JPH0828253A - Secondary air feeding device for internal combustion engine - Google Patents

Secondary air feeding device for internal combustion engine

Info

Publication number
JPH0828253A
JPH0828253A JP6163732A JP16373294A JPH0828253A JP H0828253 A JPH0828253 A JP H0828253A JP 6163732 A JP6163732 A JP 6163732A JP 16373294 A JP16373294 A JP 16373294A JP H0828253 A JPH0828253 A JP H0828253A
Authority
JP
Japan
Prior art keywords
exhaust gas
pipe
secondary air
exhaust
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6163732A
Other languages
Japanese (ja)
Inventor
Kenichi Harada
健一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6163732A priority Critical patent/JPH0828253A/en
Publication of JPH0828253A publication Critical patent/JPH0828253A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/30Tubes with restrictions, i.e. venturi or the like, e.g. for sucking air or measuring mass flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Abstract

PURPOSE:To provide a secondary air feeding device which is constituted to feed a proper amount according to an operation state and prevent the damage of purifying characteristics. CONSTITUTION:Secondary air for cooling exhaust gas is taken out from a place situated downstream from a supercharger 103 and fed in exhaust gas from a venturi 113 installed in an exhaust pipe 111 through an air control valve 119. A bypass pipe 114 bypassing the venturi is located in the exhaust pipe and an exhaust gas control valve 115 is installed in the bypass pipe 114. During high rotation high load running, the exhaust control valve is closed and since all exhaust gas passes an exhaust gas pipe, a secondary air amount is increased to cool exhaust gas. In this case, since exhaust gas is brought into air rich and purifying performance of nitrogen oxide of a three-dimensional catalyst 117 is lowered, an EGR valve 121 is opened and exhaust gas is returned in intake air. Further, Heat-exchange is practicable between secondary or and exhaust gas and the temperature of exhaust gas is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の2次空気供給
装置に係わり、特に運転状態に応じて供給空気量を制御
することの可能な2次空気供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary air supply device for an internal combustion engine, and more particularly to a secondary air supply device capable of controlling the amount of supplied air according to the operating condition.

【0002】[0002]

【従来の技術】内燃機関から排出される排気ガス中に含
まれる一酸化炭素(CO)および炭化水素(HC)を低
減するために、ほぼ全運転領域において空燃比を理論空
燃比に維持することが普通である。しかしながら高回転
・高負荷領域においては排気ガス温度が上昇するため、
排気管あるいは触媒が高温に曝されることとなる。
2. Description of the Related Art In order to reduce carbon monoxide (CO) and hydrocarbons (HC) contained in exhaust gas discharged from an internal combustion engine, the air-fuel ratio is maintained at a stoichiometric air-fuel ratio in almost all operating regions. Is normal. However, since the exhaust gas temperature rises in the high rotation and high load range,
The exhaust pipe or catalyst will be exposed to high temperatures.

【0003】この課題を解決するために排気管あるいは
触媒を二重管構造とし、外側の管に大気を導入すること
により排気ガスあるいは触媒を冷却することが提案され
ている。特にターボチャージャあるいはスーパーチャー
ジャを搭載している車両にあっては、冷却用空気をター
ボチャージャあるいはスーパーチャージャ下流の過給気
とすることにより冷却効果を高めることが可能となる。
In order to solve this problem, it has been proposed that the exhaust pipe or the catalyst has a double pipe structure, and the exhaust gas or the catalyst is cooled by introducing the atmosphere into the outer pipe. Particularly in a vehicle equipped with a turbocharger or a supercharger, the cooling effect can be enhanced by using cooling air as supercharged air downstream of the turbocharger or the supercharger.

【0004】さらに排気管にベンチュリ部を設け、この
ベンチュリ部に2次空気を導入することにより排気ガス
の温度を直接低減するものも提案されている(特開昭6
2−118019公報参照)。
Further, it has been proposed that a venturi portion is provided in the exhaust pipe, and secondary air is introduced into this venturi portion to directly reduce the temperature of the exhaust gas (Japanese Patent Laid-Open No. 6-242242).
2-118019).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
技術に提案されたベンチュリ部に2次空気を供給するも
のにあっては、排ガス流によるなりゆき制御であって積
極的に2次空気量を制御することができないという課題
が生じる。さらに2次空気を導入した場合には触媒にお
いて窒素酸化物(NOx )が浄化されないという課題も
生じる。
However, in the secondary ventilator for supplying the secondary air proposed in the above-mentioned prior art, the secondary air amount is controlled by the exhaust gas flow and the secondary air amount is positively controlled. The problem arises that you cannot do it. Furthermore, when secondary air is introduced, there is a problem that nitrogen oxides (NOx) are not purified in the catalyst.

【0006】本発明は上記課題に鑑みなされたものであ
って、運転状態に応じて適切な量の2次空気を供給する
ことができ、かつ窒素酸化物の浄化特性を損なうことの
ない内燃機関の2次空気供給装置を提供することを目的
とする。
The present invention has been made in view of the above problems, and an internal combustion engine capable of supplying an appropriate amount of secondary air according to the operating state and not impairing the purification characteristics of nitrogen oxides. It is an object of the present invention to provide a secondary air supply device.

【0007】[0007]

【課題を解決するための手段】第1の発明にかかる内燃
機関の2次空気供給装置は、内燃機関の排気管に設けら
れたベンチュリ部と、ベンチュリ部に開口する2次空気
供給管と、ベンチュリ部をバイパスするバイパス排気管
と、バイパス排気管に設置されバイパス排気管を流れる
排気ガス流量を制御する流量制御手段と、を具備する。
A secondary air supply device for an internal combustion engine according to a first aspect of the present invention includes a venturi portion provided in an exhaust pipe of the internal combustion engine, and a secondary air supply pipe opening to the venturi portion. A bypass exhaust pipe that bypasses the venturi portion and a flow rate control unit that is installed in the bypass exhaust pipe and controls the flow rate of exhaust gas flowing through the bypass exhaust pipe are provided.

【0008】第2の発明にかかる内燃機関の2次空気供
給装置は、吸気管に設置された過給器と、ベンチュリ部
を有する排気管とバイパス排気管との合流部より下流に
設置される三元触媒と、過給器下流側の吸気管から分岐
しベンチュリ部に2次空気供給を供給する2次空気供給
管と、2次空気供給管を開閉制御する空気制御弁と、ベ
ンチュリ部より上流の排気管から分岐し排気ガスを過給
器より上流の吸気管に還流する排気還流管と、排気還流
管を流れる排気ガス量を制御するEGR弁と、排気ガス
温度が過度に上昇する運転状態にあっては空気制御弁と
EGR弁とを開弁する開弁制御手段と、をさらに具備
し、EGR弁と2次空気供給管とを排気ガスと2次空気
との間で熱交換可能に配置したことを特徴とする。
A secondary air supply system for an internal combustion engine according to a second aspect of the present invention is installed downstream of a supercharger installed in an intake pipe, a confluence of an exhaust pipe having a venturi portion and a bypass exhaust pipe. A three-way catalyst, a secondary air supply pipe that branches from the intake pipe on the downstream side of the supercharger and supplies a secondary air supply to the venturi portion, an air control valve that controls opening and closing of the secondary air supply pipe, and a venturi portion. An exhaust gas recirculation pipe that branches from the upstream exhaust pipe and recirculates the exhaust gas to the intake pipe upstream of the supercharger, an EGR valve that controls the amount of exhaust gas flowing through the exhaust gas recirculation pipe, and an operation in which the exhaust gas temperature rises excessively In the state, the air control valve and the EGR valve are further provided with valve opening control means, and heat exchange between the exhaust gas and the secondary air between the EGR valve and the secondary air supply pipe is possible. It is characterized by being placed in.

【0009】[0009]

【作用】第1の発明にかかる内燃機関の2次空気供給装
置にあっては、排気管に設置されたベンチュリに2次空
気が供給され排気ガス温度を低減するとともに、ベンチ
ュリをバイパスするバイパス排気管を流れる排気ガス流
量が流量制御手段により設置され制御される。
In the secondary air supply system for the internal combustion engine according to the first aspect of the present invention, the secondary air is supplied to the venturi installed in the exhaust pipe to reduce the temperature of the exhaust gas, and the bypass exhaust bypasses the venturi. The flow rate of exhaust gas flowing through the pipe is set and controlled by the flow rate control means.

【0010】第2の発明にかかる内燃機関の2次空気供
給装置にあっては、2次空気は過給器下流側から取り出
され、三元触媒における窒素酸化物の浄化能力の低下を
補うために排気ガスが過給器上流に還流されるととも
に、EGR弁は2次空気で冷却される。
In the secondary air supply system for the internal combustion engine according to the second aspect of the present invention, the secondary air is taken out from the downstream side of the supercharger to compensate for the deterioration of the nitrogen oxide purification capability of the three-way catalyst. The exhaust gas is recirculated upstream of the supercharger, and the EGR valve is cooled by the secondary air.

【0011】[0011]

【実施例】図1は、本発明にかかる内燃機関の2次空気
供給装置の実施例の構成図であって、過給器としてスー
パーチャージャを使用した場合を示す。即ちエアクリー
ナ101から吸入された吸気は、スロットル弁102で
流量制御された後スーパーチャージャ103で加圧され
る。
1 is a block diagram of an embodiment of a secondary air supply system for an internal combustion engine according to the present invention, showing a case where a supercharger is used as a supercharger. That is, the intake air drawn from the air cleaner 101 is pressurized by the supercharger 103 after the flow rate is controlled by the throttle valve 102.

【0012】その後吸気はインタークラ104で冷却さ
れ、サージタンク105から吸気弁106を介して気筒
107に吸入される。なお吸気圧はサージタンク105
に設置された吸気圧センサ108によって検出され、吸
気弁106の上流側には燃料を噴射するインジェクタ1
09が設置される。
After that, the intake air is cooled by the interclave 104, and is taken into the cylinder 107 from the surge tank 105 through the intake valve 106. The intake pressure is the surge tank 105.
An injector 1 for injecting fuel to the upstream side of the intake valve 106, which is detected by an intake pressure sensor 108 installed in
09 is installed.

【0013】気筒107で発生する排気ガスは排気弁1
10を介して排気管111に排気されるが、排気管11
1には排気ガスの空燃比を検出するために酸素センサ1
12が設置される。酸素センサ112の下流の排気管1
11にはベンチュリ113が、ベンチュリ113をバイ
パスするバイパス管114が設置される。
Exhaust gas generated in the cylinder 107 is exhaust gas 1
The gas is exhausted to the exhaust pipe 111 through the exhaust pipe 11
1 is an oxygen sensor 1 for detecting the air-fuel ratio of the exhaust gas.
12 are installed. Exhaust pipe 1 downstream of the oxygen sensor 112
A venturi 113 is installed at 11, and a bypass pipe 114 that bypasses the venturi 113 is installed.

【0014】また、ベンチュリ113の下流においてバ
イパス管114は、排気管111に合流しするが、バイ
パス管114にはバイパス管114を流れる排気ガスの
流量を制御する排気制御弁115が設置される。なお排
気制御弁115は排気制御弁アクチュエータ116によ
り駆動される。さらに排気管111のバイパス管114
との合流点より下流側には、排気ガスを浄化するための
三元触媒117が設置される。
Further, the bypass pipe 114 joins the exhaust pipe 111 downstream of the venturi 113, and an exhaust control valve 115 for controlling the flow rate of the exhaust gas flowing through the bypass pipe 114 is installed in the bypass pipe 114. The exhaust control valve 115 is driven by the exhaust control valve actuator 116. Further, the bypass pipe 114 of the exhaust pipe 111
A three-way catalyst 117 for purifying exhaust gas is installed on the downstream side of the confluence point with.

【0015】インタークーラ104の下流、サージタン
ク105の上流から分岐した2次空気供給管118は、
電磁弁である空気制御弁119を介してベンチュリ11
3に開口する。即ちターボチャージャ103で加圧され
た吸気を2次空気として利用することにより、2次空気
供給用の専用ポンプを省略することが可能である。
The secondary air supply pipe 118 branched from the downstream of the intercooler 104 and the upstream of the surge tank 105 is
Venturi 11 via air control valve 119 which is a solenoid valve
Open to 3. That is, by using the intake air pressurized by the turbocharger 103 as the secondary air, it is possible to omit the dedicated pump for supplying the secondary air.

【0016】また内燃機関の排気ガス温度は高回転、高
負荷となるほど高温となるが、過給圧も高回転、高負荷
となるほど高圧となるため十分な冷却空気を確保するこ
とが可能となる。排気管111のバイパス管114の分
岐点上流とターボチャージャ103上流とは、排気ガス
を吸気に還流する排気還流管120によって連通されて
いる。
Further, the exhaust gas temperature of the internal combustion engine becomes higher as the rotation speed and load increase, but the supercharging pressure also becomes higher as the rotation speed and load increase, so that sufficient cooling air can be secured. . The upstream of the branch point of the bypass pipe 114 of the exhaust pipe 111 and the upstream of the turbocharger 103 are connected by an exhaust gas recirculation pipe 120 that recirculates exhaust gas to intake air.

【0017】なお還流される排気ガス量は排気還流管1
20に設置されるEGR弁121によって制御される。
またEGR弁121の外側は2次空気供給管118によ
って覆われ、排気ガスによって高温に曝されるEGR弁
121を2次空気により冷却する構造としている。
The amount of exhaust gas recirculated is the exhaust gas recirculation pipe 1.
It is controlled by an EGR valve 121 installed at 20.
The outside of the EGR valve 121 is covered with a secondary air supply pipe 118, and the EGR valve 121 exposed to high temperature by exhaust gas is cooled by the secondary air.

【0018】スーパチャージャ103は、クランクプー
リ122によって駆動される電磁クラッチ123に直結
される。また、スロットル弁102はスロットルアクチ
ュエータ124によって駆動される。本発明にかかる内
燃機関の2次空気供給装置は、マイクロコンピュータで
構成される制御部130によって制御されるが、吸気圧
力センサ108で検出される吸気圧力および酸素センサ
112で検出される排気ガス中の残存酸素量は制御部1
30に読み込まれる。
The supercharger 103 is directly connected to an electromagnetic clutch 123 driven by a crank pulley 122. The throttle valve 102 is driven by the throttle actuator 124. The secondary air supply device for an internal combustion engine according to the present invention is controlled by the control unit 130 including a microcomputer, but the intake pressure detected by the intake pressure sensor 108 and the exhaust gas detected by the oxygen sensor 112 The residual oxygen content of the control unit 1
Read in 30.

【0019】さらにインジェクタ109、排気制御弁ア
クチュエータ116、空気制御弁119、EGR弁12
1、電磁クラッチ123およびスロットルアクチュエー
タ124は制御部130の出力によって駆動される。図
2は制御部130で実行される制御ルーチンのフローチ
ャートであって、一定時間間隔毎に実行される。
Further, the injector 109, the exhaust control valve actuator 116, the air control valve 119, and the EGR valve 12
1, the electromagnetic clutch 123 and the throttle actuator 124 are driven by the output of the control unit 130. FIG. 2 is a flowchart of the control routine executed by the control unit 130, which is executed at regular time intervals.

【0020】ステップ201で内燃機関回転数Ne、吸
気圧力PMおよび排気ガス中の空燃比λを読み込む。ス
テップ202において空燃比λが理論空燃比λrに等し
いか否かが判定される。ステップ202で肯定判定され
れば、203に進み2次空気冷却領域であるか否かが判
定される。
In step 201, the internal combustion engine speed Ne, the intake pressure PM and the air-fuel ratio λ in the exhaust gas are read. At step 202, it is judged if the air-fuel ratio λ is equal to the theoretical air-fuel ratio λr. If an affirmative decision is made in step 202, the routine proceeds to 203, where it is decided whether or not it is in the secondary air cooling region.

【0021】図3は2次空気冷却領域判定用グラフであ
って、横軸に内燃機関回転数Neを、縦軸に吸気圧力P
Mをとる。現在の内燃機関回転数Neと吸気圧力PMと
で決定される座標が斜線部にある時、即ち高回転かつ高
負荷である時は排気制御弁115を閉に制御し、斜線部
にない時、即ち高回転かつ高負荷でない時は排気制御弁
115を開に制御する。
FIG. 3 is a graph for determining the secondary air cooling region, where the horizontal axis represents the internal combustion engine speed Ne and the vertical axis represents the intake pressure P.
Take M. When the coordinates determined by the current internal combustion engine speed Ne and the intake pressure PM are in the shaded area, that is, when the engine speed is high and the load is high, the exhaust control valve 115 is controlled to be closed. That is, the exhaust control valve 115 is controlled to open when the engine speed is high and the load is not high.

【0022】即ちステップ203で肯定判定された時、
即ち高回転かつ高負荷であると判断される時は、ステッ
プ204に進み排気制御弁115を駆動する排気制御弁
アクチュエータ116に全閉指令を出力する。ステップ
205で空気制御弁119のソレノイドを励磁して空気
制御弁を開弁状態とし、スーパーチャージャ103で加
圧された吸気を2次空気としてベンチュリ113から排
気管111に供給する。
That is, when an affirmative decision is made in step 203,
That is, when it is determined that the engine speed is high and the load is high, the routine proceeds to step 204, where a full closing command is output to the exhaust control valve actuator 116 that drives the exhaust control valve 115. In step 205, the solenoid of the air control valve 119 is excited to open the air control valve, and the intake air pressurized by the supercharger 103 is supplied as secondary air from the venturi 113 to the exhaust pipe 111.

【0023】排気制御弁115が全閉に制御されると排
気ガスは全量ベンチュリ113を通るため、いわゆるベ
ンチュリ効果は大きくなり2次空気は十分に吸引され
る。この結果三元触媒117には、2次空気と排気ガス
との混合ガスが供給されることとなり、酸素センサ11
2により排気ガスが理論空燃比であると検出されても三
元触媒117に供給される混合ガスはエアリッチ状態と
なり窒素酸化物の浄化が十分に行われない。
When the exhaust control valve 115 is controlled to be fully closed, all the exhaust gas passes through the venturi 113, so the so-called Venturi effect becomes large and the secondary air is sufficiently sucked. As a result, the mixed gas of secondary air and exhaust gas is supplied to the three-way catalyst 117, and the oxygen sensor 11
Even if the exhaust gas is detected to have the stoichiometric air-fuel ratio by No. 2, the mixed gas supplied to the three-way catalyst 117 is in an air rich state and the nitrogen oxides are not sufficiently purified.

【0024】そこでステップ206に進み、EGR弁1
21をソレノイドを励磁して開弁し排気ガスをスーパー
チャージャ103に上流に還流させて、気筒107内に
おける燃焼により生じる窒素酸化物を低減する。高回転
かつ高負荷の運転状態においては排気ガスは高温となる
ため、EGR弁121は厳しい動作環境に置かれること
となる。
Therefore, the routine proceeds to step 206, where the EGR valve 1
The solenoid 21 is excited to open the valve, and the exhaust gas is recirculated upstream to the supercharger 103 to reduce nitrogen oxides generated by combustion in the cylinder 107. Since the exhaust gas has a high temperature in an operating state of high rotation and high load, the EGR valve 121 is placed in a severe operating environment.

【0025】そこで、2次空気管118を、EGR弁1
21を覆うように配置することにより2次空気と排気ガ
スとの熱交換を可能としてEGR弁121の温度上昇を
抑制する。ステップ207において、空燃比を理論空燃
比とするための燃料噴射量補正係数を演算して、このル
ーチンを終了する。
Therefore, the secondary air pipe 118 is connected to the EGR valve 1
By arranging so as to cover 21, the heat exchange between the secondary air and the exhaust gas is enabled and the temperature rise of the EGR valve 121 is suppressed. In step 207, a fuel injection amount correction coefficient for making the air-fuel ratio the stoichiometric air-fuel ratio is calculated, and this routine ends.

【0026】ステップ202およびステップ203で否
定判定された時は、ステップ208で排気制御弁115
を全開とし、排気ガスをほぼ全量バイパス管114に流
す。ステップ209で空気制御弁119を閉弁し、ステ
ップ210でEGR弁121を閉弁してこのルーチンを
終了する。図4は排気制御弁の開度を示す第1のグラフ
であって、横軸に回転数Neを、縦軸に開度をとる。
When the determinations at steps 202 and 203 are negative, at step 208 the exhaust control valve 115
Is fully opened, and almost the entire amount of exhaust gas is allowed to flow through the bypass pipe 114. The air control valve 119 is closed in step 209, the EGR valve 121 is closed in step 210, and this routine is ended. FIG. 4 is a first graph showing the opening degree of the exhaust control valve, in which the horizontal axis represents the rotation speed Ne and the vertical axis represents the opening degree.

【0027】即ち内燃機関回転数NeがB以下であれ
ば、排気制御弁115は全開であり排気ガスはほぼ全量
バイパス管114を通り、2次空気による冷却はおこな
われない。内燃機関回転数NeがB以上となると、排気
制御弁115は全閉となり、排気ガスはベンチュリ11
3を通り2次空気による冷却が行われる。
That is, when the internal combustion engine speed Ne is B or less, the exhaust control valve 115 is fully opened, and almost all of the exhaust gas passes through the bypass pipe 114 and is not cooled by the secondary air. When the internal combustion engine speed Ne becomes B or more, the exhaust control valve 115 is fully closed, and the exhaust gas is venturi 11
It cools by secondary air through 3.

【0028】図5は排気制御弁の開度を示す第2のグラ
フであり、回転数NeがB以上でさらに高かくなった場
合には、排気制御弁115を徐々に開として排気圧背圧
が上昇することを抑制する。図6は図2に示す制御ルー
チンのステップ204に代えて実行される排気制御処理
のフローチャートである。
FIG. 5 is a second graph showing the opening degree of the exhaust control valve. When the rotation speed Ne becomes higher than B or higher, the exhaust control valve 115 is gradually opened and the exhaust pressure back pressure is increased. Suppress rising. FIG. 6 is a flowchart of the exhaust control process executed in place of step 204 of the control routine shown in FIG.

【0029】この処理を行うために、排気管111のバ
イパス管114分岐点上流に背圧センサ131および2
次空気流量センサ132が追設される。図2に示す制御
ルーチンのステップ203において肯定判定されると、
ステップ61に進み、排気圧PEおよび2次空気流量Q
sを読み込む。ステップ62において、2次空気流量Q
sが前回処理時の2次空気流量QBより所定値ε以上減
少したか否かを判定する。
In order to perform this process, the back pressure sensors 131 and 2 are provided upstream of the branch point of the bypass pipe 114 of the exhaust pipe 111.
A secondary air flow rate sensor 132 is additionally installed. If an affirmative decision is made in step 203 of the control routine shown in FIG.
Proceeding to step 61, the exhaust pressure PE and the secondary air flow rate Q
Read s. In step 62, the secondary air flow rate Q
It is determined whether or not s has decreased by a predetermined value ε or more from the secondary air flow rate QB at the time of the previous processing.

【0030】ステップ62で否定判定されたとき、即ち
減少量が少ないときは、ステップ63に進み2次空気流
量Qsが前回処理時の2次空気流量QBより所定値ε以
上増加したか否かを判定する。ステップ63で肯定判定
されたとき、即ち増加量が大であるときは、ステップ6
4において排気ガスの背圧PEが所定のしきい値圧力P
t以上であるか否かを判定する。
When a negative determination is made in step 62, that is, when the decrease amount is small, the routine proceeds to step 63, where it is determined whether or not the secondary air flow rate Qs has increased by a predetermined value ε or more from the secondary air flow rate QB in the previous processing. judge. When the affirmative judgment is made in step 63, that is, when the increase amount is large, step 6
4, the exhaust gas back pressure PE is a predetermined threshold pressure P.
It is determined whether or not t or more.

【0031】ステップ64で否定判定されたときはステ
ップ65に進み排気制御弁115を除開し、肯定判定さ
れたときはステップ66に進み排気制御弁115を除閉
してステップ67に進む。ステップ62で肯定判定され
たときは、ステップ66に直接進む。またステップ63
で否定判定されたときは、ステップ67に直接進む。
When a negative determination is made in step 64, the routine proceeds to step 65, where the exhaust control valve 115 is opened. When a positive determination is made, the routine proceeds to step 66, where the exhaust control valve 115 is closed and the routine proceeds to step 67. When the affirmative determination is made in step 62, the process directly proceeds to step 66. Step 63
When a negative decision is made in step 67, the process directly proceeds to step 67.

【0032】ステップ67において2次空気流量Qsを
前回処理時の2次空気流量QBに記憶してこのルーチン
を終了する。この制御によれば、2次空気が入り易すく
なるとともに排気管の背圧が所定以上に上昇することを
防止することが可能である。なおベンチュリ部113に
圧力センサ133を設け、2次空気流量Qsに代えてベ
ンチュリ部圧力PBを使用することができる。
At step 67, the secondary air flow rate Qs is stored as the secondary air flow rate QB at the time of the previous processing, and this routine is ended. According to this control, it becomes easy for secondary air to enter, and it is possible to prevent the back pressure of the exhaust pipe from rising above a predetermined level. A pressure sensor 133 may be provided in the venturi portion 113, and the venturi portion pressure PB may be used instead of the secondary air flow rate Qs.

【0033】図7は第2の制御ルーチンのフローチャー
トであって、この処理を行うために、排気管111のバ
イパス管114分岐点上流に排気ガス温度センサ134
および三元触媒117入口に入りガス温度センサ135
が追設される。ステップ701で排気ガス温度TE、入
りガス温度TCおよび排気ガス中の空燃比λを読み込
む。
FIG. 7 is a flow chart of the second control routine. In order to perform this processing, the exhaust gas temperature sensor 134 is provided upstream of the branch point of the bypass pipe 114 of the exhaust pipe 111.
And the gas temperature sensor 135 entering the three-way catalyst 117 inlet
Is added. In step 701, the exhaust gas temperature TE, the incoming gas temperature TC, and the air-fuel ratio λ in the exhaust gas are read.

【0034】ステップ702において空燃比λが理論空
燃比λrに等しいか否かが判定される。ステップ702
で肯定判定されれば、703に進み排気ガス温度TEが
所定温度TH以上であるか否か、即ち2次空気冷却領域
であるか否かが判定される。ステップ703で肯定判定
された時は、ステップ704に進み空気制御弁119の
ソレノイドを励磁して空気制御弁を開弁状態とし、ステ
ップ705に進み、EGR弁121をソレノイドを励磁
してEGR弁121を開弁状態とする。
At step 702, it is judged if the air-fuel ratio λ is equal to the stoichiometric air-fuel ratio λr. Step 702
If the affirmative determination is made in step 703, the process proceeds to step 703, and it is determined whether the exhaust gas temperature TE is equal to or higher than the predetermined temperature TH, that is, whether it is in the secondary air cooling region. When an affirmative decision is made in step 703, the routine proceeds to step 704, where the solenoid of the air control valve 119 is excited to open the air control valve, and the routine proceeds to step 705, where the EGR valve 121 is excited to solenoid and the EGR valve 121. Is opened.

【0035】ステップ706で入りガス温度TEが所定
温度TL以下であるか否かを判定する。ステップ706
で肯定判定されれば、ステップ707に進み排気制御弁
115を除開する。逆にステップ706で否定判定され
れば、ステップ708に進み排気制御弁115を除閉す
る。
In step 706, it is determined whether the incoming gas temperature TE is below a predetermined temperature TL. Step 706
If an affirmative decision is made in step 7, the process proceeds to step 707, and the exhaust control valve 115 is opened. On the contrary, if a negative determination is made in step 706, the process proceeds to step 708, and the exhaust control valve 115 is closed.

【0036】ステップ702およびステップ703で否
定判定された時は、ステップ709で排気制御弁115
を全開とする。ステップ710で空気制御弁119を閉
弁し、ステップ711でEGR弁121を閉弁してこの
ルーチンを終了する。この制御方法によれば、排気ガス
温度を直接検出して2次空気量を制御するため、制御精
度を向上することが可能である。
When a negative determination is made in step 702 and step 703, in step 709 the exhaust control valve 115
Fully open. The air control valve 119 is closed in step 710, the EGR valve 121 is closed in step 711, and this routine is ended. According to this control method, since the exhaust gas temperature is directly detected to control the secondary air amount, it is possible to improve the control accuracy.

【0037】さらにバイパス管114の分岐点下流の排
気管111に排気弁136を設置することにより、制御
性を向上することが可能である。図8は排気制御弁およ
び排気弁の開度を示す第1のグラフであって、横軸に回
転数Neを、縦軸に開度をとる。即ち回転数NeがB以
下であれば、排気制御弁115および排気弁136をと
もに全開とする。
Further, by installing the exhaust valve 136 in the exhaust pipe 111 downstream of the branch point of the bypass pipe 114, controllability can be improved. FIG. 8 is a first graph showing the opening degrees of the exhaust control valve and the exhaust valve, in which the horizontal axis represents the rotation speed Ne and the vertical axis represents the opening degrees. That is, when the rotation speed Ne is B or less, both the exhaust control valve 115 and the exhaust valve 136 are fully opened.

【0038】回転数NeがB以上となれば排気制御弁1
15を全閉とし、2次空気量を増加する。その後回転数
Neの上昇の応じて排気制御弁115の開度を増加し
て、排気ガスの背圧の上昇を抑制する。回転数Neがさ
らに上昇してC以上となったときは、排気弁136を除
閉してベンチュリ113が高温に曝されることを防止す
る。
When the rotation speed Ne becomes B or more, the exhaust control valve 1
15 is fully closed and the amount of secondary air is increased. After that, the opening degree of the exhaust control valve 115 is increased according to the increase of the rotation speed Ne to suppress the increase of the back pressure of the exhaust gas. When the rotation speed Ne further increases and becomes C or more, the exhaust valve 136 is closed to prevent the venturi 113 from being exposed to a high temperature.

【0039】図9は排気制御弁および排気弁の開度を示
す第2のグラフであって、回転数NeがB以下であると
きは排気弁136を全閉として、三元触媒117が2次
空気により過渡に冷却されることを防止する。以上の実
施例は、過給器としてスーパーチャージャを装備する内
燃機関に対する適用例について説明したが、過給器とし
てターボチャージャを装備する内燃機関に対しても本発
明を適用することが可能である。
FIG. 9 is a second graph showing the opening degrees of the exhaust control valve and the exhaust valve. When the rotation speed Ne is B or less, the exhaust valve 136 is fully closed and the three-way catalyst 117 is the secondary. Prevents transient cooling by air. The above embodiments have been described with respect to the application example to the internal combustion engine equipped with the supercharger as the supercharger, but the present invention can also be applied to the internal combustion engine equipped with the turbocharger as the supercharger. .

【0040】図10はターボチャージャを装備する内燃
機関に対して本発明を適用したときの構成図であって、
エアクリーナ101およびスロットル弁102の下流に
コンプレッサ141が設置され吸気を加圧する。コンプ
レッサ141は排気管111に設けられた排気タービン
142によって駆動される。
FIG. 10 is a block diagram when the present invention is applied to an internal combustion engine equipped with a turbocharger,
A compressor 141 is installed downstream of the air cleaner 101 and the throttle valve 102 to pressurize intake air. The compressor 141 is driven by an exhaust turbine 142 provided in the exhaust pipe 111.

【0041】なお図10は排気タービン142はベンチ
ュリ113の上流側に設置されているが、ベンチュリ1
13とバイパス管114との合流点より下流に設置する
ことができる。この場合は2次空気と排気ガスとの混合
ガスによって排気タービン142が駆動されるために、
排気タービンの温度が過度に上昇することが抑制され
る。
In FIG. 10, the exhaust turbine 142 is installed on the upstream side of the venturi 113.
It can be installed downstream from the confluence of 13 and the bypass pipe 114. In this case, since the exhaust turbine 142 is driven by the mixed gas of the secondary air and the exhaust gas,
Excessive rise in the temperature of the exhaust turbine is suppressed.

【0042】[0042]

【発明の効果】第1の発明にかかる内燃機関の2次空気
供給装置によれば、ベンチュリから供給されるに2次空
気によって排気ガスの温度を低減することが可能となる
だけでなく、ベンチュリをバイパスするバイパス排気管
を流れる排気ガス流量を流量制御手段により制御するこ
とも可能となる。
According to the secondary air supply system for an internal combustion engine according to the first aspect of the present invention, not only the secondary air supplied from the venturi can reduce the temperature of the exhaust gas, but also the venturi. It is also possible to control the flow rate of the exhaust gas flowing through the bypass exhaust pipe that bypasses the exhaust gas by the flow rate control means.

【0043】第2の発明にかかる内燃機関の2次空気供
給装置によれば、過給器下流側から2次空気を取り出す
ことにより2次空気供給用ポンプを省略すること、およ
び三元触媒における窒素酸化物の浄化能力の低下を抑制
することが可能となるだけでなく、EGR弁が過度に高
温となることを防止することが可能となる。
According to the secondary air supply system for the internal combustion engine of the second aspect of the present invention, the secondary air supply pump is omitted by taking out the secondary air from the downstream side of the supercharger, and in the three-way catalyst. Not only can it be possible to suppress a decrease in the ability to purify nitrogen oxides, but it is also possible to prevent the EGR valve from becoming excessively high in temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment.

【図2】図2は、制御ルーチンのフローチャートであ
る。
FIG. 2 is a flowchart of a control routine.

【図3】図3は、2次空気冷却領域判定用グラフであ
る。
FIG. 3 is a secondary air cooling area determination graph.

【図4】図4は、排気制御弁の開度を示す第1のグラフ
である。
FIG. 4 is a first graph showing an opening degree of an exhaust control valve.

【図5】図5は、排気制御弁の開度を示す第2のグラフ
である。
FIG. 5 is a second graph showing the opening degree of the exhaust control valve.

【図6】図6は、第1の排気制御処理のフローチャート
である。
FIG. 6 is a flowchart of a first exhaust control process.

【図7】図7は、第2の排気制御処理のフローチャート
である。
FIG. 7 is a flowchart of a second exhaust control process.

【図8】図8は、排気制御弁および排気弁の開度を示す
第1のグラフである。
FIG. 8 is a first graph showing the opening degrees of the exhaust control valve and the exhaust valve.

【図9】図9は、排気制御弁および排気弁の開度を示す
第2のグラフである。
FIG. 9 is a second graph showing the opening degrees of the exhaust control valve and the exhaust valve.

【図10】図10は、ターボチャージャを装備する車両
への実施例の構成図である。
FIG. 10 is a configuration diagram of an embodiment of a vehicle equipped with a turbocharger.

【符号の説明】[Explanation of symbols]

101…エアクリーナ 102…スロットル弁 103…スーパーチャージャ 104…インタークーラ 105…サージタンク 106…吸気弁 107…気筒 108…吸気圧センサ 109…インジェクタ 110…排気弁 111…排気管 112…酸素センサ 113…ベンチュリ 114…バイパス管 115…排気制御弁 116…排気制御弁アクチュエータ 117…三元触媒 118…2次空気供給管 119…空気制御弁 120…排気還流管 121…EGR弁 124…スロットルアクチュエータ 101 ... Air cleaner 102 ... Throttle valve 103 ... Supercharger 104 ... Intercooler 105 ... Surge tank 106 ... Intake valve 107 ... Cylinder 108 ... Intake pressure sensor 109 ... Injector 110 ... Exhaust valve 111 ... Exhaust pipe 112 ... Oxygen sensor 113 ... Venturi 114 Bypass pipe 115 Exhaust control valve 116 Exhaust control valve actuator 117 Three way catalyst 118 Secondary air supply pipe 119 Air control valve 120 Exhaust gas recirculation pipe 121 EGR valve 124 Throttle actuator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気管に設けられたベンチュ
リ部と、 前記ベンチュリ部に開口する2次空気供給管と、を具備
する内燃機関の2次空気供給装置において、 前記ベンチュリ部をバイパスするバイパス排気管と、 前記バイパス排気管に設置され、前記バイパス排気管を
流れる排気ガス流量を制御する流量制御手段と、をさら
に具備する内燃機関の2次空気供給装置。
1. A secondary air supply device for an internal combustion engine, comprising: a venturi part provided in an exhaust pipe of an internal combustion engine; and a secondary air supply pipe opening to the venturi part, wherein the venturi part is bypassed. A secondary air supply device for an internal combustion engine, further comprising: a bypass exhaust pipe; and a flow rate control unit installed in the bypass exhaust pipe and controlling a flow rate of exhaust gas flowing through the bypass exhaust pipe.
【請求項2】 吸気管に設置された過給器と、 前記ベンチュリ部を有する排気管と前記バイパス排気管
との合流部より下流に設置される三元触媒と、 前記過給器下流側の吸気管から分岐し前記ベンチュリ部
に2次空気供給を供給する2次空気供給管と、 前記2次空気供給管を開閉制御する空気制御弁と、 前記ベンチュリ部より上流の排気管から分岐し、排気ガ
スを前記過給器より上流の吸気管に還流する排気還流管
と、 前記排気還流管を流れる排気ガス量を制御するEGR弁
と、 排気ガス温度が過度に上昇する運転状態にあっては、前
記空気制御弁と前記EGR弁とを開弁する開弁制御手段
と、をさらに具備し、 前記EGR弁と前記2次空気供給管とを排気ガスと2次
空気との間で熱交換可能に配置したことを特徴とする請
求項1に記載の内燃機関の2次空気供給装置。
2. A supercharger installed in an intake pipe, a three-way catalyst installed downstream of a confluence of the exhaust pipe having the venturi portion and the bypass exhaust pipe, and a three-way catalyst downstream of the supercharger. A secondary air supply pipe that branches from an intake pipe and supplies a secondary air supply to the venturi portion; an air control valve that controls the opening and closing of the secondary air supply pipe; and an exhaust pipe that is upstream from the venturi portion, An exhaust gas recirculation pipe that recirculates exhaust gas to an intake pipe upstream of the supercharger, an EGR valve that controls the amount of exhaust gas flowing through the exhaust gas recirculation pipe, and an operating state in which the exhaust gas temperature rises excessively And a valve opening control means for opening the air control valve and the EGR valve, wherein the EGR valve and the secondary air supply pipe can exchange heat between exhaust gas and secondary air. It has been arranged in the. Secondary air supply device for an internal combustion engine.
JP6163732A 1994-07-15 1994-07-15 Secondary air feeding device for internal combustion engine Pending JPH0828253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6163732A JPH0828253A (en) 1994-07-15 1994-07-15 Secondary air feeding device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6163732A JPH0828253A (en) 1994-07-15 1994-07-15 Secondary air feeding device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0828253A true JPH0828253A (en) 1996-01-30

Family

ID=15779621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6163732A Pending JPH0828253A (en) 1994-07-15 1994-07-15 Secondary air feeding device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0828253A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT2745U3 (en) * 1997-12-16 1999-06-25 Avl List Gmbh EXHAUST GAS RECIRCULATION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
EP0969187A1 (en) * 1998-07-02 2000-01-05 Ford Global Technologies, Inc. Motor vehicle with an internal combustion engine and catalytic converter
JP2007051638A (en) * 2005-08-19 2007-03-01 Deere & Co Exhaust gas recirculation system
US8087237B2 (en) * 2007-09-26 2012-01-03 Nissan Motor Co., Ltd. Secondary-air supply system for internal combustion engine
JP2012102684A (en) * 2010-11-11 2012-05-31 Ud Trucks Corp Exhaust emission control device for engine
US8936011B2 (en) 2011-03-04 2015-01-20 Brb/Sherline, Inc. Method for imposing variable load on the internal combustion engine used in vapor destruction applications
US9032715B2 (en) 2011-03-24 2015-05-19 Brb/Sherline, Inc. Method of increasing volumetric throughput of internal combustion engines used in vapor destruction applications
JP2018155222A (en) * 2017-03-21 2018-10-04 株式会社Subaru Exhaust emission control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT2745U3 (en) * 1997-12-16 1999-06-25 Avl List Gmbh EXHAUST GAS RECIRCULATION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
EP0969187A1 (en) * 1998-07-02 2000-01-05 Ford Global Technologies, Inc. Motor vehicle with an internal combustion engine and catalytic converter
WO2000001932A1 (en) * 1998-07-02 2000-01-13 Ford Global Technologies, Inc. Motor vehicle with internal combustion engine and catalytic converter
JP2007051638A (en) * 2005-08-19 2007-03-01 Deere & Co Exhaust gas recirculation system
US8087237B2 (en) * 2007-09-26 2012-01-03 Nissan Motor Co., Ltd. Secondary-air supply system for internal combustion engine
JP2012102684A (en) * 2010-11-11 2012-05-31 Ud Trucks Corp Exhaust emission control device for engine
US8936011B2 (en) 2011-03-04 2015-01-20 Brb/Sherline, Inc. Method for imposing variable load on the internal combustion engine used in vapor destruction applications
US9032715B2 (en) 2011-03-24 2015-05-19 Brb/Sherline, Inc. Method of increasing volumetric throughput of internal combustion engines used in vapor destruction applications
US9856770B2 (en) 2011-03-24 2018-01-02 Brb/Sherline, Inc. Method of increasing volumetric throughput of an internal combustion engines used in vapor destruction applications
JP2018155222A (en) * 2017-03-21 2018-10-04 株式会社Subaru Exhaust emission control device

Similar Documents

Publication Publication Date Title
JP4042649B2 (en) Internal combustion engine
JP4134816B2 (en) Turbocharged engine
US7937207B2 (en) Exhaust gas purification system for internal combustion engine
KR101601088B1 (en) Engine Cooling System
JP4858278B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5136654B2 (en) Control device for internal combustion engine
JP4525544B2 (en) Internal combustion engine with a supercharger
JPH0622554U (en) Engine exhaust gas recirculation system
JP4443839B2 (en) Control device for internal combustion engine
JP2008008181A (en) Diesel engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP3714495B2 (en) Internal combustion engine control device
JP3203445B2 (en) Exhaust gas recirculation system for turbocharged engine
JP4081154B2 (en) Exhaust gas recirculation gas engine
JPH0828253A (en) Secondary air feeding device for internal combustion engine
JPH09256915A (en) Egr device for diesel engine with intercooler
JP5679185B2 (en) Control device for internal combustion engine
JP2002364412A (en) Exhaust emission control device for engine with turbo supercharger
US20180266344A1 (en) Internal combustion engine
JP2008128115A (en) Exhaust emission control system for internal combustion engine
JP2004124744A (en) Turbocharged engine
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JPH11173138A (en) Exhaust emission control device for internal combustion engine
JP2009191678A (en) Control device of internal combustion engine
JP3387257B2 (en) Supercharged internal combustion engine with exhaust gas recirculation control device