US20150345431A1 - Method for imposing variable load on the internal combustion engine used in vapor destruction applications - Google Patents

Method for imposing variable load on the internal combustion engine used in vapor destruction applications Download PDF

Info

Publication number
US20150345431A1
US20150345431A1 US14/561,710 US201414561710A US2015345431A1 US 20150345431 A1 US20150345431 A1 US 20150345431A1 US 201414561710 A US201414561710 A US 201414561710A US 2015345431 A1 US2015345431 A1 US 2015345431A1
Authority
US
United States
Prior art keywords
internal combustion
combustion engine
engine
voc
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/561,710
Inventor
Bernhardt R. Bruns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRB/SHERLINE Inc
Original Assignee
BRB/SHERLINE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRB/SHERLINE Inc filed Critical BRB/SHERLINE Inc
Priority to US14/561,710 priority Critical patent/US20150345431A1/en
Publication of US20150345431A1 publication Critical patent/US20150345431A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B73/00Combinations of two or more engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a system and method for controlling emission of Volatile Organic Compounds (VOCs) and, more specifically, to an improved system and method for controlling VOC emissions by combustion of such emissions in an internal combustion engine.
  • VOCs Volatile Organic Compounds
  • degassing is either the collection or on-site destruction of these vapors as an environmentally responsible alternative to their otherwise direct release into the atmosphere.
  • Combustion efficiency is often of equal importance to that of volumetric throughput in internal combustion engines employed in vapor destruction applications.
  • many of the Volatile Organic Compounds being the subject of treatment were never intended for use as a motor fuel.
  • the lighter C2 through C7 aliphatic or branched hydrocarbons and their corresponding alcohols that tend to exhibit lower heating values (btu/cu ft) yet higher octane ratings than their contrasting counterparts such as gasoline with a substantially higher heating value yet lower octane rating ; rendering these later compounds more susceptible to abnormal combustion and undesirable emissions. This is a particular concern involving combustion within the internal combustion engine versus that of the open-flare incinerator type unit.
  • One embodiment of a degassing system for controlling emissions of VOC's by combustion of said VOC's in an internal combustion engine comprises a primary internal combustion engine that is connected to a source of VOC's and comprises a crankshaft and a secondary internal combustion engine that also comprises a crankshaft that is coupled to the crankshaft of the primary internal combustion engine.
  • One embodiment comprises a method of controlling emissions of VOC's in which VOC's are transported to a primary internal combustion engine as a fuel thereof, burning said VOC's in said engine as the fuel, and rotating a crankshaft of a secondary internal combustion engine with a crankshaft of the first internal combustion engine.
  • the apparatus can include a mobile platform upon which is mounted an internal combustion engine, the system comprising a primary internal combustion engine that is connected to a source of VOC's and comprises a crankshaft and a secondary internal combustion engine that also comprises a crankshaft, wherein the crankshafts of the first and second internal combustion engines are coupled together.
  • FIG. 1 is a schematic illustration a degassing system according to one embodiment.
  • FIG. 2 is a schematic illustration of a degassing system according to another embodiment.
  • FIG. 3 is schematic illustration of embodiment of FIG. 2 mounted on a mobile device and connected to storage tank.
  • one embodiment can include improved method of imposing a variable load upon the internal combustion engine as it is used in the performance of degassing operations.
  • degassing operations is intended to be a broad term that can be generally defined as the destruction of Volatile Organic Compounds, by elemental combustion, of hydrocarbon vapors emanating from, for example, soil remediation, in situ process streams, pipelines and storage vessels; as an environmentally responsible alternative to the otherwise direct release of these vapors into the atmosphere.
  • the degassing operations can also be applied to other compounds and/or from sources other than those listed above.
  • One advantage of certain embodiments is that the system can allow an internal combustion engine to better realize its maximum volumetric throughput potential; but also can include a feature of adjustability that can allow for achieving optimum combustion efficiency in response to the unique combustion characteristics associated with the diverse range of VOC vapors being subject to treatment. Accordingly, a more efficient method of providing a load on the internal combustion engine can be used in vapor destruction applications.
  • a degassing system can employ a second internal combustion engine, coupled to a first internal combustion engine, to impose a resistive force in a counter rotative manner to the output of the first internal combustion engine; as a method of imposing a load equivalent to the output of the first internal combustion engine; enabling the first internal combustion engine to operate at or close to its full volumetric flow potential.
  • the ideal volumetric efficiency of the normally aspirated reciprocating type internal combustion engine is approximately 85% of its calculated displacement.
  • a forced induction engine, depending upon its boost ratio, may perhaps be 120% of its calculated displacement. Both however face the problem that achievement of the full value of this volumetric displacement is dependent upon imposing a load equivalent to the horsepower being produced at the flywheel of the engine performing the vapor destruction operation.
  • Certain embodiments described herein can apply the appropriate “loading” by employing a second internal combustion engine so arranged as to resist the normal rotation of the first.
  • This can allow the primary (or first) internal combustion engine responsible for VOC destruction to operate at its maximum ideal volumetric throughput at any given RPM (or at least a larger range of RPM, and Applicant believes this affords a higher operating speed than current methods of loading allow, and affords also a degree of adjustability to the amount of this load at any given RPM to accommodate the unique combustion characteristics of the wide range of VOC's being the subject of treatment.
  • An overall analysis is the conversion of rotational mechanical energy at the engine flywheel into thermal energy which is then dissipated to the atmosphere as simple heat by the secondary engine.
  • FIG. 1 is a schematic illustration of one embodiment of a degassing system.
  • the engine housings of the primary engine ( 1 ) and the secondary engine ( 2 ) can be rigidly fixed in relation to each other.
  • the independent crankshafts of each are directly coupled together by the intermediate drive shaft ( 3 ).
  • the two engines can be positioned back-to-back as the suggested method.
  • Modified embodiments can include displacing the engine center lines axially and employing a cog-belt drive (or other intermediate member) between the two engines.
  • Other modifications can include or the use of a gear reduction drive, and/or a shock absorbing type flexible coupling within the drive line.
  • frictional horsepower of the secondary engine ( 2 ) which is being applied as resistance to the power output of the primary engine ( 1 ).
  • frictional horsepower alone can be as great as 200 horsepower. Frictional horsepower is of course based on the displacement size and particular engine, and tends to be a linear function of engine RPM.
  • Rigid coupling of crankshafts between the primary and secondary engine can be an elegant and effective embodiment.
  • the internal combustion engine whether serving as a driving or serving as a driven device, is by nature a pulsating device. So long as operation is relatively steady-state and the potential for imbalance is minimal, and, the rigid connection has been proven as a simple and effective arrangement.
  • this direct drive method has the potential to incur instantaneous shock loading that can be many times greater than the calculated steady-state load and can result in catastrophic mechanical failure.
  • FIG. 2 illustrates an arrangement; in which the drive shaft is of a more complex form, for example, in the illustrated arrangement the drive shaft incorporates a fluid coupling as method of power transmission
  • the primary engine ( 1 ) and the secondary engine ( 2 ) can be firmly positioned in fixed relation to each other.
  • the independent crankshafts of each can be coupled by a fluid coupling assembly ( 3 ) that can incorporate an impeller as the driving torus ( 4 ) and a turbine as the driven torus ( 5 ) containing a hydraulic fluid medium.
  • the transmission of power between the primary engine ( 1 ) and the secondary engine ( 2 ) can be accomplished through the hydraulic fluid medium circulated within the housing between the two torus members.
  • the assembly can resemble the form and function of a torque convertor as commonly found within the automatic transmission of the contemporary automobile.
  • the liquid hydraulic medium can be circulated by pump ( 6 ) at a pressure of approximately 100 psi into the torus members that are maintained full.
  • the influx of hydraulic medium forces spent medium from the torus to the heat exchanger ( 7 ).
  • the heat exchanger may be of the liquid-to-air type, wherein the hot hydraulic medium dissipates its heat to the atmospheric air circulated by fan ( 8 ); or may be of the liquid-to-liquid type wherein the hydraulic medium transfers its heat to a secondary liquid medium which is circulated by pump ( 8 ).
  • the hydraulic reservoir ( 9 ) can allow for the thermal expansion of the liquid hydraulic medium and affords also the opportunity for any developed gas bubbles to coalesce from the liquid before being recirculated.
  • the starting point is to determine the amount of horsepower to be consumed at the flywheel of the power producing engine. This is a [FORCE X TIME] dimension, which is converted to convenient units of [BTU X TIME].
  • the selected liquid hydraulic medium, and the rate at which this is circulated through the system should be sufficient to avoid the instantaneous superheating of the liquid hydraulic medium to its temperature of decomposition associated with the heat generated from being worked upon between the torus members.
  • the sizing of the heat exchanger should be so sized that the [BTU X TIME] generated within the torus members is at least equaled and preferably exceeded by some margin such to return the circulated hydraulic medium to its ambient operating temperature.
  • the volume of the hydraulic reservoir should be so sized as to accommodate the volumetric expansion of the hydraulic medium; but also to afford sufficient residence time for the coalescing of any accumulated gas bubbles before the medium is recirculated.
  • An advantage of the embodiments described herein is that that the abundance of mechanical energy produced at the flywheel of the primary engine employed in vapor destruction applications is transferred to a secondary engine whereby it is consumed by frictional energy and transformed into thermal energy and finally dissipated to the atmosphere as simple heat energy.
  • FIG. 3 there is shown an above-ground storage tank 1 for degassing or removal of VOC's therefrom.
  • Degassing may occur before, during and/or after tank cleaning or during tank refilling.
  • the systems and methods described herein can be utilized with other degassing or VOC removal operations.
  • they can be utilized for degassing underground storage tanks, barges, tankers, etc. They can also be utilized in controlling emissions from refineries and petrochemical processing facilities. They may also find utility in reducing other types of emissions besides VOCs.
  • the gaseous, Volatile Organic Compounds are directed by piping or hose 20 to the degassing system, which in the illustrated embodiment is the degassing system described with reference to FIG. 2 .
  • the degassing system of the illustrated can made portable or mobile by mounting the device on a truck or similar device.
  • the degassing system can be stationary or semi-mobile.
  • a trailer, stationary frame or skid mount can be used to mount the device.
  • a knock out drum for removing heavy liquid condensation, one or more air filters, flame arrestors and/or a turbo charger can be added upstream primary engine.
  • a thermo oxidizer unit and/or a catalytic converter can be added to treat the exhaust downstream of the primary engine.
  • the VOC's can be burned as fuel in the primary internal combustion engine, being converted from hazardous pollutants into carbon dioxide and water.
  • the exhaust gases from the primary internal combustion engine can be directed then directed through piping (not shown), a catalytic converter (not shown) where any nitrogen oxides, carbon monoxides or other unwanted hydrocarbon products are converted to less hazardous gases for discharge as clean exhaust.
  • additional or alternative emission abatement devices and/or additives can be added to the exhaust stream after the primary internal combustion engine and/or to the intake stream before the primary combustion stream.
  • the primary engine can be initially run on the VOC's from the tank 1 (or other source). Often the fuel mixture will be too rich and, in such cases, the mixture can be diluted with air. As the VOC's in the tank 1 (or other source) are consumed, the mixture may become lean at which time a supplemental fuel (e.g., methane, butane, natural gas, etc.) can be added to the intake mixture.
  • a supplemental fuel e.g., methane, butane, natural gas, etc.
  • the primary and secondary engines are reciprocating internal combustion engines. However, it is contemplated that other types of engines and/or internal combustion engines could be utilized in modified embodiments.

Abstract

A method of imposing a variable load upon the internal combustion engine as it is typically used in the performance of degassing operations includes coupling a crankshaft of the internal combustion engine to a secondary internal combustion engine.

Description

    PRIORITY
  • The present application is a continuation of U.S. application Ser. No. 13/409,546, filed Mar. 1, 2012, which claims the benefit of U.S. Provisional Application No. 61/449,543, filed Mar. 4, 2011, the disclosures of both of which are hereby incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a system and method for controlling emission of Volatile Organic Compounds (VOCs) and, more specifically, to an improved system and method for controlling VOC emissions by combustion of such emissions in an internal combustion engine.
  • 2. Description of the Related Art
  • The direct release of Volatile Organic Compounds into the atmosphere has been for some time now recognized as a primary contributing factor in affecting ozone levels in the lower atmosphere. The EPA has established standards for safe levels of ozone, and local air quality districts have implemented regulations and mandated control measures pertaining to the release of hydrocarbon vapors into the atmosphere, from operations such as soil remediation and storage tank inerting, and storage vessel loading and unloading; that have been identified as sources of hydrocarbon emissions responsible for impacting ozone levels.
  • The process of treating these vapors, through any of a variety of methods, is typically referred to as degassing; which is either the collection or on-site destruction of these vapors as an environmentally responsible alternative to their otherwise direct release into the atmosphere.
  • The internal combustion engine, as well as open-flare incinerator units, has been employed for several decades as a means of on-site destruction of these Volatile
  • Organic Compounds by elemental combustion. The combustion process does give rise to the undesirable production of carbon monoxide and nitrogen oxides; however this has been accepted as a reasonable consequence for the nearly 99% efficiency in the destruction of hydrocarbon based VOC's. These consequential emissions are accepted, but tolerated only to a regulated extent, and are also a factor to be considered in engines and incinerators employed in vapor destruction applications.
  • Combustion efficiency is often of equal importance to that of volumetric throughput in internal combustion engines employed in vapor destruction applications. For example, many of the Volatile Organic Compounds being the subject of treatment were never intended for use as a motor fuel. At one extreme of the range are the lighter C2 through C7 aliphatic or branched hydrocarbons and their corresponding alcohols; that tend to exhibit lower heating values (btu/cu ft) yet higher octane ratings than their contrasting counterparts such as gasoline with a substantially higher heating value yet lower octane rating ; rendering these later compounds more susceptible to abnormal combustion and undesirable emissions. This is a particular concern involving combustion within the internal combustion engine versus that of the open-flare incinerator type unit.
  • In the case of the open-flare incinerator type unit, all of the energy derived from the combustion process is emitted as thermal energy. In the case of the internal combustion engine, a certain portion of the energy is dissipated through the engine cooling system; however a considerable amount remains as mechanical energy at the end of the rotating crankshaft. The maximum achievable volumetric throughput of the internal combustion engine is limited by the amount of produced horsepower that can be put to use at the flywheel.
  • Various methods have been employed throughout the past in an effort to impose a load at the engine flywheel such to match the power output in an effort to provoke the engine to realize its ideal potential volumetric throughput. Amongst these methods, has been the coupling of external devices such as hydraulic pumps, roots blowers, electrical generators and others; in an endeavor to impose some means of load to the rotating crankshaft. One common shortfall in employing such devices, is that their operable range does not match the inherently wider operable range (RPM) of the internal combustion engine;
  • and their employment has served either to limit the maximum RPM of the engine, or otherwise require complex gear reduction type drives necessary to keep the RPM of these ancillary driven loading devices within safe operating speeds.
  • SUMMARY
  • One embodiment of a degassing system for controlling emissions of VOC's by combustion of said VOC's in an internal combustion engine comprises a primary internal combustion engine that is connected to a source of VOC's and comprises a crankshaft and a secondary internal combustion engine that also comprises a crankshaft that is coupled to the crankshaft of the primary internal combustion engine.
  • One embodiment comprises a method of controlling emissions of VOC's in which VOC's are transported to a primary internal combustion engine as a fuel thereof, burning said VOC's in said engine as the fuel, and rotating a crankshaft of a secondary internal combustion engine with a crankshaft of the first internal combustion engine.
  • Another embodiment comprises a mobile anti-pollution apparatus, for the reduction of hydrocarbon emissions. The apparatus can include a mobile platform upon which is mounted an internal combustion engine, the system comprising a primary internal combustion engine that is connected to a source of VOC's and comprises a crankshaft and a secondary internal combustion engine that also comprises a crankshaft, wherein the crankshafts of the first and second internal combustion engines are coupled together.
  • Other embodiments and arrangements will be described below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration a degassing system according to one embodiment.
  • FIG. 2 is a schematic illustration of a degassing system according to another embodiment.
  • FIG. 3 is schematic illustration of embodiment of FIG. 2 mounted on a mobile device and connected to storage tank.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As described herein, one embodiment can include improved method of imposing a variable load upon the internal combustion engine as it is used in the performance of degassing operations. As described herein, degassing operations is intended to be a broad term that can be generally defined as the destruction of Volatile Organic Compounds, by elemental combustion, of hydrocarbon vapors emanating from, for example, soil remediation, in situ process streams, pipelines and storage vessels; as an environmentally responsible alternative to the otherwise direct release of these vapors into the atmosphere. In other embodiments, the degassing operations can also be applied to other compounds and/or from sources other than those listed above.
  • One advantage of certain embodiments is that the system can allow an internal combustion engine to better realize its maximum volumetric throughput potential; but also can include a feature of adjustability that can allow for achieving optimum combustion efficiency in response to the unique combustion characteristics associated with the diverse range of VOC vapors being subject to treatment. Accordingly, a more efficient method of providing a load on the internal combustion engine can be used in vapor destruction applications.
  • In one embodiment, a degassing system can employ a second internal combustion engine, coupled to a first internal combustion engine, to impose a resistive force in a counter rotative manner to the output of the first internal combustion engine; as a method of imposing a load equivalent to the output of the first internal combustion engine; enabling the first internal combustion engine to operate at or close to its full volumetric flow potential.
  • The ideal volumetric efficiency of the normally aspirated reciprocating type internal combustion engine is approximately 85% of its calculated displacement. A forced induction engine, depending upon its boost ratio, may perhaps be 120% of its calculated displacement. Both however face the problem that achievement of the full value of this volumetric displacement is dependent upon imposing a load equivalent to the horsepower being produced at the flywheel of the engine performing the vapor destruction operation.
  • Internal combustion engines typically used for the purpose of VOC destruction are capable of producing flywheel horsepower ratings in the neighborhood of 200 Hp. When perhaps only 50 Hp load is applied to these engines, it can be summarized that the engine can only be allowed to produce no more than this 50 Hp; and therefore (for example), a 500 cubic inch engine capable of a volumetric displacement of 500 cfm, is therefore only realistically capable of a maximum volumetric throughput of 125 cfm in actual service; or roughly 25% of its potential volumetric throughput.
  • As noted above, combustion efficiency is often equal concern to that of volumetric throughput in internal combustion engines employed in vapor destruction applications. Many of the Volatile Organic Compounds being the subject of treatment were never intended for use as a motor fuel. At one extreme of the range are the lighter C2 through C7 aliphatic or branched hydrocarbons that tend to exhibit lower heating values (btu/cu ft) yet higher octane ratings than their contrasting counterparts such as gasoline which exhibits a comparably higher heating value yet lower octane rating; rendering the later more susceptible to abnormal combustion if excessively loaded.
  • Certain embodiments described herein can apply the appropriate “loading” by employing a second internal combustion engine so arranged as to resist the normal rotation of the first. This can allow the primary (or first) internal combustion engine responsible for VOC destruction to operate at its maximum ideal volumetric throughput at any given RPM (or at least a larger range of RPM, and Applicant believes this affords a higher operating speed than current methods of loading allow, and affords also a degree of adjustability to the amount of this load at any given RPM to accommodate the unique combustion characteristics of the wide range of VOC's being the subject of treatment. An overall analysis is the conversion of rotational mechanical energy at the engine flywheel into thermal energy which is then dissipated to the atmosphere as simple heat by the secondary engine.
  • FIG. 1 is a schematic illustration of one embodiment of a degassing system. In the illustrated embodiment, the engine housings of the primary engine (1) and the secondary engine (2) can be rigidly fixed in relation to each other. The independent crankshafts of each are directly coupled together by the intermediate drive shaft (3). In this arrangement, the two engines can be positioned back-to-back as the suggested method. Modified embodiments can include displacing the engine center lines axially and employing a cog-belt drive (or other intermediate member) between the two engines. Other modifications can include or the use of a gear reduction drive, and/or a shock absorbing type flexible coupling within the drive line. Additional and/or alternative modifications will be apparent to those of skill in the art for coupling secondary engine (2) to the primary engine (1) to impose the resistance offered by that of the secondary engine (2) on that of the power output of the primary engine (1). For example, in some embodiments a semi rigid or flexible coupling member can be used between the two engines.
  • In the illustrated arrangement, it is primarily the element of frictional horsepower of the secondary engine (2) which is being applied as resistance to the power output of the primary engine (1). For example, in the case of the typical 500 cubic inch engine, frictional horsepower alone can be as great as 200 horsepower. Frictional horsepower is of course based on the displacement size and particular engine, and tends to be a linear function of engine RPM.
  • In addition to frictional horsepower, there are pumping losses; induced by restriction of either the inlet (4) or outlet (5) of the secondary engine; which imposes an additional load, that is an adjustable load, independent of frictional horsepower and independent of RPM. This affords some degree of adjustability to the appropriate horsepower loading in response to the power output characteristics of different VOC's at any given RPM; such that the maximum RPM and volumetric throughput can be maintained with minor variations in loading to accommodate the different heating value and combustion characteristics of different VOC's undergoing treatment.
  • Rigid coupling of crankshafts between the primary and secondary engine can be an elegant and effective embodiment. However, the internal combustion engine, whether serving as a driving or serving as a driven device, is by nature a pulsating device. So long as operation is relatively steady-state and the potential for imbalance is minimal, and, the rigid connection has been proven as a simple and effective arrangement. However, in cases where the potential for imbalance is a factor, and particularly if the operating RPM is non steady-state; this direct drive method has the potential to incur instantaneous shock loading that can be many times greater than the calculated steady-state load and can result in catastrophic mechanical failure.
  • In applications wherein the above described issues are of a particular concern, the drive arrangement embodiment depicted in FIG. 2 can be utilized. FIG. 2 illustrates an arrangement; in which the drive shaft is of a more complex form, for example, in the illustrated arrangement the drive shaft incorporates a fluid coupling as method of power transmission
  • Referring to the illustrated embodiment FIG. 2, the primary engine (1) and the secondary engine (2) can be firmly positioned in fixed relation to each other. The independent crankshafts of each can be coupled by a fluid coupling assembly (3) that can incorporate an impeller as the driving torus (4) and a turbine as the driven torus (5) containing a hydraulic fluid medium. The transmission of power between the primary engine (1) and the secondary engine (2) can be accomplished through the hydraulic fluid medium circulated within the housing between the two torus members. In this embodiment, the assembly can resemble the form and function of a torque convertor as commonly found within the automatic transmission of the contemporary automobile.
  • The liquid hydraulic medium can be circulated by pump (6) at a pressure of approximately 100 psi into the torus members that are maintained full. The influx of hydraulic medium forces spent medium from the torus to the heat exchanger (7). The heat exchanger may be of the liquid-to-air type, wherein the hot hydraulic medium dissipates its heat to the atmospheric air circulated by fan (8); or may be of the liquid-to-liquid type wherein the hydraulic medium transfers its heat to a secondary liquid medium which is circulated by pump (8). The hydraulic reservoir (9) can allow for the thermal expansion of the liquid hydraulic medium and affords also the opportunity for any developed gas bubbles to coalesce from the liquid before being recirculated.
  • The selection of size, blade pitch, liquid medium and heat exchanger best suited for the particular application are straightforward engineering calculations known to those skilled in the art of power transmission and hydraulic engineering. As a brief overview: the starting point is to determine the amount of horsepower to be consumed at the flywheel of the power producing engine. This is a [FORCE X TIME] dimension, which is converted to convenient units of [BTU X TIME]. The selected liquid hydraulic medium, and the rate at which this is circulated through the system, should be sufficient to avoid the instantaneous superheating of the liquid hydraulic medium to its temperature of decomposition associated with the heat generated from being worked upon between the torus members. The sizing of the heat exchanger, whether the liquid-to-air type, or the liquid-to-liquid transfer to a medium such as running water; should be so sized that the [BTU X TIME] generated within the torus members is at least equaled and preferably exceeded by some margin such to return the circulated hydraulic medium to its ambient operating temperature. The volume of the hydraulic reservoir should be so sized as to accommodate the volumetric expansion of the hydraulic medium; but also to afford sufficient residence time for the coalescing of any accumulated gas bubbles before the medium is recirculated.
  • All of these calculations are within the realm of hydraulic engineer skilled in the art; and must be uniquely performed based upon the quantity of horsepower to be transferred at the flywheel of the power producing engine for the particular application.
  • It should be appreciated that while the illustrated embodiment utilizes a torque convertor as commonly found within the automatic transmission of the contemporary automobile, in other embodiments a different type of torque converter can be used, for example, a torque converter that utilizes magnets, gels, exotic materials etc.
  • An advantage of the embodiments described herein is that that the abundance of mechanical energy produced at the flywheel of the primary engine employed in vapor destruction applications is transferred to a secondary engine whereby it is consumed by frictional energy and transformed into thermal energy and finally dissipated to the atmosphere as simple heat energy.
  • With reference now to FIG. 3, there is shown an above-ground storage tank 1 for degassing or removal of VOC's therefrom. Degassing may occur before, during and/or after tank cleaning or during tank refilling. At noted above, it should also be understood that the systems and methods described herein can be utilized with other degassing or VOC removal operations. For example, they can be utilized for degassing underground storage tanks, barges, tankers, etc. They can also be utilized in controlling emissions from refineries and petrochemical processing facilities. They may also find utility in reducing other types of emissions besides VOCs.
  • In the embodiment of FIG. 3, the gaseous, Volatile Organic Compounds (VOC's) are directed by piping or hose 20 to the degassing system, which in the illustrated embodiment is the degassing system described with reference to FIG. 2. As shown in FIG. 2, the degassing system of the illustrated can made portable or mobile by mounting the device on a truck or similar device. In other embodiments, the degassing system can be stationary or semi-mobile. In some embodiments, a trailer, stationary frame or skid mount can be used to mount the device.
  • With reference to FIG. 3 above, in certain embodiments, a knock out drum (or similar device) for removing heavy liquid condensation, one or more air filters, flame arrestors and/or a turbo charger can be added upstream primary engine. In certain embodiments, a thermo oxidizer unit and/or a catalytic converter can be added to treat the exhaust downstream of the primary engine.
  • As described above, the VOC's can be burned as fuel in the primary internal combustion engine, being converted from hazardous pollutants into carbon dioxide and water. In some embodiments, the exhaust gases from the primary internal combustion engine can be directed then directed through piping (not shown), a catalytic converter (not shown) where any nitrogen oxides, carbon monoxides or other unwanted hydrocarbon products are converted to less hazardous gases for discharge as clean exhaust. In additional embodiments, additional or alternative emission abatement devices and/or additives can be added to the exhaust stream after the primary internal combustion engine and/or to the intake stream before the primary combustion stream.
  • In one example mode of operation, the primary engine can be initially run on the VOC's from the tank 1 (or other source). Often the fuel mixture will be too rich and, in such cases, the mixture can be diluted with air. As the VOC's in the tank 1 (or other source) are consumed, the mixture may become lean at which time a supplemental fuel (e.g., methane, butane, natural gas, etc.) can be added to the intake mixture.
  • As described above, in the illustrated embodiments, the primary and secondary engines are reciprocating internal combustion engines. However, it is contemplated that other types of engines and/or internal combustion engines could be utilized in modified embodiments.
  • Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims.

Claims (3)

1. A system for controlling emissions of VOC's by combustion of said VOC's, the system comprising an internal combustion engine that is connected to a source of VOC's and comprises a crankshaft the system further comprising a knock-out drum upstream of the internal combustion engine and a charger upstream of the internal combustion engine and a catalytic converter for treating exhaust from the internal combustion engine, and a supplemental fuel source.
2-7. (canceled)
8. The system of claim 1 wherein the charger is a turbo charger.
US14/561,710 2011-03-04 2014-12-05 Method for imposing variable load on the internal combustion engine used in vapor destruction applications Abandoned US20150345431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/561,710 US20150345431A1 (en) 2011-03-04 2014-12-05 Method for imposing variable load on the internal combustion engine used in vapor destruction applications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161449543P 2011-03-04 2011-03-04
US13/409,546 US8936011B2 (en) 2011-03-04 2012-03-01 Method for imposing variable load on the internal combustion engine used in vapor destruction applications
US14/561,710 US20150345431A1 (en) 2011-03-04 2014-12-05 Method for imposing variable load on the internal combustion engine used in vapor destruction applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/409,546 Continuation US8936011B2 (en) 2011-03-04 2012-03-01 Method for imposing variable load on the internal combustion engine used in vapor destruction applications

Publications (1)

Publication Number Publication Date
US20150345431A1 true US20150345431A1 (en) 2015-12-03

Family

ID=45928997

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/409,546 Expired - Fee Related US8936011B2 (en) 2011-03-04 2012-03-01 Method for imposing variable load on the internal combustion engine used in vapor destruction applications
US14/561,710 Abandoned US20150345431A1 (en) 2011-03-04 2014-12-05 Method for imposing variable load on the internal combustion engine used in vapor destruction applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/409,546 Expired - Fee Related US8936011B2 (en) 2011-03-04 2012-03-01 Method for imposing variable load on the internal combustion engine used in vapor destruction applications

Country Status (3)

Country Link
US (2) US8936011B2 (en)
EP (1) EP2680950B1 (en)
WO (1) WO2012121980A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2689115A1 (en) 2011-03-24 2014-01-29 BRB / Sherline, Inc. Method of increasing volumetric throughput of an internal combustion engines used in vapor destruction applications
WO2017023909A1 (en) * 2015-08-03 2017-02-09 Brb/Sherline, Inc. Vapor destruction apparatus and method
US11098260B2 (en) 2018-05-23 2021-08-24 Southwest Research Institute Chemical warfare agents and related compounds as fuel for internal combustion engines
US10760659B2 (en) * 2018-08-28 2020-09-01 Schaeffler Technologies AG & Co. KG External cooling of a torque converter cover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424045A (en) * 1993-11-16 1995-06-13 Newlandex Corporation Combustion and catalytic remediation of hydrocarbon contaminated soil
US6095101A (en) * 1997-01-29 2000-08-01 Man B&W Diesel A/S Internal combustion engine of the diesel type for combustion of gas, and a method of supplying such an engine with fuel
US20090013977A1 (en) * 2007-07-10 2009-01-15 Brecheisen Ii Adell Warren Intake condensation removal for internal combustion engine

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2589788A (en) * 1947-10-13 1952-03-18 Fell Developments Ltd Internal-combustion engine power plant
US3656915A (en) 1970-04-30 1972-04-18 Chemical Construction Corp Catalytic exhaust gas treatment apparatus
GB1359660A (en) 1970-12-18 1974-07-10 British Leyland Motor Corp Exhaust systems for internal combustion engines
US3947544A (en) 1970-12-26 1976-03-30 Nippondenso Co., Ltd. Method of cleaning exhaust gases
GB1518132A (en) * 1975-07-16 1978-07-19 Nvt Motorcycles Ltd Air screw vehicle propulsion units
US4116006A (en) * 1976-01-26 1978-09-26 Wallis Marvin E Modular engine assembly
DE4020990A1 (en) 1989-07-07 1991-01-17 Volkswagen Ag Exhaust gas to air heat exchanger for IC engine exhaust - has air inlet and outlet connections at the ends and midpoint of heat exchanger, dividing it into two separate axial sections
US5035117A (en) 1990-08-01 1991-07-30 Mechanical Technology Incorporated Thermal engine driven heat pump for recovery of volatile organic compounds
US5519992A (en) 1993-03-16 1996-05-28 Mitsubishi Denki Kabushiki Kaisha Exhaust gas purification system for internal combustion engine, and apparatus and method for controlling the same
US5890365A (en) 1993-07-19 1999-04-06 Sisti; Leonard A. Internal combustion engine constant speed variable volume coupling and operation process
JPH0828253A (en) 1994-07-15 1996-01-30 Toyota Motor Corp Secondary air feeding device for internal combustion engine
US5435141A (en) * 1994-08-04 1995-07-25 Mechanical Technology Inc. Application of organic gas sensors in the detection and separation of recovered volatile organic compounds (VOCs)
US5456240A (en) 1994-12-29 1995-10-10 Kanesaka Technical Institute Ltd. Engine system
JPH0932540A (en) 1995-07-13 1997-02-04 Hino Motors Ltd Exhaust emission control device of diesel engine
JPH109039A (en) 1996-06-20 1998-01-13 Tokyo Gas Co Ltd Engine misfire deciding method and device
US6295973B1 (en) 1999-12-22 2001-10-02 Ford Global Technologies, Inc. Air-fuel charge controller for a homogeneous-charge, compression-ignition engine
US6467271B2 (en) 2001-01-30 2002-10-22 Weeco International Corporation System and method for controlling VOC emissions
US6543398B1 (en) 2001-07-19 2003-04-08 Southwest Research Institute High efficiency compression ignition aftertreatment devices for combined use of lean-burn combustion systems and three-way catalysts
US6564545B1 (en) 2002-01-31 2003-05-20 Visteon Global Technologies, Inc. Superintegration of three way catalyst and heat exchanger for HCCI engine intake air temperature control
US6786209B2 (en) 2002-11-27 2004-09-07 Csxt Intellectual Properties Corporation Auxiliary power unit exhaust system and method for a locomotive
US20060179824A1 (en) 2003-02-03 2006-08-17 Chapeau, Inc. Air flow regulation system for exhaust stream oxidation catalyst
CA2453689A1 (en) 2003-03-14 2004-09-14 Westport Research Inc. Management of thermal fluctuations in lean nox adsorber aftertreatment systems
CA2541801C (en) 2003-06-20 2012-10-16 Detroit Edison Company Method and device for using voc as fuel for an engine
JP4670095B2 (en) * 2004-04-08 2011-04-13 独立行政法人 宇宙航空研究開発機構 Reactor
WO2006052993A2 (en) 2004-11-08 2006-05-18 Southwest Research Institute Secondary engine providing exhaust-gas to egr system
US8429896B2 (en) 2006-04-18 2013-04-30 Kohler Co. Engine exhaust systems with secondary air injection systems
FR2900964A3 (en) 2006-05-15 2007-11-16 Renault Sas Internal combustion engine, has blowing line injecting air into exhaust line at pressure greater than pressure of gas circulating in exhaust line and provided between compressor of turbocompressor and air distributor
JP4702453B2 (en) * 2006-10-25 2011-06-15 株式会社日立製作所 Exhaust gas treatment system containing volatile organic compounds
US8046989B2 (en) 2007-11-14 2011-11-01 Paccar Inc Cooling device for high temperature exhaust
EP2067966A1 (en) * 2007-12-06 2009-06-10 Ford Global Technologies, LLC Engine arrangement
JP5081848B2 (en) 2008-05-15 2012-11-28 株式会社クボタ Diesel engine exhaust system
DE102010023082A1 (en) 2010-06-08 2011-12-08 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Method for absorbing ambient air for internal combustion engine of motor vehicle, involves heating ambient air by exhaust gas heat exchanger arranged in area of exhaust gas tract of internal combustion engine
EP2689115A1 (en) 2011-03-24 2014-01-29 BRB / Sherline, Inc. Method of increasing volumetric throughput of an internal combustion engines used in vapor destruction applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424045A (en) * 1993-11-16 1995-06-13 Newlandex Corporation Combustion and catalytic remediation of hydrocarbon contaminated soil
US6095101A (en) * 1997-01-29 2000-08-01 Man B&W Diesel A/S Internal combustion engine of the diesel type for combustion of gas, and a method of supplying such an engine with fuel
US20090013977A1 (en) * 2007-07-10 2009-01-15 Brecheisen Ii Adell Warren Intake condensation removal for internal combustion engine

Also Published As

Publication number Publication date
EP2680950A1 (en) 2014-01-08
US20120222640A1 (en) 2012-09-06
EP2680950B1 (en) 2017-01-11
WO2012121980A1 (en) 2012-09-13
US8936011B2 (en) 2015-01-20

Similar Documents

Publication Publication Date Title
US20150345431A1 (en) Method for imposing variable load on the internal combustion engine used in vapor destruction applications
US8616005B1 (en) Method and apparatus for boosting gas turbine engine performance
US20090178407A1 (en) Enhanced engine air breathing system with after treatment device before the turbocharger
US4531497A (en) Natural gas adaptor system for automobiles
EP2182194A2 (en) System and method for reducing corrosion in a gas turbine system
CN100510345C (en) Use of VOC as fuel for an engine
AU2016292965A1 (en) Fluid pumping system with a continuously variable transmission
US9556824B2 (en) Integration of forced EGR/EGR-pump into EGR-cooler
US10907640B2 (en) Gas turbine blower/pump
US9856770B2 (en) Method of increasing volumetric throughput of an internal combustion engines used in vapor destruction applications
US5915365A (en) Combined system using a vaporous fuel mixture energy source and an internal combustion engine and method therefor
US20170037816A1 (en) Vapor destruction apparatus and method
US11852108B1 (en) Exhaust purge gas for compressor packing systems and methods
US6467271B2 (en) System and method for controlling VOC emissions
EP0211115A1 (en) Natural gas adaptor system for automobiles
US20070107433A1 (en) Hybrid electric steam turbine automotive engine
US20210293181A1 (en) A system and a method for power generation
Фахар Methods of fuel efficiency increase for gas turbine plants at base of conversion aircraft engines
RU2276619C1 (en) Method and device for producing compressed inert gas
WO2005066461A1 (en) Steam driven engine
Liu et al. Advantages and Disadvantages of the Power Plants with Gas Turbine Units
US20190186439A1 (en) Gasoline Vaporization System And Methods For An Internal Combustion Engine
WO2012094369A2 (en) Improved crankcase ventilation system
CA1196536A (en) Natural gas adaptor system for automobiles
RU2374104C1 (en) Gas turbine locomotive and its power plant

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION