US20150086392A1 - Dry running compressor for creating compressed air - Google Patents

Dry running compressor for creating compressed air Download PDF

Info

Publication number
US20150086392A1
US20150086392A1 US14/223,457 US201414223457A US2015086392A1 US 20150086392 A1 US20150086392 A1 US 20150086392A1 US 201414223457 A US201414223457 A US 201414223457A US 2015086392 A1 US2015086392 A1 US 2015086392A1
Authority
US
United States
Prior art keywords
lubricant
cooling
circuit
compression unit
dry running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/223,457
Other languages
English (en)
Inventor
Ulrich Thomes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gardner Denver Deutschland GmbH
Original Assignee
Gardner Denver Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gardner Denver Deutschland GmbH filed Critical Gardner Denver Deutschland GmbH
Assigned to GARDNER DENVER DEUTSCHLAND GMBH reassignment GARDNER DENVER DEUTSCHLAND GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THOMES, ULRICH
Publication of US20150086392A1 publication Critical patent/US20150086392A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps

Definitions

  • the present invention refers to a dry running compressor for creating compressed gas such as air.
  • Dry running compressors generally comprise one or more compression units each of which can be called a stage. Whether the compressor is a one-stage or a multi-stage pump, and the type of construction of the stages, depends on the demands for the required amount of compressed air and the ultimate pressure to be reached. Usually, the compression units are driven by a motor.
  • High-capacity compressors require efficient cooling of the compressor units because a significant amount of heat is generated when compressing gas such as air. The heat could lead to an overheating of the components of the compressor if there is insufficient cooling.
  • Some systems use air cooling, whose performance can be improved for example by cooling plates or by a blower.
  • water cooling can be used. The water cooling often relies on an external cooling water system. The need for an external cooling water system can limit the ability to use such a cooling method when huge quantities of cooling water from an external cooling system are not available, for instance at certain sites where portable compressors are needed.
  • oil-free compressed air is needed.
  • the compressed air needs to be oil free so as to not soil components driven by the compressed air with a lubricant. Therefore oil circulating in the bearings and gearboxes of the compressor needs to be well-separated or encapsulated from the compressed air flow so the lubricant does not contaminate the compressed air flow. Also in the bearings and the gearboxes lubricated by oil or other liquid lubricant there are quite significant heat quantities occurring which need to be removed.
  • a compressor installation having a frame is known from DE 103 46 518 A1.
  • the compressor installation comprises at least one drive, one compression stage and a pressure vessel.
  • a cooling module is provided which is not specified in detail.
  • EP 1 451 469 B1 specifies a lubricant-cooled gas compressor for releasing a mixture of lubricant and compressed gas and having means for separating lubricant from the compressed gas.
  • the compressor system which allows the compressed air to mix with the lubricant, allows efficient heat removal, but requires appropriate technical provisions to regain the lubricant and the coolant from the compressed gas. If the compressed gas which is to be created needs to be completely free of lubricants and coolants, such cooling is not appropriate.
  • a compressor according to the invention is characterized by having a closed cooling liquid circuit interfaced with at least a first compression unit, which can alternatively be called a compression stage.
  • the closed circuit comprises a liquid pump and a liquid cooler.
  • the cooling liquid flowing through the cooling circuit provides for the cooling of the compression unit.
  • the compressor can include a second compression unit which can also alternatively be called a second compression stage.
  • the flow of the compressed gas from the first unit is in series with the compressed air flow of the of the second compression unit.
  • the second compression unit or stage is also interfaced with the cooling circuit.
  • Each compression stage whether part of a single-stage or multi-stage pump (compressor) has a respective housing in which at least one cooling liquid channel is integrated therein, through which cooling liquid flows, and which is part of the closed cooling circuit.
  • the cooling liquid which can be water or a comparable heat transmission medium, is not injected into the actual hollows of the compression chambers of the compression units. It flows through a portion of the housings separated from the hollows of the compression chambers.
  • surfaces of the housings delimiting the hollows of the chambers may separate the cooling liquid from the hollows.
  • the compression chambers can alternatively be called working chambers.
  • Various types of motor housings or pump housings are known from the state of the prior art which allow efficient heat removal by means of cooling liquid, so a detailed specification of the pump housing is not provided.
  • each compression unit or stage each have at least one lubricant channel through which lubricant, preferably oil, is guided to at least one component or part of each of the compression units such as a bearing or a gearbox or other moving part or component.
  • each compression unit has a plurality of lubricant channels to guide the lubricant to a plurality of parts, or components such as the gearboxes and bearings or other moving parts or components of the compression units, which require efficient lubrication, especially at high rotation speed.
  • These lubricant channels are part of a lubricant circuit, which comprises a lubricant pump and a lubricant cooler. Heat from the parts lubricated such as the bearings and gearboxes and other parts interfaced with the bearings and gearboxes or other parts heated during operation of the compressor can be removed by the lubricant.
  • An embodiment of the invention can further include the lubricant cooler having at least one cooling liquid channel and at least one lubricant channel.
  • the cooling liquid channel is part of the cooling liquid circuit.
  • the lubricant cooler includes a heat exchanger to provide for removal of the heat from the lubricant by the cooling liquid.
  • the heat from the bearings and gearboxes is removed by the lubricant of the lubricant circuit flowing over the bearings and components of the gearboxes.
  • the heat from the lubricant is removed by the cooling liquid of the cooling circuit flowing through the lubricant cooler.
  • the compressor can be driven by different drive constructions.
  • a common drive motor drives both the first compressor unit as well as the second compressor unit.
  • this motor can drive the lubricant pump and the cooling liquid pump, which, however, can also be equipped with separate drives.
  • the drive motor or its housing, respectively, can also be included in the cooling water circuit, wherein cooling water channels are arranged in the housing of the drive motor.
  • FIG. 1 shows a simplified block diagram of an embodiment of the compressor according to the invention.
  • the compressor of FIG. 1 comprises a first compression unit 01 drawing in ambient air through a suction regulator 02 and a suction filter 03 and compressing the same. The air is thus drawn in at an inlet.
  • the first compression unit which can alternatively be called a first compression stage, has a working chamber, which can also be called a compression chamber, in which the air is compressed.
  • the working chamber has a hollow.
  • the airflow within the compressor is indicated by chain dotted lines. A description of the connecting pipes and the flanges is not provided herein since the formation of these elements is not essential for the present invention.
  • the second working chamber can also be called a second compression chamber.
  • the chamber has a hollow. Then, the created compressed air is provided through a non-return valve 09 , an aftercooler 10 and a further condensate separator 06 for discharge to, for example, compressed air driven tools.
  • a closed cooling liquid circuit which cools at least the compression units 01 , 07 , is provided.
  • the circuit removes the heat from the compression units.
  • the closed circuit is a cooling water circuit.
  • the closed cooling water circuit comprises a liquid cooler 11 and a liquid pump 12 .
  • the pump 12 is a water pump and the cooler 11 is a water cooler.
  • the pipes of the closed cooling water circuit are indicated in the block diagram by continuous lines.
  • the cooling water circuit includes a plurality of cooling water channels in each of the respective housings of the first, and respectively, of the second compression units 01 , 07 . In the block diagram, the plurality of cooling water channels is not indicated separately. They carry the cooling liquid in the cooling circuit to provide cooling of the compression units, especially the working chambers of the compression units, in which the actual compression work is performed.
  • the circuit removes heat from the compression units especially their working chambers.
  • the cooling water channels are preferably arranged at and in the portions of the housings in which the hollows of the working chambers or compression chambers are disposed, so that the cooling water circulates around the hollows of the working chambers, without, however, having to be injected into or going into or entering into the hollows of the compression chambers.
  • the cooling water channels may pass into and through portions of the housings forming the compression units but are separated from and separate from the hollows of the working chambers.
  • inner surfaces of the housings of the compression units delimiting the hollow of each working chamber may separate the liquid cooling channels from the hollows of the working chambers.
  • the hollows of the working chambers do not form a portion of channels forming the cooling water circuit and do not form part of the cooling water circuit. The reverse is also true.
  • the circuit does not have a discharge opening emptying into said hollows of said working chambers.
  • the cooling liquid which in this case is water
  • the cooling circuit sequentially flows through the, respective housings of the compression units 01 , 07 .
  • structure such as piping forming a channel of the cooling circuit has a surface that delimits at least a portion the hollow of each or one of the working chambers.
  • the order of the units to be cooled by the cooling water circuit is chosen so that depending on the temperatures, efficient cooling can be realized.
  • the water of the water circuit flows from the second unit 07 to the first unit 01 .
  • cooling water in the cooling circuit then flows from the first unit through a lubricant cooler 15 , whose functionality is described below, wherefrom the cooling water is led back to the water cooler 11 .
  • the closed cooling circuit is thus a recirculating liquid circuit.
  • the circuit forms at least one continuous channel in which the cooling liquid flows in a path as described by reference to the above cooling liquid channels and cooling liquid circuit.
  • the compression units 01 , 07 could be cooled in parallel as opposed to the above described in series pathway.
  • the water cooler itself is cooled by an airstream that can actively be created by a fan 13 .
  • the compressor according to the invention furthermore comprises a lubricant circuit which is indicated in the block diagram by broken lines.
  • Parts of the lubricant circuit include the lubricant cooler 15 as aforementioned, a lubricant pump 16 and a lubricant reservoir 17 .
  • oil is used as lubricant, which is guided to the compression units 01 , 07 through respective lubricant connections 18 .
  • the lubricant reaches bearings and gearboxes of the units which are to be lubricated.
  • the lubricant also provides for cooling of the bearings and gearboxes of the units and other components and parts heated and lubricated during operation of the pump, especially moving parts.
  • the heat from these items is removed by the lubricant as it passes over these items carrying away heat dissipated from these items.
  • the liquid of the cooling circuit flowing at the lubricant cooler 15 cools the lubricant.
  • the heat from the lubricant is removed by the coolant in the cooling circuit.
  • the liquid coolant carries away heat dissipating from the lubricant.
  • the lubricant cooler 15 comprises a heat exchanger that acts a medium to allow the coolant in the cooling circuit to carry away the heat dissipating from the lubricant as it passes through the lubricant cooler.
  • the cooling liquid in the cooling circuit is cooled by the water cooler 11 .
  • the heat from the coolant is removed by operation of the water cooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
US14/223,457 2013-09-20 2014-03-24 Dry running compressor for creating compressed air Abandoned US20150086392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEDE202013104306.0 2013-09-20
DE202013104306U DE202013104306U1 (de) 2013-09-20 2013-09-20 Trockenlaufender Kompressor zur Erzeugung von Druckluft

Publications (1)

Publication Number Publication Date
US20150086392A1 true US20150086392A1 (en) 2015-03-26

Family

ID=49714014

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/223,457 Abandoned US20150086392A1 (en) 2013-09-20 2014-03-24 Dry running compressor for creating compressed air

Country Status (4)

Country Link
US (1) US20150086392A1 (fr)
BR (1) BR102014020703A2 (fr)
CA (1) CA2847757A1 (fr)
DE (1) DE202013104306U1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343610A (zh) * 2017-12-29 2018-07-31 上海辛渐新能源科技有限公司 双螺杆压缩机
US20220341412A1 (en) * 2021-04-24 2022-10-27 Atlas Copco (India) Ltd. Compressed air generation plant
WO2023187481A1 (fr) * 2022-03-30 2023-10-05 Atlas Copco Airpower, Naamloze Vennootschap Dispositif compresseur et ensemble compresseur comprenant un tel dispositif compresseur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807911A (en) * 1971-08-02 1974-04-30 Davey Compressor Co Multiple lead screw compressor
US20010008068A1 (en) * 1997-11-21 2001-07-19 Komatsu Ltd. Hydraulic circuit for working vehicle
US7263954B2 (en) * 2004-12-04 2007-09-04 Ford Global Technologies, Llc Internal combustion engine coolant flow
US7334428B2 (en) * 2005-09-30 2008-02-26 Sullair Corporation Cooling system for a rotary screw compressor
US8358505B2 (en) * 2010-10-28 2013-01-22 Asetek A/S Integrated liquid cooling system
US8955323B2 (en) * 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE410597T1 (de) 2001-12-07 2008-10-15 Compair Uk Ltd Öleingespritzter verdichter
DE10346518B4 (de) 2003-10-02 2015-05-13 Compair Drucklufttechnik Zweigniederlassung Der Gardner Denver Deutschland Gmbh Verdichteranlage in modularer Bauweise

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807911A (en) * 1971-08-02 1974-04-30 Davey Compressor Co Multiple lead screw compressor
US20010008068A1 (en) * 1997-11-21 2001-07-19 Komatsu Ltd. Hydraulic circuit for working vehicle
US7263954B2 (en) * 2004-12-04 2007-09-04 Ford Global Technologies, Llc Internal combustion engine coolant flow
US7334428B2 (en) * 2005-09-30 2008-02-26 Sullair Corporation Cooling system for a rotary screw compressor
US8955323B2 (en) * 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
US8358505B2 (en) * 2010-10-28 2013-01-22 Asetek A/S Integrated liquid cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343610A (zh) * 2017-12-29 2018-07-31 上海辛渐新能源科技有限公司 双螺杆压缩机
US20220341412A1 (en) * 2021-04-24 2022-10-27 Atlas Copco (India) Ltd. Compressed air generation plant
WO2023187481A1 (fr) * 2022-03-30 2023-10-05 Atlas Copco Airpower, Naamloze Vennootschap Dispositif compresseur et ensemble compresseur comprenant un tel dispositif compresseur
BE1030415B1 (nl) * 2022-03-30 2023-11-08 Atlas Copco Airpower Nv Compressor inrichting en compressor samenstel dat zulke compressor inrichting bevat

Also Published As

Publication number Publication date
CA2847757A1 (fr) 2015-03-20
DE202013104306U1 (de) 2013-10-31
BR102014020703A2 (pt) 2015-09-22

Similar Documents

Publication Publication Date Title
US10612551B2 (en) Compressor motor windage loss mitigation
JP4880517B2 (ja) オイルバイパス付きコンプレッサ
US8747091B2 (en) Water injection type screw compressor
CN101025310B (zh) 压缩机冷却系统
JPH0116350B2 (fr)
EP3372835B1 (fr) Module de compresseur pour comprimer le gaz et compresseur équipé avec ce module
JP2002155879A (ja) オイルフリースクリュー圧縮機
KR102179980B1 (ko) 가스 압축용 압축기 모듈 및 이 압축기 모듈이 장착된 압축기
US20130139999A1 (en) Stuffing box cooling system
US20150086392A1 (en) Dry running compressor for creating compressed air
US7082785B2 (en) Oil separator for vapor compression system compressor
JP3457165B2 (ja) 空冷式2段オイルフリースクリュー圧縮機
EP2826998B1 (fr) Système de compression d'air et structure de refroidissement de celui-ci
JP2016200058A (ja) 給油式容積型圧縮機
KR101792955B1 (ko) 다단 터보 압축 시스템의 오일 온도 유지 시스템
CN216131088U (zh) 一种空压机系统
JP2014074350A (ja) スクリュ圧縮機および圧縮装置
JPH01116297A (ja) 空冷式オイルフリー回転形圧縮機
WO2023175401A1 (fr) Dispositif de mise sous pression à refroidissement par air
KR102275998B1 (ko) 터보형 공기 압축 시스템
CN114754002A (zh) 一种多用途螺杆机组
CN118188419A (zh) 轨道车辆用全无油空气压缩机
CN108035881A (zh) 一种用于工艺气压缩的二级单螺杆压缩机组

Legal Events

Date Code Title Description
AS Assignment

Owner name: GARDNER DENVER DEUTSCHLAND GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMES, ULRICH;REEL/FRAME:032580/0563

Effective date: 20140328

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION