US20160049132A1 - Level shift circuit and drive circuit of display device - Google Patents

Level shift circuit and drive circuit of display device Download PDF

Info

Publication number
US20160049132A1
US20160049132A1 US14/835,518 US201514835518A US2016049132A1 US 20160049132 A1 US20160049132 A1 US 20160049132A1 US 201514835518 A US201514835518 A US 201514835518A US 2016049132 A1 US2016049132 A1 US 2016049132A1
Authority
US
United States
Prior art keywords
voltage
transistor
channel mos
mos transistor
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/835,518
Inventor
Isao HENMI
Yutaka Saeki
Kiyoshi Miyazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to US14/835,518 priority Critical patent/US20160049132A1/en
Publication of US20160049132A1 publication Critical patent/US20160049132A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • H03K3/35613Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit the input circuit having a differential configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356182Bistable circuits using complementary field-effect transistors with additional means for controlling the main nodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to a drive circuit of a display device, and in particular to a level shift circuit that converts a signal level of a digital signal.
  • the level shift circuit converts a digital signal having an amplitude between a reference supply voltage (VSS) and a low supply voltage (VDD 1 ) into a digital signal having an amplitude between the reference supply voltage and a high supply voltage (VDD 2 ).
  • the level shift circuit is disclosed in, for example, Japanese Patent Laid-Open No. 1993-199101 (Patent Document 1). As shown in FIG. 1 , the circuit includes resistances R 91 and R 92 between drains of transistors P 91 and N 91 and between drains of transistors P 92 and N 92 , respectively.
  • the sources of the transistors P 91 and P 92 are coupled to the high supply voltage VDD 2 .
  • the sources of the transistors N 91 and N 92 are coupled to the reference supply voltage VSS.
  • the gate of the transistor P 91 is coupled to a connection node B of the resistance R 92 and the transistor N 92 .
  • the gate of the transistor P 92 is coupled to a connection node A of the resistance R 91 and the transistor N 91 .
  • An inverter 90 operates by being supplied with the reference supply voltage VSS and the low supply voltage VDD 1 , and logically inverts an input signal IN to thereby output the inverted signal as an input signal INB.
  • the input signal IN is applied to the gate of the transistor N 91 and the input signal INB output from the inverter 90 is applied to the gate of the transistor N 92 .
  • Inverters 91 and 92 operate by being supplied with the reference supply voltage VSS and the high supply voltage VDD 2 .
  • the inverter 91 outputs an output signal Q 1 which is logically inverted based on a voltage of the node A.
  • the inverter 92 outputs an output signal Q 2 which is logically inverted based on a voltage of the node B.
  • the output signal Q 1 output from the inverter 91 serves as a normal output of the level shift circuit and the output signal Q 2 output from the inverter 92 serves as an inverted output of the level shift circuit.
  • the gate of the inverter 91 coupled to the node A is used, as a resistance, for the resistance R 91 and the gate of the inverter 92 coupled to the node B is used, as a resistance, for the resistance R 92 .
  • the transistors N 91 and N 92 and the transistors P 91 and P 92 have the same dimensions (W/L) respectively and the resistances R 91 and R 92 have the same resistance value.
  • the level shift circuit When a sufficient time has elapsed since the input signal IN became low level (VSS) and thus the circuit is stable, the transistor N 91 is turned off and the transistor N 92 is turned on. Therefore, the drain of the transistor N 92 (the node B) is at low level and the transistor P 91 is turned on. The transistor N 91 is turned off, and thus in a path from the high supply voltage VDD 2 to the transistor P 91 , the resistance R 91 , the transistor N 91 , and the reference supply voltage VSS in this order, no current other than an ignorable leakage current flows.
  • the output of the inverter 90 quickly changes from high level to low level. If the voltage of the input signal IN is sufficiently higher than a threshold voltage Vtn of an N-channel MOS transistor, the transistor N 91 changes from off to on and the transistor N 92 changes from on to off. At this time, even if the transistor N 92 is turned off, the transistor P 92 is also in an off state, and thus the voltage of the node B does not change at low level.
  • the transistor P 91 still remains in an on state, and thus an initial current (a through-current) determined by on-resistance of the transistor N 91 , on-resistance of the transistor P 91 , and the resistance R 91 flows in the resistance R 91 .
  • the transistor P 91 when the gate voltage of the transistor P 91 rises and the gate-source voltage (the gate voltage) of the transistor P 91 becomes greater than the threshold value Vtp, the transistor P 91 is turned off. Since the transistor N 91 is turned on, the node A becomes low level. When a sufficient time has elapsed in this state, the circuit is stabilized in a state opposite to the state where the input signal IN is low level. When the input signal IN changes from high level to low level, the level shift circuit operates on the same principle because the circuit is left-right symmetry.
  • the transistor N 91 (N 92 ) requires a relatively large drive capability.
  • the transistor N 91 (N 92 ) is required to have a drive capability which can flow a current larger than a current of the transistor P 91 (P 92 ) turned on and draw out charge of the gate of the transistor P 92 (p 91 ) to turn on the transistor P 92 (P 91 ).
  • the resistance R 91 (R 92 ) functions so as to limit the current of the transistor P 91 (P 92 ) and quickly drop the gate voltage of the transistor P 92 (P 91 ) by the voltage drop. Therefore, it is possible to quickly turn on the transistor P 92 (P 91 ).
  • the drive capability of the transistor N 91 (N 92 ) need not be larger than necessity and the speed of the level shift circuit can be increased.
  • Patent Document 2 discloses an output circuit (level shift circuit) which uses diode-coupled transistors P 93 and P 94 instead of the resistances R 91 and R 92 .
  • This document describes that an output OUT is taken out from the node B, but it is preferable to take out the output OUT by shaping waveform via an inverter in the same manner as in FIG. 1 .
  • the operation of the circuit is approximately the same as that of the circuit shown in FIG. 1 .
  • the level shift circuit converts a level of an input signal supplied from a circuit operated by a low supply voltage so that the input signal can drive a circuit operated by a high supply voltage.
  • a time period for a signal amplitude to change from high level to low level or from low level to high level becomes long.
  • a through-current flows in the inverter, and thus a consumption current increases and noise caused by a peak of the consumption current increases.
  • the present invention has been made in view of the above circumstances and provides a level shift circuit having a smaller through-current and a drive circuit of a display device including the level shift circuit.
  • a level shift circuit includes a first and a second MOS transistors (N 1 /N 2 ) of a first conductivity type (N), a third and a fourth MOS transistors (P 1 /P 2 ) of a second conductivity type (P) complementary to the first conductivity type (N), a first and a second voltage generation circuits (Z 1 /Z 2 ), a fifth MOS transistor (P 4 ) of the second conductivity type (P), and a sixth MOS transistor (N 4 ) of the first conductivity type (N).
  • An input signal (DI) having an amplitude between a third supply voltage (VDD 1 ) indicating a voltage between a first supply voltage (VSS) and a second supply voltage (VDD 2 ) and the first supply voltage (VSS) is input into the gate of the first MOS transistor (N 1 ).
  • An inverted input signal (DIB) which is an inverted signal of the input signal (DI) is input into the gate of the second MOS transistor (N 2 ).
  • the sources of the first and the second MOS transistors (N 1 /N 2 ) are commonly coupled to the first supply voltage (VSS).
  • the sources of the third and the fourth MOS transistors (P 1 /P 2 ) are commonly coupled to the second supply voltage (VDD 2 ), the gate of the third MOS transistor (P 1 ) is coupled to the drain of the second MOS transistor (N 2 ), and the gate of the fourth MOS transistor (P 2 ) is coupled to the drain of the first MOS transistor (N 1 ).
  • the first voltage generation circuit (Z 1 ) is coupled between the drain of the first MOS transistor (N 1 ) and the drain of the third MOS transistor (P 1 ), and the second-voltage generation circuit (Z 2 ) is coupled between the drain of the second MOS transistor (N 2 ) and the drain of the fourth MOS transistor (P 2 ).
  • the gate of the fifth MOS transistor (P 4 ) is coupled to a connection node (NDB) of the drain of the third MOS transistor (P 1 ) and the first voltage generation circuit (Z 1 ), and the source of the fifth MOS transistor (P 4 ) is coupled to the second supply voltage (VDD 2 ).
  • the gate of the sixth MOS transistor (N 4 ) is coupled to a connection node (NUB) of the drain of the first MOS transistor (N 1 ) and the first voltage generation circuit (Z 1 ).
  • the source of the sixth MOS transistor (N 4 ) is coupled to the first supply voltage (VSS).
  • the drain of the sixth MOS transistor (N 4 ) is coupled to the drain of the fifth MOS transistor (P 4 ).
  • an output of an inverter ( 110 ) into which the input signal (DI) is input and which is operated by the first supply voltage (VSS) and the third supply voltage (VDD 1 ) may be input into the gate of the second MOS transistor (N 2 ) as the inverted input signal (DIB).
  • the level shift circuit may include a seventh MOS transistor (P 3 ) of the second conductivity type (P), whose gate is coupled to a connection node (ND) of the drain of the fourth MOS transistor (P 2 ) and the second voltage generation circuit (Z 2 ) and whose source is coupled to the second supply voltage (VDD 2 ), and an eighth MOS transistor (N 3 ) of the first conductivity type (N), whose gate is coupled to a connection node (NU) of the drain of the second MOS transistor (N 2 ) and the second voltage generation circuit (Z 2 ), whose source is coupled to the first supply voltage (VSS), and whose drain is coupled to the drain of the seventh MOS transistor (P 3 ).
  • a drive circuit of a display device includes a plurality of the level shift circuits.
  • the level shift circuit includes a level conversion unit ( 100 ) and a buffer unit ( 200 ).
  • the level conversion unit ( 100 ) includes the first and the second voltage generation circuits (Z 1 /Z 2 ), converts the input signals (DI/DIB) of a first signal level, which indicate a logic level by an amplitude between a reference supply voltage (VSS) and a first supply voltage (VDD 1 ) into conversion signals of a second signal level, which indicate a logic level by an amplitude between the reference supply voltage (VSS) and a second supply voltage (VDD 2 ), and outputs voltages of both ends (ND, NU/NDB, NDU) of the first and the second voltage generation circuits (Z 1 /Z 2 ) as the conversion signals, respectively.
  • the level conversion unit ( 100 ) includes a first transistor (P 1 ) of the first conductivity type (P) and a second transistor (N 1 ) of the second conductivity type (N), coupled in series between the second supply voltage (VDD 2 ) and the reference supply voltage (VSS), and a third transistor (P 2 ) of the first conductivity type (P) and a fourth transistor (N 2 ) of the second conductivity type (N), coupled in series between the second supply voltage (VDD 2 ) and the reference supply voltage (VSS).
  • the first voltage generation circuit (Z 1 ) is coupled between the drain of the first transistor (P 1 ) and the drain of the second transistor (N 1 ).
  • the second voltage generation circuit (Z 2 ) is coupled between the drain of the third transistor (P 2 ) and the drain of the fourth transistor (N 2 ).
  • the buffer unit ( 200 ) includes transistors (P 3 , P 4 /N 3 , N 4 ) of the first conductivity type (N) and the second conductivity type (P), where conversion signals are applied to the gates thereof, respectively.
  • Output signals (DO/DOB) of the second signal level are output from connection nodes (DOB/DO) of the drains of the transistors (P 3 , P 4 /N 3 , N 4 ) of the first conductivity type (N) and the second conductivity type (P).
  • the present invention it is possible to provide a level shift circuit having a smaller through-current and a drive circuit of a display device including the level shift circuit.
  • FIG. 1 is an equivalent circuit diagram showing a configuration of a level shift circuit of a related art
  • FIG. 2 is an equivalent circuit diagram showing another configuration of a level shift circuit of a related art
  • FIG. 3 is an equivalent circuit diagram showing a configuration of a level shift circuit according to an embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram showing a first configuration example of the level shift circuit according to the embodiment of the present invention.
  • FIG. 5 is a timing chart for explaining an operation of the level shift circuit according to the embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram showing a second configuration example of the level shift circuit according to the embodiment of the present invention.
  • FIG. 7 is an equivalent circuit diagram showing a third configuration example of the level shift circuit according to the embodiment of the present invention.
  • FIG. 8 is an equivalent circuit diagram showing a fourth configuration example of the level shift circuit according to the embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a display device according to the embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram showing a configuration of a level shift circuit according to the embodiment of the present invention.
  • the level shift circuit includes a level conversion unit 100 and a buffer unit 200 .
  • the level conversion unit 100 includes P-channel MOS transistors P 1 and P 2 , N-channel MOS transistors N 1 and N 2 , voltage generation circuits Z 1 and Z 2 , and an inverter 110 .
  • the buffer unit 200 includes inverters 210 and 220 , the inverter 210 includes a P-channel MOS transistor P 3 and an N-channel MOS transistor N 3 , and the inverter 220 includes a P-channel MOS transistor P 4 and an N-channel MOS transistor N 4 .
  • the inverters 210 and 220 are circuits that output an inverted output signal and a normal output signal of the level shift circuit, respectively. If one of the output signals is not necessary, the corresponding inverter can be omitted.
  • the transistor P 1 , the voltage generation circuit Z 1 , and the transistor N 1 are coupled in series between a high supply voltage VDD 2 and a reference supply voltage VSS.
  • the transistor P 2 , the voltage generation circuit Z 2 , and the transistor N 2 are coupled in series between the high supply voltage VDD 2 and the reference supply voltage VSS.
  • the gate of the transistor P 1 is coupled to a connection node NU of the voltage generation circuit Z 2 and the drain of the transistor N 2 .
  • the gate of the transistor P 2 is coupled to a connection node NUB of the voltage generation circuit Z 1 and the drain of the transistor N 1 .
  • the node NU is coupled to the gate of the transistor N 3 of the inverter 210 and the node NUB is coupled to the gate of the transistor N 4 of the inverter 220 .
  • a connection node ND of the drain of the transistor P 2 and the voltage generation circuit Z 2 is coupled to the gate of the transistor P 3 of the inverter 210 .
  • a connection node NDB of the drain of the transistor P 1 and the voltage generation circuit Z 1 is coupled to the gate of the transistor P 4 of the inverter 220 .
  • the inverter 110 logically inverts an input signal DI and outputs an input signal DIB.
  • the input signal DI is applied to the gate of the transistor N 1 and the input signal DIB is applied to the gate of the transistor N 2 .
  • a low supply voltage VDD 1 and the reference supply voltage VSS are applied to the inverter 110 and the input signals DI and DIB have an amplitude oscillating between the low supply voltage VDD 1 and the reference supply voltage VSS.
  • Signals indicated by the voltages of the nodes NU, NUB, ND, and NDB have an amplitude oscillating between the high supply voltage VDD 2 and the reference supply voltage VSS.
  • a set of the voltages of the nodes NU and ND drives the inverter 210 and a set of the voltages of the nodes NUB and NDB drives the inverter 220 .
  • the transistor P 3 and the transistor N 3 are coupled in series between the high supply voltage VDD 2 and the reference supply voltage VSS and form the inverter 210 .
  • the gate of the transistor P 3 is coupled to the node ND and the gate of the transistor N 3 is coupled to the node NU.
  • An output signal DOB is output from a connection node of the drain of the transistor P 3 and the drain of the transistor N 3 .
  • the output signal DOB is a signal obtained by logically inverting the input signal DI and converting the signal level.
  • the transistor P 4 and the transistor N 4 are coupled in series between the high supply voltage VDD 2 and the reference supply voltage VSS and form the inverter 220 .
  • the gate of the transistor P 4 is coupled to the node NDB and the gate of the transistor N 4 is coupled to the node NUB.
  • An output signal DO is output from a connection node of the drain of the transistor P 4 and the drain of the transistor N 4 .
  • the output signal DO is a signal obtained by maintaining the logic of the input signal DI and converting the signal level.
  • the transistors P 1 and P 2 and the transistors N 1 and N 2 have the same dimensions (W/L). It is also preferable that the voltage generation circuits Z 1 and Z 2 are circuits having the same circuit characteristics (or dimensions). In addition, it is desirable that the transistors P 3 and P 4 and the transistors N 3 and N 4 also have the same dimensions (W/L).
  • the voltage generation circuits Z 1 and Z 2 can use diode-coupled transistors P 5 and P 6 (First Example).
  • each transistor is shown by a notation which clearly illustrates connection of the back gate.
  • the transistors P 5 and P 6 are P-channel MOS transistors in the same manner as the transistors P 1 to P 4 .
  • the back gates of the P-channel MOS transistors are coupled to the high supply voltage VDD 2 .
  • the back gates of the transistors N 1 to N 4 which are N-channel MOS transistors, are coupled to the reference supply voltage VSS.
  • the back gates of the transistors P 5 and P 6 are coupled to the high supply voltage VDD 2 , but may be coupled to their own sources.
  • the high supply voltage VDD 2 is applied to the back gates and the diode-coupled transistors P 5 and P 6 are used as the voltage generation circuits Z 1 and Z 2 .
  • the transistor N 1 In a state in which a sufficient time has elapsed since the input signal DI indicated a low level (VSS) and thus the circuit is stable, the transistor N 1 is in an off state because the input signal DI (low level) is applied to the gate.
  • the transistor N 2 is in an on state because the input signal DIB (high level) which is logically inverted by the inverter 110 , is applied to the gate.
  • the transistor N 2 is in the on state, and thus the voltage of the node NU is low level ( FIG. 5 NU) and the transistor P 1 is in the on state.
  • the transistor P 1 Although the transistor P 1 is in the on state, the transistor N 1 is in the off state, and thus no current flows in the transistor P 1 and the voltage of the node NDB becomes a high level near the high supply voltage VDD 2 ( FIG. 5 NDB).
  • the diode-coupled transistor P 5 has a diode forward-direction voltage drop (forward voltage) VF having a positive value from the drain coupled to the node NUB to the source coupled to the node NDB. Therefore, the voltage of the node NUB is a voltage (VDD 2 ⁇ VF) which is lower than the voltage ( ⁇ VDD 2 ) of the node NDB by VF ( FIG. 5 NUB).
  • the back gate of the transistor P 5 is coupled to the high supply voltage VDD 2 and has the same voltage as the voltage of the source VDD 2 ), and thus no back bias effect is generated in the transistor P 5 .
  • the forward-direction voltage drop VF of the diode-coupled transistor P 5 is the same as an absolute value of a threshold voltage Vtp.
  • the absolute value of the threshold voltage Vtp of the transistor P 5 is sufficiently smaller than a voltage difference between the reference supply voltage VSS and the high supply voltage VDD 2 .
  • the gate of the transistor P 2 is coupled to the node NUB (VDD 2 ⁇ VF), and thus the gate-source voltage Vgs ( ⁇ VF) is lower than or equal to the threshold voltage Vtp and the transistor P 2 is in the off state.
  • the transistor P 2 is in the off state and the transistor N 2 is in the on state, and thus the voltage of the node NU is low level ( ⁇ VSS) ( FIG. 5 NU).
  • the diode-coupled transistor P 6 has a diode forward-direction voltage drop (forward voltage) VF having a positive value from the drain to the source. Therefore, the voltage of the node ND is a voltage (VSS+VF) which is higher than the voltage ( ⁇ VSS) of the node NU by VF ( FIG. 5 ND).
  • the back gate of the transistor P 6 is coupled to the high supply voltage VDD 2 .
  • the source has a voltage that is VF higher than the reference supply voltage VSS, that is, a voltage lower than the high supply voltage VDD 2 , and thus, in the transistor P 6 , an absolute value of the threshold voltage Vtp (the forward-direction voltage drop VF as a diode) increases by the back bias effect and the forward-direction voltage drop VF of the diode-coupled transistor P 6 becomes equal to the absolute value of the threshold voltage Vtp with the back bias effect. Also at this time, the absolute value of the threshold voltage Vtp of the transistor P 6 , that is, the forward-direction voltage drop VF, is a value sufficiently smaller than the voltage difference between the reference supply voltage VSS and the high supply voltage VDD 2 . Therefore, the voltage of the node ND is a low level indicating the forward-direction voltage drop VF with the back bias effect ( FIG. 5 ND).
  • the input signal DI when the input signal DI changes from the low level (VSS) to the high level (VDD 1 ), the input signal DIB which is logically inverted via the inverter 110 , changes to the low level (VSS) immediately after the change of the input signal DI ( FIG. 5 ).
  • the voltage that indicates the high level of the input signal DI is sufficiently higher than the threshold voltage Vtn of the transistor N 1 , and thus the transistor N 1 changes to the on state.
  • the voltage that indicates the low level of the input signal DIB is lower than the threshold voltage Vtn of the transistor N 2 , and thus the transistor N 2 changes to the off state.
  • the transistor P 2 Immediately after the transistor N 2 is turned off, the transistor P 2 is also in the off state, and thus the voltages of the nodes NU and ND are maintained at the low level. Therefore, the transistor P 1 is still in the on state, and a through-current Ii 1 flows from the high supply voltage VDD 2 to the reference supply voltage VSS via the diode-coupled transistor P 5 .
  • the initial current value of the through-current is determined on the basis of on-resistances of the transistors P 1 , P 5 , and N 1 .
  • the voltage of the node NUB is determined by ratios of the on-resistances of the transistors P 1 , P 5 , and N 1 .
  • V NUB the voltage of the node NUB
  • Vtp negative value
  • the voltage of the node NU becomes high level at a voltage lower than the voltage of the node ND by the forward-direction voltage drop (forward voltage) VF of the transistor P 6 .
  • the source of the transistor P 1 is coupled to the high supply voltage VDD 2 and the gate is coupled to the node NU, and thus when the voltage of the node NU (V NU ) becomes higher than a voltage obtained by adding the threshold voltage Vtp (negative value) of the transistor P 1 to the high supply voltage VDD 2 (V NU ⁇ VDD 2 +Vtp), the transistor P 1 becomes off state.
  • the transistor P 1 When the transistor P 1 becomes off state, the voltages of the nodes NDB and NUB become low level with a difference corresponding to the forward-direction voltage drop (forward voltage) VF of the transistor P 5 . Therefore, the voltage of the node NUB becomes approximately equal to the reference supply voltage VSS and the voltage of the node NDB becomes approximately a voltage of the forward-direction voltage drop VF of the transistor P 5 ( FIG. 5 NDB, NUB). At this time, by the back bias effect of the transistor P 5 , the forward-direction voltage drop VF becomes larger than that when there is no back bias effect. When a sufficient time has elapsed, the circuit is stabilized in a state opposite to the state of when the input signal DI is low level. Also when the input signal DI changes from high level to low level, the level shift circuit operates in the same principle because the circuit is symmetrical.
  • the transistors P 3 , N 3 , P 4 , and N 4 in the buffer unit 200 operate responding to the changes of the voltages of the nodes ND, NU, NDB, and NUB.
  • the source of the diode-coupled transistor P 5 (corresponding to an anode of a diode) is the node NDB and the drain (corresponding to a cathode of a diode) is the node NUB.
  • the source of the diode-coupled transistor P 6 (anode) is the node ND and the drain (cathode) is the node NU.
  • the diode-coupled transistors P 5 and P 6 are biased in the forward direction at all times.
  • the forward-direction voltage drop VF is approximately equal to the absolute value of the threshold voltage Vtp.
  • the back gate is coupled to the high supply voltage VDD 2 , and thus the back bias effect affects the value of the Vtp, that is, the forward-direction voltage drop VF.
  • the forward-direction voltage drop VF when the voltages of the nodes ND and NDB are low becomes larger than that when the voltages of the nodes ND and NDB are high.
  • the nodes ND and NDB are the sources of the transistors P 6 and P 5 whose back gates are coupled to the high supply voltage VDD 2 , and thus when the voltages of the nodes ND and NDB become lower than the high supply voltage VDD 2 , the threshold voltage Vtp (the forward-direction voltage drop VF as a diode) increases by the back bias effect.
  • the inverter 210 including the transistor P 3 and the transistor N 3 , there is a voltage difference corresponding to the forward-direction voltage drop VF between the input voltages applied to the gates of the transistor P 3 and the transistor N 3 .
  • the gate voltages change while there is a voltage difference between them, and thus one transistor is turned off earlier than the other transistor. Since the one transistor is turned off earlier, a time period in which both transistors are in the on state at the same time decreases and the through-current decreases.
  • the back gate of the diode-coupled P-channel MOS transistor P 6 is coupled to the high supply voltage VDD 2 , and thus when the voltage of the output node ND of the level conversion unit 100 is lower than the high supply voltage VDD 2 , the source voltage of the diode-coupled transistor P 6 decreases and the back bias effect increases. Thereby, the absolute value of the threshold voltage Vtp, that is, the value of the forward-direction voltage drop VF, increases, and thus the through-current can be further reduced. This also applies to the inverter 220 which includes the transistor P 4 and the transistor N 4 .
  • the diode-coupled transistor P 5 limits a drive current of the transistor P 1 and functions so as to quickly lower the gate voltage of the transistor P 2 by the forward-direction voltage drop VF. Therefore, it is possible to turn on the transistor P 2 more quickly.
  • the drive capability of the N-channel MOS transistor is not required to be large beyond necessity and the speed of the level shift circuit can be increased.
  • the voltage of the node NUB coupled to the gate of the P-channel MOS transistor P 2 decreases by the forward-direction voltage drop VF of the diode-coupled P-channel MOS transistor P 5 . Therefore, the P-channel MOS transistor P 2 can be relatively easily turned on and even when the input voltage VDD 1 is low, that is, even when the drive current of the N-channel MOS transistor N 1 is small, a stable operation can be performed. Then, the low level voltages applied to the gates of the P-channel MOS transistors P 3 and P 4 are the voltage VF including a back bias effect higher than that of the reference supply voltage VSS, and thus it is possible to reduce the consumption current caused by the through-current.
  • the diode-coupled P-channel MOS transistor P 5 does not require a large drive capability, and thus it is possible to use a transistor having a small channel width W.
  • the layout area can be reduced and the input voltage can be lowered while the value of the through-current is reduced.
  • the diode-coupled P-channel MOS transistors P 5 and P 6 are exemplified as the voltage generation circuits Z 1 and Z 2 .
  • the diode-coupled N-channel MOS transistors N 5 and N 6 may be the voltage generation circuits Z 1 and Z 2 (Second Example).
  • the drain and the gate of the transistor N 5 are coupled to each other.
  • the drain and the gate of the transistor N 6 are coupled to each other.
  • the back gates of the transistors N 5 and N 6 are coupled to the reference supply voltage VSS.
  • the operation of this level shift circuit is the same as that of the first configuration example, but in this case, the back bias effect appears in a high level voltage on the side of the high supply voltage VDD 2 .
  • the effect is the same as that of the P-channel MOS transistors.
  • the diodes D 1 and D 2 may be used as the voltage generation circuits Z 1 and Z 2 (Third Example).
  • the diode D 1 such as a PN junction is coupled between the transistor P 1 and the transistor N 1
  • the diode D 2 such as a PN junction is coupled between the transistor P 2 and the transistor N 2 .
  • the forward-direction voltage drop VF of the PN junction is about 0.7 V when the material of the semiconductor is silicon, about 0.5 V when the material is germanium, and about 0.2 V when the PN junction is a Schottky barrier diode in which one side is metal.
  • the value of the forward-direction voltage drop VF_A is greater than the absolute value of the threshold voltage Vtp, the speed of the level shift circuit increases, but the P-channel MOS transistors P 1 and P 2 are not turned off completely. Therefore, a path in which current flows constantly is formed in the level shift circuit, and thus the power consumption increases.
  • the forward-direction voltage drop VF_A is excessively smaller than the threshold voltage Vtp, the P-channel MOS transistors P 1 and P 2 are completely turned off, and thus the power consumption at that time can be ignorable, but the effect of the present invention decreases. Therefore, it is preferable that the value of the forward-direction voltage drop VF_A is about the absolute value of the threshold voltage Vtp of the P-channel MOS transistors P 1 and P 2 .
  • the resistances R 1 and R 2 may be used as the voltage generation circuits Z 1 and Z 2 (Fourth Example).
  • the resistances R 1 and R 2 are used, the voltage drop by each resistance depends on a current flowing in the resistance, and thus it is necessary to increase the resistance value in order to ensure a voltage in an area where the current value is small.
  • no current flows in the resistances R 1 and R 2 in a state in which a level change of a signal is completed and the signal is stabilized, no current flows in the resistances R 1 and R 2 , and thus the voltages of the node ND and the node NU are the same and the voltages of the node NDB and the node NUB are the same.
  • the signal level is high, the voltage is approximately the same as the high supply voltage VDD 2 , and when the signal level is low, the voltage is approximately the same as the reference supply voltage VSS, and thus it is possible to reliably turn on and off the transistors.
  • FIG. 9 is a block diagram showing a configuration of a display device according to the embodiment of the present invention.
  • a display device 300 includes a controller 310 , a data driver unit 320 , a gate driver unit 330 , and a display panel 340 .
  • the display panel 340 is a liquid crystal display panel on which pixels are arranged in a matrix, and displays a display image.
  • the controller 310 supplies a control signal and a data signal to the data driver unit 320 and the gate driver unit 330 on the basis of a signal which is supplied from the outside and which represents a display image and a control signal of the signal representing the display image.
  • a clock signal CLK indicating a timing, a data strobe signal DSTB, and a display data signal DATA are supplied to the data driver unit 320 .
  • a gate clock signal GCLK and a gate strobe signal GSTB are supplied to the gate driver unit 330 .
  • the data driver unit 320 outputs data line signals D ⁇ 1 > to D ⁇ X> to pixel lines in a column direction on the display panel 340 on the basis of the display data signal DATA, the clock signal CLK, and the data strobe signal DSTB.
  • a plurality of drive circuits 329 that drive the data line signals D ⁇ 1 > to D ⁇ X> is voltage-follower-coupled differential amplifier circuits.
  • the gate driver unit 330 outputs gate line signals G ⁇ 1 > to G ⁇ Y> to pixel lines in a line direction on the display panel 340 on the basis of the gate clock signal GCLK and the gate strobe signal GSTB.
  • the level shift circuits 327 described above for generating the data line signals D ⁇ 1 > to D ⁇ X> corresponding to a high voltage signal (VDD 2 ), which is a level of the data signal, from DATA of a low voltage signal (VDD 1 ) and the number of which is a number obtained by multiplying the number of data lines (X) by a bit width (N) of the DATA, are incorporated; and all the level shift circuits 327 operate at approximately the same time at the timing of line display.
  • VDD 2 high voltage signal
  • VDD 1 low voltage signal
  • N bit width
  • Outputs of the level shift circuits 327 are input into digital-analog conversion circuits (DACs) 328 and output analog signals of the DACs 328 are amplified by the drive circuits 329 and output to data lines (not shown) of the display panel 340 as the data line signals D ⁇ 1 > to D ⁇ X>.
  • DACs digital-analog conversion circuits
  • the display panel 340 is a full high vision vertical stripe color panel of three primary colors (FHD: 1,920 columns ⁇ 1,080 lines)
  • the bit width of the DATA signal is 8 bits (full color: about 16,770,000 colors)
  • the number of level shifters mounted on the data driver unit 320 becomes 46,080.
  • 46,080 level shifters 327 operate at approximately the same time for each line.
  • the above operation is repeated for 1,080 lines in one frame, and one frame is displayed 60 times per second (normal speed display) to 240 times per second (quad-speed display or 3D of double speed display).
  • the level shift circuits of the present invention can significantly reduce the consumption current and the noise caused by a current peak in the entire display device even though each level shift circuit reduces a small amount of through-current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Logic Circuits (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electronic Switches (AREA)

Abstract

A display driver includes an input node for receiving display data, a level shift circuit configured to convert voltage level of the display data and output a first voltage and a second voltage based on the display data, an output node for outputting the output display data, a first P-channel MOS transistor coupled to the output node, whose gate is configured to input the first voltage, and a first N-channel MOS transistor coupled to the output node, whose gate is configured to input the second voltage, wherein a voltage difference between the second voltage and the first voltage varies based on the display data.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a Continuation application of U.S. patent application Ser. No. 13/724,224, filed on Dec. 21, 2012, which is based on Japanese Patent Application No. 2011-281108 filed on Dec. 22, 2011, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND
  • The present invention relates to a drive circuit of a display device, and in particular to a level shift circuit that converts a signal level of a digital signal.
  • The level shift circuit converts a digital signal having an amplitude between a reference supply voltage (VSS) and a low supply voltage (VDD1) into a digital signal having an amplitude between the reference supply voltage and a high supply voltage (VDD2).
  • The level shift circuit is disclosed in, for example, Japanese Patent Laid-Open No. 1993-199101 (Patent Document 1). As shown in FIG. 1, the circuit includes resistances R91 and R92 between drains of transistors P91 and N91 and between drains of transistors P92 and N92, respectively. The sources of the transistors P91 and P92 are coupled to the high supply voltage VDD2. The sources of the transistors N91 and N92 are coupled to the reference supply voltage VSS. The gate of the transistor P91 is coupled to a connection node B of the resistance R92 and the transistor N92. The gate of the transistor P92 is coupled to a connection node A of the resistance R91 and the transistor N91. An inverter 90 operates by being supplied with the reference supply voltage VSS and the low supply voltage VDD1, and logically inverts an input signal IN to thereby output the inverted signal as an input signal INB. The input signal IN is applied to the gate of the transistor N91 and the input signal INB output from the inverter 90 is applied to the gate of the transistor N92.
  • Inverters 91 and 92 operate by being supplied with the reference supply voltage VSS and the high supply voltage VDD2. The inverter 91 outputs an output signal Q1 which is logically inverted based on a voltage of the node A. The inverter 92 outputs an output signal Q2 which is logically inverted based on a voltage of the node B. The output signal Q1 output from the inverter 91 serves as a normal output of the level shift circuit and the output signal Q2 output from the inverter 92 serves as an inverted output of the level shift circuit. In this circuit, the gate of the inverter 91 coupled to the node A is used, as a resistance, for the resistance R91 and the gate of the inverter 92 coupled to the node B is used, as a resistance, for the resistance R92. Thereby, it is not necessary to newly insert the resistances R91 and R92, and thus the chip size of a circuit which shifts levels of many signals can be reduced. From the viewpoint of left-right symmetry of the circuit, it is preferable that the transistors N91 and N92 and the transistors P91 and P92 have the same dimensions (W/L) respectively and the resistances R91 and R92 have the same resistance value.
  • An operation of the level shift circuit will be described. When a sufficient time has elapsed since the input signal IN became low level (VSS) and thus the circuit is stable, the transistor N91 is turned off and the transistor N92 is turned on. Therefore, the drain of the transistor N92 (the node B) is at low level and the transistor P91 is turned on. The transistor N91 is turned off, and thus in a path from the high supply voltage VDD2 to the transistor P91, the resistance R91, the transistor N91, and the reference supply voltage VSS in this order, no current other than an ignorable leakage current flows. Since no current flows, voltages at both ends of the resistance R91 are the same and voltage of the node A is at high level near the high supply voltage VDD2. Since the node A is at high level, the transistor P92 is turned off, and thus in a path from the high supply voltage VDD2 to the transistor P92, the resistance R92, the transistor N92, and the reference supply voltage VSS in this order, no current other than an ignorable leakage current flows. Since no current flows, voltage of the node B is at low level near the reference supply voltage VSS.
  • After that, when the input signal IN changes from low level to high level, the output of the inverter 90 quickly changes from high level to low level. If the voltage of the input signal IN is sufficiently higher than a threshold voltage Vtn of an N-channel MOS transistor, the transistor N91 changes from off to on and the transistor N92 changes from on to off. At this time, even if the transistor N92 is turned off, the transistor P92 is also in an off state, and thus the voltage of the node B does not change at low level. Therefore, the transistor P91 still remains in an on state, and thus an initial current (a through-current) determined by on-resistance of the transistor N91, on-resistance of the transistor P91, and the resistance R91 flows in the resistance R91.
  • When the initial current flows in the resistance R91, a voltage drop occurs and the voltage of the node A drops by the voltage drop from the drain voltage of the transistor P91. When the voltage of the node A (VA) is lower than a threshold voltage Vtp (negative value) of the transistor P92 (VA≦VDD2+Vtp), that is, when the gate-source voltage (the gate voltage) of the transistor P92 is smaller than the threshold voltage Vtp, the transistor P92 is turned on. At this time, the transistor N92 is off, and thus the node B gradually becomes high level. Therefore, when the gate voltage of the transistor P91 rises and the gate-source voltage (the gate voltage) of the transistor P91 becomes greater than the threshold value Vtp, the transistor P91 is turned off. Since the transistor N91 is turned on, the node A becomes low level. When a sufficient time has elapsed in this state, the circuit is stabilized in a state opposite to the state where the input signal IN is low level. When the input signal IN changes from high level to low level, the level shift circuit operates on the same principle because the circuit is left-right symmetry.
  • When the resistance R91 (R92) is 0Ω and the voltage drop by the initial current is 0 volt, that is, in a case of a level shift circuit which has no resistance R91 (R92) and in which transistors are directly coupled to each other, the transistor N91 (N92) requires a relatively large drive capability. That is, in a state in which the gate voltage is the voltage VDD1 which is the maximum value of the input signal IN and the drain-source voltage Vds is a voltage near 0 volt, the transistor N91 (N92) is required to have a drive capability which can flow a current larger than a current of the transistor P91 (P92) turned on and draw out charge of the gate of the transistor P92 (p91) to turn on the transistor P92 (P91). The resistance R91 (R92) functions so as to limit the current of the transistor P91 (P92) and quickly drop the gate voltage of the transistor P92 (P91) by the voltage drop. Therefore, it is possible to quickly turn on the transistor P92 (P91). The drive capability of the transistor N91 (N92) need not be larger than necessity and the speed of the level shift circuit can be increased.
  • Moreover, as shown in FIG. 2, Japanese Patent Laid-Open No. 1992-284021 (Patent Document 2) discloses an output circuit (level shift circuit) which uses diode-coupled transistors P93 and P94 instead of the resistances R91 and R92. This document describes that an output OUT is taken out from the node B, but it is preferable to take out the output OUT by shaping waveform via an inverter in the same manner as in FIG. 1. The operation of the circuit is approximately the same as that of the circuit shown in FIG. 1. However, voltages of the node A and the node B (drain voltages of the transistors N91 and N92) drop by forward-direction voltage drops VF of the diode-coupled transistors P93 and P94, and thus the transistors P91 and P92 can be turned on with relative ease. That is, the circuit can operate even when the maximum voltage VDD1 of the input signal IN is further lower.
  • In this way, the level shift circuit converts a level of an input signal supplied from a circuit operated by a low supply voltage so that the input signal can drive a circuit operated by a high supply voltage. However, a time period for a signal amplitude to change from high level to low level or from low level to high level becomes long. In the time period in which the level changes, a through-current flows in the inverter, and thus a consumption current increases and noise caused by a peak of the consumption current increases.
  • SUMMARY
  • The present invention has been made in view of the above circumstances and provides a level shift circuit having a smaller through-current and a drive circuit of a display device including the level shift circuit.
  • Hereinafter, means for solving the problems will be described by using reference numerals and signs used in “DETAILED DESCRIPTION”. The reference numerals and signs are added to clarify a correspondence relationship between descriptions in “What is claimed is:” and the “DETAILED DESCRIPTION”. However, the reference numerals and signs may not be used to interpret the technical scope of the invention described in the “What is claimed is:”.
  • According to an aspect of the present invention, a level shift circuit includes a first and a second MOS transistors (N1/N2) of a first conductivity type (N), a third and a fourth MOS transistors (P1/P2) of a second conductivity type (P) complementary to the first conductivity type (N), a first and a second voltage generation circuits (Z1/Z2), a fifth MOS transistor (P4) of the second conductivity type (P), and a sixth MOS transistor (N4) of the first conductivity type (N). An input signal (DI) having an amplitude between a third supply voltage (VDD1) indicating a voltage between a first supply voltage (VSS) and a second supply voltage (VDD2) and the first supply voltage (VSS) is input into the gate of the first MOS transistor (N1). An inverted input signal (DIB) which is an inverted signal of the input signal (DI) is input into the gate of the second MOS transistor (N2). The sources of the first and the second MOS transistors (N1/N2) are commonly coupled to the first supply voltage (VSS). The sources of the third and the fourth MOS transistors (P1/P2) are commonly coupled to the second supply voltage (VDD2), the gate of the third MOS transistor (P1) is coupled to the drain of the second MOS transistor (N2), and the gate of the fourth MOS transistor (P2) is coupled to the drain of the first MOS transistor (N1). The first voltage generation circuit (Z1) is coupled between the drain of the first MOS transistor (N1) and the drain of the third MOS transistor (P1), and the second-voltage generation circuit (Z2) is coupled between the drain of the second MOS transistor (N2) and the drain of the fourth MOS transistor (P2). The gate of the fifth MOS transistor (P4) is coupled to a connection node (NDB) of the drain of the third MOS transistor (P1) and the first voltage generation circuit (Z1), and the source of the fifth MOS transistor (P4) is coupled to the second supply voltage (VDD2). The gate of the sixth MOS transistor (N4) is coupled to a connection node (NUB) of the drain of the first MOS transistor (N1) and the first voltage generation circuit (Z1). The source of the sixth MOS transistor (N4) is coupled to the first supply voltage (VSS). The drain of the sixth MOS transistor (N4) is coupled to the drain of the fifth MOS transistor (P4).
  • Moreover, in the level shift circuit, an output of an inverter (110) into which the input signal (DI) is input and which is operated by the first supply voltage (VSS) and the third supply voltage (VDD1) may be input into the gate of the second MOS transistor (N2) as the inverted input signal (DIB).
  • Furthermore, the level shift circuit may include a seventh MOS transistor (P3) of the second conductivity type (P), whose gate is coupled to a connection node (ND) of the drain of the fourth MOS transistor (P2) and the second voltage generation circuit (Z2) and whose source is coupled to the second supply voltage (VDD2), and an eighth MOS transistor (N3) of the first conductivity type (N), whose gate is coupled to a connection node (NU) of the drain of the second MOS transistor (N2) and the second voltage generation circuit (Z2), whose source is coupled to the first supply voltage (VSS), and whose drain is coupled to the drain of the seventh MOS transistor (P3).
  • From the viewpoint of another aspect of the present invention, a drive circuit of a display device includes a plurality of the level shift circuits.
  • In addition, from the viewpoint of another aspect of the present invention, the level shift circuit includes a level conversion unit (100) and a buffer unit (200). The level conversion unit (100) includes the first and the second voltage generation circuits (Z1/Z2), converts the input signals (DI/DIB) of a first signal level, which indicate a logic level by an amplitude between a reference supply voltage (VSS) and a first supply voltage (VDD1) into conversion signals of a second signal level, which indicate a logic level by an amplitude between the reference supply voltage (VSS) and a second supply voltage (VDD2), and outputs voltages of both ends (ND, NU/NDB, NDU) of the first and the second voltage generation circuits (Z1/Z2) as the conversion signals, respectively. Furthermore, the level conversion unit (100) includes a first transistor (P1) of the first conductivity type (P) and a second transistor (N1) of the second conductivity type (N), coupled in series between the second supply voltage (VDD2) and the reference supply voltage (VSS), and a third transistor (P2) of the first conductivity type (P) and a fourth transistor (N2) of the second conductivity type (N), coupled in series between the second supply voltage (VDD2) and the reference supply voltage (VSS). The first voltage generation circuit (Z1) is coupled between the drain of the first transistor (P1) and the drain of the second transistor (N1). The second voltage generation circuit (Z2) is coupled between the drain of the third transistor (P2) and the drain of the fourth transistor (N2). The buffer unit (200) includes transistors (P3, P4/N3, N4) of the first conductivity type (N) and the second conductivity type (P), where conversion signals are applied to the gates thereof, respectively. Output signals (DO/DOB) of the second signal level are output from connection nodes (DOB/DO) of the drains of the transistors (P3, P4/N3, N4) of the first conductivity type (N) and the second conductivity type (P).
  • EFFECTS OF THE INVENTION
  • According to the present invention, it is possible to provide a level shift circuit having a smaller through-current and a drive circuit of a display device including the level shift circuit.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an equivalent circuit diagram showing a configuration of a level shift circuit of a related art;
  • FIG. 2 is an equivalent circuit diagram showing another configuration of a level shift circuit of a related art;
  • FIG. 3 is an equivalent circuit diagram showing a configuration of a level shift circuit according to an embodiment of the present invention;
  • FIG. 4 is an equivalent circuit diagram showing a first configuration example of the level shift circuit according to the embodiment of the present invention;
  • FIG. 5 is a timing chart for explaining an operation of the level shift circuit according to the embodiment of the present invention;
  • FIG. 6 is an equivalent circuit diagram showing a second configuration example of the level shift circuit according to the embodiment of the present invention;
  • FIG. 7 is an equivalent circuit diagram showing a third configuration example of the level shift circuit according to the embodiment of the present invention;
  • FIG. 8 is an equivalent circuit diagram showing a fourth configuration example of the level shift circuit according to the embodiment of the present invention; and
  • FIG. 9 is a block diagram showing a configuration of a display device according to the embodiment of the present invention.
  • DETAILED DESCRIPTION
  • An embodiment of the present invention will be described with reference to the drawings.
  • FIG. 3 is an equivalent circuit diagram showing a configuration of a level shift circuit according to the embodiment of the present invention. The level shift circuit includes a level conversion unit 100 and a buffer unit 200. The level conversion unit 100 includes P-channel MOS transistors P1 and P2, N-channel MOS transistors N1 and N2, voltage generation circuits Z1 and Z2, and an inverter 110. The buffer unit 200 includes inverters 210 and 220, the inverter 210 includes a P-channel MOS transistor P3 and an N-channel MOS transistor N3, and the inverter 220 includes a P-channel MOS transistor P4 and an N-channel MOS transistor N4. The inverters 210 and 220 are circuits that output an inverted output signal and a normal output signal of the level shift circuit, respectively. If one of the output signals is not necessary, the corresponding inverter can be omitted.
  • The transistor P1, the voltage generation circuit Z1, and the transistor N1 are coupled in series between a high supply voltage VDD2 and a reference supply voltage VSS. The transistor P2, the voltage generation circuit Z2, and the transistor N2 are coupled in series between the high supply voltage VDD2 and the reference supply voltage VSS. The gate of the transistor P1 is coupled to a connection node NU of the voltage generation circuit Z2 and the drain of the transistor N2. The gate of the transistor P2 is coupled to a connection node NUB of the voltage generation circuit Z1 and the drain of the transistor N1. The node NU is coupled to the gate of the transistor N3 of the inverter 210 and the node NUB is coupled to the gate of the transistor N4 of the inverter 220. A connection node ND of the drain of the transistor P2 and the voltage generation circuit Z2 is coupled to the gate of the transistor P3 of the inverter 210. A connection node NDB of the drain of the transistor P1 and the voltage generation circuit Z1 is coupled to the gate of the transistor P4 of the inverter 220.
  • The inverter 110 logically inverts an input signal DI and outputs an input signal DIB. The input signal DI is applied to the gate of the transistor N1 and the input signal DIB is applied to the gate of the transistor N2. A low supply voltage VDD1 and the reference supply voltage VSS are applied to the inverter 110 and the input signals DI and DIB have an amplitude oscillating between the low supply voltage VDD1 and the reference supply voltage VSS. Signals indicated by the voltages of the nodes NU, NUB, ND, and NDB have an amplitude oscillating between the high supply voltage VDD2 and the reference supply voltage VSS. A set of the voltages of the nodes NU and ND drives the inverter 210 and a set of the voltages of the nodes NUB and NDB drives the inverter 220.
  • The transistor P3 and the transistor N3 are coupled in series between the high supply voltage VDD2 and the reference supply voltage VSS and form the inverter 210. The gate of the transistor P3 is coupled to the node ND and the gate of the transistor N3 is coupled to the node NU. An output signal DOB is output from a connection node of the drain of the transistor P3 and the drain of the transistor N3. The output signal DOB is a signal obtained by logically inverting the input signal DI and converting the signal level.
  • The transistor P4 and the transistor N4 are coupled in series between the high supply voltage VDD2 and the reference supply voltage VSS and form the inverter 220. The gate of the transistor P4 is coupled to the node NDB and the gate of the transistor N4 is coupled to the node NUB. An output signal DO is output from a connection node of the drain of the transistor P4 and the drain of the transistor N4. The output signal DO is a signal obtained by maintaining the logic of the input signal DI and converting the signal level.
  • From the viewpoint of the symmetry of the circuit, it is preferable that the transistors P1 and P2 and the transistors N1 and N2 have the same dimensions (W/L). It is also preferable that the voltage generation circuits Z1 and Z2 are circuits having the same circuit characteristics (or dimensions). In addition, it is desirable that the transistors P3 and P4 and the transistors N3 and N4 also have the same dimensions (W/L).
  • As shown in FIG. 4, the voltage generation circuits Z1 and Z2 can use diode-coupled transistors P5 and P6 (First Example). In FIG. 4, each transistor is shown by a notation which clearly illustrates connection of the back gate. The transistors P5 and P6 are P-channel MOS transistors in the same manner as the transistors P1 to P4. The back gates of the P-channel MOS transistors are coupled to the high supply voltage VDD2. The back gates of the transistors N1 to N4, which are N-channel MOS transistors, are coupled to the reference supply voltage VSS. Here, the back gates of the transistors P5 and P6 are coupled to the high supply voltage VDD2, but may be coupled to their own sources.
  • An operation of the level shift circuit shown in FIG. 4 will be described with reference to FIG. 5. In this level shift circuit, the high supply voltage VDD2 is applied to the back gates and the diode-coupled transistors P5 and P6 are used as the voltage generation circuits Z1 and Z2.
  • In a state in which a sufficient time has elapsed since the input signal DI indicated a low level (VSS) and thus the circuit is stable, the transistor N1 is in an off state because the input signal DI (low level) is applied to the gate. The transistor N2 is in an on state because the input signal DIB (high level) which is logically inverted by the inverter 110, is applied to the gate. The transistor N2 is in the on state, and thus the voltage of the node NU is low level (FIG. 5 NU) and the transistor P1 is in the on state. Although the transistor P1 is in the on state, the transistor N1 is in the off state, and thus no current flows in the transistor P1 and the voltage of the node NDB becomes a high level near the high supply voltage VDD2 (FIG. 5 NDB).
  • The diode-coupled transistor P5 has a diode forward-direction voltage drop (forward voltage) VF having a positive value from the drain coupled to the node NUB to the source coupled to the node NDB. Therefore, the voltage of the node NUB is a voltage (VDD2−VF) which is lower than the voltage (≈VDD2) of the node NDB by VF (FIG. 5 NUB). At this time, the back gate of the transistor P5 is coupled to the high supply voltage VDD2 and has the same voltage as the voltage of the source VDD2), and thus no back bias effect is generated in the transistor P5. Moreover, the forward-direction voltage drop VF of the diode-coupled transistor P5 is the same as an absolute value of a threshold voltage Vtp. The absolute value of the threshold voltage Vtp of the transistor P5, that is, the forward-direction voltage drop VF, is sufficiently smaller than a voltage difference between the reference supply voltage VSS and the high supply voltage VDD2. The gate of the transistor P2 is coupled to the node NUB (VDD2−VF), and thus the gate-source voltage Vgs (−VF) is lower than or equal to the threshold voltage Vtp and the transistor P2 is in the off state. The transistor P2 is in the off state and the transistor N2 is in the on state, and thus the voltage of the node NU is low level (≈VSS) (FIG. 5 NU).
  • The diode-coupled transistor P6 has a diode forward-direction voltage drop (forward voltage) VF having a positive value from the drain to the source. Therefore, the voltage of the node ND is a voltage (VSS+VF) which is higher than the voltage (≈VSS) of the node NU by VF (FIG. 5 ND). The back gate of the transistor P6 is coupled to the high supply voltage VDD2. At this time, the source has a voltage that is VF higher than the reference supply voltage VSS, that is, a voltage lower than the high supply voltage VDD2, and thus, in the transistor P6, an absolute value of the threshold voltage Vtp (the forward-direction voltage drop VF as a diode) increases by the back bias effect and the forward-direction voltage drop VF of the diode-coupled transistor P6 becomes equal to the absolute value of the threshold voltage Vtp with the back bias effect. Also at this time, the absolute value of the threshold voltage Vtp of the transistor P6, that is, the forward-direction voltage drop VF, is a value sufficiently smaller than the voltage difference between the reference supply voltage VSS and the high supply voltage VDD2. Therefore, the voltage of the node ND is a low level indicating the forward-direction voltage drop VF with the back bias effect (FIG. 5 ND).
  • In such a stable condition, when the input signal DI changes from the low level (VSS) to the high level (VDD1), the input signal DIB which is logically inverted via the inverter 110, changes to the low level (VSS) immediately after the change of the input signal DI (FIG. 5). The voltage that indicates the high level of the input signal DI is sufficiently higher than the threshold voltage Vtn of the transistor N1, and thus the transistor N1 changes to the on state. Moreover, the voltage that indicates the low level of the input signal DIB is lower than the threshold voltage Vtn of the transistor N2, and thus the transistor N2 changes to the off state. Immediately after the transistor N2 is turned off, the transistor P2 is also in the off state, and thus the voltages of the nodes NU and ND are maintained at the low level. Therefore, the transistor P1 is still in the on state, and a through-current Ii1 flows from the high supply voltage VDD2 to the reference supply voltage VSS via the diode-coupled transistor P5. The initial current value of the through-current is determined on the basis of on-resistances of the transistors P1, P5, and N1.
  • The voltage of the node NUB is determined by ratios of the on-resistances of the transistors P1, P5, and N1. When the voltage of the node NUB (VNUB) becomes lower than a voltage obtained by adding the threshold voltage Vtp (negative value) to the high supply voltage VDD2, which is the source voltage of the transistor P2, (VNUB<VDD2+Vtp), the transistor P2 becomes on state. At this time, the transistor N2 is in the off state, and thus the voltage of the node ND becomes high level (≈VDD2). Therefore, the voltage of the node NU becomes high level at a voltage lower than the voltage of the node ND by the forward-direction voltage drop (forward voltage) VF of the transistor P6. The source of the transistor P1 is coupled to the high supply voltage VDD2 and the gate is coupled to the node NU, and thus when the voltage of the node NU (VNU) becomes higher than a voltage obtained by adding the threshold voltage Vtp (negative value) of the transistor P1 to the high supply voltage VDD2 (VNU≧VDD2+Vtp), the transistor P1 becomes off state. When the transistor P1 becomes off state, the voltages of the nodes NDB and NUB become low level with a difference corresponding to the forward-direction voltage drop (forward voltage) VF of the transistor P5. Therefore, the voltage of the node NUB becomes approximately equal to the reference supply voltage VSS and the voltage of the node NDB becomes approximately a voltage of the forward-direction voltage drop VF of the transistor P5 (FIG. 5 NDB, NUB). At this time, by the back bias effect of the transistor P5, the forward-direction voltage drop VF becomes larger than that when there is no back bias effect. When a sufficient time has elapsed, the circuit is stabilized in a state opposite to the state of when the input signal DI is low level. Also when the input signal DI changes from high level to low level, the level shift circuit operates in the same principle because the circuit is symmetrical.
  • The transistors P3, N3, P4, and N4 in the buffer unit 200 operate responding to the changes of the voltages of the nodes ND, NU, NDB, and NUB. The source of the diode-coupled transistor P5 (corresponding to an anode of a diode) is the node NDB and the drain (corresponding to a cathode of a diode) is the node NUB. The source of the diode-coupled transistor P6 (anode) is the node ND and the drain (cathode) is the node NU. The diode-coupled transistors P5 and P6 are biased in the forward direction at all times. In this state, there is a voltage difference corresponding to the forward-direction voltage drop VF between the nodes ND and NU and between the nodes NDB and NUB. The forward-direction voltage drop VF of the diode-coupled P-channel MOS transistors is approximately equal to the absolute value of the threshold voltage Vtp. The back gate is coupled to the high supply voltage VDD2, and thus the back bias effect affects the value of the Vtp, that is, the forward-direction voltage drop VF. Specifically, as shown in FIG. 5, the forward-direction voltage drop VF when the voltages of the nodes ND and NDB are low becomes larger than that when the voltages of the nodes ND and NDB are high. This is because the nodes ND and NDB are the sources of the transistors P6 and P5 whose back gates are coupled to the high supply voltage VDD2, and thus when the voltages of the nodes ND and NDB become lower than the high supply voltage VDD2, the threshold voltage Vtp (the forward-direction voltage drop VF as a diode) increases by the back bias effect.
  • In the inverter 210 including the transistor P3 and the transistor N3, there is a voltage difference corresponding to the forward-direction voltage drop VF between the input voltages applied to the gates of the transistor P3 and the transistor N3. The gate voltages change while there is a voltage difference between them, and thus one transistor is turned off earlier than the other transistor. Since the one transistor is turned off earlier, a time period in which both transistors are in the on state at the same time decreases and the through-current decreases. Furthermore, the back gate of the diode-coupled P-channel MOS transistor P6 is coupled to the high supply voltage VDD2, and thus when the voltage of the output node ND of the level conversion unit 100 is lower than the high supply voltage VDD2, the source voltage of the diode-coupled transistor P6 decreases and the back bias effect increases. Thereby, the absolute value of the threshold voltage Vtp, that is, the value of the forward-direction voltage drop VF, increases, and thus the through-current can be further reduced. This also applies to the inverter 220 which includes the transistor P4 and the transistor N4.
  • The diode-coupled transistor P5 limits a drive current of the transistor P1 and functions so as to quickly lower the gate voltage of the transistor P2 by the forward-direction voltage drop VF. Therefore, it is possible to turn on the transistor P2 more quickly. Thus, the drive capability of the N-channel MOS transistor is not required to be large beyond necessity and the speed of the level shift circuit can be increased.
  • In other words, the voltage of the node NUB coupled to the gate of the P-channel MOS transistor P2 decreases by the forward-direction voltage drop VF of the diode-coupled P-channel MOS transistor P5. Therefore, the P-channel MOS transistor P2 can be relatively easily turned on and even when the input voltage VDD1 is low, that is, even when the drive current of the N-channel MOS transistor N1 is small, a stable operation can be performed. Then, the low level voltages applied to the gates of the P-channel MOS transistors P3 and P4 are the voltage VF including a back bias effect higher than that of the reference supply voltage VSS, and thus it is possible to reduce the consumption current caused by the through-current. Moreover, the diode-coupled P-channel MOS transistor P5 does not require a large drive capability, and thus it is possible to use a transistor having a small channel width W. As described above, regarding the level shift circuit according to the embodiment, the layout area can be reduced and the input voltage can be lowered while the value of the through-current is reduced.
  • In the above description, the diode-coupled P-channel MOS transistors P5 and P6 are exemplified as the voltage generation circuits Z1 and Z2. However, as shown in FIG. 6, the diode-coupled N-channel MOS transistors N5 and N6 may be the voltage generation circuits Z1 and Z2 (Second Example). The drain and the gate of the transistor N5 are coupled to each other. The drain and the gate of the transistor N6 are coupled to each other. The back gates of the transistors N5 and N6 are coupled to the reference supply voltage VSS. The operation of this level shift circuit is the same as that of the first configuration example, but in this case, the back bias effect appears in a high level voltage on the side of the high supply voltage VDD2. The effect is the same as that of the P-channel MOS transistors.
  • Moreover, as shown in FIG. 7, the diodes D1 and D2 may be used as the voltage generation circuits Z1 and Z2 (Third Example). The diode D1 such as a PN junction is coupled between the transistor P1 and the transistor N1, and the diode D2 such as a PN junction is coupled between the transistor P2 and the transistor N2.
  • It is known that the forward-direction voltage drop VF of the PN junction is about 0.7 V when the material of the semiconductor is silicon, about 0.5 V when the material is germanium, and about 0.2 V when the PN junction is a Schottky barrier diode in which one side is metal. When a plurality of diodes is coupled in series as the voltage generation circuits Z1 and Z2, the forward-direction voltage drop VF_A of the voltage generation circuits Z1 and Z2 is calculated as VF_A=VF×the number of diodes. When the value of the forward-direction voltage drop VF_A is greater than the absolute value of the threshold voltage Vtp, the speed of the level shift circuit increases, but the P-channel MOS transistors P1 and P2 are not turned off completely. Therefore, a path in which current flows constantly is formed in the level shift circuit, and thus the power consumption increases. When the forward-direction voltage drop VF_A is excessively smaller than the threshold voltage Vtp, the P-channel MOS transistors P1 and P2 are completely turned off, and thus the power consumption at that time can be ignorable, but the effect of the present invention decreases. Therefore, it is preferable that the value of the forward-direction voltage drop VF_A is about the absolute value of the threshold voltage Vtp of the P-channel MOS transistors P1 and P2.
  • Moreover, as shown in FIG. 8, the resistances R1 and R2 may be used as the voltage generation circuits Z1 and Z2 (Fourth Example). When the resistances R1 and R2 are used, the voltage drop by each resistance depends on a current flowing in the resistance, and thus it is necessary to increase the resistance value in order to ensure a voltage in an area where the current value is small. However, in a state in which a level change of a signal is completed and the signal is stabilized, no current flows in the resistances R1 and R2, and thus the voltages of the node ND and the node NU are the same and the voltages of the node NDB and the node NUB are the same. When the signal level is high, the voltage is approximately the same as the high supply voltage VDD2, and when the signal level is low, the voltage is approximately the same as the reference supply voltage VSS, and thus it is possible to reliably turn on and off the transistors.
  • FIG. 9 is a block diagram showing a configuration of a display device according to the embodiment of the present invention. A display device 300 includes a controller 310, a data driver unit 320, a gate driver unit 330, and a display panel 340. The display panel 340 is a liquid crystal display panel on which pixels are arranged in a matrix, and displays a display image. The controller 310 supplies a control signal and a data signal to the data driver unit 320 and the gate driver unit 330 on the basis of a signal which is supplied from the outside and which represents a display image and a control signal of the signal representing the display image. A clock signal CLK indicating a timing, a data strobe signal DSTB, and a display data signal DATA are supplied to the data driver unit 320. A gate clock signal GCLK and a gate strobe signal GSTB are supplied to the gate driver unit 330.
  • The data driver unit 320 outputs data line signals D<1> to D<X> to pixel lines in a column direction on the display panel 340 on the basis of the display data signal DATA, the clock signal CLK, and the data strobe signal DSTB. A plurality of drive circuits 329 that drive the data line signals D<1> to D<X> is voltage-follower-coupled differential amplifier circuits. The gate driver unit 330 outputs gate line signals G<1> to G<Y> to pixel lines in a line direction on the display panel 340 on the basis of the gate clock signal GCLK and the gate strobe signal GSTB. In the data driver unit 320, the level shift circuits 327 described above, for generating the data line signals D<1> to D<X> corresponding to a high voltage signal (VDD2), which is a level of the data signal, from DATA of a low voltage signal (VDD1) and the number of which is a number obtained by multiplying the number of data lines (X) by a bit width (N) of the DATA, are incorporated; and all the level shift circuits 327 operate at approximately the same time at the timing of line display. Outputs of the level shift circuits 327 are input into digital-analog conversion circuits (DACs) 328 and output analog signals of the DACs 328 are amplified by the drive circuits 329 and output to data lines (not shown) of the display panel 340 as the data line signals D<1> to D<X>.
  • For example, when the display panel 340 is a full high vision vertical stripe color panel of three primary colors (FHD: 1,920 columns×1,080 lines), the number of outputs (X) of the data driver unit 320 becomes 5,760 (=1,920×three primary colors). At this time, when the bit width of the DATA signal is 8 bits (full color: about 16,770,000 colors), the number of level shifters mounted on the data driver unit 320 becomes 46,080. On the display device, when there is displayed a pattern in which black (00000000) lines and white (11111111) lines of the DATA for each line are alternately repeated, such as a white/black column checkered pattern and a white/black horizontal lines display, 46,080 level shifters 327 operate at approximately the same time for each line. Furthermore, the above operation is repeated for 1,080 lines in one frame, and one frame is displayed 60 times per second (normal speed display) to 240 times per second (quad-speed display or 3D of double speed display). This means that 46,080 level shift circuits 327 change value 25,920 times per second, that is, the through-current flows 25,920 times per second. As described above, the level shift circuits of the present invention can significantly reduce the consumption current and the noise caused by a current peak in the entire display device even though each level shift circuit reduces a small amount of through-current.
  • Although the present invention has been described with reference to the embodiment, Examples of the embodiment can be combined and implemented as long as no contradiction occurs. Furthermore, the present invention is not limited to the embodiment described above, and various modifications that can be understood by those skilled in the art can be made in the configurations and details of the present invention within the scope of the present invention.

Claims (20)

What is claimed is:
1. A display driver comprising:
an input node for receiving display data;
a level shift circuit configured to convert a voltage level of the display data and output a first voltage and a second voltage based on the display data;
an output node for outputting the output display data;
a first P-channel MOS (Metal-Oxide-Semiconductor) transistor coupled to the output node, the first P-channel MOS transistor including a gate that is configured to input the first voltage; and
a first N-channel MOS transistor coupled to the output node, the first N-channel MOS transistor including a gate that is configured to input the second voltage,
wherein a voltage difference between the second voltage and the first voltage varies based on the display data.
2. The display driver according to claim 1, wherein the level shift circuit further comprises:
a first voltage generator configured to generate the voltage difference based on the display data, and output the first voltage and the second voltage.
3. The display driver according to claim 2, wherein the level shift circuit further comprises:
a second N-channel MOS transistor including a gate that is configured to input the display data;
a third N-channel MOS transistor including a gate that is configured to input an inverted display data which is inverted from the display data;
a second P-channel MOS transistor including a gate that is coupled to a drain of the third N-channel MOS transistor; and
a third P-channel MOS transistor including a gate that is coupled to a drain of the second N-channel MOS transistor.
4. The display driver according to claim 3, wherein the first voltage generator comprises:
a fourth P-channel MOS transistor coupled between the third P-channel MOS transistor and the third N-channel MOS transistor, the fourth P-channel MOS transistor including a back gate that is coupled to a source of the third P-channel MOS transistor.
5. The display driver according to claim 4, wherein the voltage difference varies based on a threshold voltage of the fourth P-channel MOS transistor.
6. The display driver according to claim 5, wherein the threshold voltage of the fourth N-channel MOS transistor decreases according to the second N-channel MOS transistor being turned on.
7. The display driver according to claim 6, wherein the first P-channel MOS transistor and the first N-channel MOS transistor are not turned on in a same period.
8. The display driver according to claim 3, wherein the first voltage generator comprises:
a fourth N-channel MOS transistor coupled between the third P-channel MOS transistor and the third N-channel MOS transistor, the fourth N-channel MOS transistor including a back gate that is coupled to a source of the third N-channel MOS transistor.
9. The display driver according to claim 8, wherein the voltage difference varies based on a threshold voltage of the fourth N-channel MOS transistor.
10. The display driver according to claim 9, wherein the threshold voltage of the fourth N-channel MOS transistor decreases according to the second N-channel MOS transistor being turned on.
11. The display driver according to claim 10, wherein the first P-channel MOS transistor and the first N-channel MOS transistor are not turned on in a same period.
12. A driver comprising:
an input node for receiving data;
a level shift circuit configured to convert a voltage level of the data and output a first voltage and a second voltage based on the data;
an output node for outputting the output data;
a first transistor of a first type coupled to the output node, the first transistor of the first type including a control terminal that is configured to input the first voltage; and
a first transistor of the second type coupled to the output node, the first transistor of the second type including a control terminal that is configured to input the second voltage,
wherein a voltage difference between the second voltage and the first voltage varies based on the data.
13. The driver according to claim 12, wherein the level shift circuit further comprises:
a first voltage generator configured to generate the voltage difference based on the data, and output the first voltage and the second voltage.
14. The driver according to claim 13, wherein the level shift circuit further comprises:
a second transistor of the second type including a control terminal that is configured to input the data;
a third transistor of the second type including a control terminal that is configured to input an inverted data which is inverted from the data;
a second transistor of the first type including a control terminal that is coupled to a first terminal of the third transistor of the second type, the first terminal being through which carriers leave a channel and is controlled by the control terminal of the third transistor of the second type; and
a third transistor of the first type including a control terminal that is coupled to a first terminal of the second transistor of the second type, the first terminal being through which carriers leave a channel and is controlled by the control terminal of the third transistor of the first type.
15. The driver according to claim 14, wherein the first voltage generator comprises:
a fourth transistor of the first type coupled between the third transistor of the first type and the third transistor of the second type, the fourth transistor of the first type including a first and second control terminal, the second control terminal being coupled to a second terminal of the third transistor of the first type, the second terminal being through which carriers enter a channel.
16. The driver according to claim 15, wherein the voltage difference varies based on a threshold voltage of the fourth transistor of the first type.
17. The driver according to claim 16, wherein the threshold voltage of the fourth transistor of the second type decreases according to the second transistor of the second type being turned on.
18. The driver according to claim 17, wherein the first transistor of the first type and the first transistor of the second type are not turned on in a same period.
19. A display driver comprising:
a level shift circuit configured to convert a voltage level of display data and output a first voltage and a second voltage based on the display data;
an output terminal for outputting the output display data;
a first MOS (Metal-Oxide-Semiconductor) transistor of a first type coupled to the output terminal, the first MOS transistor of the first type including a control terminal that is configured to input the first voltage; and
a first MOS transistor of a second type coupled to the output terminal, the first transistor of the second type including a control terminal that is configured to input the second voltage,
wherein a voltage difference between the second voltage and the first voltage varies based on the display data.
20. The display driver according to claim 19, wherein the level shift circuit further comprises:
a first voltage generator configured to generate the voltage difference based on the display data, and output the first voltage and the second voltage.
US14/835,518 2011-12-22 2015-08-25 Level shift circuit and drive circuit of display device Abandoned US20160049132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/835,518 US20160049132A1 (en) 2011-12-22 2015-08-25 Level shift circuit and drive circuit of display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011281108A JP2013131964A (en) 2011-12-22 2011-12-22 Level shift circuit and drive circuit for display device
JP2011-281108 2011-12-22
US13/724,224 US9136846B2 (en) 2011-12-22 2012-12-21 Level shift circuit and drive circuit of display device
US14/835,518 US20160049132A1 (en) 2011-12-22 2015-08-25 Level shift circuit and drive circuit of display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/724,224 Continuation US9136846B2 (en) 2011-12-22 2012-12-21 Level shift circuit and drive circuit of display device

Publications (1)

Publication Number Publication Date
US20160049132A1 true US20160049132A1 (en) 2016-02-18

Family

ID=48653902

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/724,224 Expired - Fee Related US9136846B2 (en) 2011-12-22 2012-12-21 Level shift circuit and drive circuit of display device
US14/835,518 Abandoned US20160049132A1 (en) 2011-12-22 2015-08-25 Level shift circuit and drive circuit of display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/724,224 Expired - Fee Related US9136846B2 (en) 2011-12-22 2012-12-21 Level shift circuit and drive circuit of display device

Country Status (2)

Country Link
US (2) US9136846B2 (en)
JP (1) JP2013131964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024803A1 (en) * 2017-07-31 2019-02-07 深圳市中兴微电子技术有限公司 Level shifter circuit and integrated circuit chip

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532539B (en) 2013-10-15 2016-08-17 京东方科技集团股份有限公司 A kind of level shifter, gate driver circuit and display device
CN103944554B (en) * 2014-04-16 2017-01-04 华为技术有限公司 A kind of level shifting circuit and digital to analog converter
TWI533611B (en) * 2014-06-18 2016-05-11 奕力科技股份有限公司 Current-limited level shift circuit
CN104714320B (en) * 2015-03-30 2017-09-19 深圳市华星光电技术有限公司 Liquid crystal display panel and liquid crystal display device
US9748958B2 (en) * 2015-05-29 2017-08-29 International Business Machines Corporation Dynamic high voltage driver with adjustable clamped output level
US9800246B2 (en) * 2015-09-18 2017-10-24 Qualcomm Incorporated Level shifter applicable to low voltage domain to high voltage domain conversion
US9866205B2 (en) 2015-11-16 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Level conversion device and method
JP6656898B2 (en) * 2015-11-26 2020-03-04 ラピスセミコンダクタ株式会社 Level shift circuit and display driver
US10033361B2 (en) * 2015-12-28 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Level-shift circuit, driver IC, and electronic device
US9647645B1 (en) * 2016-05-11 2017-05-09 Xcelsem, Llc Low voltage to high voltage level translator that is independent of the high supply voltage
JP6817081B2 (en) * 2017-01-17 2021-01-20 エイブリック株式会社 Level shift circuit
JP2018129727A (en) * 2017-02-09 2018-08-16 エイブリック株式会社 Level shifter
CN107222198B (en) * 2017-06-02 2020-04-03 京东方科技集团股份有限公司 Level shift circuit
US10530365B1 (en) * 2018-06-20 2020-01-07 Nxp Usa, Inc. Low voltage level shifter suitable for use with subthreshold logic
WO2020031538A1 (en) * 2018-08-10 2020-02-13 日本電産株式会社 Drive circuit, and drive system
WO2020031537A1 (en) * 2018-08-10 2020-02-13 日本電産株式会社 Drive circuit and drive system
FR3096198A1 (en) * 2019-05-14 2020-11-20 Stmicroelectronics (Grenoble 2) Sas Integrated voltage level shifter
US11632101B1 (en) * 2021-09-30 2023-04-18 Bitmain Development Inc. Voltage level shifter applicable to very-low voltages
CN114884489A (en) * 2022-05-13 2022-08-09 甘肃省科学院传感技术研究所 Wide power supply voltage range input level detection circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930518B2 (en) * 2003-02-18 2005-08-16 Samsung Electronics, Co., Ltd. Level shifter having low peak current

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216329A (en) * 1983-05-24 1984-12-06 Seiko Epson Corp Level shift circuit
JPH02268516A (en) * 1989-04-11 1990-11-02 Seiko Epson Corp Semiconductor device
JPH04284021A (en) * 1991-03-13 1992-10-08 Sharp Corp Output circuit
JP2771375B2 (en) 1992-01-22 1998-07-02 日本電気アイシーマイコンシステム株式会社 Level shift circuit
JPH05300001A (en) * 1992-04-23 1993-11-12 Oki Electric Ind Co Ltd Level shift circuit
US5510731A (en) * 1994-12-16 1996-04-23 Thomson Consumer Electronics, S.A. Level translator with a voltage shifting element
US5933043A (en) * 1996-10-22 1999-08-03 Kabushiki Kaisha Toshiba High speed level shift circuit
US20050134355A1 (en) * 2003-12-18 2005-06-23 Masato Maede Level shift circuit
JP4364018B2 (en) * 2004-03-09 2009-11-11 日立情報通信エンジニアリング株式会社 Level shift circuit
JP4610381B2 (en) * 2005-03-16 2011-01-12 パナソニック株式会社 Level shift circuit and level shift device
US7710182B2 (en) * 2007-07-19 2010-05-04 Chartered Semiconductor Manufacturing, Ltd. Reliable level shifter of ultra-high voltage device used in low power application
KR20100000140A (en) * 2008-06-24 2010-01-06 삼성전자주식회사 Level shifting circuit, driving voltage generation circuit and liquid crystal display device
KR101501142B1 (en) * 2008-11-25 2015-03-11 삼성전자주식회사 Level shift circuit and display device having the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930518B2 (en) * 2003-02-18 2005-08-16 Samsung Electronics, Co., Ltd. Level shifter having low peak current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024803A1 (en) * 2017-07-31 2019-02-07 深圳市中兴微电子技术有限公司 Level shifter circuit and integrated circuit chip
CN109327218A (en) * 2017-07-31 2019-02-12 深圳市中兴微电子技术有限公司 A kind of level shift circuit and IC chip

Also Published As

Publication number Publication date
US9136846B2 (en) 2015-09-15
JP2013131964A (en) 2013-07-04
US20130162294A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US9136846B2 (en) Level shift circuit and drive circuit of display device
US10777119B2 (en) Semiconductor device
US10255847B2 (en) Level shift circuit and display driver
US8102357B2 (en) Display device
US9336897B2 (en) Shift register circuit
US11763751B2 (en) Gate driving circuit and display panel including the same
US7800575B2 (en) Display device
US20090195291A1 (en) Level shift circuit, and driver and display system using the same
US8384643B2 (en) Drive circuit and display device
US20120146988A1 (en) Level shift circuit and driver circuit having the same
KR20150028403A (en) Shift resister
JP3987536B2 (en) Level shifter and flat panel display using the same
JP2015076718A (en) Level shift circuit and display drive circuit
US7283116B2 (en) Scan driver and scan driving system with low input voltage, and their level shift voltage circuit
CN110034755B (en) Level shift circuit and display device driver
US7639227B2 (en) Integrated circuit capable of synchronizing multiple outputs of buffers
JP2007219052A (en) Display device
JP2006222842A (en) Current drive circuit
JP2006135384A (en) Level shifter
KR100623725B1 (en) Scan driver of Organic Electro-Luminescent Device for having a output buffer circuit

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE