transformer equipped with the same |
JP5730704B2 (en) * | 2011-07-27 | 2015-06-10 | 上野製薬株式会社 | Liquid crystal polymer composition |
-
2014
- 2014-05-23 AU AU2014297674A patent/AU2014297674B2/en active Active
- 2014-05-23 US US14/892,052 patent/US20160097569A1/en not_active Abandoned
- 2014-05-23 JP JP2015529424A patent/JP6282276B2/en active Active
- 2014-05-23 WO PCT/JP2014/063707 patent/WO2015015881A1/en active Application Filing
- 2014-05-23 EP EP14831705.0A patent/EP3029395A4/en active Pending
- 2014-06-30 CN CN201410306852.3A patent/CN104344605A/en active Pending
-
2016
- 2016-07-28 AU AU2016208392A patent/AU2016208392B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5531080A (en) * | 1993-04-27 | 1996-07-02 | Mitsubishi Denki Kabushiki Kaisha | Refrigerant circulating system |
US20020134092A1 (en) * | 2000-02-16 | 2002-09-26 | Hideki Matsuura | Freezer |
US6656386B2 (en) * | 2001-02-23 | 2003-12-02 | Kabushiki Kaisha Ueno Seiyaku Oyo Kenkujo | Wholly aromatic heat-stable liquid crystalline polyester resin composition with improved melt flowability |
EP2207254A2 (en) * | 2009-01-13 | 2010-07-14 | Mitsubishi Electric Corporation | Hermetic compressor and refrigerating cycle apparatus |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190113256A1 (en) * | 2016-05-17 | 2019-04-18 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
US11686506B2 (en) * | 2016-09-07 | 2023-06-27 | AGC Inc. | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
US11015840B2 (en) * | 2016-09-07 | 2021-05-25 | AGC Inc. | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
US20210262700A1 (en) * | 2016-09-07 | 2021-08-26 | AGC Inc. | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
US20200224071A1 (en) * | 2017-08-10 | 2020-07-16 | Mexichem Fluor S.A. De C.V. | Compositions |
US11773308B2 (en) | 2017-08-10 | 2023-10-03 | Mexichem Fluor S.A De C.V. | Compositions |
US11136482B2 (en) * | 2017-08-10 | 2021-10-05 | Mexichem Fluor S.A De C.V. | Compositions |
US11692115B2 (en) | 2017-08-10 | 2023-07-04 | Mexichem Fluor S.A De C.V. | Compositions |
US11248152B2 (en) * | 2018-04-25 | 2022-02-15 | Daikin Industries, Ltd. | Composition containing coolant, heat transfer medium and heat cycle system |
US11939515B2 (en) | 2018-07-17 | 2024-03-26 | Daikin Industries, Ltd. | Refrigerant-containing composition, heat transfer medium, and heat cycle system |
US11920077B2 (en) | 2018-07-17 | 2024-03-05 | Daikin Industries, Ltd. | Refrigeration cycle device for vehicle |
US11912922B2 (en) | 2018-07-17 | 2024-02-27 | Daikin Industries, Ltd. | Refrigerant cycle apparatus |
CN112437803A (en) * | 2018-08-06 | 2021-03-02 | 引能仕株式会社 | Lubrication method |
US11326118B2 (en) * | 2018-08-06 | 2022-05-10 | Eneos Corporation | Lubrication method |
US11834601B2 (en) | 2019-01-30 | 2023-12-05 | Daikin Industries, Ltd. | Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device |
US11840658B2 (en) | 2019-01-30 | 2023-12-12 | Daikin Industries, Ltd. | Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device |
US11834602B2 (en) | 2019-02-05 | 2023-12-05 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
US11827833B2 (en) | 2019-02-06 | 2023-11-28 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
US20220127507A1 (en) * | 2019-02-11 | 2022-04-28 | Mexichem Fluor S.A. De C.V. | Compositions |
US12018203B2 (en) * | 2019-02-11 | 2024-06-25 | Mexichem Fluor S.A. De C.V. | Heat transfer compositions |
EP4375098A3 (en) * | 2019-04-16 | 2024-08-21 | Daikin Industries, Ltd. | Composition including refrigerant, use thereof, refrigerator having same, and method for operating said refrigerator |
CN114072987A (en) * | 2019-07-17 | 2022-02-18 | 三菱电机株式会社 | Stator, motor, compressor, and air conditioner |
US20220239168A1 (en) * | 2019-07-17 | 2022-07-28 | Mitsubishi Electric Corporation | Stator, motor, compressor, and air conditioner |
US20220214085A1 (en) * | 2019-09-30 | 2022-07-07 | Daikin Industries, Ltd. | Evaporator and refrigeration cycle apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
AU2016208392A1 (en) | 2016-08-18 |
EP3029395A4 (en) | 2017-03-08 |
EP3029395A1 (en) | 2016-06-08 |
WO2015015881A1 (en) | 2015-02-05 |
AU2014297674B2 (en) | 2016-06-16 |
AU2014297674A1 (en) | 2015-12-24 |
JP6282276B2 (en) | 2018-02-21 |
CN104344605A (en) | 2015-02-11 |
JPWO2015015881A1 (en) | 2017-03-02 |
AU2016208392B2 (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016208392B2 (en) | Heat pump apparatus | |
US9915465B2 (en) | Heat pump compressor including liquid crystal polymer insulating material | |
JP6504172B2 (en) | Thermal cycle system | |
CN109073278B (en) | Refrigeration cycle device | |
JP2017133827A (en) | Heat pump device | |
EP3272838B1 (en) | Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device | |
KR20210035265A (en) | Lubrication method | |
JP2009221872A (en) | Hermetic compressor and refrigerating cycle device | |
JPWO2020031796A1 (en) | Lubrication method | |
TW201546112A (en) | Wholly aromatic liquid crystalline polyester resin and injection molded body of said resin composition | |
WO2023210271A1 (en) | Compressor for refrigeration cycle system | |
KR102716003B1 (en) | Lubrication method | |
JP2024052371A (en) | Compressor and refrigeration cycle device | |
JPS6345478A (en) | Coolant compressor | |
JP2013129732A (en) | Working fluid composition for refrigerator, and refrigeration cycle device | |
JPH1025404A (en) | Molded polybutylene terephthalate resin and method for molding the resin | |
JP2001059479A (en) | Refrigerant compressor and refrigerating plant using this refrigerant compressor | |
JPH11262207A (en) | Freeze cycle compressor | |
JPH09317643A (en) | Closed type electric compressor and refrigerating system | |
JP2010215757A (en) | Insulating film for electromagnetic coil, and motor and transformer equipped with the same | |
JP2012162670A (en) | Liquid crystal polyester-containing liquid composition | |
JP2012012453A (en) | Method for preserving liquid composition, liquid composition, insulating material for printed wiring board | |
JPH04198677A (en) | Refrigerant compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATSUNAGA, NORIAKI;REEL/FRAME:037071/0327 Effective date: 20151014 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |