US20150090188A1 - Extruded animal litters having an increased absorption rate - Google Patents

Extruded animal litters having an increased absorption rate Download PDF

Info

Publication number
US20150090188A1
US20150090188A1 US14/563,735 US201414563735A US2015090188A1 US 20150090188 A1 US20150090188 A1 US 20150090188A1 US 201414563735 A US201414563735 A US 201414563735A US 2015090188 A1 US2015090188 A1 US 2015090188A1
Authority
US
United States
Prior art keywords
particles
litter
animal litter
animal
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/563,735
Inventor
Dan Kenneth Dixon
Nathan Foster Huck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nestec SA
Original Assignee
Nestec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec SA filed Critical Nestec SA
Priority to US14/563,735 priority Critical patent/US20150090188A1/en
Publication of US20150090188A1 publication Critical patent/US20150090188A1/en
Assigned to NESTEC SA reassignment NESTEC SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIXON, DAN KENN, HUCK, NATHAN FOSTER
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • A01K1/0154Litter comprising inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • A01K1/0155Litter comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group

Definitions

  • the invention relates generally to animal litters and particularly to extruded animal litters having an increased absorption rate.
  • Extruded animal litters are known in the art.
  • U.S. Pat. No. 3,923,005 discloses an animal litter comprising alfalfa and starch that is made using an extrusion process.
  • U.S. Pat. No. 4,206,718 discloses a process for producing light weight animal litter from ground alfalfa and gelatinisable flour or starch. In one embodiment, the litters contain up to 10% bentonite as a binder.
  • U.S. Pat. No. 5,452,684 and U.S. Pat. No. 5,577,463 disclose an animal litter comprising an extruded smectite clay that forms stronger clumps when wetted with animal urine.
  • 7,603,964 discloses mixing a clay materials and a light-weighting material and forming the mixture into a composite particle using various methods such as agglomeration, compaction, and extrusion.
  • WO2009133212A1 discloses methods for producing low-density agglomerated pet litters using minerals with an attapulgite content greater than 50% and an extrusion process.
  • U.S. provisional patent application 61/337,019 discloses an extruded animal litter made from clay and starch.
  • these extruded litters perform well for their intended purpose, e.g., absorbing liquid animal waste such as urine.
  • many of the extruded animal litters particularly those made from clay and starch, have a “film” on the surface of the litter particles. While this film is useful for various purposes, e.g., reducing the dust created while using the litter, it often adversely affects the absorption rate of the litter.
  • extruded animal litter particles that have been fragmented to expose the interior of the particles to the external environment.
  • the interior portion of these extruded litter particles has the ability to absorb liquids such as animal urine or the moisture from animal feces or other wastes at an increased rate compared to the surface portion of the particles. Therefore, extruded animal litters having an increased absorption rate comprise these fragmented animal litter particles.
  • animal litter(s) means a composition that is suitable for use as an animal litter (e.g., managing animal waste) but that can also be used for any other suitable purpose.
  • an animal litter of the invention could be used to absorb a chemical spill, absorb an oil spill, create traction on a slippery surface, and the like.
  • ranges are used herein in shorthand, so as to avoid having to set out at length and describe each and every value within the range. Any appropriate value within the range can be selected, where appropriate, as the upper value, lower value, or the terminus of the range.
  • the invention provides animal litters having an increased absorption rate.
  • the animal litters comprise one or more animal litter particles that have been produced by fragmenting at least one extruded animal litter particle that has a film on the surface of the extruded animal litter particle.
  • the invention is based upon the discovery that typical extruded animal litter particles have a “film” on the surface of the particles that adversely affects the absorption properties of the litter, e.g., decreases the absorption rate, and that fragmenting the litter particles to expose the interior of the particles to the external environment increases the absorption rate.
  • This surface film adversely affects the absorption properties of the particles by decreasing the permeability of the particles to liquids such as urine, e.g., liquids are absorbed at a slower rate than they would be if there was no film on the surface of the particles.
  • the interior portion of the particles does not have this film. Therefore, the interior of the particles have the ability to absorb liquids at an increased rate compared to that of the surface of the particles.
  • extruded litter particles have a cellular structure. Many of the “cells” at the surface of the particles are at least partially sealed or blocked by the changes in cellular structure caused by the heat and friction resulting from contact between the litter composition and the extruder components, i.e., these surface cells have a relatively closed structure compared to cells that do not contact the extruder equipment.
  • the heat and friction at the surface of the particles alters the physical properties of the cells at the surface, i.e., the cells at the surface not as permeable as the more typical cells in the interior of the particles. These less permeable cells are responsible for the “film” that affects permeability and absorption rates.
  • Fragmenting by cutting, crushing, breaking, or otherwise a litter particle into two particles creates a larger surface area for absorption when compared to the original litter particle alone.
  • an ideal animal litter particle is a cylinder.
  • the cylinder has a surface area of 2 ⁇ R 2 +2 ⁇ RH where ⁇ is 3.14, R is the radius of the cylinder, and H is the height or length of the cylinder.
  • An idealized single cut of the particle produces two cylindrical litter particles. The total surface area of the two particles is always greater than the surface of the original particle. How much the surface area increases depends on the size of the particle, i.e., the radius and the height.
  • the absorption rate of the two litter particles formed by fragmenting a single litter particle is directly proportional to the increase in surface area obtained by fragmenting the original particle into two particles.
  • the fragmented litter particles of the present invention have an absorption rate that exceeds the absorption rate expected based on the increase in surface area caused by the fragmentation.
  • the theory is that the surface area created by the fragmentation does not have the film characteristic of the surface area of the unfragmented extruded litter particle. The surface area created by the fragmentation can therefore absorb liquids at a relatively increased rate.
  • the extruded animal litter particles are any extruded animal litter particles that have a film formed on the surface of the particles during the extrusion process that adversely affects the absorption rate. Such particles are typically formed when clays, starches, and other gelatinisable materials are components of the extruded litter, but other compounds can be responsible for the film.
  • the extruded animal litter particles comprises an extruded mixture comprising from about 10 to about 90% of or more clays and from about 90 to about 10% of one or more starches.
  • Such litters are described in U.S. provisional patent application 61/337,019.
  • the clays are non-swelling clays, swelling clays, or combinations thereof and the starches are amylose, amylopectin, or combinations thereof.
  • the film on the surface of the extruded particles covers substantially the entire surface or only a part of the surface of the particles. Generally, any part of the surface that has the film will adversely affect the absorption rate for the particles. Typically, the film covers a significant portion of the surface of the particles. In various embodiments, the film substantially covers 10%, 20%, 30%, 40% 50%, 60%, 70%, 80%, 90%, or 100% of the surface of the particles. In preferred embodiments, the film covers at least 50% of the surface of the particles, most preferably at least 70%. In many embodiments, the film covers 90% or more of the surface of the particles.
  • the fragmented animal litter particles have an increase in surface area compared to the particles before they were fragmented.
  • the animal litter particles have a surface area that is at least 10% greater than the surface area of the extruded animal litter particles, preferably at least 30%, most preferably at least 50%.
  • fragmented animal litter particles have an increase in surface area compared to the particles before they were fragmented of at least 60%, 70%, 80%, 90%, 100%, or more. This is particularly true if an extruded animal litter particle is fragmented once to produce two particles and each of the resulting particles are fragmented again to produce four particles. Or, fragmented again to produce eight particles, etc.
  • the litter comprising the animal litter particles produced by fragmenting extruded animal litter particles of the invention have a partial or complete coating of one or more swelling clays, preferably bentonite.
  • the swelling clay comprise from about 5 to about 40% of the litter.
  • the invention provides animal litters comprising a combination of an animal litter of the invention and one or more different compounds, compositions, or other materials that function as an animal litter.
  • Such materials include extruded animal litters that have not been fragmented, conventional clay-based animal litters (clumping or non-clumping), corncobs, sawdust, wood, paper, silica gel (e.g., U.S. Pat. No. 6,860,234, U.S. Pat. No. 6,543,385, and U.S. Pat. No. 6,578,521), zeolites, sunflower seeds, and the like. Many such animal litters are known to skilled artisans.
  • the material is a litter made from swelling clay, non-swelling clay, silica gel, or combination thereof.
  • the animal litters of the invention can be combined with such other materials in any suitable amount to produce the combination.
  • the combination is made by mixing the litter of the invention with the other materials.
  • the animal litters of the invention comprise from about 5 to about 95% of the mixture, preferably from about 10 to about 90%, most preferably from about 20 to about 80%.
  • the mixture comprises about 50% of the animal litter of the present invention and about 50% of silica gel, clumping animal litter, non-clumping animal litter, or combination thereof.
  • the mixture comprises about 90% of the animal litter of the present invention and about 10% silica gel.
  • the mixture comprises about 70% of the animal litter of the present invention and about 30% clumping litter.
  • the invention provides methods for making animal litters.
  • the methods comprise fragmenting extruded animal litter particles that have a film on their surface into two or more animal litter particles.
  • the resulting particles have at least a portion of the interior of the particles exposed to the external environment.
  • the interior of the particles do not have the film discussed herein that adversely affects absorption. Therefore, the resulting litter particles will have an increased absorption rate compared to the animal litter particles that have not been fragmented.
  • extruded animal litter particles that have a film on their surface are produced using common extrusion equipment and methods known to skilled artisans.
  • Suitable extruders and related equipment are commercially available and known in the art.
  • Typical extruders include single and twin-screw extruders sold by Wenger and similar manufactures. Extruders and their use for manufacturing foods, plastics, and numerous materials are known to skilled artisans, e.g., animal litter density, size, and image are all impacted by the set up of the equipment and processing conditions.
  • Any extrusion feed rate compatible with the mixture and the equipment can be used. Generally, the mixture is fed through the extruder at a rate of from about 10 to about 40 pounds per minute, preferably from about 12 to about 30 pounds per minute.
  • Suitable equipment and methods are known to skilled artisans; some are given in the patents and patent applications incorporated herein, e.g., 61/337,019.
  • the litter particles can be fragmented by any suitable means.
  • a blade, crusher, mill, roller, or other similar device can be used to fragment a litter particle into two or more particles.
  • a litter particle is fragmented by crushing the particle to produce two or more particles, preferably a plurality of particles.
  • the litter particles are crushed by applying force to one or more points of the surface of the particle. The force makes one or more breaks in the litter particle, generally random breaks, and exposes the interior of the litter particle to the external environment.
  • this embodiment results in particles that are irregular in shape and size but that have a significant portion of the interior of the extruded litter particles exposed to the external environment.
  • the extruded animal litter particles are fragmented into two particles. In other embodiments, the particles are fragmented into more than two particles. In various embodiments, particles produced by a fragmentation are further fragmented to produce more particles.
  • animal litter particles produced by fragmenting the extruded animal litter particles have the same advantages as the original extruded animal litter particles, e.g., reduced density (See U.S. provisional patent application 61/337,019).
  • the invention provides animal litters made using the methods of the invention.
  • the invention provides an animal litter box comprising a device suitable for containing animal litter and suitable for use by an animal when excreting animal waste and one or more animal litters of the invention.
  • the device is any device suitable for use by an animal and compatible with an animal litter of the invention. Many such devices are known in the art and available commercially, e.g., the litter boxes disclosed in US20090250014A1, US20090272327A1, US20090000560A1, US20070277740A1, U.S. Pat. No. 7,628,118, and the like.
  • kits suitable for containing animal litters useful for managing animal waste comprise in separate containers in a single package or in separate containers in a virtual package, as appropriate for the kit component, an animal litter of the invention and one or more of (1) a device suitable for containing the litter and suitable for use by an animal when excreting animal waste, e.g., a litter box; (2) a device suitable for handling animal waste that has been deposited with the litter, e.g., a scoop for removing animal feces from a litter (e.g., U.S. Pat. No.
  • a rake suitable for arranging an animal litter in a litter box or other container (3) a different animal litter, e.g., a different animal litter suitable for creating a mixture of the litter of the invention and such different animal litter; (4) instruction for how to use the litter to manage animal waste; and (5) instructions for how to dispose of the animal litter, e.g., how to dispose of the litter in an environmentally friendly manner, particularly after it has been used.
  • kits When the kit comprises a virtual package, the kit is limited to instructions in a virtual environment in combination with one or more physical kit components.
  • the kits may contain the kit components in any of various combinations and/or mixtures.
  • the kit contains a package containing the litter and a scoop suitable for removing animal waste from the litter.
  • the invention provides packages comprising a material suitable for containing an animal litter of the present invention and a label affixed to the package containing a word or words, picture, design, acronym, slogan, phrase, or other device, or combination thereof, that indicates that the contents of the package contains an extruded animal litter of the present invention, e.g., information about the litter's increased absorption rate or other physical, functional, or related properties.
  • a device comprises the words “extruded animal litter having an increased absorption rate” or “enhanced absorption rate” or an equivalent expression printed on the package.
  • Any package or packaging material suitable for containing animal litters is useful in the invention, e.g., a bag, box, bottle, can, pouch, and the like manufactured from paper, plastic, foil, metal, and the like.
  • the invention provides a means for communicating information about or instructions for using an animal litter of the present invention for one or more of (1) managing animal waste such as animal urine and feces; (2) controlling odor; (3) controlling moisture; (4) controlling microorganisms; and (5) controlling absorption rates.
  • the means comprises a document, digital storage media, optical storage media, audio presentation, or visual display containing the information or instructions.
  • the communication means is a displayed website, a visual display kiosk, a brochure, a product label, a package insert, an advertisement, a handout, a public announcement, an audiotape, a videotape, a DVD, a CD-ROM, a computer readable chip, a computer readable card, a computer readable disk, a USB device, a FireWire device, a computer memory, and any combination thereof.
  • Useful information includes one or more of (1) methods and techniques for training or adapting an animal to use the litter; (2) functional or other properties of an animal litter of the invention, particularly those relating to the absorption rate; and (3) contact information for to use by a consumer or others if there is a question about the litter and its use.
  • Useful instructions include methods for cleaning and disposing of the litter.
  • the communication means is useful for instructing on the benefits of using the present invention and communicating the approved methods for using the invention for an animal.
  • the invention provides methods for managing animal waste, particularly liquid waste.
  • the methods comprise contacting the animal waste with an animal litter of the invention.
  • the litter is placed in a litter box or other suitable container and the animal is allowed to deposit its waste (urine or feces, but preferably urine) so that it comes in contact with the litter. If desirable, the litter can be placed on contact with the waste after the waste is deposited, e.g., on a lawn.
  • An animal litter was made by mixing 99.5 pounds of ground corn (starch content of about 65%) and 0.5 pounds of distilled monoglycerides, and 19 pounds of water in a paddle mixer. This mixture was then ground with a hammer mill through a 4/64′′ screen to reduce the particle size so that the mix could pass through the extruder die openings. The mixture was then fed at a rate of 14 pounds per minute into a twin screw extruder.
  • SA surface area
  • each particle was cut cross-sectionally and parallel to the circular ends with a single blade utility knife. This added two circular surfaces after cutting.
  • the combined surface area (SA) of the two particles produced by cutting was calculated using the following formula and the radius and length from Example 2:
  • the surface area was 150.28 mm 2 , as shown in Table 1. Further the increase in surface area of the two particles due to cutting compared to the uncut particle was expressed as a percentage using the equation below and shown in Table 1. For the particles from Example 1, this increase was 29.97%.
  • WP Absorption Capacity (g) [Mass (g) of total water added] ⁇ [Mass (g) of excess water]
  • Example 3 it was shown that by cutting the particles from Example 1, there was an increase in SA of 29.97%.
  • Example 4 it was shown that the WP Absorption Capacity of the whole particles from Example 1 was 1.15 g. Based on this, the “Predicted” CP Absorption Capacity equals the WP Absorption Capacity +(0.2997 ⁇ WP Absorption Capacity ). For cut particles created from the particles from Example 1, this “Predicted” CP Absorption Capacity is 1.49 g, as shown in Table 2. Further substituting the “Predicted” CP Absorption Capacity for the measured CP Absorption Capacity and using equation in Example 5, the “Predicted” % Increase in Absorption of cut particles was calculated and show in Table 2 (29.97%).
  • the pressure at the discharge head of the extruder was measured at 750 psi and the internal product temperature varied in the range 220 to 270° F. (104 to 132° C.).
  • the molten mixture was then extruded through circular die openings and cut into particles by blades that swept across the face of the dies. The resulting particles averaged 3/16 inch in diameter and 1 ⁇ 4 inch length before drying.
  • a pneumatic system was used to convey the particles to a belt dryer. The dryer was set at 250° F. (121° C.) and the rate of the belt adjusted to allow a drying time of 3.6 minutes after which the product moisture dropped to 5%.
  • the surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3.
  • the results for particles from Example 7 are shown in Table 1.
  • the WP Absorption Capacity for particles from Example 7 were determined as for Example 4; the CP Absorption Capacity as for Example 5; and the “Predicted” CP Absorption Capacity as for Example 6.
  • the results for particles from Example 7 are shown in Table 2.
  • Example 1 The procedure in Example 1 was repeated except that 30 pounds of Na-bentonite, 30 pounds of non-swelling clay (Ca-Montmorillonite Clay), and 39.5 pounds of corn were used instead of 99.5 pounds of corn.
  • the surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3.
  • the results for particles from Example 8 are shown in Table 1.
  • the WP Absorption Capacity for particles from Example 8 were determined as for Example 4; the CP Absorption Capacity as for Example 5; and the “Predicted” CP Absorption Capacity as for Example 6.
  • the results for particles from Example 8 are shown in Table 2.
  • the surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3.
  • the results for particles from Example 9 are shown in Table 1.
  • the WP Absorption Capacity for particles from Example 9 were determined as for Example 4; the CP Absorption Capacity as for Example 5; and the “Predicted” CP Absorption Capacity as for Example 6.
  • the results for particles from Example 9 are shown in Table 2.
  • Example 7 119 pounds of animal litter were made according to Example 7 using 40 pounds of Ca-montmorilinite, 59.5 pounds of corn, 0.5 pounds of distilled monoglycerides, 8 pounds of water, 9 pounds of glycerin, and 2 pounds of mineral oil.
  • the surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3.
  • the results for particles from Example 9 are shown in Table 1.
  • the WP Absorption Capacity for particles from Example 9 were determined as for Example 4; the CP Absorption Capacity as for Example 5; and the “Predicted” CP Absorption Capacity as for Example 6.
  • Table 2 The results for particles from Example 9 are shown in Table 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Housing For Livestock And Birds (AREA)

Abstract

The invention provides animal litters that have an increased absorption rate and methods of making and using such litters. The animal litters comprise one or more animal litter particles that have been produced by fragmenting extruded animal litter particles that have a film on the surface of the particle that adversely affects the absorption rate. The fragmenting exposes the interior of the extruded animal litter particles, which does not have this film, to the external environment and increases the absorption rate.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/931,247 filed Jan. 27, 2011, and claims priority to U.S. Provisional Application Ser. No. 61/337,019 filed Jan. 29, 2010 and to U.S. Provisional Application Ser. No. 61/339,262 filed Mar. 2, 2010, the disclosures of which are incorporated herein by this reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates generally to animal litters and particularly to extruded animal litters having an increased absorption rate.
  • 2. Description of Related Art
  • Extruded animal litters are known in the art. U.S. Pat. No. 3,923,005 discloses an animal litter comprising alfalfa and starch that is made using an extrusion process. U.S. Pat. No. 4,206,718 discloses a process for producing light weight animal litter from ground alfalfa and gelatinisable flour or starch. In one embodiment, the litters contain up to 10% bentonite as a binder. U.S. Pat. No. 5,452,684 and U.S. Pat. No. 5,577,463 disclose an animal litter comprising an extruded smectite clay that forms stronger clumps when wetted with animal urine. U.S. Pat. No. 7,603,964 discloses mixing a clay materials and a light-weighting material and forming the mixture into a composite particle using various methods such as agglomeration, compaction, and extrusion. WO2009133212A1 discloses methods for producing low-density agglomerated pet litters using minerals with an attapulgite content greater than 50% and an extrusion process. U.S. provisional patent application 61/337,019 discloses an extruded animal litter made from clay and starch.
  • Generally, these extruded litters perform well for their intended purpose, e.g., absorbing liquid animal waste such as urine. However, many of the extruded animal litters, particularly those made from clay and starch, have a “film” on the surface of the litter particles. While this film is useful for various purposes, e.g., reducing the dust created while using the litter, it often adversely affects the absorption rate of the litter. There is, therefore, a need for methods for increasing the absorption rate of extruded animal litters and new extruded animal litters having an increased absorption rate.
  • SUMMARY OF THE INVENTION
  • It is, therefore, an object of the invention to provide extruded animal litters having an increased absorption rate.
  • It is another object of the invention to provide methods for making extruded animal litters having an increased absorption rate.
  • These and other objects are achieved using extruded animal litter particles that have been fragmented to expose the interior of the particles to the external environment. The interior portion of these extruded litter particles has the ability to absorb liquids such as animal urine or the moisture from animal feces or other wastes at an increased rate compared to the surface portion of the particles. Therefore, extruded animal litters having an increased absorption rate comprise these fragmented animal litter particles.
  • Additional and further objects, features, and advantages of the invention will be readily apparent to those skilled in the art.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • The term “animal litter(s)” means a composition that is suitable for use as an animal litter (e.g., managing animal waste) but that can also be used for any other suitable purpose. For example, an animal litter of the invention could be used to absorb a chemical spill, absorb an oil spill, create traction on a slippery surface, and the like.
  • All percentages expressed herein relating to the components of a composition are by weight of the total weight of the composition unless expressed otherwise.
  • As used throughout, ranges are used herein in shorthand, so as to avoid having to set out at length and describe each and every value within the range. Any appropriate value within the range can be selected, where appropriate, as the upper value, lower value, or the terminus of the range.
  • As used herein and in the appended claims, the singular form of a word includes the plural, and vice versa, unless the context clearly dictates otherwise. Thus, the references “a”, “an”, and “the” are generally inclusive of the plurals of the respective terms. For example, reference to “a clay” or “a method” includes a plurality of such “clays” or “methods”. Similarly, the words “comprise”, “comprises”, and “comprising” are to be interpreted inclusively rather than exclusively. Likewise the terms “include”, “including” and “or” should all be construed to be inclusive, unless such a construction is clearly prohibited from the context. Where used herein the term “examples,” particularly when followed by a listing of terms is merely exemplary and illustrative, and should not be deemed to be exclusive or comprehensive.
  • The methods and compositions and other advances disclosed here are not limited to particular methodology, protocols, and reagents described herein because, as the skilled artisan will appreciate, they may vary. Further, the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to, and does not, limit the scope of that which is disclosed or claimed.
  • The Invention
  • In one aspect, the invention provides animal litters having an increased absorption rate. The animal litters comprise one or more animal litter particles that have been produced by fragmenting at least one extruded animal litter particle that has a film on the surface of the extruded animal litter particle. The invention is based upon the discovery that typical extruded animal litter particles have a “film” on the surface of the particles that adversely affects the absorption properties of the litter, e.g., decreases the absorption rate, and that fragmenting the litter particles to expose the interior of the particles to the external environment increases the absorption rate. This surface film adversely affects the absorption properties of the particles by decreasing the permeability of the particles to liquids such as urine, e.g., liquids are absorbed at a slower rate than they would be if there was no film on the surface of the particles. However, the interior portion of the particles does not have this film. Therefore, the interior of the particles have the ability to absorb liquids at an increased rate compared to that of the surface of the particles.
  • While not being bound by theory, it is believed that the heat and friction formed at the surface of the extruded animal litter particles when they contact the extruder equipment changes the surface properties of the particles by forming a “film” at the surface of the particles. Generally, extruded litter particles have a cellular structure. Many of the “cells” at the surface of the particles are at least partially sealed or blocked by the changes in cellular structure caused by the heat and friction resulting from contact between the litter composition and the extruder components, i.e., these surface cells have a relatively closed structure compared to cells that do not contact the extruder equipment. Apparently, the heat and friction at the surface of the particles alters the physical properties of the cells at the surface, i.e., the cells at the surface not as permeable as the more typical cells in the interior of the particles. These less permeable cells are responsible for the “film” that affects permeability and absorption rates.
  • Fragmenting (by cutting, crushing, breaking, or otherwise) a litter particle into two particles creates a larger surface area for absorption when compared to the original litter particle alone. To illustrate, an ideal animal litter particle is a cylinder. The cylinder has a surface area of 2πR2+2πRH where π is 3.14, R is the radius of the cylinder, and H is the height or length of the cylinder. An idealized single cut of the particle produces two cylindrical litter particles. The total surface area of the two particles is always greater than the surface of the original particle. How much the surface area increases depends on the size of the particle, i.e., the radius and the height. One would expect the absorption rate of the two litter particles formed by fragmenting a single litter particle to be directly proportional to the increase in surface area obtained by fragmenting the original particle into two particles. However, the fragmented litter particles of the present invention have an absorption rate that exceeds the absorption rate expected based on the increase in surface area caused by the fragmentation. The theory is that the surface area created by the fragmentation does not have the film characteristic of the surface area of the unfragmented extruded litter particle. The surface area created by the fragmentation can therefore absorb liquids at a relatively increased rate.
  • The extruded animal litter particles are any extruded animal litter particles that have a film formed on the surface of the particles during the extrusion process that adversely affects the absorption rate. Such particles are typically formed when clays, starches, and other gelatinisable materials are components of the extruded litter, but other compounds can be responsible for the film. In one embodiment, the extruded animal litter particles comprises an extruded mixture comprising from about 10 to about 90% of or more clays and from about 90 to about 10% of one or more starches. Such litters are described in U.S. provisional patent application 61/337,019. In preferred embodiments, the clays are non-swelling clays, swelling clays, or combinations thereof and the starches are amylose, amylopectin, or combinations thereof.
  • The film on the surface of the extruded particles covers substantially the entire surface or only a part of the surface of the particles. Generally, any part of the surface that has the film will adversely affect the absorption rate for the particles. Typically, the film covers a significant portion of the surface of the particles. In various embodiments, the film substantially covers 10%, 20%, 30%, 40% 50%, 60%, 70%, 80%, 90%, or 100% of the surface of the particles. In preferred embodiments, the film covers at least 50% of the surface of the particles, most preferably at least 70%. In many embodiments, the film covers 90% or more of the surface of the particles.
  • As stated, the fragmented animal litter particles have an increase in surface area compared to the particles before they were fragmented. Generally, the animal litter particles have a surface area that is at least 10% greater than the surface area of the extruded animal litter particles, preferably at least 30%, most preferably at least 50%. In some embodiments, fragmented animal litter particles have an increase in surface area compared to the particles before they were fragmented of at least 60%, 70%, 80%, 90%, 100%, or more. This is particularly true if an extruded animal litter particle is fragmented once to produce two particles and each of the resulting particles are fragmented again to produce four particles. Or, fragmented again to produce eight particles, etc.
  • In various embodiments, the litter comprising the animal litter particles produced by fragmenting extruded animal litter particles of the invention have a partial or complete coating of one or more swelling clays, preferably bentonite. Preferably, the swelling clay comprise from about 5 to about 40% of the litter.
  • In another aspect, the invention provides animal litters comprising a combination of an animal litter of the invention and one or more different compounds, compositions, or other materials that function as an animal litter. Such materials include extruded animal litters that have not been fragmented, conventional clay-based animal litters (clumping or non-clumping), corncobs, sawdust, wood, paper, silica gel (e.g., U.S. Pat. No. 6,860,234, U.S. Pat. No. 6,543,385, and U.S. Pat. No. 6,578,521), zeolites, sunflower seeds, and the like. Many such animal litters are known to skilled artisans. In a preferred embodiment, the material is a litter made from swelling clay, non-swelling clay, silica gel, or combination thereof. The animal litters of the invention can be combined with such other materials in any suitable amount to produce the combination. The combination is made by mixing the litter of the invention with the other materials. Generally, the animal litters of the invention comprise from about 5 to about 95% of the mixture, preferably from about 10 to about 90%, most preferably from about 20 to about 80%. In one embodiment, the mixture comprises about 50% of the animal litter of the present invention and about 50% of silica gel, clumping animal litter, non-clumping animal litter, or combination thereof. In another embodiment, the mixture comprises about 90% of the animal litter of the present invention and about 10% silica gel. In a further embodiment, the mixture comprises about 70% of the animal litter of the present invention and about 30% clumping litter.
  • In a further aspect, the invention provides methods for making animal litters. The methods comprise fragmenting extruded animal litter particles that have a film on their surface into two or more animal litter particles. The resulting particles have at least a portion of the interior of the particles exposed to the external environment. The interior of the particles do not have the film discussed herein that adversely affects absorption. Therefore, the resulting litter particles will have an increased absorption rate compared to the animal litter particles that have not been fragmented.
  • The extruded animal litter particles that have a film on their surface are produced using common extrusion equipment and methods known to skilled artisans. Suitable extruders and related equipment are commercially available and known in the art. Typical extruders include single and twin-screw extruders sold by Wenger and similar manufactures. Extruders and their use for manufacturing foods, plastics, and numerous materials are known to skilled artisans, e.g., animal litter density, size, and image are all impacted by the set up of the equipment and processing conditions. Any extrusion feed rate compatible with the mixture and the equipment can be used. Generally, the mixture is fed through the extruder at a rate of from about 10 to about 40 pounds per minute, preferably from about 12 to about 30 pounds per minute. Suitable equipment and methods are known to skilled artisans; some are given in the patents and patent applications incorporated herein, e.g., 61/337,019.
  • The litter particles can be fragmented by any suitable means. For example, a blade, crusher, mill, roller, or other similar device can be used to fragment a litter particle into two or more particles. In a preferred embodiment, a litter particle is fragmented by crushing the particle to produce two or more particles, preferably a plurality of particles. In this embodiment, the litter particles are crushed by applying force to one or more points of the surface of the particle. The force makes one or more breaks in the litter particle, generally random breaks, and exposes the interior of the litter particle to the external environment. Generally, this embodiment results in particles that are irregular in shape and size but that have a significant portion of the interior of the extruded litter particles exposed to the external environment.
  • In one embodiment, the extruded animal litter particles are fragmented into two particles. In other embodiments, the particles are fragmented into more than two particles. In various embodiments, particles produced by a fragmentation are further fragmented to produce more particles.
  • Further, the animal litter particles produced by fragmenting the extruded animal litter particles have the same advantages as the original extruded animal litter particles, e.g., reduced density (See U.S. provisional patent application 61/337,019).
  • In another aspect, the invention provides animal litters made using the methods of the invention.
  • In another aspect, the invention provides an animal litter box comprising a device suitable for containing animal litter and suitable for use by an animal when excreting animal waste and one or more animal litters of the invention. The device is any device suitable for use by an animal and compatible with an animal litter of the invention. Many such devices are known in the art and available commercially, e.g., the litter boxes disclosed in US20090250014A1, US20090272327A1, US20090000560A1, US20070277740A1, U.S. Pat. No. 7,628,118, and the like.
  • In a further aspect, the invention provides kits suitable for containing animal litters useful for managing animal waste. The kits comprise in separate containers in a single package or in separate containers in a virtual package, as appropriate for the kit component, an animal litter of the invention and one or more of (1) a device suitable for containing the litter and suitable for use by an animal when excreting animal waste, e.g., a litter box; (2) a device suitable for handling animal waste that has been deposited with the litter, e.g., a scoop for removing animal feces from a litter (e.g., U.S. Pat. No. 7,523,973) or a rake suitable for arranging an animal litter in a litter box or other container; (3) a different animal litter, e.g., a different animal litter suitable for creating a mixture of the litter of the invention and such different animal litter; (4) instruction for how to use the litter to manage animal waste; and (5) instructions for how to dispose of the animal litter, e.g., how to dispose of the litter in an environmentally friendly manner, particularly after it has been used.
  • When the kit comprises a virtual package, the kit is limited to instructions in a virtual environment in combination with one or more physical kit components. The kits may contain the kit components in any of various combinations and/or mixtures. In one embodiment, the kit contains a package containing the litter and a scoop suitable for removing animal waste from the litter.
  • In another aspect, the invention provides packages comprising a material suitable for containing an animal litter of the present invention and a label affixed to the package containing a word or words, picture, design, acronym, slogan, phrase, or other device, or combination thereof, that indicates that the contents of the package contains an extruded animal litter of the present invention, e.g., information about the litter's increased absorption rate or other physical, functional, or related properties. Typically, such device comprises the words “extruded animal litter having an increased absorption rate” or “enhanced absorption rate” or an equivalent expression printed on the package. Any package or packaging material suitable for containing animal litters is useful in the invention, e.g., a bag, box, bottle, can, pouch, and the like manufactured from paper, plastic, foil, metal, and the like.
  • In another aspect, the invention provides a means for communicating information about or instructions for using an animal litter of the present invention for one or more of (1) managing animal waste such as animal urine and feces; (2) controlling odor; (3) controlling moisture; (4) controlling microorganisms; and (5) controlling absorption rates. The means comprises a document, digital storage media, optical storage media, audio presentation, or visual display containing the information or instructions. In certain embodiments, the communication means is a displayed website, a visual display kiosk, a brochure, a product label, a package insert, an advertisement, a handout, a public announcement, an audiotape, a videotape, a DVD, a CD-ROM, a computer readable chip, a computer readable card, a computer readable disk, a USB device, a FireWire device, a computer memory, and any combination thereof. Useful information includes one or more of (1) methods and techniques for training or adapting an animal to use the litter; (2) functional or other properties of an animal litter of the invention, particularly those relating to the absorption rate; and (3) contact information for to use by a consumer or others if there is a question about the litter and its use. Useful instructions include methods for cleaning and disposing of the litter. The communication means is useful for instructing on the benefits of using the present invention and communicating the approved methods for using the invention for an animal.
  • In another aspect, the invention provides methods for managing animal waste, particularly liquid waste. The methods comprise contacting the animal waste with an animal litter of the invention. Generally, the litter is placed in a litter box or other suitable container and the animal is allowed to deposit its waste (urine or feces, but preferably urine) so that it comes in contact with the litter. If desirable, the litter can be placed on contact with the waste after the waste is deposited, e.g., on a lawn.
  • EXAMPLES
  • The invention can be further illustrated by the following examples, although it will be understood that the examples are included merely for purposes of illustration and are not intended to limit the scope of the invention unless otherwise specifically indicated.
  • Example 1 Animal Litter Production Methodology
  • An animal litter was made by mixing 99.5 pounds of ground corn (starch content of about 65%) and 0.5 pounds of distilled monoglycerides, and 19 pounds of water in a paddle mixer. This mixture was then ground with a hammer mill through a 4/64″ screen to reduce the particle size so that the mix could pass through the extruder die openings. The mixture was then fed at a rate of 14 pounds per minute into a twin screw extruder.
  • Water at 0.56 pounds/minute and steam at 0.42 pounds/minute were injected into the extruder. The extruder screw speed was set at 350 rpm. The pressure at the discharge head of the extruder was measured at 750 psi and the internal product temperature varied in the range 220 to 270° F. (104 to 132° C.). The molten mixture was then extruded through circular die openings and cut into pellets (particles) by blades that swept across the face of the dies. The resulting particles averaged 3/16 inch in diameter and ¼ inch length before drying. A pneumatic system was used to convey the particles to a belt dryer. The dryer was set at 250° F. (121° C.) and the rate of the belt adjusted to allow a drying time of 3.6 minutes after which the product moisture dropped to 5%. Substantially all of the surface of the litter particles is covered by a film as described herein.
  • Example 2 Whole Particle Surface Area
  • To obtain a measure of the surface area (SA) the whole particle from Example 1, a random sample of 20 particles were taken. The Diameter (d) and Length (1) of each particle were measured with a digital micrometer (Mitutoyo “Quick Mini” Model # PK-0505). All dimensions were recorded in millimeters (mm). The mean diameter (4.68 mm) and length (5.46 mm) for the 20 particles were determined and shown in Table 1 for Example 1. Since these particles were cylindrical, the surface area for each particle was calculated using the formula for a cylinder:

  • SA “Whole” Particle=2πr 2+2πrl

  • Where, r (radius)=½(d)
  • This represented the surface area of a whole particle. This is shown in Table 1 and was 115.45 mm2 for the particles produced in Example 1.
  • Example 3 Available Surface Area Due to Fragmentation
  • To break the outer surface, each particle was cut cross-sectionally and parallel to the circular ends with a single blade utility knife. This added two circular surfaces after cutting. The combined surface area (SA) of the two particles produced by cutting was calculated using the following formula and the radius and length from Example 2:

  • SA of “Cut” Particle=4πr 2+2πrl
  • For the particles produced from the particles in Example 1, the surface area was 150.28 mm2, as shown in Table 1. Further the increase in surface area of the two particles due to cutting compared to the uncut particle was expressed as a percentage using the equation below and shown in Table 1. For the particles from Example 1, this increase was 29.97%.
  • % Increase in SA = [ ( SA of Cut Particle ) - ( SA of Whole Particle ) ] SA of Whole Particle
  • Example 4 Animal Litter Absorption Capacity for the Whole Particles
  • Forty (40) whole particles were placed into a four ounce size sample cup. Approximately 100 g of distilled water was accurately weighed and added to the particles. After soaking for 30 seconds, the excess water was decanted into a beaker and weighed. The mass of water absorbed by the 40 whole particles (WPAbsorption capacity) was calculated by the equation:

  • WPAbsorption Capacity (g)=[Mass (g) of total water added]−[Mass (g) of excess water]
  • This was repeated with 5 additional sets of 40 particles. The mean mass of water absorbed by the 6 sets was calculated (1.15 g) and shown in Table 2 for particles from Example 1.
  • Example 5 Animal Litter Absorption Capacity for the Fragmented Particles
  • Absorption Capacity of “cut” Particles (CPAbsorption Capacity) was determined following the procedure of Example 4 with particles from Example 1 that were sectioned as was described in Example 3. The mean CPAbsorption Capacity (g) of 6 sets of measurements (2.14 g) for cut particles is shown in Table 2. Further this increased water absorption due to cutting of the particles was calculated and expressed as a percentage as follows:

  • % Increase in Absorption of cut particles=100×((CPAbsorption Capacity (g)−(WPAbsorption Capacity (g))/(WPAbsorption Capacity (g))
  • For cut particles created from the particles from Example 1, this was 86.21% and is shown in Table 2.
  • Example 6 Absorption Capacity for Fragmented Particles Predicted by Increase Surface Area
  • In Example 3, it was shown that by cutting the particles from Example 1, there was an increase in SA of 29.97%. In Example 4, it was shown that the WPAbsorption Capacity of the whole particles from Example 1 was 1.15 g. Based on this, the “Predicted” CPAbsorption Capacity equals the WPAbsorption Capacity+(0.2997×WPAbsorption Capacity). For cut particles created from the particles from Example 1, this “Predicted” CPAbsorption Capacity is 1.49 g, as shown in Table 2. Further substituting the “Predicted” CPAbsorption Capacity for the measured CPAbsorption Capacity and using equation in Example 5, the “Predicted” % Increase in Absorption of cut particles was calculated and show in Table 2 (29.97%).
  • Example 7 Animal Litter with Water and Other Liquids
  • 119 pounds of animal litter particles were made using 99.5 pounds of ground corn, 0.5 pounds of distilled monoglycerides, 8 pounds of water, 9 pounds of glycerin, and 2 pounds of mineral oil and mixed in a paddle mixer. This mixture was then ground with a hammer mill through a 4/64″ screen to reduce the particle size so that the mix could pass through the extruder die openings. The mixture was then fed at a rate of 14 pounds per minute into a twin screw extruder Additional water (0.28 pounds/minute) and steam at 0.42 pounds/minute were injected into the extruder. The extruder screw speed was set at 350 rpm. The pressure at the discharge head of the extruder was measured at 750 psi and the internal product temperature varied in the range 220 to 270° F. (104 to 132° C.). The molten mixture was then extruded through circular die openings and cut into particles by blades that swept across the face of the dies. The resulting particles averaged 3/16 inch in diameter and ¼ inch length before drying. A pneumatic system was used to convey the particles to a belt dryer. The dryer was set at 250° F. (121° C.) and the rate of the belt adjusted to allow a drying time of 3.6 minutes after which the product moisture dropped to 5%.
  • The surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3. The results for particles from Example 7 are shown in Table 1. The WPAbsorption Capacity for particles from Example 7 were determined as for Example 4; the CPAbsorption Capacity as for Example 5; and the “Predicted” CPAbsorption Capacity as for Example 6. The results for particles from Example 7 are shown in Table 2.
  • Example 8 Animal Litter with 27.8% Na-Bentonite and 27.8% Ca-Montmorillonite Clay
  • The procedure in Example 1 was repeated except that 30 pounds of Na-bentonite, 30 pounds of non-swelling clay (Ca-Montmorillonite Clay), and 39.5 pounds of corn were used instead of 99.5 pounds of corn.
  • The surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3. The results for particles from Example 8 are shown in Table 1. The WPAbsorption Capacity for particles from Example 8 were determined as for Example 4; the CPAbsorption Capacity as for Example 5; and the “Predicted” CPAbsorption Capacity as for Example 6. The results for particles from Example 8 are shown in Table 2.
  • Example 9 Animal Litter with 50.4% Na-Bentonite Plus Additional Liquids
  • 119 pounds of animal litter were made according to Example 7 using 60 pounds of Na-bentonite, 39.5 pounds of corn, 0.5 pounds of distilled monoglycerides, 8 pounds of water, 9 pounds of glycerin, and 2 pounds of mineral oil.
  • The surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3. The results for particles from Example 9 are shown in Table 1. The WPAbsorption Capacity for particles from Example 9 were determined as for Example 4; the CPAbsorption Capacity as for Example 5; and the “Predicted” CPAbsorption Capacity as for Example 6. The results for particles from Example 9 are shown in Table 2.
  • Example 10 Animal Litter with 33.6% Ca-Montmorillonite Plus Additional Liquids
  • 119 pounds of animal litter were made according to Example 7 using 40 pounds of Ca-montmorilinite, 59.5 pounds of corn, 0.5 pounds of distilled monoglycerides, 8 pounds of water, 9 pounds of glycerin, and 2 pounds of mineral oil. The surface area of the “whole” particles was determined as in Example 2; and that of the cut particles as in Example 3. The results for particles from Example 9 are shown in Table 1. The WPAbsorption Capacity for particles from Example 9 were determined as for Example 4; the CPAbsorption Capacity as for Example 5; and the “Predicted” CPAbsorption Capacity as for Example 6. The results for particles from Example 9 are shown in Table 2.
  • Referring to the Examples and the data in Table 1 and Table 2, it is clear that absorption rate for the extruded animal litters is significantly increased by fragmenting the extruded litter particles to expose the interior of the particles to the external environment. The absorption rate is at least twice what was predicted.
  • TABLE 1
    Surface Area Data
    Whole Surface Area of % Increase in
    Particle Particle Particle Particle Fragmented Surface Area for
    Diameter Radius Length Surface Area Particles Fragmented
    Example (mm) (mm) (mm) (mm2) (mm2) Particles
    1 4.68 2.34 5.46 115.45 150.28 29.97%
    7 4.92 2.46 5.79 128.02 166.09 29.94%
    8 4.37 2.19 6.69 122.73 152.90 24.92%
    9 4.67 2.34 7.15 140.23 174.70 24.85%
    10 5.13 2.56 5.98 138.26 179.75 30.02%
  • TABLE 2
    Absorption Capacity Data
    “Predicted” “Predicted”
    WPAbsorption CPAbsorption CPAbsorption Absorption Absorption
    Example Capacity (g) Capacity (g) Capacity (g) Increase (%) Increase (%)
    1 1.15 2.14 1.49 86.21 29.97
    7 1.09 1.97 1.42 80.43 29.94
    8 1.06 1.66 1.32 56.85 24.92
    9 1.21 2.00 1.51 64.79 24.85
    10 1.20 2.11 1.56 75.21 30.02
  • In the specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation. Obviously many modifications and variations of the invention are possible in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described.
  • Unless defined otherwise, all technical and scientific terms and any acronyms used herein have the same meanings as commonly understood by one of ordinary skill in the art in the field of this invention. Although any compositions, methods, and means for communicating information similar or equivalent to those described herein can be used to practice this invention, the preferred compositions, methods, and means for communicating information are described herein.
  • All references cited above are incorporated herein by reference to the extent allowed by law. The discussion of those references is intended merely to summarize the assertions made by their authors. No admission is made that any reference (or a portion of any reference) is relevant prior art. Applicants reserve the right to challenge the accuracy and pertinence of any cited reference.

Claims (20)

What is claimed is:
1. An animal litter having an increased absorption rate comprising one or more animal litter particles that have been produced by fragmenting at least one extruded animal litter particle that has a film on the surface of the extruded animal litter particle.
2. The litter of claim 1 wherein the extruded animal litter particle comprises an extruded mixture comprising from about 10 to about 90% of or more clays and from about 90 to about 10% of one or more starches.
3. The litter of claim 2 wherein the clays are non-swelling clays, swelling clays, or combinations thereof.
4. The litter of claim 2 wherein the starches are amylose, amylopectin, or combinations thereof.
5. An animal litter of claim 1 wherein the film covers at least 10% of the surface of the extruded animal litter particles.
6. An animal litter of claim 1 wherein the film covers at least 50% of the surface of the extruded animal litter particles.
7. An animal litter of claim 1 wherein the film covers at least 70% of the surface of the extruded animal litter particles.
8. An animal litter of claim 1 wherein the film covers at least 90% of the surface of the extruded animal litter particles.
9. An animal litter of claim 1 wherein the animal litter particles have a surface area that is at least 10% greater than the surface area of the extruded animal litter particles.
10. An animal litter of claim 1 wherein the animal litter particles have a surface area that is at least 30% greater than the surface area of the extruded animal litter particles.
11. An animal litter of claim 1 wherein the animal litter particles have a surface area that is at least 50% greater than the surface area of the extruded animal litter particles.
12. The litter of claim 1 wherein the animal litter particles have a partial or complete coating of one or more swelling clays.
13. The litter of claim 12 wherein the swelling clay is bentonite.
14. The litter of claim 12 wherein the swelling clay comprises from about 5 to about 40% of the litter.
15. An animal litter comprising a combination of the animal litter of claim 1 and a different material capable of functioning as an animal litter.
16. The animal litter of claim 15 wherein the combination comprises from about 5 to about 95% of the animal litter of claim 1 and from 95 to about 5% of the different material.
17. The animal litter of claim 15 wherein the different material is a litter made from swelling clay, non-swelling clay, silica gel, or combination thereof.
18. A method for making an animal litter comprising fragmenting an extruded animal litter particle that has a film on its surface into two or more animal litter particles.
19. The method of claim 18 wherein the extruded animal litter particle is fragmented by crushing the particle.
20. An animal litter made using the method of claim 18.
US14/563,735 2010-01-29 2014-12-08 Extruded animal litters having an increased absorption rate Abandoned US20150090188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/563,735 US20150090188A1 (en) 2010-01-29 2014-12-08 Extruded animal litters having an increased absorption rate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US33701910P 2010-01-29 2010-01-29
US33926210P 2010-03-02 2010-03-02
US12/931,247 US8904963B2 (en) 2010-01-29 2011-01-27 Extruded animal litters having an increased absorption rate
US14/563,735 US20150090188A1 (en) 2010-01-29 2014-12-08 Extruded animal litters having an increased absorption rate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/931,247 Continuation US8904963B2 (en) 2010-01-29 2011-01-27 Extruded animal litters having an increased absorption rate

Publications (1)

Publication Number Publication Date
US20150090188A1 true US20150090188A1 (en) 2015-04-02

Family

ID=44319681

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/931,247 Active 2031-11-22 US8904963B2 (en) 2010-01-29 2011-01-27 Extruded animal litters having an increased absorption rate
US14/563,735 Abandoned US20150090188A1 (en) 2010-01-29 2014-12-08 Extruded animal litters having an increased absorption rate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/931,247 Active 2031-11-22 US8904963B2 (en) 2010-01-29 2011-01-27 Extruded animal litters having an increased absorption rate

Country Status (12)

Country Link
US (2) US8904963B2 (en)
EP (2) EP2528428A4 (en)
JP (1) JP5944327B2 (en)
CN (2) CN102821758B (en)
AU (2) AU2011209935B2 (en)
BR (1) BR112012019043B1 (en)
CA (2) CA2790146C (en)
ES (1) ES2973768T3 (en)
MX (2) MX345332B (en)
RU (2) RU2571336C2 (en)
WO (2) WO2011094022A1 (en)
ZA (2) ZA201206474B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180986A1 (en) * 2012-05-30 2013-12-05 Nestec Sa Low-dust animal litters and methods for making same
US11457605B2 (en) 2012-09-11 2022-10-04 Pioneer Pet Products, Llc Extruded self-clumping cat litter
US11602120B2 (en) 2012-09-11 2023-03-14 Pioneer Pet Products, Llc Lightweight coated extruded granular absorbent
US9266088B2 (en) 2012-09-11 2016-02-23 Pioneer Pet Products, Llc Method of making extruded self-clumping cat litter
US11470811B2 (en) * 2012-09-11 2022-10-18 Pioneer Pet Products, Llc Extruded granular absorbent
US10028481B2 (en) 2012-09-11 2018-07-24 Pioneer Pet Products, Llc Granular absorbent and system and method for treating or processing granular absorbent during granular absorbent transport
CN102964636A (en) * 2012-12-07 2013-03-13 北京邦明生物技术研究院 Thermoplastic starch-sepiolite composite material and preparation method thereof
CN103348922A (en) * 2013-06-19 2013-10-16 芜湖悠派卫生用品有限公司 Paper sepiolite sustained-release antibacterial cat litters
RU2675518C2 (en) * 2013-12-31 2018-12-19 Нестек Са Hybrid composite coated animal litter compositions
US11013211B2 (en) 2014-01-25 2021-05-25 Pioneer Pet Products, Llc Method for making extruded granular absorbent and clumping granular absorbent product
EP3096605B1 (en) 2014-01-25 2021-09-29 Pioneer Pet Products, LLC Extrusion system for producing a granular absorbent
EP4169376A1 (en) * 2014-03-12 2023-04-26 Pioneer Pet Products, LLC Extruded granular sorbent
CA2953403C (en) 2014-08-26 2023-05-16 Ep Minerals Llc. Low density compositions with synergistic absorbance properties
CN104396766B (en) * 2014-12-01 2016-08-17 芜湖悠派卫生用品有限公司 A kind of fragrant epoxy-type cat litter of embedding and preparation method thereof
CN104396765B (en) * 2014-12-01 2016-08-24 芜湖悠派卫生用品有限公司 A kind of mineral absorbent-type cat litter and preparation method thereof
US9776352B2 (en) * 2014-12-30 2017-10-03 Unicharm Corporation Method of producing animal litter including bentonite
CA2955705C (en) 2016-01-22 2022-06-21 The Clorox Company Clumping animal litter and method thereof
US10383308B2 (en) 2016-01-22 2019-08-20 The Clorox Company Clumping animal litter and method thereof
JP5945087B1 (en) * 2016-03-16 2016-07-05 株式会社大貴 Excrement treatment material manufacturing method and manufacturing apparatus
CZ306830B6 (en) * 2016-06-14 2017-07-26 Sedlecký kaolin a.s. A method of producing dustless, lump-making, shaped or expanded silicate litter
CN106386530A (en) * 2016-08-30 2017-02-15 怀远县荆山湖良种猪养殖场 High-viscosity pond bottom padding for black pig breeding pond
CN106386529A (en) * 2016-08-30 2017-02-15 怀远县荆山湖良种猪养殖场 Bio-bacteriostatic pond bottom padding for black pig breeding
CN106376472A (en) * 2016-08-30 2017-02-08 怀远县荆山湖良种猪养殖场 Preparation method for biologic-inhibition type black pig culturing pool base pad material
JP7274285B2 (en) * 2018-12-26 2023-05-16 ライオンペット株式会社 Animal excrement treatment agent
CN110100746B (en) * 2019-06-24 2022-02-22 内蒙古润隆膨润土科技有限公司 Dust-free deodorizing bentonite cat litter and preparation method thereof
US11918969B2 (en) 2019-12-06 2024-03-05 The Clorox Company Low dusting, small clumping highly absorptive animal litter
US11794979B2 (en) 2020-09-29 2023-10-24 Beaumont Products, Inc. Paw-shaped odor control item and associated packaging and methods
CN112931253A (en) * 2021-04-09 2021-06-11 兰州大学 Novel animal bedding and preparation method thereof
US11575828B1 (en) * 2021-10-14 2023-02-07 Meta Platforms, Inc. Dynamically identifying visual media capture formats based upon conditions
US20230140299A1 (en) * 2021-11-04 2023-05-04 Boxiecat LLC Compressible Animal Litter
WO2023091096A1 (en) * 2021-11-17 2023-05-25 ŞEKER, Ceyda Natural pet cat litter
CN114946671B (en) * 2022-05-19 2023-08-22 佛山蜂缘生物科技有限公司 Antibacterial insect-proof deodorizing anti-blocking pet particle and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923005A (en) * 1974-01-25 1975-12-02 Clorox Co Alfalfa-based animal litter, including starch
US5452684A (en) * 1994-05-24 1995-09-26 American Colloid Company Method of agglomerating a smectite clay litter
US6029603A (en) * 1996-09-24 2000-02-29 Waste Reduction Products Corporation Animal litter comprising gypsum and aluminum sulfate and processes of making same
US6220206B1 (en) * 1999-09-29 2001-04-24 Vidal E. Sotillo Method for producing a cat litter from grain milling byproducts
US6860233B2 (en) * 2000-12-21 2005-03-01 Institut Fur Technologie Der Kohlenhydrate- Zuckerinstitut - E.V. Litter for cats and small animals
US20090308323A1 (en) * 2006-07-14 2009-12-17 Sivomatic Bv Particulate clumpling animal litter material and process for the production thereof

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US768531A (en) 1904-03-18 1904-08-23 Pellegrina Campana And Clarena Hudson Old Coffee or spice mill.
US4206718A (en) 1973-04-05 1980-06-10 Star-Kist Foods, Inc. Animal litter process
US3954086A (en) 1974-05-28 1976-05-04 Fred Maness Litter box
US4627382A (en) * 1984-09-04 1986-12-09 Muzzey Dennis K Disposable litter box
JPH0350984Y2 (en) 1986-05-13 1991-10-31
US4881490A (en) 1988-02-19 1989-11-21 Ducharme Cyril L Absorbent composition, and method of making same
US4949672A (en) 1988-06-17 1990-08-21 The Clorox Company Boron-based odor control animal litter
US4914066A (en) 1989-02-24 1990-04-03 Hoechst Celanese Corporation Pellets of clay and superabsorbent polymer
US4929474A (en) 1989-04-03 1990-05-29 Union Camp Corporation Method of making high quality extrusion coated paper for quality printing
US5176107A (en) * 1989-07-24 1993-01-05 Buschur Jeffrey J Pet litter
SU1678262A1 (en) * 1989-11-13 1991-09-23 Ю.К.Остапенко Toilet for cats
US5035205A (en) 1990-02-23 1991-07-30 Philip Schiller Collapsible disposable cat litter box
US5347950A (en) * 1992-05-22 1994-09-20 Kimberly-Clark Corporation Animal litter composition and package
US5293837A (en) 1993-05-12 1994-03-15 Caldwell J Dean Litter box having shelf formed in side wall thereof supporting fine and coarse grid assembly
US5901661A (en) 1993-08-18 1999-05-11 Pattengill; Maurice Glenn Method of forming a clumpable animal litter mixture
EP0677244A1 (en) 1994-04-15 1995-10-18 Engelhard Corporation Improved sorbent composition
US5636594A (en) * 1995-06-05 1997-06-10 Servando R. Pina Portable cat litter case and travel kit
US5647300A (en) * 1995-10-31 1997-07-15 First Brands Corporation Compacted bentonite-based absorbents
US5931119A (en) * 1996-05-03 1999-08-03 Knox Security Engineering Corp. Self cleaning pet litter box
US5806462A (en) 1996-06-13 1998-09-15 Parr; Michael J. Clumping animal litter
US6524603B1 (en) 1996-07-23 2003-02-25 Rhone-Poulenc Agro Process and composition for the antiparasitic treatment of the surroundings of animals
US5860391A (en) 1996-08-06 1999-01-19 First Brands Corporation Absorbents containing activated carbons
US6095088A (en) 1996-08-12 2000-08-01 First Brands Pet litter box assembly
US6287550B1 (en) 1996-12-17 2001-09-11 The Procter & Gamble Company Animal care system and litter with reduced malodor impression
EP0856797B1 (en) * 1997-01-30 2003-05-21 STMicroelectronics Limited A cache system for concurrent processes
DE69930958T2 (en) 1998-12-18 2006-12-21 Nestec Ltd. ANIMAL TRUST
US6543385B2 (en) 2000-12-07 2003-04-08 Nestec, Ltd. Animal litter composition containing silica gel and methods therefor
US6887570B2 (en) * 2002-02-05 2005-05-03 Nestec Ltd. Coated clumping litter
US7429421B2 (en) 2002-02-05 2008-09-30 Nestec, S.A. Coated clumping litter comprising non-swelling particles
US6955136B2 (en) 2002-04-11 2005-10-18 Alfa-Pet, Inc. Method for incorporating baking soda into kitty litter box liner and liner
US6837181B2 (en) 2002-08-07 2005-01-04 Alfa-Pet, Inc. Animal litter
US7316201B2 (en) 2002-12-13 2008-01-08 Cycle Group Limited Of Delaware Non-clumping animal litter granules
US20040163604A1 (en) 2003-01-15 2004-08-26 Kirk Robert C. Animal litter system
JP2005021071A (en) * 2003-07-01 2005-01-27 Unicharm Petcare Corp Animal excreta treatment material
US20070289543A1 (en) * 2006-06-16 2007-12-20 The Clorox Company Clumping Animal Litter
US20050005869A1 (en) 2003-07-11 2005-01-13 The Clorox Company Composite absorbent particles
US8074604B2 (en) 2003-11-17 2011-12-13 The Andersons, Inc. Agglomerated animal litter and manufacturing process for the same
US7290499B2 (en) 2004-02-09 2007-11-06 Emery Richard H Self-cleaning pet litter box assembly
JP4818625B2 (en) 2004-06-10 2011-11-16 ユニ・チャーム株式会社 Animal toilet sand and animal toilet using the same
JP4969044B2 (en) * 2004-06-28 2012-07-04 黒崎白土工業株式会社 Pet toilet sand
US6962129B1 (en) 2004-07-16 2005-11-08 Church & Dwight Co., Inc. Clumping compacted bicarb litter
JP4521233B2 (en) * 2004-08-20 2010-08-11 ユニ・チャームペットケア株式会社 Animal litter
US7331309B2 (en) 2005-02-01 2008-02-19 Nature's Earth Products, Inc. Clumping animal litter composition and method of producing the same
US20060196438A1 (en) 2005-03-04 2006-09-07 H.P. Intellectual Corp. Litter box organizer system
US7603964B2 (en) * 2005-04-29 2009-10-20 The Clorox Company Composite particle animal litter and method thereof
US7228819B1 (en) 2006-02-02 2007-06-12 Amcol International Corporation Magnetically-attractable non-clumping animal litter
US20070277740A1 (en) 2006-05-31 2007-12-06 Aspen Pet Products, Inc. Litter box
US7757638B2 (en) * 2006-06-06 2010-07-20 Grain Processing Corporation Animal litter, process for preparing animal litter, and method of removal of animal waste
US7628118B1 (en) 2006-07-12 2009-12-08 Ourpet's Company Self scooping cat litter box
WO2008024862A2 (en) 2006-08-22 2008-02-28 Pet Ecology Brands, Inc. Animal litter having the property of detecting diabetes in felines
US20080223302A1 (en) 2007-03-15 2008-09-18 Grain Processing Corporation Animal Litter, Process for Preparing Animal Litter, and Method of Removal of Animal Waste
US20090000562A1 (en) 2007-06-26 2009-01-01 The Clorox Company Waste encapsulating animal litter
JP5501557B2 (en) 2007-06-29 2014-05-21 ユニ・チャーム株式会社 Animal toilet
US7523973B2 (en) 2007-08-08 2009-04-28 The Clorox Company Thermoformed litter scoop
US20090250014A1 (en) 2008-04-07 2009-10-08 Chris Juan Cat litter box
ES2622095T3 (en) 2008-04-29 2017-07-05 Sepiol, S.A. Procedure for obtaining a bed for low density agglomerating companion animals and a bed thus obtained
US20090272327A1 (en) 2008-05-01 2009-11-05 Rolf C. Hagen, Inc. Cat litter box

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923005A (en) * 1974-01-25 1975-12-02 Clorox Co Alfalfa-based animal litter, including starch
US5452684A (en) * 1994-05-24 1995-09-26 American Colloid Company Method of agglomerating a smectite clay litter
US6029603A (en) * 1996-09-24 2000-02-29 Waste Reduction Products Corporation Animal litter comprising gypsum and aluminum sulfate and processes of making same
US6220206B1 (en) * 1999-09-29 2001-04-24 Vidal E. Sotillo Method for producing a cat litter from grain milling byproducts
US6860233B2 (en) * 2000-12-21 2005-03-01 Institut Fur Technologie Der Kohlenhydrate- Zuckerinstitut - E.V. Litter for cats and small animals
US20090308323A1 (en) * 2006-07-14 2009-12-17 Sivomatic Bv Particulate clumpling animal litter material and process for the production thereof

Also Published As

Publication number Publication date
ES2973768T3 (en) 2024-06-24
CN102740685A (en) 2012-10-17
CN102740685B (en) 2015-04-29
EP2528588A4 (en) 2013-11-20
US8904963B2 (en) 2014-12-09
EP2528588A1 (en) 2012-12-05
MX2012008663A (en) 2012-08-23
CN102821758B (en) 2015-09-23
CA2787031A1 (en) 2011-08-04
ZA201206466B (en) 2014-02-26
EP2528428A4 (en) 2013-11-06
RU2576434C2 (en) 2016-03-10
EP2528428A1 (en) 2012-12-05
RU2012136815A (en) 2014-03-10
CA2790146C (en) 2018-08-21
AU2011209936A1 (en) 2012-09-06
JP5944327B2 (en) 2016-07-05
WO2011094023A1 (en) 2011-08-04
WO2011094022A1 (en) 2011-08-04
BR112012019043A2 (en) 2021-04-20
BR112012019043B1 (en) 2021-11-23
CN102821758A (en) 2012-12-12
JP2013517795A (en) 2013-05-20
CA2787031C (en) 2017-09-19
AU2011209936B2 (en) 2016-06-16
MX345332B (en) 2017-01-25
EP2528588B1 (en) 2024-02-21
AU2011209935A1 (en) 2012-08-09
US20110185978A1 (en) 2011-08-04
RU2571336C2 (en) 2015-12-20
ZA201206474B (en) 2014-02-26
MX2012009615A (en) 2013-07-12
RU2012136814A (en) 2014-03-10
CA2790146A1 (en) 2011-08-04
AU2011209935B2 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
US8904963B2 (en) Extruded animal litters having an increased absorption rate
US10362768B2 (en) Extruded animal litters
JP5710751B2 (en) Litter box assembly with litter fragmentation device
US11457605B2 (en) Extruded self-clumping cat litter
CA2874941C (en) Low-dust animal litters and methods for making same
US20210274745A1 (en) Optimized System and Method for Making Extruded Granular Absorbent and Clumping Granular Absorbent Product
US20230103822A1 (en) Extruded Granular Absorbent
US5279259A (en) Animal litter compositions
CN110384047A (en) Contain bentonitic cat litter and its manufacturing method
CN102150626A (en) Granulated paper pad for pets and manufacturing method thereof
US20230028386A1 (en) Extruded Self-Clumping Cat Litter
US20050160997A1 (en) Fast absorption animal litter and method for making same
US20090074703A1 (en) Animal bedding material
KR102427659B1 (en) Extruded granular absorbent

Legal Events

Date Code Title Description
AS Assignment

Owner name: NESTEC SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIXON, DAN KENN;HUCK, NATHAN FOSTER;REEL/FRAME:035413/0954

Effective date: 20120809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION