US20150126683A1 - Catalyst compositions and their use for hydrogenation of nitrile rubber - Google Patents

Catalyst compositions and their use for hydrogenation of nitrile rubber Download PDF

Info

Publication number
US20150126683A1
US20150126683A1 US14/352,073 US201214352073A US2015126683A1 US 20150126683 A1 US20150126683 A1 US 20150126683A1 US 201214352073 A US201214352073 A US 201214352073A US 2015126683 A1 US2015126683 A1 US 2015126683A1
Authority
US
United States
Prior art keywords
catalyst
alkyl
aryl
different
cycloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/352,073
Other languages
English (en)
Inventor
Werner Obrecht
Sarah David
Qingchun Liu
Zhenli Wei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arlanxeo Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Assigned to LANXESS DEUTSCHLAND GMBH reassignment LANXESS DEUTSCHLAND GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OBRECHT, WERNER, WEI, ZHENLI, DAVID, Sarah, LIU, Qingchun
Publication of US20150126683A1 publication Critical patent/US20150126683A1/en
Assigned to ARLANXEO DEUTSCHLAND GMBH reassignment ARLANXEO DEUTSCHLAND GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANXESS DEUTSCHLAND GMBH
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2278Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2286Alkynes, e.g. acetylides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/825Osmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/20Non-coordinating groups comprising halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C2019/09Metathese

Definitions

  • This invention relates to novel catalyst compositions obtainable from reacting Ruthenium- or Osmium-based complex catalysts with specific co-catalysts and to a process for selectively hydrogenating nitrile rubbers in the presence of such novel catalyst compositions.
  • acrylonitrile-butadiene rubber or “nitrile rubber”, also named as “NBR” for short, shall be interpreted broadly and refers to rubbers which are copolymers or terpolymers of at least one ⁇ , ⁇ -unsaturated nitrile, at least one conjugated diene and, if desired, one or more further copolymerizable monomers.
  • Hydrogenated NBR also referred to as “HNBR” for short, is produced commercially by hydrogenation of NBR. Accordingly, the selective hydrogenation of the carbon-carbon double bonds in the diene-based polymer must be conducted without affecting the nitrile groups and other functional groups (such as carboxyl groups when other copolymerizable monomers were introduced into the polymer chains) in the polymer chains.
  • HNBR is a specialty rubber which has very good heat resistance, an excellent resistance to ozone and chemicals and also an excellent oil resistance.
  • the abovementioned physical and chemical properties of HNBR are associated with very good mechanical properties, in particular a high abrasion resistance. For this reason, HNBR has found wide use in a variety of applications.
  • HNBR is used, for example, for seals, hoses, belts and damping elements in the automobile sector, also for stators, oil well seals and valve seals in the field of oil exploration and also for numerous parts in the aircraft industry, the electronics industry, mechanical engineering and shipbuilding.
  • a hydrogenation conversion higher than 95%, or a residual double bond (RDB) content ⁇ 5%, without cross-linking during the hydrogenation reaction and a gel level of less than about 2.5% in the resultant HNBR is a threshold that ensures high-performance applications of HNBR in these areas and guarantees excellent processability of the final product.
  • the degree of hydrogenation of the copolymerized diene units in HNBR may vary in the range from 50 to 100%, however, the desired hydrogenation degree is from about 80 to about 100%, preferably from about 90 to about 99.9%.
  • Commercial grades of HNBR typically have a remaining level of unsaturation below 18% and a content of acrylonitrile of roughly up to about 50%.
  • the catalysts used are usually based on rhodium, ruthenium or palladium, but it is also possible to use platinum, iridium, rhenium, osmium, cobalt or copper either as metal or preferably in the form of metal compounds (see e.g. U.S. Pat. No. 3,700,637, DE-A-25 39 132, EP-A-0 134 023, DE-A-35 41 689, DE-A-35 40 918, EP-A-0 298 386, DE-A-35 29 252, DE-A-34 33 392, U.S. Pat. No. 4,464,515 and U.S. Pat. No. 4,503,196).
  • Suitable catalysts and solvents for a hydrogenation in the homogeneous phase are known from DE-A-25 39 132 and EP-A-0 471 250.
  • NBR hydrogenation processes can be performed using Os-based catalysts.
  • One catalyst excellently suited for NBR hydrogenation is OsHCl(CO)(O 2 )(PCy 3 ) 2 as described in Ind. Eng. Chem. Res., 1998, 37(11), 4253-4261.
  • the rates of hydrogenation using this catalyst are superior to those produced by Wilkinson's catalyst (RhCl(PPh 3 ) 3 ) over the entire range of reaction conditions studied.
  • Ru-based complexes are also good catalysts for polymer solution hydrogenation, and the price for Ru metal is even cheaper.
  • Ru—PPh 3 complexes and RuHCl(CO)L 2 (L is a bulky phosphine) catalyst systems lead to quantitative hydrogenation of NBR as disclosed in Journal of Molecular Catalysis A: Chemical, 1997, 126(2-3), 115-131). During such hydrogenation it is not necessary to add a free phosphine ligand to maintain the catalyst activity. However, they are prone to gel formation and may cause a certain degree of cross-linking during hydrogenation.
  • HNBR HNBR with a low Mooney viscosity is difficult to manufacture by the direct hydrogenation of commercially available NBR.
  • the relatively high Mooney viscosity places restrictions on the processability of HNBR.
  • Many applications would ideally use HNBR grades with a lower molecular weight and a lower Mooney viscosity. This would give a decisive improvement in processability.
  • the Mooney viscosity range of marketed HNBR is limited by the lower limit of the Mooney viscosity of the NBR starting material.
  • the molar mass of the NBR feedstock to be used for the hydrogenation cannot be reduced at will since otherwise work-up in the NBR industrial plants available is no longer possible because the rubber becomes too sticky.
  • the lowest Mooney viscosity of an NBR feedstock which can be worked up without difficulties in an established industrial plant is in a range of about 30 Mooney units (ML1+4 at 100° C.).
  • the Mooney viscosity of the hydrogenated nitrile rubber obtained using such an NBR feedstock is in the order of 55 Mooney units (ML1+4 at 100° C.).
  • the Mooney viscosity is determined in accordance with ASTM standard D 1646.
  • a nitrile rubber is reacted in a first step in the presence of a coolefine and a specific catalyst based on osmium, ruthenium, molybdenum or tungsten complexes and hydrogenated in a second step.
  • the hydrogenated nitrile rubbers obtained may have a weight average molecular weight (Mw) in the range from 30 000 to 250 000, a Mooney viscosity (ML 1+4 at 100° C.) in the range from 3 to 50 and a polydispersity index PDI of less than 2.5.
  • Mw weight average molecular weight
  • ML 1+4 at 100° C. Mooney viscosity
  • PDI polydispersity index
  • Ru-based metathesis catalysts like e.g. Grubbs I (benzylidene bis(tricyclohexylphosphine)dichloro ruthenium), Grubbs II (benzylidene [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinyliden]tricyclohexylphosphin dichloro ruthenium), Grubbs III (benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro-bis(3-bromopyridine)ruthenium), Hoveyda-Grubbs II ([1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinyliden]dichloro(o-isopropoxyphenylmethylen) ruthenium) (see e.g. US-A-2008/0064882) and
  • EP-A-1 905 777 discloses ruthenium complex catalysts having the general structure
  • EP-A-1 905 777 further states that these catalysts can be used in olefn metathesis reactions including ring-closing olefin metathesis reactions, intermolecular olefin metathesis reactions, and olefin metathesis polymerization reactions.
  • the examples show the preparation of low molecular weight substances by intramolecular ring closing metathesis in the presence of certain of the generally disclosed catalysts.
  • EP-A-1 905 777 does neither provide any disclosure that these catalysts can be used to degrade the molecular weight of polymers, in particular nitrile rubbers nor that they show any hydrogenation activity.
  • WO-A-2005/080456 the preparation of hydrogenated nitrile rubber polymers having low molecular weights and narrower molecular weight distributions than those known in the art is carried out by simultaneously subjecting the nitrile rubber to a metathesis reaction and a hydrogenation reaction.
  • the reaction takes place in the presence of a Ruthenium- or Osmium-based pentacoordinated complex catalyst, in particular 1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene) (tricyclohexylphosphine) ruthenium (phenylmethy-lene)dichloride (also called Grubbs 2 nd generation catalyst).
  • WO-A-2005/080456 does not provide any disclosure or teaching how to influence the two simultaneously occurring reactions, i.e. metathesis and hydrogenation or how to control the activity of the respective catalysts regarding metathesis and hydrogenation.
  • WO-A-2011/023788 also discloses a process for subjecting a nitrile rubber in the presence of hydrogen to a combined and simultaneous metathesis and hydrogenation reaction in the presence of specifically defined hexacoordinated Ruthenium-oder Osmium based catalysts in order to prepare hydrogenated nitrile rubbers having lower molecular weights and narrower molecular weight distributions than those known in the art.
  • Such process is performed by using at least one catalyst of general formula (I) to (III)
  • WO-A-2011/029732 also discloses an alternative process for subjecting a nitrile rubber in the presence of hydrogen to a combined and simultaneous metathesis and hydrogenation reaction in the presence of specifically defined pentacoordinated Ruthenium- or Osmium based catalysts in order to prepare hydrogenated nitrile rubbers having low molecular weights and a narrow molecular weight distribution.
  • Such process is performed in the presence of at least one compound of the general formula (I),
  • WO-A-2011/079799 discloses a broad variety of catalysts the general structure of which is shown hereinafter
  • such catalysts can be used to provide modified nitrile butadiene rubber (NBR) or styrene-butadiene rubber (SBR) by depolymerisation. It is further stated that the catalysts can be used in a method of making a depolymerized HNBR or styrene-butadiene rubber by adding one or more of those catalysts first to carry out depolymerisation of NBR, followed by adding hydrogen into the reactor under high pressure for hydrogenation. In another embodiment it is disclosed to prepare HNBR by adding hydrogen under high pressure first, then followed by adding one or more of the above catalysts.
  • WO-A-2011/079799 does not provide any disclosure or teaching how to influence the different catalytic activities of the catalysts for depolymerisation (metathesis) and hydrogenation. It is accepted that while hydrogenation takes place simultaneously metathesis leads to a degradation of the molecular weight in uncontrolled manner.
  • the metathesis catalyst Grubbs I can be used for ROMP of cyclooctene or a norbornene derivative first, then followed by a hydrogenation of the polymers. It is reported that the addition of a base like NEt 3 increases the catalytic activity in the hydrogenation reaction.
  • J. Am. Chem. Soc 2007, 129, 4168-9 also relates to tandem ROMP-hydrogenation reactions starting from functionalized norbornenes and compares the use of three Ruthenium-based catalysts, i.e. Grubbs I, Grubbs II and Grubbs III catalysts in such tandem reactions. It is described that the Ruthenium-based catalyst on the end of the polymer backbone is liberated and transformed into a hydrogenation-active species through reaction with H 2 , base (NEt 3 ), and methanol.
  • EP-A-1 197 509 and JP 2005/272572A discloses a process for preparing a hydrogenated polymer by polymerizing a cycloolefine in the presence of an organo ruthenium or osmium compound and subsequently subjecting the unsaturated polymer obtained during polymerization to a hydrogenation under addition of a hydrogenation catalyst.
  • EP-A-1 197 509 does not describe any cross-metathesis and does not relate to any degradation of the polymer via metathesis.
  • JP 2005/272572 A discloses that the polymerisation reaction catalyzed by the metathesis catalyst is stopped by adding alkyl vinyl ether to the reaction system. Thereafter the hydrogenation reaction is performed without adding any further or different catalyst.
  • Example 1 of JP 2005/272572A Grubbs II catalyst is used in an amount of 0.05 parts by weight and 0.03 parts by weight of ethyl vinyl ether are added after the polymerisation reaction, hence the molar ratio of metathesis catalyst to ethyl vinyl ether is 1:7.
  • the molar ratio of metathesis catalyst to alkyl vinyl ether is generally 1:1 to 1:100, preferably 1:1 to 1:10.
  • the molar ratio of vinylethylether to the metathesis catalysts used is very high in order to efficiently stop the metathesis reaction by deactivation of the catalyst.
  • such molar ratio lies in a range of from 567:1 to more than 17.000:1. None of those patent applications provides any disclosure or hint that by choosing lower ratios of the deactivating reagent to the metathesis catalyst a catalyst composition is obtained which is excellently suited for a selective hydrogenation, i.e. without continuing to catalyse the metathetic degradation.
  • di (ethylene glycol) vinyl ether and amine derivatives thereof can also be used as deactivating reagents for olefin metathesis catalysts. It is experimentally shown that the use of 4 equivalents of di (ethylene glycol) vinyl ether based on the metathesis catalyst are sufficient to efficiently deactivate the metathesis catalyst. Even 2 equivalents are reported to be sufficient. However, this reference does not deal with hydrogenation processes subsequently to olefin metathesis at all.
  • PIB polyisobutylene
  • the present invention relates to novel catalyst compositions which are obtainable by contacting a complex catalyst based on ruthenium or osmium as central metal and bearing at least one ligand which is bound to the ruthenium or osmium central metal in a carbene-like fashion with at least one co-catalyst in a molar ratio of the complex catalyst to the co-catalyst in a range of from 1:(20-550) wherein the co-catalyst must contain at least one vinyl group.
  • the invention relates to novel catalyst compositions which are obtainable by contacting a complex catalyst based on ruthenium or osmium as central metal and bearing at least one ligand which is bound to the ruthenium or osmium central metal in a carbene-like fashion with at least one co-catalyst must contain at least one vinyl group and wherein the molar ratio of the complex catalyst to the co-catalyst lies in a range of from 1:(20 to below 100), preferably 1:(25 to 99.5), more preferably 1:(30 to 99), even more preferably 1:(35 to 98.5), and most preferably 1:(40 to 70).
  • the invention furtheron relates to a process of hydrogenating a nitrile rubber comprising
  • a specific embodiment of the present invention relates to an alternative process which comprises firstly subjecting a nitrile rubber to a molecular weight degradation in a metathesis reaction by contacting the nitrile rubber in the absence or presence of a co-olefin with a complex catalyst based on ruthenium or osmium as central metal and bearing at least one ligand which is bound to the ruthenium or osmium central metal transition metal in a carbene-like fashion, then
  • the invention relates to the above processes wherein the molar ratio of the metathesis catalyst to the co-catalyst lies in a range of from 1:(20 to below 100), preferably 1:(25 to 99.5), more preferably 1:(30 to 99), even more preferably 1:(35 to 98.5), and most preferably 1:(40:70).
  • the novel process advantageously allows for the first time to perform a hydrogenation of nitrile rubber without a simultaneous metathetic degradation of the nitrile rubber, if a catalyst composition is used which has been obtained by treating the metathesis catalyst with a vinyl compound first.
  • the present process allows a hydrogenation of nitrile rubbers in a controlled manner, i.e. under formation of hydrogenated nitrile rubber with a tailormade molecular weight in a commercially attractive fashion.
  • the present process allows in a specific embodiment to take advantage of using one and the same catalyst for a metathesis reaction in a first step, then adding the co-catalyst to the reaction mixture of the metathesis reaction, thereby preparing the novel catalyst composition and thereafter hydrogenating the metathesized nitrile rubber in a second step.
  • the co-catalyst can be added at any degree of metathesis to the reaction mixture containing the transition-metal based metathesis catalyst and therefore allows to prepare tailor-made hydrogenated nitrile rubbers in a commercially attractive fashion. Additionally the hydrogenation process of the present invention allows to use the ruthenium- or osmium-based based catalyst in a very low concentration, so that there is no need to remove or recycle the transition metal based catalyst after the hydrogenation.
  • the catalyst composition prepared and used according to the present invention is characterized by its high hydrogenation activity. High hydrogenation degrees may be achieved in short reaction times.
  • the hydrogenation activity of the novel catalyst composition is higher than the hydrogenation activity of the corresponding ruthenium- or osmium-based catalyst only used as such for NBR hydrogenation
  • substituted used for the purposes of the present patent application means that a hydrogen atom on an indicated radical or atom has been replaced by one of the groups indicated in each case, with the proviso that the valency of the atom indicated is not exceeded and the substitution leads to a stable compound.
  • the co-catalyst has the general formula (1)
  • R and R′ are identical or different and shall mean hydrogen
  • all alkyl, cycloalkyl, alkenyl, alkynyl, aryl, or heteroaryl moieties in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 or R 9 may optionally be further substituted by one or more alkyl, halogen, alkoxy, alkenyloxy, aryl or heteroaryl substituents.
  • All aforementioned moities, in particular the alkyl, alkenyl and/or alkynyl moieties can be either straight chain or branched to the extent chemically plausible.
  • the above proviso that the valency of the atom indicated is not exceeded and the substitution leads to a stable compound shall be fulfilled.
  • R and R′ represent OR 1
  • both such R 1 can be linked to each other and together represent a divalent group —(C(R 2 ) 2 ) q — with q being 2, 3, 4 or 5 and R 2 being identical or different and having the meanings defined regarding formula (1) above.
  • a cyclic structure is formed by the divalent group together with the two oxygen atoms to which it the divalent group is bound and the adjacent vinylic carbon atom.
  • the catalyst composition is obtained using at least one, preferably one, co-catalyst having the general formula (1)
  • R is hydrogen and R′ shall mean
  • the catalyst composition is obtained using at least one, preferably one, co-catalyst having the general formula (1)
  • the catalyst composition is obtained using at least one, preferably one, co-catalyst having the above depicted general formula (1) wherein
  • the catalyst composition is obtained using at least one, preferably one, co-catalyst having the above depicted general formula (1) wherein
  • the catalyst composition is obtained using one co-catalyst having the above depicted general formulae (1) in which
  • the alkyl, cycloalkyl, alkenyl, alkynyl, aryl, or heteroaryl moieties in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 or R 9 may optionally be further substituted by one or more C 1 -C 6 -alkyl, C 5 -C 6 -cycloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, phenyl, imidazolyl, triazolyl, or pyridinyl moieties. All aforementioned substituents, in particular the alkyl, alkenyl and/or alkynyl moieties can be either straight chain or branched to the extent chemically plausible.
  • a co-catalyst is used for the preparation of the novel catalyst compositions in which R and R′ both represent OR 1 where such R 1 together form a divalent group as defined above, wherein such specific co-catalysts have the following formulae with R 6 having the same meaning as outlined for general formula (1).
  • the catalysts to be used in the process of the invention are complex catalysts based either on ruthenium or osmium. Furtheron, these complex catalysts have the common structural feature that they possess at least one ligand which is bound to ruthenium or osmium in a carbene-like fashion. In a preferred embodiment, the complex catalyst has two carbene ligands, i.e. two ligands which are bound in a carbene-like fashion to the central metal of the complex.
  • novel catalyst composition of the present invention is obtainable using for example a catalyst of the general formula (A),
  • one group R is hydrogen and the other group R is C 1 -C 20 -alkyl, C 3 -C 10 -cycloalkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, C 6 -C 24 -aryl, C 1 -C 20 -carboxylate, C 1 -C 20 -alkoxy, C 2 -C 20 -alkenyloxy, C 2 -C 20 -alkynyloxy, C 6 -C 24 -aryloxy, C 2 -C 20 -alkoxycarbonyl, C 1 -C 30 -alkylamino, C 1 -C 30 -alkylthio, C 6 -C 24 -arylthio, C 1 -C 20 -alkylsulphonyl or C 1 -C 20 -alkylsulphinyl, where these moiety may in each case be substituted by one
  • X 1 and X 2 are identical or different and are two ligands, preferably anionic ligands.
  • X 1 and X 2 can be, for example, hydrogen, halogen, pseudohalogen, straight-chain or branched C 1 -C 30 -alkyl, C 6 -C 24 -aryl, C 1 -C 20 -alkoxy, C 6 -C 24 -aryloxy, C 3 -C 20 -alkyldiketonate C 6 -C 24 -aryldiketonate, C 1 -C 20 -carboxylate, C 1 -C 20 -alkylsulphonate, C 6 -C 24 -arylsulphonate, C 1 -C 20 alkylthiol, C 6 -C 24 -arylthiol, C 1 -C 20 -alkylsulphonyl or C 1 -C 20 -alkylsulphinyl.
  • X 1 and X 2 can also be substituted by one or more further groups, for example by halogen, preferably fluorine, C 1 -C 10 -alkyl, C 1 -C 10 -alkoxy or C 6 -C 24 -aryl, where these groups, too, may once again be substituted by one or more substituents selected from the group consisting of halogen, preferably fluorine, C 1 -C 5 -alkyl, C 1 -C 5 -alkoxy and phenyl.
  • halogen preferably fluorine, C 1 -C 10 -alkyl, C 1 -C 10 -alkoxy or C 6 -C 24 -aryl
  • X 1 and X 2 are identical or different and are each halogen, in particular fluorine, chlorine, bromine or iodine, benzoate, C 1 -C 5 -carboxylate, C 1 -C 5 -alkyl, phenoxy, C 1 -C 5 -alkoxy, C 1 -C 5 -alkylthiol, C 6 -C 24 -arylthiol, C 6 -C 24 -aryl or C 1 -C 5 -alkylsulphonate.
  • halogen in particular fluorine, chlorine, bromine or iodine
  • X 1 and X 2 are identical and are each halogen, in particular chlorine, CF 3 COO, CH 3 COO, CFH 2 COO, (CH 3 ) 3 CO, (CF 3 ) 2 (CH 3 )CO, (CF 3 )(CH 3 ) 2 CO, PhO (phenoxy), MeO (methoxy), EtO (ethoxy), tosylate (p-CH 3 —C 6 H 4 —SO 3 ), mesylate (CH 3 —SO 3 ) or CF 3 SO 3 (trifluoromethanesulphonate).
  • the symbols L represent identical or different ligands and are preferably uncharged electron donating ligand.
  • the two ligands L can, for example, be, independently of one another, a phosphine, sulphonated phosphine, phosphate, phosphinite, phosphonite, arsine, stibine, ether, amine, amide, sulfonate, sulfoxide, carboxyl, nitrosyl, pyridine, thioether, imidazoline or imidazolidine (the latter two also being jointly referred to as “Im” ligand(s))
  • phosphinite includes, for example, phenyl diphenylphosphinite, cyclohexyl dicyclohexylphosphinite, isopropyl diisopropylphosphinite and methyl diphenylphosphinite
  • phosphite includes, for example, triphenyl phosphite, tricyclohexyl phosphite, tri-tert-butyl phosphite, triisopropyl phosphite and methyl diphenyl phosphite.
  • substitute includes, for example, triphenylstibine, tricyclohexylstibine and trimethylstibine.
  • sulfonate includes, for example, trifluoromethanesulphonate, tosylate and mesylate.
  • sulfoxide includes, for example, (CH 3 ) 2 S( ⁇ O) and (C 6 H 5 ) 2 S ⁇ O.
  • thioether includes, for example, CH 3 SCH 3 , C 6 H 5 SCH 3 , CH 3 OCH 2 CH 2 SCH 3 and tetrahydrothiophene.
  • pyridine is used as a collective term for all nitrogen-containing ligands as are mentioned by, for example, Grubbs in WO-A-03/011455.
  • examples are: pyridine, picolines (including ⁇ -, ⁇ - and ⁇ -picoline), lutidines (including 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-lutidine), collidine (2,4,6-trimethylpyridine), trifluoromethylpyridine, phenylpyridine, 4-(dimethylamino)pyridine, chloropyridines, bromopyridines, nitropyridines, quinoline, pyrimidine, pyrrole, imidazole and phenylimidazole.
  • catalysts of general formula (A) are used in which one or both of ligands L represent an imidazoline or imidazolidine ligand (also jointly referred to as “Im”—ligand in this application unless indicated otherwise), having a structure of general formulae (IIa) or (IIb), wherein the meaning of L can be identical or different in case both ligands L have a structure according to (IIa) or (IIb),
  • R 8 , R 9 , R 10 , and R 11 can independently of one another, be substituted by one or more substituents, preferably straight-chain or branched C 1 -C 10 -alkyl, C 3 -C 8 -cycloalkyl, C 1 -C 10 -alkoxy or C 6 -C 24 -aryl, C 2 -C 20 heteroaryl, C 2 -C 20 heterocyclic, and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulphide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate and halogen, where these abovementioned substituents, to the extent chemically possible, may in turn be substituted by one or more substituents, preferably selected from the group consisting of halogen, in particular chlorine
  • R 8 and R 9 may be substituted by one or more further substituents selected from the group consisting of straight-chain or branched C 1 -C 10 -alkyl or C 1 -C 10 -alkoxy, C 3 -C 8 -cycloalkyl, C 6 -C 24 -aryl, and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulphide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate and halogen, wherein all these substituents may in turn be substituted by one or more substituents, preferably selected from the group consisting of halogen, in particular chlorine or bromine, C 1 -C 5 -alkyl, C 1 -C 5 -alkoxy and phenyl.
  • substituents preferably selected from the group consisting of
  • R 10 and R 11 may be substituted by one or more further substituents selected from the group consisting of straight-chain or branched C 1 -C 10 -alkyl or C 1 -C 10 -alkoxy, C 3 -C 8 -cycloalkyl, C 6 -C 24 -aryl, and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulphide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate and halogen, wherein all these substituents may in turn be substituted by one or more substituents, preferably selected from the group consisting of halogen, in particular chlorine or bromine, C 1 -C 5 -alkyl, C 1 -C 5 -alkoxy and phenyl.
  • substituents preferably selected from the group consisting of
  • catalysts of general formula (A) in which one or both of ligands L represent imidazoline and imidazolidine ligands having the structures (IIIa) to (IIIu), where “Ph” means in each case phenyl, “Bu” means butyl, “Mes” represents in each case 2,4,6-trimethylphenyl, “Dipp” means in all cases 2,6-diisopropylphenyl and “Dimp” means 2,6-dimethylphenyl, and wherein the meaning of L can be identical or different in case both ligands L in general formula (A) have a structure according to (IIIa) to (IIIu),
  • one or both of the ligands L may have the meaning of general formulae (IIc) or (IId), wherein the meaning of L can be identical or different in case both ligands L have a structure according to (IIc) or (IId),
  • R 8 , R 9 , R 10 , R 15 , R 16 and R 17 may also be substituted by one or more further, identical or different substituents selected from the group consisting of straight-chain or branched C 1 -C 5 -alkyl, in particular methyl, C 1 -C 5 -alkoxy, aryl and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulphide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate and halogen.
  • substituents selected from the group consisting of straight-chain or branched C 1 -C 5 -alkyl, in particular methyl, C 1 -C 5 -alkoxy, aryl and a functional group selected from the group consisting of hydroxy, thiol, thioether, ketone,
  • the ligands L has the general formula (IId) wherein
  • the ligand L has the general formula (IId) wherein
  • the ligand L possess general formula (IId) it most preferably represents PPh 3 , P(p-Tol) 3 , P(o-Tol) 3 , PPh(CH 3 ) 2 , P(CF 3 ) 3 , P(p-FC 6 H 4 ) 3 , P(p-CF 3 C 6 H 4 ) 3 , P(C 6 H 4 —SO 3 Na) 3 , P(CH 2 C 6 H 4 —SO 3 Na) 3 , P(isopropyl) 3 , P(CHCH 3 (CH 2 CH 3 )) 3 , P(cyclopentyl) 3 , P(cyclohexyl) 3 , P(neopentyl) 3 or P(neophenyl) 3 .
  • catalyst systems comprising one of the two catalysts below, which fall under the general formula (A) and have the structures (IV) (Grubbs I catalyst) and (V) (Grubbs II catalyst), where Cy is cyclohexyl.
  • catalyst falling under the general formula (A1) it is possible to use, for example, the catalyst of the formula (VI) below, where Mes is in each case 2,4,6-trimethylphenyl and Ph is phenyl.
  • This catalyst is referred to in literature as “Nolan catalyst” and known from WO-A-2004/112951.
  • the catalysts of general formula (A) as well as the preferred and more preferred embodiments thereof can also be used in immobilized form to prepare the novel catalyst compositions.
  • the immobilization favourably occurs via a chemical bond of the complex catalyst to the surface of a support material.
  • Suited are e.g. complex catalysts having the general formulae (support-1), (support-2), or (support-3), as depicted below, wherein M, Y, L, X 1 , X 2 , and R may have all general, preferred, more preferred, particularly preferred and most preferred meanings listed above in this application for general formula (A) and wherein “supp” stands for the support material.
  • the support material represents a macromolecular material, or silica gels.
  • macromolecular material synthetic polymers or resins may be used, with polyethylene glycol, polystyrenes or cross-linked polystyrenes (e.g. poly(styrene-divinylbenzene) copolymers (PS-DVB)) being even more preferred.
  • PS-DVB poly(styrene-divinylbenzene) copolymers
  • Such support material comprises functional groups on its surface which are able to form covalent bonds to one of the ligands or substituents of the complex catalyst, like e.g. to the ligand L or X 1 or to the substituents R 3 or R 4 as shown in the below depicted formulae.
  • “supp” stands more preferably for a polymeric support, a resin, polyethyleneglycole, or silica gels having one or more functional groups “X 3 ” on their surface which are able to form a covalent bond to one of the ligands, like e.g. the L, R or X 1 as shown in the above formulae.
  • Suitable functional groups “X 3 ” on the surface are hydroxyl, amino, thiol, carboxyl, C 1 -C 20 alkoxy, C 1 -C 20 alkylthio, —Si(R) 3 , —O—Si(R) 3 , C 6 -C 14 aryloxy, C 2 -C 14 heterocyclic, sulfinyl, sulfonyl, —C( ⁇ O)R, —C( ⁇ O)OR, —C( ⁇ O)N(R) 2 , —NR—C( ⁇ O)—N(R) 2 , —SO 2 N(R) 2 , or —N(SO 2 —R) 2 wherein in all above occurrences of R in X 3 is identical or different and shall mean H, C 1 -C 6 -alkyl, C 5 -C 6 -cycloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkyn
  • Polystyrene or cross-linked polystyrene is the preferred support material, even more preferably with hydroxyl groups on the surface to allow an easy coupling to the catalyst.
  • a further embodiment provides catalyst systems obtainable by using a catalyst of the general formula (B),
  • the catalysts of the general formula (B) are known in principle (see, for example, Angew. Chem. Int. Ed. 2004, 43, 6161-6165).
  • X 1 and X 2 in the general formula (B) can have the same general, preferred and particularly preferred meanings as in the formula (A).
  • the imidazoline or imidazolidine ligand usually has a structure of the general formulae (IIa) or (IIb) which have been mentioned above for the catalyst of general formula (A) and can have all the structures mentioned there as preferred, in particular those of the formulae (IIIa)-(IIIu).
  • R′′ are identical or different and are each a straight-chain or branched C 1 -C 30 -alkyl, C 5 -C 30 -cycloalkyl or aryl, where the C 1 -C 30 -alkyl moiety may be interrupted by one or more double or triple bonds or one or more heteroatoms, preferably oxygen or nitrogen.
  • Aryl is an aromatic radical having from 6 to 24 skeletal carbon atoms.
  • monocyclic, bicyclic or tricyclic carbocyclic aromatic moieties having from 6 to 10 skeletal carbon atoms mention may be made by way of example of phenyl, biphenyl, naphthyl, phenanthrenyl or anthracenyl.
  • R′′ in the general formula (B) being identical and each being phenyl, cyclohexyl, cyclopentyl, isopropyl, o-tolyl, o-xylyl or mesityl.
  • a further alternative embodiment provides a catalyst system obtainable by using a catalyst of the general formula (C)
  • a further alternative embodiment provides a catalyst system obtainable by using a catalyst of the general formula (D),
  • a further alternative embodiment provides a catalyst system according to the invention obtainable by using a catalyst of the general formula (E), (F) or (G),
  • the catalysts of the general formulae (E), (F), and (G) are known in principle, e.g. from WO 2003/011455 A1, WO 2003/087167 A2, Organometallics 2001, 20, 5314 and Angew. Chem. Int. Ed. 2002, 41, 4038.
  • the catalysts are commercially available or can be synthesized by the preparative methods indicated in the abovementioned literature references.
  • catalysts of the general formulae (E), (F), and (G) can be used in which Z 1 and Z 2 are identical or different and are uncharged electron donors. These ligands are usually weakly coordinating. The ligands are typically optionally substituted heterocyclic groups.
  • These can be five- or six-membered monocyclic groups having from 1 to 4, preferably from 1 to 3 and particularly preferably 1 or 2, heteroatoms or bicyclic or polycyclic structures made up of 2, 3, 4 or 5 five- or six-membered monocyclic groups of this type, where all the abovementioned groups may in each case optionally be substituted by one or more alkyl, preferably C 1 -C 10 -alkyl, cycloalkyl, preferably C 3 -C 8 -cycloalkyl, alkoxy, preferably C 1 -C 10 -alkoxy, halogen, preferably chlorine or bromine, aryl, preferably C 6 -C 24 -aryl, or heteroaryl, preferably C 5 -C 23 -heteroaryl, radicals which may in turn each be substituted by one or more moieties, preferably selected from the group consisting of halogen, in particular chlorine or bromine, C 1 -C 5 -alkyl, C 1 -C
  • Z 1 and Z 2 encompass nitrogen-containing heterocycles such as pyridines, pyridazines, bipyridines, pyrimidines, pyrazines, pyrazolidines, pyrrolidines, piperazines, indazoles, quinolines, purines, acridines, bisimidazoles, picolylimines, imidazolines, imidazolidines and pyrroles.
  • nitrogen-containing heterocycles such as pyridines, pyridazines, bipyridines, pyrimidines, pyrazines, pyrazolidines, pyrrolidines, piperazines, indazoles, quinolines, purines, acridines, bisimidazoles, picolylimines, imidazolines, imidazolidines and pyrroles.
  • Z 1 and Z 2 can also be bridged to one another to form a cyclic structure.
  • Z 1 and Z 2 form a single bidentate ligand.
  • L can have the same general, preferred and particularly preferred meanings as L in the general formula (A) and (B).
  • R 2′ and R 22 are identical or different and are each alkyl, preferably C 1 -C 30 -alkyl, particularly preferably C 1 -C 20 -alkyl, cycloalkyl, preferably C 3 -C 20 -cycloalkyl, particularly preferably C 3 -C 8 -cycloalkyl, alkenyl, preferably C 2 -C 20 -alkenyl, particularly preferably C 2 -C 16 -alkenyl, alkynyl, preferably C 2 -C 20 -alkynyl, particularly preferably C 2 -C 16 -alkynyl, aryl, preferably C 6 -C 24 -aryl, carboxylate, preferably C 1 -C 20 -carboxylate, alkoxy, preferably C 1 -C 20 -alkoxy, alkenyloxy, preferably C 2 -C 20 -alkenyloxy
  • X 1 and X 2 are identical or different and can have the same general, preferred and particularly preferred meanings as indicated above for X 1 and X 2 in the general formula (A).
  • a particularly preferred catalyst coming under general formula (E) has the structure (XIX),
  • R 23 and R 24 are identical or different and are each halogen, straight-chain or branched C 1 -C 20 -alkyl, C 1 -C 20 -heteroalkyl, C 1 -C 10 -haloalkyl, C 1 -C 10 -alkoxy, C 6 -C 24 -aryl, preferably bromine, phenyl, formyl, nitro, a nitrogen heterocycle, preferably pyridine, piperidine or pyrazine, carboxy, alkylcarbonyl, halocarbonyl, carbamoyl, thiocarbamoyl, carbamido, thioformyl, amino, dialkylamino, trialkylsilyl or trialkoxysilyl.
  • R 23 and R 24 C 1 -C 20 -alkyl, C 1 -C 20 -heteroalkyl, C 1 -C 10 -haloalkyl, C 1 -C 10 -alkoxy, C 6 -C 24 -aryl, preferably phenyl, formyl, nitro, a nitrogen heterocycle, preferably pyridine, piperidine or pyrazine, carboxy, alkylcarbonyl, halocarbonyl, carbamoyl, thiocarbamoyl, carbamido, thioformyl, amino, trialkylsilyl and trialkoxysilyl may in turn each be substituted by one or more halogen, preferably fluorine, chlorine or bromine, C 1 -C 5 -alkyl, C 1 -C 5 -alkoxy or phenyl moities.
  • halogen preferably fluorine, chlorine or bromine
  • catalyst of formula (XIX) have the structure (XIX a) or (XIX b), where R 23 and R 24 have the same meanings as indicated in formula (XIX).
  • a further embodiment relates to a catalyst system according to the invention obtainable by using a catalyst (N) which has the general structural element (N1), where the carbon atom denoted by “*” is bound via one or more double bonds to the catalyst framework with a ruthenium or osmium central metal,
  • the carbon atom denoted by “*” is bound via one or more double bonds to the catalyst framework. If the carbon atom denoted by “*” is bound via two or more double bonds to the catalyst framework, these double bonds can be cumulated or conjugated.
  • the catalysts (N) having a structural element of the general formula (N1) include, for example, catalysts of the general formulae (N2a) and (N2b) below,
  • the structural element of the general formula (N1) is bound via conjugated double bonds to the metal of the complex catalyst. In both cases, the carbon atom denoted by “*” as a double bond in the direction of the central metal of the complex catalyst.
  • the catalysts of the general formulae (N2a) and (N2b) thus encompass catalysts in which the general structural elements (N3)-(N9)
  • the Ru- or Os-based carbene catalysts resulting thereof typically have five-fold coordination.
  • C 1 -C 6 -Alkyl in the structural element of the general formula (N1) is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, neopentyl, 1-ethylpropyl or n-hexyl.
  • C 3 -C 8 -Cycloalkyl in the structural element of the general formula (N1) is, for example, cyclopropyl, cyclobutyl, cylopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
  • C 6 -C 24 -Aryl in the structural element of the general formula (N1) comprises an aromatic radical having from 6 to 24 skeletal carbon atoms.
  • aromatic radicals having from 6 to 24 skeletal carbon atoms.
  • monocyclic, bicyclic or tricyclic carbocyclic aromatic radicals having from 6 to 10 skeletal carbon atoms mention may be made by way of example of phenyl, biphenyl, naphthyl, phenanthrenyl or anthracenyl.
  • X 1 and X 2 in the structural element of the general formula (N1) have the same general, preferred and particularly preferred meanings indicated for catalysts of the general formula A.
  • L 1 and L 2 are identical or different ligands, preferably uncharged electron donors, and can have the same general, preferred and particularly preferred meanings indicated for catalysts of the general formula (A).
  • the preparation of the novel catalyst composition in step a) of the present process is performed at an appropriate temperature.
  • the choice of the temperature is influenced by the nature of the co-catalyst and the boiling temperature thereof.
  • this preparation step a) is performed at a temperature in the range of from ⁇ 20° C. to 160° C., preferably in the range of from 20° C. to 80° C.
  • the suitable time for the catalyst pretreatment using vinyl-containing substance ranges from about 1 minute to 48 hours.
  • the ratio of the transition metal catalyst to the co-catalyst is 1:(20-550), preferably 1:(20-500), more preferably 1:(25-475), even more preferably 1:(25-450) and most preferably 1:(30-450).
  • the molar ratio of the complex catalyst to the co-catalyst in a range of from 1:(20 to below 100), preferably 1:(25 to 99.5), more preferably 1:(30 to 99), even more preferably 1:(35 to 98.5) and most preferably 1:(40 tp 70).
  • the preparation of the novel catalyst composition can be carried out in the presence or absence of a suitable solvent which does not deactivate the catalyst used and also does not have an adverse effect on the hydrogenation in any other way.
  • a suitable solvent which does not deactivate the catalyst used and also does not have an adverse effect on the hydrogenation in any other way.
  • an organic solvent is used to dissolve the complex catalyst.
  • More preferred solvents include, but are not restricted to, dichloromethane, benzene, toluene, methyl ethyl ketone, acetone, tetrahydrofuran, tetrahydropyran, dioxane, cyclohexane and chlorobenzene.
  • the particularly preferred solvents are chlorobenzene and methyl ethyl ketone.
  • the vinyl compound is added to the solution of the complex catalyst.
  • novel catalyst composition is performed before hydrogen is brought into the reaction system.
  • step a) of the present process Thereafter the hydrogenation of the nitrile rubber is carried out by bringing the nitrile rubber into contact with hydrogen and the catalyst composition formed in step a) of the present process.
  • the hydrogenation is preferably carried out at a temperature in the range of from 60° C. to 200° C., preferably from 80° C. to 180° C., most preferably from 100° C. to 160° C. and at a hydrogen pressure in the range of 0.5 MPa to 35 MPa, more preferably of 3.0 MPa to 10 MPa.
  • the hydrogenation time of the nitrile rubber is from 10 minutes to 24 hours, preferably from 15 minutes to 20 hours, more preferably from 30 minutes to 12 hours, even more preferably from 1 hour to 8 hours and most preferably from 1 hour to 4 hours.
  • the amount of the catalyst composition which is present in the hydrogenation step b) based on the nitrile rubber can be chosen in a broad range, preferably so that from 1 to 1000 ppm of ruthenium or osmium, preferably from 2 to 500 ppm, in particular from 5 to 250 ppm, are present based on the nitrile rubber used.
  • tandem process comprises performing a metathesis step before the above described steps a) and b).
  • Such alternative process comprises firstly subjecting a nitrile rubber to a molecular weight degradation in a metathesis reaction comprising contacting the nitrile rubber in the absence or presence of a co-olefin with a complex catalyst based on ruthenium or osmium as central metal and bearing at least one ligand which is bound to the ruthenium or osmium central metal in a carbene-like fashion, then
  • the molar ratio of the complex catalyst to the co-catalyst in a range of from 1:(20 to below 100), preferably 1:(25 to 99.5), more preferably 1:(30 to 99), even more preferably 1:(35 to 98.5) and most preferably 1:(40 to 70).
  • the NBR metathesis as first step of the tandem method can be carried out in the absence or presence of a co-olefin.
  • This co-olefin is preferably a straight-chain or branched C 2 -C 16 -olefin.
  • Suitable co-olefins are, for example, ethylene, propylene, isobutene, styrene, 1-hexene and 1-octene. Particular preference is given to using 1-hexene or 1-octene.
  • the amount of co-olefin is preferably in the range 0.2-20% by weight, based on the nitrile rubber used. If the co-olefin is a gas, as in the case of, for example, ethylene, the amount of co-olefin is selected so that a pressure in the range 1 ⁇ 10 5 Pa-1 ⁇ 10 7 Pa, preferably a pressure in the range from 5.2 ⁇ 10 5 Pa to 4 ⁇ 10 6 Pa, is established in the reaction vessel at room temperature.
  • the metathesis reaction can be carried out in a suitable solvent which does not deactivate the catalyst used and also does not have an adverse effect on the reaction in any other way.
  • suitable solvents include, but are not restricted to, dichloromethane, benzene, toluene, methyl ethyl ketone, acetone, tetrahydrofuran, tetrahydropyran, dioxane, cyclohexane and chlorobenzene.
  • the particularly preferred solvent is chlorobenzene.
  • the co-olefin itself can function as solvent, e.g. in the case of 1-hexene, the addition of a further additional solvent can be dispensed with.
  • the amount of catalyst based on the nitrile rubber used in the metathesis step of the tandem method according to the invention depends on the nature and the catalytic activity of the specific complex catalyst.
  • the amount of catalyst used is usually from 1 to 1000 ppm of noble metal, preferably from 2 to 500 ppm, in particular from 5 to 250 ppm, based on the nitrile rubber used.
  • the concentration of the nitrile rubber used in the reaction mixture of the metathesis is not critical, but it should naturally be ensured that the reaction is not adversely affected by an excessively high viscosity of the reaction mixture and the associated mixing problems.
  • the concentration of NBR in the reaction mixture is preferably in the range from 1 to 25% by weight, particularly preferably in the range from 5 to 20% by weight, based on the total reaction mixture.
  • the metathetic degradation is usually carried out at a temperature in the range from 10° C. to 150° C., preferably at a temperature in the range from 20 to 80° C.
  • the metathesis reaction time depends on a number of factors, for example on the type of NBR, the type of catalyst, the catalyst concentration and co-olefin concentration used and the reaction temperature.
  • the progress of the cross-metathesis can be monitored by standard analytical methods, e.g. by GPC measurements or by determination of the viscosity.
  • the reaction is typically allowed to be conducted for about 15 minutes to six hours under normal conditions. It is also possible to perform the metathesis reaction until the reaction ceases by deactivation of the catalyst.
  • the reaction mixture containing the metathesis catalyst is taken and brought into contact with the co-catalyst having the general formula (1) or (2).
  • the co-catalyst is simply added to the reaction mixture, preferably in the same solvent in which the metathesis was performed.
  • the appropriate temperature for the preparation of the novel catalyst composition after the metathesis in the tandem method can also be chosen in the range of from ⁇ 20° C. to 160° C., preferably in the range of from 20° C. to 80° C.
  • the suitable time for the preparation of the catalyst composition for the subsequent hydrogenation reaction in such tandem reaction using the vinyl-group containing co-catalyst ranges from about 5 minutes to 48 hours. The preferred time ranges from 10 minutes to 12 hours.
  • the subsequent hydrogenation of the nitrile rubber can be carried in the same manner as described above for the hydrogenation reaction.
  • One major advantage of the present invention resides in the fact that the catalyst composition used is very active, so that the catalyst residue in the final HNBR products can be low enough to make the catalyst metal removal or recycle step alleviated or even unnecessary.
  • the catalysts used during the process of the present invention may be removed. Such removal can be performed e.g. by using ion-exchange resins as described in EP-A-2 072 532 A1 and EP-A-2 072 533 A1.
  • the reaction mixture obtained after the completion of the hydrogenation reaction can be taken and treated with an ion-exchange resin at e.g. 100° C. for 48 hours under nitrogen and then be precipitated in cold methanol
  • the nitrile rubber used in the process of the present invention is a copolymer or terpolymer of at least one ⁇ , ⁇ -unsaturated nitrile, at least one conjugated diene and, if desired, one or more further copolymerizable monomers.
  • the conjugated diene can be of any nature. Preference is given to using (C 4 -C 6 ) conjugated dienes. Particular preference is given to 1,3-butadiene, isoprene, 2,3-dimethylbutadiene, piperylene or mixtures thereof. Very particular preference is given to 1,3-butadiene and isoprene or mixtures thereof. Especial preference is given to 1,3-butadiene.
  • ⁇ , ⁇ -unsaturated nitrile it is possible to use any known ⁇ , ⁇ -unsaturated nitrile, preferably a (C 3 -C 5 ) ⁇ , ⁇ -unsaturated nitrile such as acrylonitrile, methacrylonitrile, ethacrylonitrile or mixtures thereof. Particular preference is given to acrylonitrile.
  • a particularly preferred nitrile rubber used in the process of this invention is thus a copolymer having repeating units derived from acrylonitrile and 1,3-butadiene.
  • the hydrogenated nitrile rubber may comprise repeating units of one or more further copolymerizable monomers known in the art, e.g. ⁇ , ⁇ -unsaturated (preferably mono-unsaturated) monocarboxylic acids, their esters and amides, ⁇ , ⁇ -unsaturated (preferably mono-unsaturated) dicarboxylic acids, their mono-oder diesters, as well as the respective anhydrides or amides of said ⁇ , ⁇ -unsaturated dicarboxylic acids.
  • ⁇ , ⁇ -unsaturated (preferably mono-unsaturated) monocarboxylic acids e.g. ⁇ , ⁇ -unsaturated (preferably mono-unsaturated) monocarboxylic acids, their esters and amides
  • ⁇ , ⁇ -unsaturated (preferably mono-unsaturated) dicarboxylic acids e.g. ⁇ , ⁇ -unsaturated (preferably mono-unsaturated) dicarboxylic acids, their esters
  • ⁇ , ⁇ -unsaturated monocarboxylic acids acrylic acid and methacrylic acid are preferably used.
  • Esters of ⁇ , ⁇ -unsaturated monocarboxylic acids may also be used, in particular alkyl esters, alkoxyalkyl esters, aryl esters, cycloalkylesters, cyanoalkyl esters, hydroxyalkyl esters, and fluoroalkyl esters.
  • alkyl esters C 1 -C 18 alkyl esters of the ⁇ , ⁇ -unsaturated monocarboxylic acids are preferably used, more preferably C 1 -C 18 alkyl esters of acrylic acid or methacrylic acid, such as methylacrylate, ethylacrylate, propylacrylate, n-butylacrylate, tert.-butylacrylate, 2-ethyl-hexylacrylate, n-dodecylacrylate, methylmethacrylate, ethylmethacrylate, propylmethacrylate, n-butylmethacrylate, tert.-butylmethacrylate and 2-ethylhexyl-methacrylate.
  • acrylic acid or methacrylic acid such as methylacrylate, ethylacrylate, propylacrylate, n-butylacrylate, tert.-butylacrylate, 2-ethyl-hexylacryl
  • alkoxyalkyl esters C 2 -C 18 alkoxyalkyl esters of ⁇ , ⁇ -unsaturated monocarboxylic acids are preferably used, more preferably alkoxyalkylester of acrylic acid or methacrylic acid such as methoxy methyl(meth)acrylate, methoxy ethyl(meth)acrylate, ethoxyethyl(meth)acrylate and methoxyethyl(meth)acrylate.
  • aryl esters preferably C 6 -C 14 -aryl-, more preferably C 6 -C 10 -aryl esters and most preferably the aforementioned aryl esters of acrylates and methacrylates.
  • cycloalkyl esters preferably C 5 -C 12 —, more preferably C 6 -C 12 -cyclo-alkyl and most preferably the aforementioned cycloalkyl acrylates and methacrylates are used.
  • cyanoalkyl esters in particular cyanoalkyl acrylates or cyanoalkyl methacrylates, with 2 to 12 C atoms in the cyanoalkyl group, preferably ⁇ -cyanoethyl acrylate, ⁇ -cyanoethyl acrylate or cyanobutyl methacrylate.
  • hydroxyalkyl esters are used, in particular hydroxyalkyl acrylates and hydroxyalkyl methacrylates with 1 to 12 C-atoms in the hydroxylalkyl group, preferably 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate or 3-hydroxypropyl acrylate.
  • fluorobenzyl esters in particular fluorobenzyl acrylates or fluorobenzyl methacrylates, preferably trifluoroethyl acrylate and tetrafluoropropyl methacrylate.
  • Substituted amino group containing acrylates and methacrylates may also be used like dimethylaminomethyl acrylate and diethylaminoethylacrylate.
  • esters of the ⁇ , ⁇ -unsaturated carboxylic acids may also be used, like e.g. poly-ethyleneglycol(meth)acrylate, polypropyleneglycole(meth)acrylate, glycidyl(meth)acrylate, epoxy(meth)acrylate, N-(2-hydroxyethyl)acrylamide, N-(2-hydroxymethyl)acrylamide or urethane(meth)acrylate.
  • Furthon ⁇ , ⁇ -unsaturated dicarboxylic acids may be used, preferably maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid and mesaconic acid.
  • anhydrides of ⁇ , ⁇ -unsaturated dicarboxylic acids are used, preferably maleic anhydride, itaconic anhydride, itaconic anhydride, citraconic anhydride and mesaconic anhydride.
  • mono- or diesters of ⁇ , ⁇ -unsaturated dicarboxylic acids can be used.
  • Suitable alkyl esters are e.g. C 1 -C 10 -alkyl, preferably ethyl-, n-propyl-, iso-propyl, n-butyl-, tert.-butyl, n-pentyl-oder n-hexyl mono- or diesters.
  • Suitable alkoxyalkyl esters are e.g. C 2 -C 12 alkoxyalkyl-, preferably C 3 -C 8 -alkoxyalkyl mono- or diesters.
  • Suitable hydroxyalkyl esters are e.g.
  • Suitable cycloalkyl esters are e.g. C 5 -C 12 -cycloalkyl-, preferably C 6 -C 12 -cycloalkyl mono- or diesters.
  • Suitable alkylcycloalkyl esters are e.g. C 6 -C 12 -alkylcycloalkyl-, preferably C 7 -C 10 -alkylcycloalkyl mono- or diesters.
  • Suitable aryl esters are e.g. C 6 -C 14 -aryl, preferably C 6 -C 10 -aryl mono- or diesters.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomers include
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid diester monomers the analoguos diesters based on the above explicitely mentioned mono ester monomers may be used, wherein, however, the two organic groups linked to the C ⁇ O group via the oxygen atom may be identical or different.
  • vinyl aromatic monomers like styrol, ⁇ -methylstyrol and vinylpyridine, as well as non-conjugated dienes like 4-cyanocyclohexene and 4-vinylcyclohexene, as well as alkines like 1- or 2-butine may be used.
  • the proportions of conjugated diene and ⁇ , ⁇ -unsaturated nitrile in the NBR polymers to be used can vary within wide ranges.
  • the proportion of the conjugated diene or the sum of conjugated dienes is usually in the range from 40 to 90% by weight, preferably in the range from 60 to 85% by weight, based on the total polymer.
  • the proportion of ⁇ , ⁇ -unsaturated nitrile or the sum of ⁇ , ⁇ -unsaturated nitriles is usually from 10 to 60% by weight, preferably from 15 to 40% by weight, based on the total polymer.
  • the proportions of the monomers in each case add up to 100% by weight.
  • the additional monomers can be present in amounts of from 0 to 40% by weight, preferably from 0.1 to 40% by weight, particularly preferably from 1 to 30% by weight, based on the total polymer. In this case, corresponding proportions of the conjugated diene or dienes and/or the ⁇ , ⁇ -unsaturated nitrile or nitriles are replaced by proportions of the additional monomers, with the proportions of all monomers in each case adding up to 100% by weight.
  • Nitrile rubbers which can be used for the purposes of the invention are also commercially available, e.g. as products from the product range of the Perbunan® and Krynac® grades of Lanxess GmbH.
  • the nitrile rubbers to be hydrogenated have a Mooney viscosity (ML1+4 at 100° C.), measured in accordance with ASTM standard D 1646, in the range from 1 to 75, and preferably from 5 to 50.
  • the weight average molecular weight Mw is in the range 2,000-500,000 g/mol, preferably in the range 20,000-400,000.
  • the determination of the Mooney viscosity is carried out in accordance with ASTM Standard D 1646.
  • the molecular weight of the hydrogenated nitrile rubber obtained after the hydrogenation is comparable to the original NBR feedstock and not further reduced during hydrogenation.
  • a hydrogenated nitrile rubber with a weight average molecular weight Mw in the range 2,000-500,000 g/mol, preferably in the range 20,000-400,000 is obtained.
  • the Mooney viscosity (ML1+4 at 100° C.), measured in accordance with ASTM standard D 1646, of the hydrogenated nitrile rubbers is in the range from 1 to 150, preferably from 10 to 100.
  • the polydispersity PDI Mw/Mn, where Mw is the weight average molecular weight and Mn is the number average molecular weight, in the range 1-5 and preferably in the range 1.5-4.
  • hydrogenation is a reaction of the double bonds present in the starting nitrile rubber to an extent of at least 50%, preferably 70-100%, more preferably 80-100%; even more preferably 90-100%
  • the nitrile rubber is firstly degraded using at least one ruthenium- or osmium-based catalyst in the absence or in the presence of a co-olefin.
  • the vinyl compound of general formula (1) is either added when the metathesis reaction has ceased or gone to completion or added before in order to stop the metathesis at a certain degree.
  • the hydrogenation can be carried out to afford hydrogenated nitrile rubber by introducing hydrogen gas.
  • the metathesis degree can be fully controlled and the molecular weight of the final hydrogenated nitrile rubber is adjustable as desired.
  • the nitrile rubbers subjected to metathesis in the tandem method may typically have a Mooney viscosity (ML1+4 at 100° C.), measured in accordance with ASTM standard D 1646, in the range from 30 to 75, and preferably from 30 to 50.
  • the weight average molecular weight Mw is in the range 150,000-500,000 g/mol, preferably in the range 180,000-400,000.
  • the determination of the Mooney viscosity is carried out in accordance with ASTM Standard D 1646.
  • Catalysts (1) to (3) were purchased from Sigma Aldrich or Strem Chemicals Inc.
  • Catalyst (4) was purchased from Xian Kaili Co. (China). The structures of these catalysts are shown below, wherein “Mes” means mesityl (2,4,6-trimethylphenyl) and “Cy” means cyclohexyl:
  • nitrile butadiene rubbers used in the examples had the properties outlined in Table 1.
  • Nitrile Butadiene Rubbers (“ACN” means acrylonitrile) Mooney viscosity ACN content ML(1 + 4) NBR % by weight 100° C. Mn Mw PDI Perbunan ® 34 29 77,101 255,395 3.31 3431 VP NBR-5 34 34 73,711 243,671 3.31 NBR-6 34 34 74,698 249,935 3.35 NBR-7 34 34 70,674 251,292 3.56
  • VEE Vinyl ethyl ether
  • the apparent molecular weight Mn and Mw were determined by a Waters GPC system equipped with a Waters 1515 high performance liquid chromatography pump, a Waters 717plus autosampler, a PL gel 10 ⁇ m mixed B column and a Waters 2414 RI detector.
  • the GPC test was carried out at 40° C. at 1 mL/min of flow rate with THF as the eluent, and the GPC column was calibrated with narrow PS standard samples.
  • Catalyst (1) (9 mg) was dissolved in 22 g degassed MCB in a flask. Vinyl ethyl ether (100 ⁇ L) was injected into the flask and the solution was stirred for 12 hours. A solution of 18 g Perbunan® 3431VP in 282 g MCB (Perbunan®3431VP concentration of 6 wt %) was bubbled with nitrogen in a 600 mL. Parr autoclave for 30 minutes, and then heated to 120° C. The catalyst solution in the flask was transferred into the reactor via syringe. Hydrogenation was conducted under 4.137 Mpa of hydrogen pressure and 800 rpm of agitation speed.
  • Example 1-5 The conditions and the results for Example 1-5 are shown in Table 2.
  • Table 2 the comparative examples are marked with an asterisk.
  • P3431 VP stands for Perbunan® 3431VP. Only for comparison reasons the number and weight average molecular weights as well as PDI has been included at the bottom of Table 2 with regard to the starting nitrile rubber then subjected to hydrogenation in Examples 1 to 5.
  • Catalyst (2) (135 mg) was dissolved in 100 g degassed MCB in a flask. Vinyl ethyl ether (0.75 g) was injected into the flask and the solution was stirred under nitrogen for 12 hours at room temperature. A solution of 270 g NBR-6 in 4,350 g MCB was bubbled with nitrogen in 10 L Parr autoclave for 30 minutes, and then heated to 140° C. The catalyst solution in the flask was transferred into the reactor and 11.1 g 1-hexene dissolved in 50 g degassed MCB were added into the reactor. Hydrogenation was conducted under 8.4 MPa of hydrogen pressure and 600 rpm of agitation speed.
  • the temperature of the autoclave was elevated to 140° C. Then the hydrogen gas was introduced into the autoclave. Hydrogenation was conducted under 8.4 MPa of hydrogen pressure and 600 rpm of agitation speed. Samples were taken from the reactor at intervals for FT-IR analysis to determine the hydrogenation degree.
  • the molecular weights and the PDI after the addition of VEE are given in the following Table 4. After 2 hours of hydrogenation, the hydrogenation degree reached 99.8% and 99.7% respectively as shown in Table 4. The final molecular weights and the PDI are given in the following Table 3.
  • Catalyst (2) (363 mg) was dissolved in 100 g degassed MCB in a cylinder.
  • a solution of 518 g NBR-7 dissolved in MCB (a solid concentration of 13 wt % of NBR solution) was bubbled with nitrogen in a 10 L autoclave for 30 minutes, and then heated to 140° C.
  • the catalyst solution in the cylinder was pressured into the reactor with hydrogen gas. Hydrogenation was conducted under 8.4 MPa of hydrogen pressure and 600 rpm of agitation speed. Samples were taken from the reactor at intervals for FT-IR analysis to determine the hydrogenation degree. After 4 hours of hydrogenation, the hydrogenation degree reached >99%.
  • HNBR can be prepared by hydrogenation of NBR in the presence of a catalyst composition which is obtained by contacting a metathesis catalyst with a specific co-catalyst wherein such contacting or pretreatment of the catalyst with the co-catalyst is conducted either separately (see Ex. 2-5 and Ex. 7) or following a metathesis reaction in-situ in the reaction mixture before the addition of hydrogen (see Ex. 8 to 10).
  • the metathesis activity of the catalyst is controlled by contacting the catalyst with the co-catalyst and thereby preparing the catalyst composition according to the invention.
  • the molecular weight of the HNBR obtained by the hydrogenation using the catalyst composition according to the invention is comparable to the original NBR feedstock. This is clearly shown e.g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US14/352,073 2011-10-21 2012-10-19 Catalyst compositions and their use for hydrogenation of nitrile rubber Abandoned US20150126683A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/081095 WO2013056461A1 (fr) 2011-10-21 2011-10-21 Compositions catalytiques et leur utilisation pour l'hydrogénation d'un caoutchouc de nitrile
CN2011/081095 2011-10-21
PCT/EP2012/070823 WO2013057295A2 (fr) 2011-10-21 2012-10-19 Compositions catalytiques et leur utilisation pour l'hydrogénation de caoutchouc nitrile

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/070823 A-371-Of-International WO2013057295A2 (fr) 2011-10-21 2012-10-19 Compositions catalytiques et leur utilisation pour l'hydrogénation de caoutchouc nitrile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/882,145 Division US10508156B2 (en) 2011-10-21 2018-01-29 Catalyst compositions and their use for hydrogenation of nitrile rubber

Publications (1)

Publication Number Publication Date
US20150126683A1 true US20150126683A1 (en) 2015-05-07

Family

ID=47071274

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/352,073 Abandoned US20150126683A1 (en) 2011-10-21 2012-10-19 Catalyst compositions and their use for hydrogenation of nitrile rubber
US15/882,145 Active 2032-12-05 US10508156B2 (en) 2011-10-21 2018-01-29 Catalyst compositions and their use for hydrogenation of nitrile rubber

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/882,145 Active 2032-12-05 US10508156B2 (en) 2011-10-21 2018-01-29 Catalyst compositions and their use for hydrogenation of nitrile rubber

Country Status (10)

Country Link
US (2) US20150126683A1 (fr)
EP (1) EP2768610B1 (fr)
JP (1) JP5990592B2 (fr)
KR (1) KR101612210B1 (fr)
BR (1) BR112014009475A2 (fr)
CA (1) CA2852649C (fr)
IN (1) IN2014DN03161A (fr)
MX (1) MX368650B (fr)
TW (1) TWI564075B (fr)
WO (2) WO2013056461A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10799613B2 (en) 2013-10-30 2020-10-13 California Institute Of Technology Direct photopatterning of robust and diverse materials
CN115806643A (zh) * 2022-12-15 2023-03-17 西安凯立新材料股份有限公司 丁腈橡胶加氢方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI566835B (zh) * 2014-12-25 2017-01-21 財團法人工業技術研究院 烯烴複分解觸媒及低分子量丁腈橡膠之製備方法
US10351664B2 (en) * 2015-03-09 2019-07-16 Zeon Corporation Resin molded body, resin film, and injection molded article
WO2016143796A1 (fr) * 2015-03-09 2016-09-15 日本ゼオン株式会社 Procédé de fabrication de corps moulé en résine, procédé de fabrication de film en résine, et procédé de fabrication d'article moulé par injection
CN112004598B (zh) * 2018-04-20 2024-07-19 阿朗新科德国有限责任公司 氢化催化剂组合物及其用于氢化丁腈橡胶的用途
WO2020126345A1 (fr) 2018-12-17 2020-06-25 Arlanxeo Deutschland Gmbh Procédé de préparation de solutions de hnbr avec des solvants alternatifs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107138A1 (en) * 2000-08-10 2002-08-08 Hoveyda Amir H. Recyclable metathesis catalysts
JP2005272572A (ja) * 2004-03-24 2005-10-06 Nippon Zeon Co Ltd 水素化環状オレフィン重合体の製造方法
US20100093944A1 (en) * 2008-07-08 2010-04-15 Lanxess Deutschland Gmbh Catalyst systems and their use for metathesis reactions

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700637A (en) 1970-05-08 1972-10-24 Shell Oil Co Diene-nitrile rubbers
DE2539132C2 (de) 1975-09-03 1987-04-09 Bayer Ag, 5090 Leverkusen Verwendung hydrierter Dien-Copolymere als temperaturbeständige Materialien auf dem Dichtungssektor
CA1220300A (fr) 1982-12-08 1987-04-07 Polysar Limited Hydrogenation du polymere
CA1203047A (fr) 1982-12-08 1986-04-08 Hormoz Azizian Hydrogenation de polymeres
DE3329974A1 (de) 1983-08-19 1985-02-28 Bayer Ag, 5090 Leverkusen Herstellung von hydrierten nitrilkautschuken
DE3433392A1 (de) 1984-09-12 1986-03-20 Bayer Ag, 5090 Leverkusen Hydrierung nitrilgruppenhaltiger ungesaettigter polymerer
DE3529252A1 (de) 1985-08-16 1987-02-19 Bayer Ag Verfahren zur selektiven hydrierung ungesaettigter verbindungen
DE3540918A1 (de) 1985-11-19 1987-05-21 Bayer Ag Verfahren zur selektiven hydrierung ungesaettigter verbindungen
DE3541689A1 (de) 1985-11-26 1987-05-27 Bayer Ag Verfahren zur selektiven hydrierung nitrilgruppenhaltiger ungesaettigter polymerer
US4816525A (en) 1987-07-06 1989-03-28 University Of Waterloo Polymer hydrogenation process
DE4025781A1 (de) 1990-08-15 1992-02-20 Bayer Ag Hydrierte butadien/isopren/(meth-)acrylnitril- copolymerisate
EP0773948A4 (fr) 1992-04-03 1998-09-02 California Inst Of Techn Complexes carbeniques de ruthenium et d'osmium a haute activite pour reactions de metathese des olefines, et leur procede de synthese
US5831108A (en) 1995-08-03 1998-11-03 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes
EP0921129A1 (fr) * 1997-12-03 1999-06-09 Studiengesellschaft Kohle mbH Complexes de ruthénium et d'osmium cationiques hautement actifs pour les réactions de métathèse des oléfines
DE69941219D1 (de) * 1998-09-10 2009-09-17 Univ New Orleans Foundation Katalysatorkomplex mit phenylindenyliden-ligand
WO2000073366A1 (fr) 1999-05-31 2000-12-07 Nippon Zeon Co., Ltd. Procede de production de polymere de polymerisation hydrogene a chaine ouverte de cyclo-olefine
US6673881B2 (en) 2001-06-12 2004-01-06 Bayer Inc. Process for the preparation of low molecular weight hydrogenated nitrile rubber
CA2350280A1 (fr) 2001-06-12 2002-12-12 Bayer Inc. Caoutchouc nitrile hydrogene de faible poids moleculaire
CN1265882C (zh) 2001-08-01 2006-07-26 加州理工学院 六配位钌或锇金属卡宾易位催化剂
WO2003087167A2 (fr) 2002-04-05 2003-10-23 California Institute Of Technology Metathese croisee d'olefines directement substituees par un groupe accepteur d'electrons a l'aide de catalyseurs au carbene de metaux de transition
PL199412B1 (pl) * 2002-10-15 2008-09-30 Boehringer Ingelheim Int Nowe kompleksy rutenu jako (pre)katalizatory reakcji metatezy, pochodne 2-alkoksy-5-nitrostyrenu jako związki pośrednie i sposób ich wytwarzania
DE10313702A1 (de) 2003-03-27 2004-10-07 Basf Ag Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen
US7205424B2 (en) 2003-06-19 2007-04-17 University Of New Orleans Research And Technology Foundation, Inc. Preparation of ruthenium-based olefin metathesis catalysts
CA2462005A1 (fr) * 2004-02-23 2005-08-23 Bayer Inc. Methode de preparation de caoutchouc nitrile hydrogene de bas poids moleculaire
US7385010B2 (en) * 2005-03-18 2008-06-10 Lanxess Inc. Hydrogenation of diene-based polymer latex
CN102643175B (zh) 2005-07-04 2014-12-10 赞南科技(上海)有限公司 钌络合物配体、钌络合物、固载钌络合物催化剂及其制备方法和用途
ATE538139T1 (de) 2005-08-30 2012-01-15 Lanxess Deutschland Gmbh Verwendung von katalysatoren für den metatheseabbau von nitrilkautschuk
DE102006008520A1 (de) 2006-02-22 2007-08-23 Lanxess Deutschland Gmbh Neue Katalysator-Systeme und deren Verwendung für Metathese-Reaktionen
DE102006040569A1 (de) 2006-08-30 2008-03-06 Lanxess Deutschland Gmbh Verfahren zum Metathese-Abbau von Nitrilkautschuken
DE102007039526A1 (de) 2007-08-21 2009-02-26 Lanxess Deutschland Gmbh Katalysator-Systeme und deren Verwendung für Metathese-Reaktionen
EP2028194B1 (fr) 2007-08-21 2010-05-12 Lanxess Deutschland GmbH Métathèse de caoutchoucs de nitrile en présence de catalyseurs complexes de métal de transition
EP2027920B1 (fr) * 2007-08-21 2014-10-08 LANXESS Deutschland GmbH Catalyseurs pour les réactions de metathèses
DE102007039525A1 (de) 2007-08-21 2009-02-26 Lanxess Deutschland Gmbh Verfahren zum Metathese-Abbau von Nitrilkautschuk
CA2646056A1 (fr) 2007-12-21 2009-06-21 Lanxess Deutschland Gmbh Methode d'elimination de residus de catalyseur contenant du ruthenium presents dans du caoutchouc nitrile pouvant, dans certaines conditions, etre hydrogene
EP2072532A1 (fr) 2007-12-21 2009-06-24 Lanxess Deutschland GmbH Procédé de suppression des résidus de fer, résidus de catalyseur contenant du rhodium et du ruthénium dans le caoutchouc de nitrile hydrogéné en option
EP2147721A1 (fr) 2008-07-08 2010-01-27 Lanxess Deutschland GmbH Systèmes des catalyseurs et usage en réactions de métathèse
EP2289620A1 (fr) 2009-08-31 2011-03-02 LANXESS Deutschland GmbH Procédé de préparation de caoutchouc au nitrile hydrogéné
EP2289621A1 (fr) 2009-08-31 2011-03-02 LANXESS Deutschland GmbH Procédé de préparation de caoutchouc au nitrile hydrogéné à faible poids moléculaire
WO2011079439A1 (fr) * 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Catalyseurs de métathèse d'activité élevée sélectifs vis-à-vis des réactions de romp et de rcm
WO2013056400A1 (fr) * 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Compositions catalytiques et leur utilisation pour l'hydrogénation d'un caoutchouc de nitrile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107138A1 (en) * 2000-08-10 2002-08-08 Hoveyda Amir H. Recyclable metathesis catalysts
JP2005272572A (ja) * 2004-03-24 2005-10-06 Nippon Zeon Co Ltd 水素化環状オレフィン重合体の製造方法
US20100093944A1 (en) * 2008-07-08 2010-04-15 Lanxess Deutschland Gmbh Catalyst systems and their use for metathesis reactions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Computer translation of JP 2005/272572 (2005). *
Sanford, J. Am. Chem. Soc., 2001, 123, 6543-6554 *
Terada, Angew. Chem. 2004, 116, 4155-4159 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10799613B2 (en) 2013-10-30 2020-10-13 California Institute Of Technology Direct photopatterning of robust and diverse materials
CN115806643A (zh) * 2022-12-15 2023-03-17 西安凯立新材料股份有限公司 丁腈橡胶加氢方法

Also Published As

Publication number Publication date
US10508156B2 (en) 2019-12-17
EP2768610B1 (fr) 2018-12-12
CA2852649C (fr) 2019-12-24
CA2852649A1 (fr) 2013-04-25
WO2013057295A2 (fr) 2013-04-25
TWI564075B (zh) 2017-01-01
US20180223005A1 (en) 2018-08-09
MX2014004752A (es) 2014-11-10
KR101612210B1 (ko) 2016-04-12
EP2768610A2 (fr) 2014-08-27
WO2013056461A1 (fr) 2013-04-25
JP5990592B2 (ja) 2016-09-14
JP2014530754A (ja) 2014-11-20
TW201332653A (zh) 2013-08-16
WO2013057295A3 (fr) 2013-10-24
IN2014DN03161A (fr) 2015-05-22
MX368650B (es) 2019-10-09
BR112014009475A2 (pt) 2017-05-09
KR20140084228A (ko) 2014-07-04

Similar Documents

Publication Publication Date Title
US10508156B2 (en) Catalyst compositions and their use for hydrogenation of nitrile rubber
US10500578B2 (en) Catalyst compositions and their use for hydrogenation of nitrile rubber
US9605088B2 (en) Catalyst compositions and their use for hydrogenation of nitrile rubber
US9598506B2 (en) Catalyst compositions and their use for hydrogenation of nitrile rubber
US11713361B2 (en) Hydrogenation catalyst compositions and their use for hydrogenation of nitrile rubber

Legal Events

Date Code Title Description
AS Assignment

Owner name: LANXESS DEUTSCHLAND GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OBRECHT, WERNER;DAVID, SARAH;LIU, QINGCHUN;AND OTHERS;SIGNING DATES FROM 20150113 TO 20150114;REEL/FRAME:034852/0481

AS Assignment

Owner name: ARLANXEO DEUTSCHLAND GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LANXESS DEUTSCHLAND GMBH;REEL/FRAME:039753/0760

Effective date: 20160401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION