US20150152336A1 - Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks - Google Patents

Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks Download PDF

Info

Publication number
US20150152336A1
US20150152336A1 US14/096,763 US201314096763A US2015152336A1 US 20150152336 A1 US20150152336 A1 US 20150152336A1 US 201314096763 A US201314096763 A US 201314096763A US 2015152336 A1 US2015152336 A1 US 2015152336A1
Authority
US
United States
Prior art keywords
hydrothermolysis
hydrotreatment
reaction
zone
triacylglycerides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/096,763
Other languages
English (en)
Inventor
Marvin I. Greene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
Lummus Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lummus Technology Inc filed Critical Lummus Technology Inc
Priority to US14/096,763 priority Critical patent/US20150152336A1/en
Assigned to LUMMUS TECHNOLOGY INC. reassignment LUMMUS TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREENE, MARVIN I.
Priority to TW103141776A priority patent/TWI555837B/zh
Priority to JP2016536630A priority patent/JP6336081B2/ja
Priority to BR112016012751A priority patent/BR112016012751A2/pt
Priority to EP14867446.8A priority patent/EP3077481A4/en
Priority to PCT/US2014/068331 priority patent/WO2015084935A1/en
Priority to ARP140104519A priority patent/AR098620A1/es
Publication of US20150152336A1 publication Critical patent/US20150152336A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • C10G3/52Hydrogen in a special composition or from a special source
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • Embodiments disclosed herein relate generally to production of useful hydrocarbons, such as distillate fuels, from triacylglycerides-containing plant or animal fats-containing oils.
  • Triacylglycerides-containing oils such as those derived from crops, animal fats or waste vegetable and animal-derived oils involves many types of chemical reactions.
  • some prior art processes catalytically hydrotreat the triacylglyceride containing oils, converting the unsaturated aliphatic chains in the triacylglyceride containing oils to straight chain paraffins while simultaneously deoxygenating/decarboxylating the acid and glyceryl groups to form water, carbon dioxide and propane.
  • Two downstream processes are then required to (a) skeletally isomerize the n-paraffins to isoparaffins to produce specification grade diesel fuels, and (b) hydrocracking the diesel range n-paraffins and isoparaffins to hydrocarbons to produce specification grade jet fuels.
  • U.S. Pat. No. 7,691,159 discloses a hydrothermolysis process to convert triacylglycerides to smaller organic acids in the presence of hot compressed water at supercritical water conditions. During the process, the backbone of the triacylglycerides undergoes rearrangement reactions. These reactions may occur in hydrothermolysis zones contained in a fired furnace which provides endothermic heats of reaction. Coke formation in the fired furnace results from the contact of hydrothermolyzed intermediate products with high temperature metal surfaces.
  • embodiments disclosed herein relate to a process for converting triacylglycerides-containing oils or fatty acids derived from plants, algae, organic wastes or animal sources into crude oil precursors and/or distillate hydrocarbon fuels.
  • the process may include feeding hydrogen, water, and a triacylglyceride-containing oil into a co-current reactor having a homogeneously catalyzed hydrothermolysis reaction zone and a heterogeneously catalyzed hydrotreatment zone, hydrothermolyzing at least a portion of the triacylglyceride-containing oil in the hydrothermolysis reaction zone to form a hydrothermolysis reaction product, and hydrotreating the hydrothermolysis reaction product directly without any componential separations in the catalytic hydrotreatment zone, and recovering an effluent from the catalytic hydrotreatment zone.
  • inventions disclosed herein relate to a reactor system for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the reactor system may include a homogeneously catalyzed hydrothermolysis reaction zone for hydrothermolyzing at least a portion of a triacylglyceride-containing oil to form a hydrothermolysis reaction product, and a heterogeneously catalyzed hydrotreatment zone for hydrotreating the hydrothermolysis reaction product.
  • embodiments disclosed herein relate to a process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the process may include mixing hydrogen with water to form a superheated mixed water stream, injecting the mixed water stream into a co-current reaction system comprising a hydrothermolysis adiabatic reaction zone and a catalytic adiabatic hydrotreatment zone, injecting a triacylglyceride-containing oil into the co-current reaction system, reacting the first portion of the mixed water stream and the triacylglyceride-containing oil in a first hydrothermolysis adiabatic reaction zone under reaction conditions sufficient to convert at least a portion of the triacylglycerides via hydrothermolysis to produce a hydrothermolysis reaction product comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics, feeding hydrogen and the hydrothermolysis reaction product to a first catalytic adia
  • inventions disclosed herein relate to a system for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the system may include a mixing device for mixing hydrogen with water to form a hydrogen-water mixture, at least one co-current adiabatic reaction system comprising, at least one hydrothermolysis reaction zone for reacting the hydrogen-water mixture and triacylglycerides-containing oils at a temperature in the range of 250° C. to about 650° C. and a pressure greater than about 75 bar to produce a hydrothermolysis effluent, and at least one hydrotreatment zone for hydrotreating the hydrothermolysis effluent.
  • embodiments disclosed herein relate to a process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the process may include injecting a superheated mixed water stream comprising water and hydrogen into a co-current adiabatic reaction system, co-currently, injecting a triacylglyceride-containing oil into the co-current adiabatic reaction system, and reacting the mixed water stream and the triacylglyceride-containing oil in a plurality of adiabatic reaction zones under reaction conditions sufficient to convert the triacylglycerides via hydrothermolysis and hydrotreatment to produce a hydrotreated effluent comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
  • embodiments disclosed herein relate to a process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the process may include mixing hydrogen with water to form a superheated mixed water stream, injecting a first portion of the mixed water stream into a co-current reactor system including a hydrothermolysis reaction zone, comprising at least a first hydrothermolysis reaction zone and a second hydrothermolysis reaction zone, and a hydrotreatment reaction zone, comprising at least a first hydrotreatement reaction zone and a second hydrotreatment reaction zone, injecting a triacylglyceride-containing oil into the co-current reaction system, reacting the first portion of the mixed water stream and the triacylglyceride-containing oil in the first hydrothermolysis reaction zone under reaction conditions sufficient to convert at least a portion of the triacylglycerides via hydrothermolysis to produce a first intermediate product comprising one or more of isoolefins, isoparaffins, cycloolef
  • FIG. 1 is a simplified process flow diagram of a process according to embodiments herein.
  • FIG. 2 is a simplified process flow diagram of an alternate process according to embodiments herein.
  • FIG. 3 is a simplified process flow diagram of an alternate process according to embodiments herein.
  • embodiments disclosed herein relate generally to production of useful hydrocarbons, such as paraffins, from triacylglycerides-containing oils, such as from renewable feedstocks.
  • embodiments disclosed herein relate to processes and systems for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels. The process typically includes catalytic hydrothermolysis, hydrotreating and fractionation.
  • Renewable feedstocks having triacylglycerides-containing oils useful in embodiments disclosed herein may include fatty acids, saturated triacylglycerides, and triacylglycerides having one or more olefinic bonds such as those from any plant, animal or algae.
  • triacylglycerides-containing oils may include oils from at least one of camelina, carinata, jatropha, karanja, moringa, lesquerella, physaria, palm, castor, cotton, corn, linseed, peanut, soybean, sunflower, tung, babassu, and canola, or at least one triacylglycerides-containing oil from at least one of shea butter, tall oil, tallow, waste vegetable oil, algal oil, and pongamia.
  • Hydrothermolysis under supercritical water conditions includes a number of different chemical reactions such as for example, but not limited to, hydrolysis, cyclization, cross-linking, conjugation, thermal cracking, decarboxylation, and Diels-Alder reaction.
  • hydrolysis cyclization, cross-linking, conjugation, thermal cracking, decarboxylation, and Diels-Alder reaction.
  • glycerin byproduct approximately 10-13 wt % of the feed
  • Low molecular weight organic acids are hydrogenated to their corresponding paraffins in the downstream heterogeneously catalyzed hydrotreatment step.
  • a triacylglycerides-containing oil may be reacted with water and hydrogen, fed as H 2 , diatomic hydrogen, at a temperature in the range from about 250° C. to about 650° C. and a pressure greater than about 75 Bar to about 250 Bar to convert at least a portion of the triacylglycerides via homogeneously catalyzed hydrothermolysis to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
  • the reaction conditions are such that the temperature and pressure are above the supercritical temperature and pressure of water.
  • the resulting reaction effluent may then be further treated and separated to recover the hydrocarbon products.
  • a triacylglycerides-containing oil may be mixed with water and diatomic hydrogen in any order or with a mixture of water and diatomic hydrogen.
  • protonic hydrogen may be generated in situ.
  • U.S. Pat. No. 7,691,159 hypothesizes that, for each mole of soybean oil, 1.5 moles of H 2 are extracted from the water and added to the resulting hydrocarbon. While presenting this in terms of diatomic hydrogen equivalents, the in situ derived protonic hydrogen atoms would rapidly react and incorporate into the carboxylate molecules derived from the triacylglycerides.
  • the diatomic hydrogen feed used in embodiments herein is in addition to any hydrogen that may be generated in situ from water or other components in the homogeneously catalyzed hydrothermolysis reactor, and, although being an additional operating expense, may provide the benefits of enhanced reactivity within the homogeneously catalyzed hydrothermolysis reactor as well as an increased H/C ratio in the resulting product.
  • Externally supplied diatomic hydrogen also provides an independent means of controlling the process performance, which cannot be obtained via in situ monoatomic hydrogen production alone, as it is dependent upon the homogeneously catalyzed hydrothermolysis reaction conditions and the composition of the triacylglycerides-containing feedstock. Overall, adding an external supply of diatomic hydrogen to the homogeneously catalyzed hydrothermolysis reactor, along with the super critical water and the renewable oil feed provides a different process, different reaction mechanism, and added performance over in situ monoatomic hydrogen generation alone.
  • co-feeding externally supplied diatomic hydrogen to the homogeneously catalyzed hydrothermolysis reactor is the hydrogen capping effect of stabilizing any free radicals formed during the homogeneously catalyzed hydrothermolysis reactions, thereby avoiding formation of oligomeric and/or polymeric materials, often referred to as coke or coke precursors or coke deposits, that would otherwise form as a result of condensation of these free radicals.
  • co-feeding externally supplied diatomic hydrogen provides improved on-stream operability relative to processes that do not co-feed diatomic hydrogen gas.
  • triacylglycerides-containing oil is first mixed with water to form a triacylglyceride-water mixture.
  • the resulting triacylglycerides-water mixture is then mixed with diatomic hydrogen to form the triacylglycerides-water-diatomic hydrogen mixture.
  • the triacylglycerides-water-diatomic hydrogen mixture may have a water to triacylglycerides mass ratio in the range from about 0.001:1 to about 1:1 in some embodiments; from about 0.01:1 to about 1:1 in other embodiments; and from about 0.1:1 to about 1:1 in yet other embodiments.
  • the triacylglycerides-water-diatomic hydrogen mixture may have a diatomic hydrogen to triacylglycerides mass ratio in the range from about 0.001:1 to about 1:1 in some embodiments; from about 0.005:1 to about 0.5:1 or 1:1 in other embodiments; from about 0.01:1 to about 0.5:1 in other embodiments; and from about 0.1:1 to about 0.5:1 in yet other embodiments.
  • the diatomic hydrogen to triacylglycerides mass ratio may be in the range from about 0.1:1 to about 0.2:1.
  • the total diatomic hydrogen feed rate in some embodiments may be sufficient to supply a portion or all of the hydrogen necessary for the homogeneously catalyzed hydrothermolysis as well as any close-coupled downstream processing steps, such as heterogeneously catalyzed hydrotreatment.
  • the triacylglycerides-water-hydrogen mixture may have a water to triacylglycerides mass ratio in the range from about 0.001:1 to about 1:1 in some embodiments; from about 0.01:1 to about 1:1 in other embodiments; and from about 0.1:1 to about 1:1 in yet other embodiments.
  • the water-hydrogen mixture may have a hydrogen to water mass ratio in the range from about 0.005:1 to about 500:1 in some embodiments; from about 0.1:1 to about 250:1 in other embodiments; and from about 5:1 to about 50:1 in yet other embodiments.
  • the homogeneously catalyzed hydrothermolysis reaction effluent may then be directly catalytically hydrotreated using heterogeneous catalysts, such as in the same reactor, without intermediate separations of water, unreacted diatomic hydrogen, or other light gas byproducts, to form additional distillate range hydrocarbons and/or to convert precursors in the reaction effluent to distillate range hydrocarbons.
  • Homogeneously catalyzed hydrothermolysis produces a crude oil that requires heterogeneously catalyzed catalytic hydrotreatment to be converted to useful infrastructure-compatible distillate fuels.
  • Heterogeneously catalyzed hydrotreatment processes may operate at elevated pressures, such as 500-2000+ psig, using supported catalysts having activity towards both heteroatom removal and double bond saturation reactions.
  • diatomic hydrogen gas is required to: a) drive the desired hydrotreatment reactions to a high degree of conversion; and b) to provide a heat sink to control unmanageable exotherms that would otherwise result from the high heats of hydrotreatment reactions.
  • the adiabatic temperature rise i.e., the temperature increase from reactant inlet stream to product effluent stream across the hydrotreating catalyst bed, can amount to about 180-200° F. per each thousand standard cubic feet hydrogen consumed.
  • An advantage of co-feeding externally supplied diatomic hydrogen to the homogeneously catalyzed hydrothermolysis reactor is that the diatomic hydrogen contained in the effluent gas stream from the homogeneously catalyzed hydrothermolysis reactor can provide a part or all of the diatomic hydrogen gas feed requirement for the downstream heterogeneously catalyzed catalytic hydrotreating reactor, as well as enhancing the reaction within the homogeneously catalyzed hydrothermolysis reactor itself, as discussed above.
  • the above-mentioned triacylglycerides-containing oils following homogeneously catalyzed hydrothermolysis, may be co-processed in either the homogeneously catalyzed hydrothermolysis or heterogeneously catalyzed hydrotreatment zone with other hydrocarbon feedstocks, such as atmospheric gas oil (AGO), vacuum gas oil (VGO), or other feeds derived from petroleum, shale oil, tar sands, coal-derived oils, organic waste oils, and the like.
  • organic waste oil examples may be selected from at least one of municipal solid wastes, sewage sludge solids, Kraft plant waste liquor, restaurant greases and used vegetable oils. Both the hydrothermolysis and hydrotreatment reactions occur within a co-current adiabatic reactor.
  • the hydrotreatment effluent may then be processed to separate water, unreacted diatomic hydrogen, and light gases from the hydrotreatment effluent and to fractionate the hydrocarbons into one or more hydrocarbon fractions, such as those boiling in the range of naphtha, diesel, or jet.
  • the water and diatomic hydrogen may then be recycled for admixture with the triacylglycerides-containing oil as described above.
  • the reaction of the triacylglycerides to produce hydrocarbons may be primarily one or more hydrothermolysis reactions homogeneously catalyzed by water and performed at a reaction temperature in the range from about 250° C. to about 650° C.; from about 350° C. to about 550° C. in some embodiments; and from about 425° C. to about 525° C. in other embodiments.
  • Reaction conditions may also include a pressure of greater than 75 bar; greater than 140 bar in other embodiments; greater than 218 bar in other embodiments; between about 75 bar and about 300 bar in some embodiments; and between about 165 bar and about 250 bar in other embodiments.
  • Conditions of temperature and/or pressure may be selected to be above the critical temperature and/or pressure of water.
  • the homogeneously catalyzed hydrothermolysis reactions may be performed in the absence of added catalysts, such as an inorganic heterogeneous catalyst or a soluble metallic catalyst.
  • makeup or fresh hydrogen 14 a and recycle hydrogen 14 b may be fed to a fired furnace 20 .
  • the term “hydrogen” is used here to represent diatomic hydrogen or molecular hydrogen. While very high purity H 2 can be used, in practice, the H 2 will contain diluents, such as methane, ethane, possibly CO x . Makeup H 2 should be a H 2 -rich stream of purity in the high 90 percentages.
  • Recycle hydrogen could have lower purity with the limit being the size and cost of recompressing the recycle stream. Typically 85-95 vol % concentrations are considered in petroleum hydroprocessing.
  • Boiler feed water 10 may also be fed to the fired furnace 20 in a separate coil.
  • the combined (make-up plus recycle) hydrogen stream 14 may be compressed to a pressure greater than 221 bar, for example, prior to entering the fired furnace 20 .
  • the water 10 may also be pumped to a pressure greater than 221 bar, for example, prior to entering the fired furnace 20 .
  • Heated hydrogen 16 may exit the fired furnace 20 at temperatures in excess of 500° C., for example.
  • Heated water 12 may also exit the fired furnace 20 at temperatures in excess of 500° C., for example.
  • water 10 and hydrogen 14 may be mixed prior to entering the fired furnace in a common coil.
  • the enthalpies of the heated water 12 and heated hydrogen 16 supply the bulk of the endothermic heats of the homogeneously catalyzed hydrothermolysis reactions, particularly the hydrolysis reactions that produce free fatty acids and glycerol.
  • the temperatures and flow rates of the heated hydrogen 16 and heated water 12 will be set to meet enthalpy requirements.
  • the hydrogen/water ratio may impact the required temperature of each stream in meeting the enthalpy requirements.
  • the hydrogen/water ratio may be varied to manage the enthalpy requirements while satisfying the kinetics and reaction stoichiometry requirements.
  • the heated hydrogen 16 and heated water 12 are mixed to form a heated water-hydrogen mixture 22 , a portion of which may be fed to the top of a co-current adiabatic reactor 24 .
  • Mixing of the hydrogen with water may be performed in a mixing device, such as a mixing tee, an agitated vessel, an in-line mixer or other mixing devices as known to those of skill in the art.
  • a triacylglycerides-containing oil 2 is also provided to reactor 24 .
  • the heated water-hydrogen mixture 22 and the triacylglycerides-containing oil 2 are injected to the top of the reactor 24 where they mix and equilibrate at the desired adiabatic bed inlet temperature.
  • the reactor 24 is a co-current downflow adiabatic reactor; other co-current reactor types may also be used.
  • the reactor 24 may include at least a first inert solids bed 26 a in the upper portion of the reactor 24 wherein the homogeneously catalyzed hydrothermolysis reactions may occur.
  • a plurality of inert solids beds 26 may be used, such as a second inert solids bed 26 b , as illustrated.
  • the inert solids beds 26 promote heat transfer, mass transfer and mixing.
  • the reactor 24 may also include at least a first heterogeneous hydrotreatment catalyst bed 28 a in the lower portion of the reactor 24 .
  • a plurality of heterogeneous hydrotreatment catalyst beds 28 may be used, such as a second hydrotreatment bed 28 b , as illustrated.
  • the number of inert solids beds 26 and hydrotreatment beds 28 will depend on the kinetics of the targeted chemical reactions for a particular triacylglycerides-containing oil and the residence time requirements for completing the targeted chemical reactions for a particular triacylglycerides-containing oil.
  • FIG. 1 shows only a single reactor vessel with a single diameter, other embodiments are envisioned with the reactor having various sections each having different diameters to allow adjustments to superficial velocities, the latter of which would impact both the degree of turbulence and the residence times in each zone.
  • the reactor 24 may include more than one co-current downflow adiabatic reactor such as a first reactor 56 and a second reactor 58 .
  • the first reactor 56 may include the first inert solids bed 26 a in the upper portion of the first reactor 26 wherein homogeneously catalyzed hydrothermolysis reactions may occur.
  • a plurality of inert solids beds 26 may be used, such as the second inert solids bed 26 b , as illustrated. The inert solids beds 26 promote heat transfer and mixing.
  • the second reactor 58 may also include the at least first hydrotreatment bed 28 a in the upper portion of the second reactor 58 .
  • a plurality of hydrotreatment beds 28 may be used, such as the second hydrotreatment bed 28 b , as illustrated.
  • FIG. 2 only shows reactors 56 and 58 having a single diameter, other embodiments are envisioned with the reactors 56 and 58 having various sections each having different diameters to allow adjustments to superficial velocities, the latter of which would impact both the degree of turbulence and the residence times in each zone.
  • the triacylglycerides-containing oil 2 may undergo homogeneously catalyzed hydrothermolysis reactions in the first inert solids bed 26 a .
  • the hydrothermolysis reactions in the first bed 26 a may be endothermic and the temperature of the reactants and products may decrease through the first inert solids bed 26 a .
  • a portion 30 of the heated water-hydrogen mixture 22 may be injected to elevate the temperature of the partially converted triacylglycerides-containing oil prior to entering the second inert solids bed 26 b wherein the hydrothermolysis reactions will occur.
  • the hydrothermolysis reactions in the second bed 26 b may be more exothermic than those occurring in the first bed 26 a and may elevate the temperature proximate the bottom of the second inert solids bed 26 b in the range from about 490° C. to about 510° C.
  • the inert solids beds 26 may be maintained at reaction conditions, and flow rates may be adjusted to provide for a time sufficient to convert at least a portion of the triacylglycerides to distillate hydrocarbons or precursors thereof.
  • Reaction conditions may include a temperature in the range from about 250° C. to about 650° C. and a pressure of at least 75 bar.
  • the residence time required in the inert solids beds 26 to convert the triacylglycerides may vary depending upon the reaction conditions as well as the specific triacylglycerides-containing oil used. In some embodiments, residence times in the inert solids beds 26 may be in the range from about 1 second to about 10 minutes, such as from about 3 minutes to about 6 minutes.
  • the hydrothermolysis reaction can also include some exothermic reactions, which may supply additional heat to maintain the required reaction temperature conditions and to reduce external heat input requirements.
  • one or more water feed lines may be provided to control the exotherm and the temperature or temperature profile in the inert solids beds 26 .
  • hydrothermolysis effluent may then be passed to the hydrotreatment beds 28 to further treat the effluent.
  • Hydrotreatment beds 28 may contain a hydroconversion catalyst to convert at least a portion of the hydrothermolysis effluent to distillate hydrocarbons.
  • the effluent from the second inert solids bed 26 b may be cooled to desirable catalytic hydrotreatment bed temperatures, such as from about 300° C. to about 400° C., utilizing unheated hydrogen 32 prior to entering the first hydrotreatment bed 28 a .
  • the effluent from the second inert solids bed 26 b may also be heated to desirable catalytic hydrotreatment bed temperatures, such as from about 300° C. to about 400° C., utilizing direct heat exchange with a hydrogen/water mixture stream 52 prior to entering the first hydrotreatment bed 28 a .
  • a first portion 32 a of unheated hydrogen may be injected below the second inert solids bed 26 b to cool the hydrothermolysis effluent.
  • the reactions in the first hydrotreatment bed 28 a are exothermic, e.g., saturation of olefinic bonds on the acyl backbone of the triacylglycerides-rich feedstocks.
  • a resulting rise in temperature should be limited to a maximum temperature of about 425° C. which may be achieved by injecting a second portion 32 b of unheated hydrogen intermediate the first hydrotreatment bed 28 a and the second hydrotreatment bed 28 b to reduce the reacting stream temperature back within a range from about 300 to about 400° C.
  • two catalytic hydrotreatment adiabatic beds are shown on the figure, more or less beds may be required.
  • the exact number of adiabatic beds and quench requirements may, for example, be determined from a simulation of the catalytic hydrotreatment reactions using kinetics obtained in bench-scale test units, for a given feedstock.
  • the homogeneously catalyzed hydrothermolysis and the heterogeneously catalyzed hydrotreatment systems may be “close-coupled,” where the effluent from the inert solids beds 26 is passed to the hydrotreatment beds 28 without phase separation (no separation of water, oil, and diatomic hydrogen).
  • the effluent from the hydrothermolysis reaction step may be passed to the hydrotreatment system under autogenous pressure, i.e., without any pressure letdown between hydrothermolysis and hydrotreatment other than that which may occur by normal flow-induced pressure drops in piping and feed-effluent heat exchangers.
  • the diatomic hydrogen may be carried through the entire reaction system, providing enhanced system performance including suppressed coking rates and at higher thermal efficiencies and lower cost.
  • the effluent 34 from the hydrotreatment beds 28 may then be fed to an effluent treatment system 36 for separation and recovery of reaction products.
  • the resulting hydrocarbons may be fractionated into two or more fractions, which, as illustrated, may include distillate hydrocarbons boiling in the range of naphtha 38 , diesel 41 , or jet 40 , and vacuum gas oil (VGO) 42 .
  • VGO vacuum gas oil
  • Some offgas 44 may also be produced.
  • the effluent treatment system 36 may also separate water and hydrogen from the hydrocarbons. Excess hydrogen may also be recovered and recycled back as recycle hydrogen 14 b .
  • a purge may be necessary to remove unwanted components, such as CO, CO2, CH4, etc., that would otherwise buildup and lower the hydrogen purity to an undesirably low level.
  • the effluent from the inert solids beds 26 may be close-coupled, being passed to the hydrotreatment beds 28 under autogeneous pressure, i.e., without any pressure letdown between hydrothermolysis and hydrotreatment other than that which may occur by normal flow-induced pressure drops in piping and feed-effluent heat exchangers.
  • a pressure letdown valve or valves may be provided intermediate hydrotreatment beds 28 and effluent treatment system 36 to decrease the pressure from an autogeneous pressure, for example, at or above the supercritical pressure of water, to a pressure less than the supercritical pressure of water, such as atmospheric pressure, in one or more letdown steps.
  • the pressure letdown system may also provide for an initial phase separation of light gases (including diatomic hydrogen), water, and hydrocarbons.
  • effluent 34 may be sent to a heat exchanger 50 to be cooled while simultaneously preheating the triacylglycerides-containing oil 2 prior to being sent to the effluent treatment system 36 .
  • the effluent 34 may also be quenched prior to entering the heat exchanger by a stream of hydrogen 54 .
  • VGO fraction 42 may be recycled back to the reactor 24 for additional processing, such as within the inert solids beds 26 .
  • the hydrothermolysis effluent may be further processed in the same reactor.
  • the hydrothermolysis step and feed of the entire hydrothermolysis effluent stream to the hydrotreatment reaction zone is performed in a close-coupled system, where no intermediate separations are performed.
  • a close-coupled system would not be technically feasible, expecting the active metals in the supported catalysts to be solubilized or decrepitated.
  • catalyst activity may be maintained, over several hundred hours of pilot plant operations, even in the presence of high water concentrations and high organic acid concentrations (i.e., a much higher level of oxygenates than are normally encountered with typical petroleum feedstocks).
  • Injection of water, hydrocarbons, free fatty acids, alcohols, and unconverted triacylglycerides directly to a hydrotreatment zone may thus provide for a significant reduction in unit operations and processing steps required to produce the desired distillate fuels.
  • Additional hydrocarbon feedstocks may be co-processed with triacylglycerides-containing oil 2 .
  • the additional hydrocarbon feedstocks may be fed to the reactor 24 along with the triacylglycerides-containing oil 2 .
  • Non-renewable hydrocarbon feedstocks may include one or more of petroleum distillates; shale oil distillates; tar sands-derived distillates; coal gasification byproduct oils; and coal pyrolysis oils, among others.
  • some sulfur-containing compound such as, for example, dimethyl disulfide dissolved in a suitable hydrocarbon solvent, may be fed, either intermittently or continuously, to hydrotreatment beds 28 in order to maintain the catalysts in their most active states.
  • the effluent stream 68 from bed 26 b of reactor 24 may be cooled sequentially in a first heat exchanger 50 and a second heat exchanger 53 before being introduced into an olefins saturation reactor 84 where it is contacted with a H2-rich gas stream 69 .
  • Reactor 84 may include more than one co-current downflow adiabatic catalyst bed containing suitable hydrogenation catalysts with activity and selectivity towards the saturation of olefinic bonds on the alkyl backbone of the free fatty acids.
  • the olefins saturation reactions can proceed over the range of from about 150° C. to about 232° C.
  • the olefins saturation reactions are exothermic and results in a temperature rise.
  • the quantity of hydrogen stream 69 can be controlled to maintain the outlet of the catalyst beds of reactor 84 to less than about 260° C. and preferably less than about 232° C.
  • hydrogen split off from stream 69 may be introduced between catalyst beds to control bed temperature profiles.
  • the reactor 84 may operate at the autogeneous pressure of the upstream hydrothermolysis reactor system diminished by the hydraulic losses in the heat exchangers 50 and 53 .
  • An alternate embodiment may comprise reducing the system pressure via throttling pressure control valve 71 .
  • Control valve 71 may also be one or more fixed-orifices or turbines or other pressure letdown devices.
  • the effluent stream 61 may be heated in heat exchanger 53 and introduced into a hydrodeoxygenation reactor 55 where it is contacted with a hydrogen-rich gas stream 70 .
  • Reactor 55 may include more than one co-current downflow adiabatic catalyst beds containing suitable hydrogenation catalysts with activity and selectivity towards the production of paraffins via hydrodeoxygenation of the hydroxyl and carbonyl groups on the free fatty acids as well by hydrodeoxygenation of any alcohols, ketones or aldehydes contained in reactor inlet stream 62 .
  • the hydrodeoxygenation reactions can proceed over the range of about 315° C. to about 400° C.
  • the hydrodeoxygenation reactions are exothermic and this results in a temperature rise.
  • the quantity of hydrogen stream 70 can be controlled to maintain the outlet of the catalyst beds of reactor 55 to less than 385° C. and preferably less than 357° C.
  • hydrogen split off from stream 70 can be introduced between catalyst beds to control bed temperature profiles.
  • the effluent stream 63 is cooled sequentially in a first heat exchanger 51 and a second heat exchanger 86 and then fed to a cold high pressure separator 57 wherein the following three streams are recovered; high pressure hydrogen-rich gas stream 75 , hydrotreated liquid product stream 67 and aqueous product stream 66 .
  • the inert solids beds 26 may include, but are not limited to, one or more of aluminas, alundum, ceramics, foams, sand, fused glass, wires, meshes, rods, tubes having little or no chemical conversion activity for pyrolysis, hydrothermolysis or hydrotreatment reactions and which have geometric properties which promote mixing of reactants and products without resulting in adversely high pressure drops.
  • the inert solids beds 26 may be void of any internals.
  • Catalysts useful in hydrotreatment beds 28 may include catalysts that may be used for the hydrotreating or hydrocracking of a hydrocarbon feedstock.
  • the hydrotreating catalyst may effectively hydrodeoxygenate and/or decarboxylate the oxygen bonds contained in the hydrotreatment feed and reduce or eliminate the organic acid concentration in effluent 34 .
  • greater than 99%, 99.9%, or 99.99% of the organic acids may be converted over the hydrotreatment catalyst.
  • Hydrotreating catalysts that may be useful include catalysts selected from those elements known to provide catalytic hydrogenation activity. At least one metal component selected from Group 8-10 elements and/or from Group 6 elements is generally chosen. Group 6 elements may include chromium, molybdenum and tungsten. Group 8-10 elements may include iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum.
  • the amount(s) of hydrogenation component(s) in the catalyst suitably range from about 0.5% to about 10% by weight of Group 8-10 metal component(s) and from about 5% to about 25% by weight of Group 6 metal component(s), calculated as metal oxide(s) per 100 parts by weight of total catalyst, where the percentages by weight are based on the weight of the catalyst before sulfiding.
  • the hydrogenation components in the catalyst may be in the oxidic and/or the sulfidic form. If a combination of at least a Group 6 and a Group 8 metal component is present as (mixed) oxides, it will be subjected to a sulfiding treatment prior to proper use in hydrocracking.
  • the catalyst comprises one or more components of nickel and/or cobalt and one or more components of molybdenum and/or tungsten or one or more components of platinum and/or palladium. Catalysts containing nickel and molybdenum, nickel and tungsten, platinum and/or palladium are useful.
  • hydrotreatment beds 28 may include two or more beds or layers of catalyst, such as a first layer including a hydrotreating catalyst and a second layer including a hydrocracking catalyst.
  • the layered catalyst system may include a lower catalyst layer that includes a bed of a hydrocracking catalyst suitable for hydrocracking any vacuum gas oil (VGO) range hydrothermolysis products or added feeds to diesel range or lighter hydrocarbons.
  • VGO hydrocracking catalysts used may also be selected to minimize or reduce dearomatization of the alkylaromatics formed in the hydrothermolysis reactor.
  • VGO hydrocracking catalysts that may be used according to embodiments herein include one or more noble metals supported on low acidity zeolites wherein the zeolite acidity is widely distributed throughout each catalyst particle. For example, one or more catalysts as described in U.S. Pat. No. 4,990,243, U.S. Pat. No. 5,069,890, U.S.
  • the various catalyst layers may not be made up of only a single catalyst, but may be composed of an intermixture of different catalysts to achieve the optimal level of metals or carbon residue removal and deoxygenation for that layer. Although some olefinic bond hydrogenation will occur in the lower portion of the zone, the removal of oxygen, nitrogen, and sulfur may take place primarily in the upper layer or layers. Obviously additional metals removal also will take place.
  • the specific catalyst or catalyst mixture selected for each layer, the number of layers in the zone, the proportional volume in the bed of each layer, and the specific hydrotreating conditions selected will depend on the feedstock being processed by the unit, the desired product to be recovered, as well as commercial considerations such as cost of the catalyst. All of these parameters are within the skill of a person engaged in the petroleum processing industry and should not need further elaboration here.
  • processes according to embodiments herein provide for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the process may include feeding hydrogen, water, and a triacylglyceride-containing oil into a co-current reactor having a homogeneously catalyzed hydrothermolysis reaction zone and a heterogeneously catalyzed hydrotreatment zone.
  • the reactor may be operated at conditions suitable for hydrothermolyzing at least a portion of the triacylglyceride-containing oil in the homogeneously catalyzed hydrothermolysis reaction zone to form a hydrothermolysis reaction product, and for hydrotreating the hydrothermolysis reaction product in the heterogeneously catalyzed hydrotreatment zone.
  • a reaction effluent may then be recovered from the catalytic hydrotreatment zone.
  • the homogeneously catalyzed hydrothermolysis reaction zone and the heterogeneously catalyzed hydrotreatment zone are adiabatic reaction zones. Such zones may also be contained within the same reactor, such as a co-current reactor, including downflow co-current reactors.
  • the homogeneously catalyzed hydrothermolysis reaction zone may contain one or more beds of inert solids to promote mixing.
  • the homogeneously catalyzed hydrotreatment zone may include one or more catalyst beds containing a hydrotreating catalyst.
  • at least one of hydrogen and water may be fed to the co-current reactor intermediate the one or more homogeneously catalyzed hydrothermolysis reaction zones, intermediate the one or more heterogeneously catalyzed hydrotreatment zones, as well as intermediate the hydrothermolysis reaction zones and the hydrotreatment zones.
  • Embodiments herein also relate to a reactor system for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels.
  • the reactor system may include: a homogeneously catalyzed hydrothermolysis reaction zone for hydrothermolyzing at least a portion of a triacylglyceride-containing oil to form a hydrothermolysis reaction product; and a heterogeneously catalyzed hydrotreatment zone for hydrotreating the hydrothermolysis reaction product.
  • the homogeneously catalyzed hydrothermolysis reaction zone and the heterogeneously catalyzed hydrotreatment zone are fluidly coupled within the same reactor, and may have one or more adiabatic reaction zones.
  • the hydrothermolysis reaction zone contains one or more beds of inert solids to promote mixing, and the catalytic hydrotreatment zone may include one or more beds containing a hydrotreating catalyst.
  • the catalytic hydrotreatment zone may include, for example, a first catalyst bed containing a catalyst having hydrogenation activity and a second catalyst bed containing a catalyst having hydrocracking activity.
  • reaction zones may include two or more reactors arranged in series or in parallel.
  • back-up compressors, filters, pumps, and the like may also be used.
  • compressors may be single stage or multi-stage compressors, which in some embodiments may be used to compress a single gas stream in sequential stages or may be used to compress separate gas streams, depending on plant layout.
  • a fractionator may be used to recover various hydrocarbon fractions. Where hydrotreatment beds 28 includes a bed or layer of hydrocracking catalyst, production of heavy hydrocarbons may be reduced or eliminated.
  • the fractionator may be used to recover a diesel fraction as the bottoms from the column, and recycle of heavy hydrocarbons, such as VGO, may be unnecessary. When produced, the VGO may be recycled, as described above, or may be recovered as a low sulfur fuel oil product.
  • the system may include one or more mixing devices for mixing a triacylglycerides-containing oil feed with water and hydrogen.
  • the system may include a first mixing device for mixing a triacylglycerides-containing oil feed with water to form an oil-water mixture, and a second mixing device for mixing the oil-water mixture with hydrogen to form a feed mixture.
  • the furnace 20 may be, for example, an electrically heated furnace, or a furnace fired with a fuel gas, such as a natural gas, synthesis gas, or light hydrocarbon gases, including those produced in and recovered from the adiabatic reactor. Reaction conditions may be achieved by use of one or more pumps, compressors, and heat exchangers. A separator may then be used for separating water and hydrogen from hydrocarbons in the reaction effluent.
  • a fuel gas such as a natural gas, synthesis gas, or light hydrocarbon gases, including those produced in and recovered from the adiabatic reactor.
  • Reaction conditions may be achieved by use of one or more pumps, compressors, and heat exchangers.
  • a separator may then be used for separating water and hydrogen from hydrocarbons in the reaction effluent.
  • the system may also include a compressor for compressing hydrogen recovered from the separator, as well as one or more fluid conduits for recycling the compressed hydrogen and/or the recovered water to the mixing device for mixing hydrogen or the mixing device for mixing water.
  • the system may also include a fractionator for fractionating hydrocarbons in the hydrotreatment effluent to form one or more hydrocarbon fractions boiling in the naphtha, jet or diesel range.
  • the system may include one or more fluid conduits for injecting water into the homogeneously catalyzed hydrothermolysis reactor beds.
  • the jet fraction recovered may have a total acid number of less than 0.1 in some embodiments, expressed as mg KOH per gram; less than 0.015 expressed as mg KOH per gram in other embodiments; and less than 0.010 in other embodiments.
  • the jet fraction may have an olefins content of less than about 5 vol % and an aromatics content of less than about 25 vol % in some embodiments. These properties, among others, may allow the jet and/or the diesel fractions produced in embodiments herein to be used directly as engine fuels without blending.
  • the whole hydrocarbon liquid product recovered from the hydrotreatment reaction zone may be used to produce distillate fuels meeting military, ASTM, EN, ISO, or equivalent fuel specifications.
  • the process may be carried out in an economically feasible method at a commercial scale.
  • Embodiments herein may maximize the thermal efficiency of the triacylglycerides-containing oil conversion in an economically attractive manner without being hampered by operability problems associated with catalyst fouling.
  • water such as about 5% of the feed water, may be consumed in the upper inert-solids containing beds.
  • any glycerin intermediate product that did not undergo extinctive hydrothermolysis reactions in the upstream homogeneously catalyzed hydrothermolysis reaction system may be further catalytically hydrogenated and converted to propane in the close-coupled heterogeneously catalyzed hydrotreatment reaction system.
  • Hydrogen is consumed during the hydrotreatment step, and accordingly the average specific gravity of the product may be reduced, such as from approximately 0.91 to about 0.81.
  • Decarboxylation reactions form COx and that carbon loss may result in a reduced mass yield of liquid products, and an equivalent lower volumetric yield.
  • the actual crude yield may be in the range from about 75% to about 90%, such as in the range from about 80% to 84%, depending on how the hydrothermolysis/hydrotreatment processes are executed.
  • Naphtha, jet, and diesel fuels may be produced by processes disclosed herein.
  • a higher boiling gas oil material may also be produced, and may contain high-quality, high hydrogen content paraffins in the C17 to C24 boiling range.
  • These heavier hydrocarbons may be recycled to the hydrothermolysis beds of the concurrent adiabatic reactor for further treatment and production of naphtha, jet, and diesel range products.
  • Fuel gases (off gases) may also be produced, which may be used in some embodiments for process heat, hydrogen production, or recovered as individual products (LPG, ethylene, propylene, n-butane, iso-butane, etc.).
  • these heavier hydrocarbons may be recycled to the catalytic hydrotreatment beds containing selective hydrocracking catalysts for further treatment and production of naphtha, jet and diesel range products.
  • Fuels produced by embodiments herein may: contain cycloparaffins and aromatics; exhibit high density; exhibit high energy density; exhibit good low-temperature properties (freezing point, cloud point, pour point, and viscosity); exhibit natural lubricity; exhibit a wide range of hydrocarbon types and molecular weights similar to petroleum distillates; and/or have good thermal stability. These fuels may thus be true “drop in” analogs of their petroleum counterparts and do not require blending to meet current petroleum specifications.
  • benefits may include: elimination of reactions occurring in a fired furnace zone wherein high metal wall temperatures can promote coking, elimination of a hydrothermolysis product cool down step and separation step of gas, oil, and water components; elimination of acid water production and treatment; elimination of additional liquid pumping, gas compression, and heat exchange operations for the hydrotreatment feed; reduced heat loss; and/or reduced power consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
US14/096,763 2013-12-04 2013-12-04 Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks Abandoned US20150152336A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/096,763 US20150152336A1 (en) 2013-12-04 2013-12-04 Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks
TW103141776A TWI555837B (zh) 2013-12-04 2014-12-02 用於轉化富含三酸甘油酯之原料的同向流絕熱反應系統
JP2016536630A JP6336081B2 (ja) 2013-12-04 2014-12-03 トリアシルグリセロールが豊富な原料を変換するための並流断熱反応システム
BR112016012751A BR112016012751A2 (pt) 2013-12-04 2014-12-03 sistema de reação adiabática co-corrente para conversão de matérias-primas ricas em triacilglicerídeos.
EP14867446.8A EP3077481A4 (en) 2013-12-04 2014-12-03 Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks
PCT/US2014/068331 WO2015084935A1 (en) 2013-12-04 2014-12-03 Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks
ARP140104519A AR098620A1 (es) 2013-12-04 2014-12-04 Conversión en hidrocarburos de aceites que contienen triacilglicéridos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/096,763 US20150152336A1 (en) 2013-12-04 2013-12-04 Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks

Publications (1)

Publication Number Publication Date
US20150152336A1 true US20150152336A1 (en) 2015-06-04

Family

ID=53264852

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/096,763 Abandoned US20150152336A1 (en) 2013-12-04 2013-12-04 Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks

Country Status (7)

Country Link
US (1) US20150152336A1 (es)
EP (1) EP3077481A4 (es)
JP (1) JP6336081B2 (es)
AR (1) AR098620A1 (es)
BR (1) BR112016012751A2 (es)
TW (1) TWI555837B (es)
WO (1) WO2015084935A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065174A1 (en) 2016-10-07 2018-04-12 Haldor Topsøe A/S A process for hydrotreatment of a fuel gas stream containing more than 4% olefins
US10071322B2 (en) 2015-01-28 2018-09-11 Applied Research Associates, Inc. Hydrothermal cleanup process
US11781075B2 (en) 2020-08-11 2023-10-10 Applied Research Associates, Inc. Hydrothermal purification process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632505B (zh) * 2016-05-20 2018-08-11 精誠資訊股份有限公司 Mobile device application call system
FI20196039A1 (en) 2019-11-29 2021-05-30 Neste Oyj Method of making a jet fuel component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017443A (en) * 1998-02-05 2000-01-25 Mobil Oil Corporation Hydroprocessing process having staged reaction zones
US20040074780A1 (en) * 2002-10-18 2004-04-22 Aker Kvaerner Canada Inc. Mediated hydrohalic acid electrolysis
US20080071125A1 (en) * 2006-09-19 2008-03-20 Applied Research Associates, Inc. Method of Converting Triglycerides to Biofuels
US20090326287A1 (en) * 2006-07-03 2009-12-31 Basf Se Method for producing o-xylene
US20130018203A1 (en) * 2010-03-31 2013-01-17 Showa Denko K.K. Method for producing n-propyl acetate and method for producing allyl acetate
US20130161235A1 (en) * 2011-12-22 2013-06-27 Iogen Bio-Products Corporation Method for producing renewable fuels

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761220A (en) * 1984-10-31 1988-08-02 Chevron Research Company Hydroprocessing catalyst fines as a first-stage catalyst in a two-stage, close-coupled thermal catalytic hydroconversion process
US5071805A (en) 1989-05-10 1991-12-10 Chevron Research And Technology Company Catalyst system for hydrotreating hydrocarbons
US5277793A (en) 1989-05-10 1994-01-11 Chevron Research And Technology Company Hydrocracking process
US5073530A (en) 1989-05-10 1991-12-17 Chevron Research And Technology Company Hydrocracking catalyst and process
US4990243A (en) 1989-05-10 1991-02-05 Chevron Research And Technology Company Process for hydrodenitrogenating hydrocarbon oils
US5069890A (en) 1989-06-19 1991-12-03 Texaco Inc. Zeolite treating process
US5141909A (en) 1991-01-22 1992-08-25 Chevron Research And Technology Company Zeolitic catalyst having selectivity for jet fuel
US5439860A (en) 1992-04-16 1995-08-08 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Catalyst system for combined hydrotreating and hydrocracking and a process for upgrading hydrocarbonaceous feedstocks
US7232935B2 (en) * 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
US6902664B2 (en) 2002-11-08 2005-06-07 Chevron U.S.A. Inc. Extremely low acidity USY and homogeneous, amorphous silica-alumina hydrocracking catalyst and process
US6872685B2 (en) 2002-11-08 2005-03-29 Chevron U.S.A. Inc. Method for preparing a highly homogeneous amorphous silica-alumina composition
US6860986B2 (en) 2002-11-08 2005-03-01 Chevron U.S.A. Inc. Extremely low acidity ultrastable Y zeolite catalyst composition and process
US7754931B2 (en) * 2005-09-26 2010-07-13 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Production of high-cetane diesel fuel from low-quality biomass-derived feedstocks
CN101595203A (zh) * 2006-12-01 2009-12-02 北卡罗来纳州立大学 生物质转化成燃料的方法
US7960596B2 (en) * 2008-07-24 2011-06-14 Chevron U.S.A. Inc. Conversion of vegetable oils to base oils and transportation fuels
EP2226375B1 (en) * 2009-03-04 2012-05-16 IFP Energies nouvelles Process for the continuous hydrogenation of triglyceride containing raw materials
US8492600B2 (en) * 2009-04-07 2013-07-23 Gas Technology Institute Hydropyrolysis of biomass for producing high quality fuels
US20100251600A1 (en) * 2009-04-07 2010-10-07 Gas Technology Institute Hydropyrolysis of biomass for producing high quality liquid fuels
KR101588057B1 (ko) * 2009-07-29 2016-01-22 에스케이이노베이션 주식회사 바이오 디젤의 생산 방법
BR112012030780A2 (pt) * 2010-06-03 2024-04-30 Stora Enso Oyj Tratamento com hidrogênio de tall oil impuro para produção de monômeros aromáticos
US8704020B2 (en) * 2010-12-13 2014-04-22 Exxonmobil Research And Engineering Company Catalytic hydrothermal treatment of biomass
US20130310620A1 (en) * 2012-05-18 2013-11-21 Uop Llc Integrated hydrolysis/hydroprocessing process for converting feedstocks containing renewable glycerides to paraffins
US9162938B2 (en) * 2012-12-11 2015-10-20 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017443A (en) * 1998-02-05 2000-01-25 Mobil Oil Corporation Hydroprocessing process having staged reaction zones
US20040074780A1 (en) * 2002-10-18 2004-04-22 Aker Kvaerner Canada Inc. Mediated hydrohalic acid electrolysis
US20090326287A1 (en) * 2006-07-03 2009-12-31 Basf Se Method for producing o-xylene
US20080071125A1 (en) * 2006-09-19 2008-03-20 Applied Research Associates, Inc. Method of Converting Triglycerides to Biofuels
US20130018203A1 (en) * 2010-03-31 2013-01-17 Showa Denko K.K. Method for producing n-propyl acetate and method for producing allyl acetate
US20130161235A1 (en) * 2011-12-22 2013-06-27 Iogen Bio-Products Corporation Method for producing renewable fuels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Denbigh, K.G.; Turner, J.C.R.; "Chemical Reactor Theory: An Introduction"; Cambridge University Press: Cambridge, U.K., (1965); p. 38. *
Patterson, G.K.; Paul, E.L.; Kresta, S.M.; Etchels, A.W. III; "Mixing and Chemical Reactions". In Handbook of Industrial Mixing: Science and Practice; Paul, L.E., Atiemo-Obeng, V.A.; Kresta, S.M., Eds.; Wiley-Interscience: Hoboken, New Jersey, (2004); p. 804. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071322B2 (en) 2015-01-28 2018-09-11 Applied Research Associates, Inc. Hydrothermal cleanup process
WO2018065174A1 (en) 2016-10-07 2018-04-12 Haldor Topsøe A/S A process for hydrotreatment of a fuel gas stream containing more than 4% olefins
US10597593B2 (en) 2016-10-07 2020-03-24 Haldor Topsoe A/S Process for hydrotreatment of a fuel gas stream containing more than 4% olefins
US11781075B2 (en) 2020-08-11 2023-10-10 Applied Research Associates, Inc. Hydrothermal purification process

Also Published As

Publication number Publication date
WO2015084935A1 (en) 2015-06-11
JP2017502113A (ja) 2017-01-19
EP3077481A1 (en) 2016-10-12
AR098620A1 (es) 2016-06-01
JP6336081B2 (ja) 2018-06-06
EP3077481A4 (en) 2017-07-05
TW201525127A (zh) 2015-07-01
TWI555837B (zh) 2016-11-01
BR112016012751A2 (pt) 2017-09-26

Similar Documents

Publication Publication Date Title
US10144881B2 (en) Conversion of triacylglycerides-containing oils to hydrocarbons
KR20120101010A (ko) 바이오 오일 및/또는 석탄 오일로부터 탄화수소 생성물의 생성 방법
TWI555837B (zh) 用於轉化富含三酸甘油酯之原料的同向流絕熱反應系統
US9675956B2 (en) Conversion of triacylglycerides-containing oils
WO2010049075A2 (en) Improved hydrotreatment of renewable organic material
EP2428547B1 (en) Process for the continuous hydrogenation of triglyceride containing raw materials using a nickel and molybdenum based catalyst
KR20240095212A (ko) 반응성 액체 공급원료의 안정화 과정
CN118176276A (zh) 稳定反应性液体原料的方法
CN118159627A (zh) 由热解油生产低芳烃含量的烃的方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUMMUS TECHNOLOGY INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREENE, MARVIN I.;REEL/FRAME:031861/0398

Effective date: 20131210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION