US20150051777A1 - Traction systems for electrically powered vehicles - Google Patents
Traction systems for electrically powered vehicles Download PDFInfo
- Publication number
- US20150051777A1 US20150051777A1 US14/517,354 US201414517354A US2015051777A1 US 20150051777 A1 US20150051777 A1 US 20150051777A1 US 201414517354 A US201414517354 A US 201414517354A US 2015051777 A1 US2015051777 A1 US 2015051777A1
- Authority
- US
- United States
- Prior art keywords
- timing cycle
- wheel
- pulse
- conversion device
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K28/00—Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
- B60K28/10—Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle
- B60K28/16—Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle responsive to, or preventing, skidding of wheels
-
- B60L11/00—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/02—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
- B60L15/08—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2072—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/26—Wheel slip
-
- B60W2550/148—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/40—Coefficient of friction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- Electric motors can exhibit a high torque output from very low revolutions per minute (RPM).
- RPM revolutions per minute
- Internal combustion engines have very low torque at low RPMs, their torque increasing with increasing RPM to peak at a maximum, usually above 1000 RPM.
- the high torque of electrical motors cannot be utilised efficiently since the high torque will cause the driven wheel of the car to skid or slide.
- the maximum possible acceleration of a car on wheels is limited by the laws of physics, specifically, the coefficient of friction.
- the coefficient of friction between two surfaces has two distinct parts: the coefficient of sliding friction (also known as just coefficient of friction), and the coefficient of starting friction (also known as the coefficient of static friction).
- the coefficient of sliding friction can be designated as C slide and the coefficient of starting friction as C start .
- C slide is dependent on the two materials and is independent of moderate speeds, although it usually decreases slightly above 30 to 40 feet per second.
- C slide is less than 1.0 and is always lower than C start for the same object on the same surface, i.e. for any given material on any given surface, C start >C slide .
- C start refers to the force required to cause an object at rest to begin sliding on a surface.
- C start is greater than C slide , so once the object begins to slide, it requires less force keep the object sliding.
- the traction of a tire on the road is significantly higher when the surface of the tire is at rest relative to the surface of the road, as opposed to when the surface of the tire is sliding or skidding relative to the surface of the road. This does not mean that the tire is not moving; in fact, the tire may be travelling at a great speed, but if the tire is rotating at the correct rate, the bottom surface of the tire will match the speed at which the surface of the road meets the tire; that is, the tire is rolling on the road. All that matters is that the two surfaces of the tire and the road are momentarily at rest with respect to each other, where the two surfaces meet. The traction in that case is thus limited by Cstart.
- aspects and embodiments of the of the present disclosure address problems previously for previous traction techniques for electrically powered vehicles and are directed to fixed frequency, fixed duration pulse streams used to control the power switch(es) for the electrical motor(s) of an electric car (or hybrid powered car).
- the advantages of such pulse-based techniques include increased power efficiency and system simplicity over analog systems.
- the capability of calibration with a single pulse allows such techniques to be used under any conditions, and also for real time adaptation to changes in road surface conditions and acceleration needs.
- These fixed frequency, fixed duration pulses techniques can provide much improved acceleration over other electrical systems, by making the best use of the coefficient of starting (or static) friction.
- Pulses of Fixed Frequency Fixed Duration can be superior to pulse width modulation (PWM) and variable frequency pulses in providing very accurate power pulses for precision control.
- FFFD pulses supply nearly exact packets of power with each pulse, thus allowing an exact measure of power to the wheels in nearly identical packets, and thereby making full use of the force to the wheel before it breaks from the Cstart condition.
- the systems and methods of the present disclosure can provide for a non-slip traction control.
- the use of an off state in the pulse stream is very superior to the use of ABS braking systems for the same purpose, which waste power and cause mechanical wear, since convention ABS makes use of braking forces rather than acceleration forces.
- embodiments and/or portions of embodiments of the present disclosure can be implemented in/with computer-readable storage media (e.g., hardware, software, firmware, or any combinations of such), and can be distributed over one or more networks. Steps described herein, including processing functions to derive, learn, or calculate formula and/or mathematical models utilized and/or produced by the embodiments of the present disclosure, can be processed by one or more suitable processors, e.g., central processing units (“CPUs), implementing suitable code/instructions in any suitable language (machine dependent on machine independent).
- CPUs central processing units
- embodiments of the present disclosure can be embodied in signals and/or carriers, e.g., control signals sent over a communications channel.
- software embodying methods, processes, and/or algorithms of the present disclosure can be implemented in or carried by electrical signals, e.g., for downloading from the Internet. While aspects of the present disclosure are described herein in connection with certain embodiments, it should be noted that variations can be made by one with skill in the applicable arts within the spirit of the present disclosure.
- FIGS. 1A-1C depicts diagrammatic cross section views of a tire and wheel in different states of loading and slipping relative to an underlying surface
- FIGS. 2A-2D depicts four graphs of wheel and tire dynamics for different loading and spin conditions in accordance with the embodiments of the present disclosure: (A) Force v. Time, (B) Wheel RPM v. Time, (C) Applied Torque, and (D) Force v. Time;
- FIG. 3A-3B depicts two sets of plots (A)-(B) illustrating how embodiments of the present disclosure can provide the maximum impulse force in acceleration by synchronizing the torque ON pulses to four wheels of a vehicle;
- FIG. 4 depicts an exemplary algorithm or flow chart for establishing a fixed-frequency fixed-duration pulse stream for controlling power to an electrical engine supplying power to one or more wheels;
- FIG. 5 depicts an exemplary algorithm or flow chart for supplying power with fixed-frequency fixed-duration pulse streams for four-wheel drive vehicles.
- FIG. 6 depicts a box diagram of an exemplary system, in accordance with embodiments of the present disclosure.
- Embodiments of the present disclosure accommodate and take into account all of the variables in road/tire conditions, by taking measurement of the first pulse with wheel slip, and then providing fixed frequency, fixed duration pulse streams to control the power switch(es) for the electrical motor(s) of an electric car (or hybrid powered car).
- the resulting wheel rotation is continuously monitored, and upon any discrepancy from the expected pattern, a single pulse measurement is used to refresh the FFFD pulse stream with new timing values.
- FIG. 1 depicts diagrammatic cross section views 100 of a tire and wheel in different states of loading and slipping relative to an underlying surface while FIG. 2 depicts four graphs of wheel and tire dynamics for different loading and spin conditions in accordance with the embodiments of the present disclosure: (A) Force v. Time, (B) Wheel RPM v. Time, (C) Applied Torque, and (D) Force v. Time.
- FIG. 1 shows a wheel 110 and tire 112 , at rest relative to a road, 120 , and under different degrees of stress and loading (A)-(C). Since the tire is not moving relative to the road (note: these conditions apply even when the car is in motion, the wheels in freewheel mode) there is no forward stress on the tire, as shown by tire stress condition (or, strain) 130 . As a large acceleration torque 140 is applied to the wheel, this causes the tire and related structure to be stressed, as shown by stress condition 150 . Condition 160 shows that as the tire slips on the road, the stress (and strain) are partially relieved. By first approximation, the structure reacts as a spring, which means that the relationship between distortion and force is primarily linear in mathematical terms.
- FIG. 2 depicts four graphs 200 of wheel and tire dynamics for different loading and spin conditions in accordance with the embodiments of the present disclosure: (A) Force v. Time, (B) Wheel RPM v. Time, (C) Applied Torque, and (D) Force v. Time.
- FIG. 2 illustrates the dynamics involved for a situation where a wheel and tire contacting an underlying surface such as pavement experience a condition where the available torque to turn this wheel is sufficiently high to overcome C start . The force of acceleration on the car caused by this wheel is shown in FIG. 2A .
- the force 220 is shown increasing from zero (at time 225 ), linearly, as the torque is applied to the wheel; this would continue approximately linearly, except that the car would start to accelerate, as shown by the wheel rotation 242 and 244 . This relieves the stress on the tire somewhat, and the curve 220 starts to flatten out. However, since the available torque from the electrical motor is greater than that allowed by C start , 250 , when inevitably curve 220 reaches the value 250 , the wheel will start to slide, or skid, at time 230 , with the tire rotation increasing very quickly, 246 , instead of increasing as expected 248 .
- the skid or slide means that the friction between the tire and the road is determined by C slide , and as seen by the curve 235 , the acceleration force falls to level 255 fairly quickly. So long as the wheel is skidding (or spinning), the maximum traction possible is level 255 , as indicated by 215 . However, by turning OFF the torque as soon as wheel spin is detected, the wheel recovers to its non stressed state just as quickly, 247 . The end of recovery 247 is used to mark time 240 , which defines the end of time period 295 , the recovery time.
- C start , C slide and thus the shapes of the curves, and thus the times 230 and 240 , all vary with changing conditions such as wetness, temperatures of the road and tire, type of road surface, etc.
- the values of C start , C slide can also change with weight loading of the car on that tire, air resistance on the car and tire, and even if the wheel has lateral (turning, or side-loading) forces at the same time. What is also important is that under all these variations, C start is always higher that C slide , so that the general principles hold true.
- embodiments of the present disclosure can accommodate and take into account all of the variables in road/tire conditions, by taking measurement of the first pulse with wheel slip, i.e., monitoring and recording the time duration 292 and 295 .
- Pulses to be used in subsequent acceleration of this wheel are the repeated, for a given or specified time domain (or period of time), by using the time (pulse widths) 295 and 292 to generate the pulse train shown by maximum torque applied ON for a period of time 260 , and the torque OFF for a period 265 , repeating, 267 , as long as the driver keeps indicating a desired increase in speed or until an intervening condition or command occurs, e.g., wheel slip or braking occurs.
- an acceleration force is supplied to the wheel and tire, as shown by curve 290 .
- the average of this acceleration force is at level 275 , which is lower than the absolute maximum level 280 , but higher than the spinning wheel level 270 .
- the unstressed state, 130 does not depend on the car to be stopped, only that the tire is at rest relative to the road; i.e. the car can be in motion at any speed.
- the initial condition 130 of FIG. 1 is re-established.
- the recovery time need not be exactly the period T2, 295 . It is not necessary for the torque force to fall to zero; only that it fall below Cslide, 255 , which re-establishes the zero slip condition.
- T2, 295 can be used in the system software for recovery, or a slightly higher or lower time period allotted for recovery, in order to customize performance “feel”.
- the pulse train 267 is of Fixed Frequency and Fixed Duration.
- the system is responsive in real time.
- the wheel rotation can monitored at desired times or continuously, (e.g., as shown in FIG. 4 at 480 and FIG. 5 at 575 ) and if the wheel slip is longer than the recovery time 295 , or if it is absent completely, then the system reinitializes in the very next pulse. This can be done since only one pulse is required to reset the pulse timing for changing road conditions or change in system performance (lower available engine torque, shift in weight distribution, etc.) as the car increases speed.
- pulses systems according to the present disclosure can automatically compensate for varying C start and C slide values by measuring the first pulse upon a required acceleration; analog systems must somehow determine these values accurately and quickly.
- Electronic analog power control systems are less efficient than pulse systems in power efficiency, a critical factor when electric cars are limited by battery capacity. Additionally, analog power control systems are more complex in design and manufacture.
- pulsed systems and methods according to the present disclosure can be self correcting.
- the curve 220 flattens considerably more, and never crosses the Cstart level 250 .
- the maximum available power from the electrical motor is kept in the ON state for the duration.
- this maximum acceleration system is imposed only when the car's computer detects a requirement for fast acceleration i.e. heavy throttle setting; however, the same system can be activated by the car's computer to insure that there is minimal wheel slippage, thus providing an active, pulsed traction control system.
- maximum acceleration force is required.
- a situation in which a four-wheel drive (4WD) wheel drive vehicle must be moved out of a mired condition it is greatly desirable to have the maximum forward force applied to the vehicle.
- all four wheels accelerate in unison; not just nearly in unison, but exactly in unison. If, for example, four persons are attempting to push a car out of a snowbank, then all four persons ideally would apply their shove synchronously, so as to maximize the impulse on the stuck vehicle; if one person is out of synch with the others, then his or her impulse is not added to the peak impulse of the other three persons, and the maximum peak forward force is not realized.
- FIG. 3 depicts two sets of plots (A)-(B) illustrating how embodiments of the present disclosure can provide the maximum impulse force in acceleration by synchronizing the torque ON pulses to four wheels of a vehicle.
- FIG. 3 shows how a method embodiment 300 of the present disclosure can be used to provide the maximum impulse force in acceleration by synchronizing the torque ON pulses to all four wheels.
- 310 , 315 , 320 , and 325 represent the torque On/Off states for four wheels which are not time synchronized.
- the resulting total torque for the four wheels is represented by 330 .
- 330 shows that the maximum total force is, in this example, 3.
- 340 , 345 , 350 , and 355 show four similar wheels with similar torque duty cycles, which are time synchronized.
- the total force 360 reaches a value of 4 on each pulse cycle.
- FIG. 4 depicts an exemplary algorithm 400 or flow chart for establishing a fixed-frequency fixed-duration pulse stream for controlling power to an electrical engine supplying power to one or more wheels.
- FIG. 4 shows a typical subroutine logic to establish the fixed frequency/fixed duration pulse stream which controls the power to the electrical engine.
- the system initializes, 410 .
- the data for the wheel rotational rate noted, and the system initiates with the calibrating ON pulse, 420 .
- the timer is started to measure the pulse length initiated by 420 .
- the wheel rotation is monitored for slippage, 430 , and if none is detected, the pulse continues in the ON mode; the requirement for additional acceleration is continuously monitored as well, by 440 , “not complete”.
- This loop 430 , 440 can continue until wheel slippage or the requirement for acceleration is completed or no longer needed.
- the ON pulse can be terminated, 445 , and the length of the pulse (T2, FIG. 2 , 292 ) is stored and the Off state sent to the engine power control.
- the wheel slippage is monitored for recovery to non-slip condition, and the elapsed recovery time ( FIG. 2 , 295 ) is stored, 450 .
- the system then generates the string of fixed frequency/fixed duration pulse in loop 460 , 470 , 480 , until the acceleration requirement if fulfilled as per the car's computer, or an unusual slippage condition (too long, or completely absent) is detected, at which time the system reinitializes, 490 .
- this system When there is no wheel slippage, this system maintains the constant On power state when maximum acceleration is required, and when the conditions of the wheel rotation change, the system reinitializes and recalibrates within a single pulse.
- the onboard computer of the vehicle can initiate this system at any time without requiring acceleration, just to keep the wheels in the non-slip condition, i.e., an active traction control, non skid system, FIG. 4 input to 410 , 440 , under car's CPU control.
- FIG. 5 depicts an exemplary algorithm 500 or flow chart for supplying power with fixed-frequency fixed-duration pulse streams for four-wheel drive vehicles, such as shown to be required in FIG. 3 . While not show, a variation for 2 wheel drive vehicles can be derived, and is not discussed. Also, all principles from FIG. 4 are assumed for FIG. 5 , but for simplicity, not shown.
- FIG. 5 , 510 shows the car's CPU requesting maximum acceleration. As previously mentioned, the car's CPU can simply poke this system in a non-acceleration way, to change from a maximum acceleration system to a traction control system.
- a minimum pulse duration period is established, in the order of 15 milliseconds, 520 .
- This minimum pulse can be adjusted in software to accommodate various car configurations or “performance feel”.
- After the minimum pulse period if any of the wheels are slipping, 530 , they are not used to determine the pulse ON length, 540 .
- the CPU processor executes its instructions in microseconds, whereas the wheel rotation and slippage detection is in the millisecond range, thus the digital processing of the data and software are inconsequential to the mechanics of the system.
- Loop 580 , 585 , 575 , and 590 continue the system logic until the acceleration requirement is removed (i.e., the car moves or the driver throttles back).
- algorithm 500 can be stored in any suitable computer readable medium, e.g., flash memory, ROM, EEPROM, RAM, hard discs, etc., and may be coded in any suitable language (machine dependent or machine independent). Moreover, such an algorithm may be a functional component of suitable software and can be stored in firmware and/or hardware. Additionally, such an algorithm or software can be run or performed by any suitable processor.
- FIG. 6 depicts a box diagram of an exemplary system 600 , in accordance with embodiments of the present disclosure.
- the power can be electrical, and can either AC or DC, 610 .
- This power can be switchable ON and OFF, 620 , and this on/off state should be controllable by an outside signal, 670 .
- the switched power can run an electrical motor 630 , which in turn drives the cars wheel(s), 640 .
- the rotation of the wheels should be monitored by servo or other methods, with sufficient resolution for our purposes, 650 .
- the system CPU, 660 can receive commands from the car's CPU, 680 for throttle setting and traction control mode.
- the CPU can utilize these inputs 680 , 650 , to generate the pulse control signals, 670 which in turn can switch the Motor power on and off, 620 . Variations of this configuration are possible, including the incorporation of hybrid power (gasoline assisted) systems, which will be automatically compensated by the first pulse calibration method of this present disclosure under all conditions.
- one electric motor can supply power to an axle, with or without a differential mechanism.
- a separate electric motor is provided to drive each wheel of the vehicle.
- FIG. 6 also shows additional respective power switches 620 and electric motors 630 for additional wheels (2)-(4) of a representative vehicles.
- the related sensing system would detect the wheel motion of those additional wheels and the controller or additional controllers would control the torque and power supplied to the additional wheel by supplying a fixed duration fixed frequency control signal as described previously.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Regulating Braking Force (AREA)
Abstract
Fixed frequency, fixed duration pulse streams are used to control power switches for one or more electrical motors of electrically powered vehicles or hybrid vehicles having one or more electric motors. The advantages of a pulse system are increased power efficiency and system simplicity over analog systems. The capability of system calibration with a single pulse allows the system to be used under any conditions, and real time adaptation to changes in conditions. Such system and methods provide much improved acceleration over other electrical systems, by making the best use of the coefficient of starting or static friction. The systems and methods provide a non slip traction control system, and the use of an off state in the pulse stream is superior to the use of braking systems for the same purpose, which waste power and cause mechanical wear. In addition, related computer program products are described.
Description
- This application is a continuation of U.S. patent application Ser. No. 12/609,545, filed on Oct. 30, 2009, entitled “Traction System for Electrically Powered Vehicles.” The entire content of this application is incorporated herein by reference.
- Electric motors can exhibit a high torque output from very low revolutions per minute (RPM). Internal combustion engines, have very low torque at low RPMs, their torque increasing with increasing RPM to peak at a maximum, usually above 1000 RPM. However, the high torque of electrical motors cannot be utilised efficiently since the high torque will cause the driven wheel of the car to skid or slide. The maximum possible acceleration of a car on wheels is limited by the laws of physics, specifically, the coefficient of friction.
- The coefficient of friction between two surfaces has two distinct parts: the coefficient of sliding friction (also known as just coefficient of friction), and the coefficient of starting friction (also known as the coefficient of static friction). For ease of discussion, the coefficient of sliding friction can be designated as Cslide and the coefficient of starting friction as Cstart. The coefficient of sliding friction, Cslide, defines the force required to keep an object sliding on a surface, specifically, F=(W)×(Cslide), where F is the force required to keep an object of weight W sliding on a surface which has a Cslide (coefficient of sliding friction) for the two materials which compose the object and the surface on which it is sliding. Cslide is dependent on the two materials and is independent of moderate speeds, although it usually decreases slightly above 30 to 40 feet per second. Cslide is less than 1.0 and is always lower than Cstart for the same object on the same surface, i.e. for any given material on any given surface, Cstart>Cslide.
- The coefficient of starting friction, Cstart, refers to the force required to cause an object at rest to begin sliding on a surface. The required force to start an object sliding is: F=(Cstart)×(W). Cstart is greater than Cslide, so once the object begins to slide, it requires less force keep the object sliding.
- The acceleration imparted on a car is limited by the coefficient of friction, i.e., A=F/M, where: A=acceleration, F=the force applied to the car, and M=the mass of the car. Since the force for acceleration F is limited by the coefficient of friction, thus the acceleration is limited by Cslide and Cstart.
- A sliding wheel can impart a forward force on the car equal to the force due to the coefficient of sliding friction, i.e., F=(W)×(Cslide), where F is the imparted force of acceleration, Cslide is the coefficient of sliding friction between the tire of the driven wheel and the road, (which varies considerable with the type of road surface, and conditions such as temperature, wetness, etc.), and W is the combined total weight of the tire onto the road surface.
- If the wheel is not skidding, then the forward force of acceleration can be as high as F=(W)×(Cstart). Since Cstart>Cslide, the possible acceleration is greater as long as the wheel does not skid or slide. Thus the traction of a tire on the road is significantly higher when the surface of the tire is at rest relative to the surface of the road, as opposed to when the surface of the tire is sliding or skidding relative to the surface of the road. This does not mean that the tire is not moving; in fact, the tire may be travelling at a great speed, but if the tire is rotating at the correct rate, the bottom surface of the tire will match the speed at which the surface of the road meets the tire; that is, the tire is rolling on the road. All that matters is that the two surfaces of the tire and the road are momentarily at rest with respect to each other, where the two surfaces meet. The traction in that case is thus limited by Cstart.
- If the two surfaces of the tire and road are moving relative to one another, then the traction is limited by Cslide. Since Cstart>Cslide, the traction in the first case greatly exceeds the second case. It is exactly this principle which is the basis for many anti-lock braking systems (“ABS”), which lessen the braking action when wheel skid is detected, allowing the tire to freewheel, and to re-establish zero relative speed and thus provide conditions for Cstart.
- Previous traction techniques for vehicles having internal combustion engines or electric motors have been limited in ability to apply torque to drive wheels under various road conditions and with optimal energy efficiency.
- It is to be understood that both the foregoing summary of the present disclosure and the following detailed description are exemplary and explanatory and are not intended to limit the scope of the present disclosure. Moreover, with regard to terminology used herein, a reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the present disclosure, and are not referred to in connection with the interpretation of the description of the present disclosure.
- Aspects and embodiments of the of the present disclosure address problems previously for previous traction techniques for electrically powered vehicles and are directed to fixed frequency, fixed duration pulse streams used to control the power switch(es) for the electrical motor(s) of an electric car (or hybrid powered car). The advantages of such pulse-based techniques include increased power efficiency and system simplicity over analog systems. The capability of calibration with a single pulse allows such techniques to be used under any conditions, and also for real time adaptation to changes in road surface conditions and acceleration needs. These fixed frequency, fixed duration pulses techniques can provide much improved acceleration over other electrical systems, by making the best use of the coefficient of starting (or static) friction. Pulses of Fixed Frequency Fixed Duration (FFFD) can be superior to pulse width modulation (PWM) and variable frequency pulses in providing very accurate power pulses for precision control. FFFD pulses supply nearly exact packets of power with each pulse, thus allowing an exact measure of power to the wheels in nearly identical packets, and thereby making full use of the force to the wheel before it breaks from the Cstart condition. The systems and methods of the present disclosure can provide for a non-slip traction control. The use of an off state in the pulse stream is very superior to the use of ABS braking systems for the same purpose, which waste power and cause mechanical wear, since convention ABS makes use of braking forces rather than acceleration forces.
- One skilled in the art will appreciate that embodiments and/or portions of embodiments of the present disclosure can be implemented in/with computer-readable storage media (e.g., hardware, software, firmware, or any combinations of such), and can be distributed over one or more networks. Steps described herein, including processing functions to derive, learn, or calculate formula and/or mathematical models utilized and/or produced by the embodiments of the present disclosure, can be processed by one or more suitable processors, e.g., central processing units (“CPUs), implementing suitable code/instructions in any suitable language (machine dependent on machine independent).
- Additionally, embodiments of the present disclosure can be embodied in signals and/or carriers, e.g., control signals sent over a communications channel. Furthermore, software embodying methods, processes, and/or algorithms of the present disclosure can be implemented in or carried by electrical signals, e.g., for downloading from the Internet. While aspects of the present disclosure are described herein in connection with certain embodiments, it should be noted that variations can be made by one with skill in the applicable arts within the spirit of the present disclosure.
- Other features of embodiments of the present disclosure will be apparent from the description, the drawings, and the claims herein.
- Aspects of the disclosure may be more fully understood from the following description when read together with the accompanying drawings, which are to be regarded as illustrative in nature, and not as limiting. The drawings are not necessarily to scale, emphasis instead being placed on the principles of the disclosure. In the drawings:
-
FIGS. 1A-1C depicts diagrammatic cross section views of a tire and wheel in different states of loading and slipping relative to an underlying surface; -
FIGS. 2A-2D depicts four graphs of wheel and tire dynamics for different loading and spin conditions in accordance with the embodiments of the present disclosure: (A) Force v. Time, (B) Wheel RPM v. Time, (C) Applied Torque, and (D) Force v. Time; -
FIG. 3A-3B depicts two sets of plots (A)-(B) illustrating how embodiments of the present disclosure can provide the maximum impulse force in acceleration by synchronizing the torque ON pulses to four wheels of a vehicle; -
FIG. 4 depicts an exemplary algorithm or flow chart for establishing a fixed-frequency fixed-duration pulse stream for controlling power to an electrical engine supplying power to one or more wheels; -
FIG. 5 depicts an exemplary algorithm or flow chart for supplying power with fixed-frequency fixed-duration pulse streams for four-wheel drive vehicles; and -
FIG. 6 depicts a box diagram of an exemplary system, in accordance with embodiments of the present disclosure. - While certain embodiments are depicted in the drawings, one skilled in the art will appreciate that the embodiments depicted are illustrative and that variations of those shown, as well as other embodiments described herein, may be envisioned and practiced within the scope of the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
- In the following detailed description, numerous specific details are set forth to provide a full understanding of aspects and embodiments of the present disclosure. It will be apparent, however, to one ordinarily skilled in the art that aspects and embodiments of the present disclosure may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail to for ease in comprehension.
- Embodiments of the present disclosure accommodate and take into account all of the variables in road/tire conditions, by taking measurement of the first pulse with wheel slip, and then providing fixed frequency, fixed duration pulse streams to control the power switch(es) for the electrical motor(s) of an electric car (or hybrid powered car). The resulting wheel rotation is continuously monitored, and upon any discrepancy from the expected pattern, a single pulse measurement is used to refresh the FFFD pulse stream with new timing values. Thus changes in road surface, tire loading from turning, or any other variations, are quickly and automatically compensated.
-
FIG. 1 depicts diagrammatic cross section views 100 of a tire and wheel in different states of loading and slipping relative to an underlying surface whileFIG. 2 depicts four graphs of wheel and tire dynamics for different loading and spin conditions in accordance with the embodiments of the present disclosure: (A) Force v. Time, (B) Wheel RPM v. Time, (C) Applied Torque, and (D) Force v. Time. -
FIG. 1 shows awheel 110 andtire 112, at rest relative to a road, 120, and under different degrees of stress and loading (A)-(C). Since the tire is not moving relative to the road (note: these conditions apply even when the car is in motion, the wheels in freewheel mode) there is no forward stress on the tire, as shown by tire stress condition (or, strain) 130. As alarge acceleration torque 140 is applied to the wheel, this causes the tire and related structure to be stressed, as shown bystress condition 150.Condition 160 shows that as the tire slips on the road, the stress (and strain) are partially relieved. By first approximation, the structure reacts as a spring, which means that the relationship between distortion and force is primarily linear in mathematical terms. -
FIG. 2 depicts fourgraphs 200 of wheel and tire dynamics for different loading and spin conditions in accordance with the embodiments of the present disclosure: (A) Force v. Time, (B) Wheel RPM v. Time, (C) Applied Torque, and (D) Force v. Time.FIG. 2 illustrates the dynamics involved for a situation where a wheel and tire contacting an underlying surface such as pavement experience a condition where the available torque to turn this wheel is sufficiently high to overcome Cstart. The force of acceleration on the car caused by this wheel is shown inFIG. 2A . Theforce 220, is shown increasing from zero (at time 225), linearly, as the torque is applied to the wheel; this would continue approximately linearly, except that the car would start to accelerate, as shown by thewheel rotation curve 220 starts to flatten out. However, since the available torque from the electrical motor is greater than that allowed by Cstart, 250, when inevitably curve 220 reaches thevalue 250, the wheel will start to slide, or skid, attime 230, with the tire rotation increasing very quickly, 246, instead of increasing as expected 248. - The skid or slide means that the friction between the tire and the road is determined by Cslide, and as seen by the
curve 235, the acceleration force falls to level 255 fairly quickly. So long as the wheel is skidding (or spinning), the maximum traction possible islevel 255, as indicated by 215. However, by turning OFF the torque as soon as wheel spin is detected, the wheel recovers to its non stressed state just as quickly, 247. The end ofrecovery 247 is used to marktime 240, which defines the end oftime period 295, the recovery time. It is important to note that the values for Cstart, Cslide, and thus the shapes of the curves, and thus thetimes - As noted previously, embodiments of the present disclosure can accommodate and take into account all of the variables in road/tire conditions, by taking measurement of the first pulse with wheel slip, i.e., monitoring and recording the
time duration time 260, and the torque OFF for aperiod 265, repeating, 267, as long as the driver keeps indicating a desired increase in speed or until an intervening condition or command occurs, e.g., wheel slip or braking occurs. - As a result, an acceleration force is supplied to the wheel and tire, as shown by
curve 290. Note that the average of this acceleration force is atlevel 275, which is lower than the absolutemaximum level 280, but higher than thespinning wheel level 270. - With reference again to
FIG. 1 , it may be noted that the unstressed state, 130, does not depend on the car to be stopped, only that the tire is at rest relative to the road; i.e. the car can be in motion at any speed. Thus as long as thetorque OFF period 265 ofFIG. 2 is sufficiently long to allow thecurve 290 to fall momentarily below theCslide level 270, and establish zero relative speed between tire and road surfaces, then theinitial condition 130 ofFIG. 1 is re-established. It should be noted that the recovery time need not be exactly the period T2, 295. It is not necessary for the torque force to fall to zero; only that it fall below Cslide, 255, which re-establishes the zero slip condition. T2, 295 can be used in the system software for recovery, or a slightly higher or lower time period allotted for recovery, in order to customize performance “feel”. - By using the first pulse to determine the period lengths of
T1 292 andT2 295, all variations in the ambient conditions are accompanied. OnceT1 292 andT2 295 are established, thepulse train 267 is of Fixed Frequency and Fixed Duration. The system is responsive in real time. The wheel rotation can monitored at desired times or continuously, (e.g., as shown inFIG. 4 at 480 andFIG. 5 at 575) and if the wheel slip is longer than therecovery time 295, or if it is absent completely, then the system reinitializes in the very next pulse. This can be done since only one pulse is required to reset the pulse timing for changing road conditions or change in system performance (lower available engine torque, shift in weight distribution, etc.) as the car increases speed. - While the
average acceleration 275 shown inFIG. 2D is less than the theoretical maximum of 280, the approach of using pulsed power according to the present disclosure has several practical advantages relative to previous approaches. For example, pulses systems according to the present disclosure can automatically compensate for varying Cstart and Cslide values by measuring the first pulse upon a required acceleration; analog systems must somehow determine these values accurately and quickly. Electronic analog power control systems are less efficient than pulse systems in power efficiency, a critical factor when electric cars are limited by battery capacity. Additionally, analog power control systems are more complex in design and manufacture. - As well, pulsed systems and methods according to the present disclosure can be self correcting. When the car is moving at a high speed and the electrical motor is operating at higher RPMs and the torque capability is no longer greater than Cstart imposes, then the
curve 220 flattens considerably more, and never crosses theCstart level 250. Thus there is no end to the initial pulse, and the maximum available power from the electrical motor is kept in the ON state for the duration. Note that this maximum acceleration system is imposed only when the car's computer detects a requirement for fast acceleration i.e. heavy throttle setting; however, the same system can be activated by the car's computer to insure that there is minimal wheel slippage, thus providing an active, pulsed traction control system. - For certain situations maximum acceleration force is required. For example, a situation in which a four-wheel drive (4WD) wheel drive vehicle must be moved out of a mired condition, it is greatly desirable to have the maximum forward force applied to the vehicle. For a 4WD vehicle, it is preferable that all four wheels accelerate in unison; not just nearly in unison, but exactly in unison. If, for example, four persons are attempting to push a car out of a snowbank, then all four persons ideally would apply their shove synchronously, so as to maximize the impulse on the stuck vehicle; if one person is out of synch with the others, then his or her impulse is not added to the peak impulse of the other three persons, and the maximum peak forward force is not realized.
-
FIG. 3 depicts two sets of plots (A)-(B) illustrating how embodiments of the present disclosure can provide the maximum impulse force in acceleration by synchronizing the torque ON pulses to four wheels of a vehicle. -
FIG. 3 shows how amethod embodiment 300 of the present disclosure can be used to provide the maximum impulse force in acceleration by synchronizing the torque ON pulses to all four wheels. 310, 315, 320, and 325 represent the torque On/Off states for four wheels which are not time synchronized. The resulting total torque for the four wheels is represented by 330. 330 shows that the maximum total force is, in this example, 3. In contrast, 340, 345, 350, and 355 show four similar wheels with similar torque duty cycles, which are time synchronized. Thetotal force 360 reaches a value of 4 on each pulse cycle. By utilizing the same Fixed Frequency/Fixed Duration pulses at each of the four wheels synchronously, the maximum forward force possible is imparted to the car. -
FIG. 4 depicts anexemplary algorithm 400 or flow chart for establishing a fixed-frequency fixed-duration pulse stream for controlling power to an electrical engine supplying power to one or more wheels. -
FIG. 4 shows a typical subroutine logic to establish the fixed frequency/fixed duration pulse stream which controls the power to the electrical engine. When the requirement for additional acceleration is received from the car's on board computer, the system initializes, 410. The data for the wheel rotational rate noted, and the system initiates with the calibrating ON pulse, 420. The timer is started to measure the pulse length initiated by 420. The wheel rotation is monitored for slippage, 430, and if none is detected, the pulse continues in the ON mode; the requirement for additional acceleration is continuously monitored as well, by 440, “not complete”. Thisloop - If there is a wheel slippage detected, then the ON pulse can be terminated, 445, and the length of the pulse (T2,
FIG. 2 , 292) is stored and the Off state sent to the engine power control. The wheel slippage is monitored for recovery to non-slip condition, and the elapsed recovery time (FIG. 2 , 295) is stored, 450. The system then generates the string of fixed frequency/fixed duration pulse inloop 460, 470, 480, until the acceleration requirement if fulfilled as per the car's computer, or an unusual slippage condition (too long, or completely absent) is detected, at which time the system reinitializes, 490. When there is no wheel slippage, this system maintains the constant On power state when maximum acceleration is required, and when the conditions of the wheel rotation change, the system reinitializes and recalibrates within a single pulse. The onboard computer of the vehicle can initiate this system at any time without requiring acceleration, just to keep the wheels in the non-slip condition, i.e., an active traction control, non skid system,FIG. 4 input to 410, 440, under car's CPU control. -
FIG. 5 depicts anexemplary algorithm 500 or flow chart for supplying power with fixed-frequency fixed-duration pulse streams for four-wheel drive vehicles, such as shown to be required inFIG. 3 . While not show, a variation for 2 wheel drive vehicles can be derived, and is not discussed. Also, all principles fromFIG. 4 are assumed forFIG. 5 , but for simplicity, not shown.FIG. 5 , 510 shows the car's CPU requesting maximum acceleration. As previously mentioned, the car's CPU can simply poke this system in a non-acceleration way, to change from a maximum acceleration system to a traction control system. Since any one or more of the wheels may be on a very poor traction state, eg wet ice, where Cstart is very low, a minimum pulse duration period is established, in the order of 15 milliseconds, 520. This minimum pulse can be adjusted in software to accommodate various car configurations or “performance feel”. After the minimum pulse period, if any of the wheels are slipping, 530, they are not used to determine the pulse ON length, 540. The CPU processor executes its instructions in microseconds, whereas the wheel rotation and slippage detection is in the millisecond range, thus the digital processing of the data and software are inconsequential to the mechanics of the system. - Subsequently, 550 and 560 determine the fixed frequency, fixed duration pulse lengths for the wheels with significant traction, 570 uses this pulse stream to drive all four wheels simultaneously; even if one or more wheel may be slipping, once the car move ever so slightly, the slipping wheels may gain traction, It is important to maintain synchronicity to achieve maximum forward impulse force.
Loop - It will be understood that
algorithm 500 can be stored in any suitable computer readable medium, e.g., flash memory, ROM, EEPROM, RAM, hard discs, etc., and may be coded in any suitable language (machine dependent or machine independent). Moreover, such an algorithm may be a functional component of suitable software and can be stored in firmware and/or hardware. Additionally, such an algorithm or software can be run or performed by any suitable processor. -
FIG. 6 depicts a box diagram of anexemplary system 600, in accordance with embodiments of the present disclosure. The power can be electrical, and can either AC or DC, 610. This power can be switchable ON and OFF, 620, and this on/off state should be controllable by an outside signal, 670. The switched power can run anelectrical motor 630, which in turn drives the cars wheel(s), 640. The rotation of the wheels should be monitored by servo or other methods, with sufficient resolution for our purposes, 650. The system CPU, 660, can receive commands from the car's CPU, 680 for throttle setting and traction control mode. The CPU can utilize theseinputs -
FIG. 6 also shows additionalrespective power switches 620 andelectric motors 630 for additional wheels (2)-(4) of a representative vehicles. For such applications, the related sensing system would detect the wheel motion of those additional wheels and the controller or additional controllers would control the torque and power supplied to the additional wheel by supplying a fixed duration fixed frequency control signal as described previously. - While some specific descriptions of aspects and embodiments of the present disclosure have been provided, there may be many other ways to implement various aspects and embodiments of the present disclosure. Various functions and elements described herein may be partitioned differently from those shown without departing from the spirit and scope of the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other embodiments. Thus, many changes and modifications may be made, by one having ordinary skill in the art, without departing from the spirit and scope of the present disclosure and claimed embodiments.
Claims (56)
1. A system for controlling power exchanged between an electro-magnetic conversion device and at least one drive wheel of a vehicle, the system comprising:
an electromagnetic conversion device configured and arranged to exchange power between the drive wheel and the electromagnetic conversion device;
the wheel configured and arranged to exchange power between the wheel and the electromagnetic conversion device;
a controller configured and arranged to: (i) receive acceleration commands and wheel slip information for the wheel as inputs, and (ii) produce as an output a control signal for the electromagnetic conversion device to exchange power between the wheel and the electromagnetic conversion device, wherein the control signal includes a timing cycle with a series of pulses of fixed frequency and fixed duration within the timing cycle to cause power to flow within the electromagnetic conversion device during an ON component of the timing cycle, and further wherein a first pulse with wheel slip is measured by monitoring and recording a first time duration of the pulse until the wheel slips and a second recovery time duration of the pulse, and using these time durations to generate the subsequent pulses in the timing cycle; and
a power switch connected to the electromagnetic conversion device including an input to receive the control signal to place the switch in one of an ON state and an OFF according to the timing cycle.
2. The system of claim 1 , wherein the controller is configured and arranged to adjust he timing cycle of the pulses of fixed frequency and fixed duration.
3. The system of claim 2 , wherein the controller is configured and arranged to adjust the timing cycle based on a sensed coefficient of friction of the wheel.
4. The system of claim 1 , wherein the controller is configured and arranged to provide real time adjustment of the power exchanged with the wheel, wherein changing traction conditions can be accommodated.
5. The system of claim 1 , wherein the system is configured and arranged for automatic measurement, storage, and use of the pulse length for the ON pulse.
6. The system of claim 1 , wherein the system is configured and arranged for automatic measurement, storage, and use of the pulse length for the OFF pulse.
7. The system of claim 1 , wherein the wheel slip information comprises a coefficient of starting friction or coefficient of sliding friction.
8. The system of claim 1 , further comprising a second electromagnetic conversion device, a second wheel, and a second power switch, wherein the controller is configured and arranged to (i) receive acceleration commands and wheel slip information for the second wheel as inputs, and (ii) produce as an output a control signal for the second electromagnetic conversion device to exchange power between the second wheel and the second electromagnetic conversion device, wherein the control signal includes a timing cycle with a series of pulses of fixed frequency and fixed duration within the timing cycle to cause power to flow within the second electromagnetic conversion device during an ON component of the timing cycle, and wherein the second power switch is connected to the second electromagnetic conversion device and includes an input to receive the control signal to place the second power switch in one of an ON state and an OFF according to the timing cycle.
9. The system of claim 8 , further comprising a third electromagnetic conversion device, a third wheel, and a third power switch, wherein the controller is configured and arranged to (i) receive acceleration commands and wheel slip information for the third wheel as inputs, and (ii) produce as an output a control signal for the third electromagnetic conversion device to exchange power between the third wheel and the third electromagnetic conversion device, wherein the control signal includes a timing cycle with a series of pulses of fixed frequency and fixed duration within the timing cycle to cause power to flow to the third electromagnetic conversion device during an ON component of the timing cycle, and wherein the third power switch is connected to the third electromagnetic conversion device and includes an input to receive the control signal to place the third power switch in one of an ON state and an OFF according to the timing cycle.
10. The system of claim 9 , further comprising a fourth electromagnetic conversion device, a fourth wheel, and a fourth power switch, wherein the controller is configured and arranged to (i) receive acceleration commands and wheel slip information for the fourth wheel as inputs, and (ii) produce as an output a control signal for the fourth electromagnetic conversion device to exchange power between the fourth wheel and the fourth electromagnetic conversion device, wherein the control signal includes a timing cycle with a series of pulses of fixed frequency and fixed duration within the timing cycle to cause power to flow to the fourth electromagnetic conversion device during an ON component of the timing cycle, and wherein the fourth power switch is connected to the fourth electromagnetic conversion device and includes an input to receive the control signal to place the fourth power switch in one of an ON state and an OFF according to the timing cycle.
11. The system of claim 1 , wherein the duration of each pulse of the control signal is equal to a period of time between pulses in the timing cycle.
12. The system of claim 1 , wherein the number of pulses in a timing cycle varies from zero to a maximum number corresponding to an acceleration level of the electromagnetic conversion device from zero to a maximum acceleration level.
13. The system of claim 1 , further comprising a processing system to generate the control signal supplied to the power switch and to time the start and end of each pulse within the timing cycle.
14. The system of claim 1 , wherein the length of the timing cycle is constant and the acceleration of the vehicle is varied by changing the number of pulses from one timing cycle to another timing cycle.
15. The system of claim 10 , wherein the controller is configured and arranged to provide synchronization of pulses provided to the four electromagnetic conversion devices for synchronized four-wheel drive operation.
16. The system of claim 8 , wherein the controller is configured and arranged to detect which wheels have a minimum acceptable traction for inclusion in a synchronized power pulse exchanged with the wheels.
17. The system of claim 16 , wherein the detection of the minimum acceptable traction is based on a minimum time before a slide starts to occur.
18. The system of claim 17 , wherein the minimum time is about 15 milliseconds.
19. The system of claim 10 , wherein the controller is configured and arranged to detect which wheels have a minimum acceptable traction for inclusion in a synchronized power pulse exchanged with the wheels.
20. The system of claim 19 , wherein the detection of the minimum acceptable traction is based on a minimum time before a slide starts to occur.
21. The system of claim 20 , wherein the minimum time is about 15 milliseconds.
22. A method for controlling the power exchanged between an electro-magnetic conversion device coupled to one or more wheels of an electrically powered vehicle and the one or more wheels, the method comprising:
providing a timing cycle;
determining a desired acceleration rate for a vehicle powered by one or more electrically driven wheels;
generating a control signal including a series of pulses of fixed frequency and fixed duration within the timing cycle corresponding to the desired acceleration rate; and
supplying a control signal to an input of a power switch connected to one or more electro-magnetic conversion devices, each connected to a respective one of the one or more wheels, to place the switch in one of an ON state during each pulse and an OFF state after each pulse to cause power to flow within the respective electro-magnetic conversion device connected to each electrically driven wheel during the ON state and cause the respective electro-magnetic conversion device to exchange a desired power with each electrically driven wheel over the timing cycle; and further wherein a first pulse with wheel slip is measured by monitoring and recording a first time duration of the pulse until the wheel slips and a second recovery time duration of the pulse, and using these time durations to generate the subsequent pulses in the timing cycle.
23. The method of claim 22 , wherein the one or more electrically driven wheels comprises two wheels.
24. The method of claim 22 , wherein the one or more electrically driven wheels comprises four wheels.
25. The method of claim 22 , wherein providing the timing cycle includes establishing a timing cycle of a constant length and the power exchanged with each wheel is varied by changing the number of generated pulses from one timing cycle to another timing cycle.
26. The method of claim 23 wherein the duration of each pulse of the control signal is equal to a period of time between pulses in the timing cycle.
27. The method of claim 23 wherein the duration of each pulse of the control signal is less than or equal to a period of time between pulses in the timing cycle.
28. The method of claim 23 wherein the number of pulses in a timing cycle varies from zero to a maximum number corresponding to a power level of an electromagnetic conversion device from zero to a maximum power level.
29. The method of claim 22 , further comprising adjusting the timing cycle of the pulses of fixed frequency and fixed duration.
30. The method of claim 29 , wherein adjusting the timing cycle IS based on a sensed coefficient of friction of the driven wheel.
31. The method of claim 30 , wherein adjusting the timing cycle comprises real-time adjustment, wherein changing traction conditions can be accommodated.
32. The method of claim 22 , further comprising automatic measurement, storage, and use of the pulse length for the ON pulse.
33. The method of claim 22 , further comprising sensing wheel slip information, wherein the wheel slip information comprises a coefficient of starting friction or coefficient of sliding friction.
34. The method of claim 22 , wherein supplying the control signal comprises providing synchronization of pulses provided to two or more electromagnetic conversion device for synchronized two-wheel power exchange or four-wheel power exchange operation.
35. The method of claim 22 , further comprising detecting which wheels have a minimum acceptable traction for inclusion in a synchronized power pulse exchanged with the wheels.
36. The method of claim 35 , wherein detecting the minimum acceptable traction is based on a minimum time before a slide starts to occur.
37. The method of claim 36 , wherein the minimum time is about 15 milliseconds.
38. A computer program product residing on a computer-readable storage medium having a plurality of instructions stored thereon, which when executed by a processing system, cause the processing system to:
provide a timing cycle;
determine a desired acceleration rate for a vehicle powered by one or more electrically driven wheels;
generate a control signal including a series of pulses of fixed frequency and fixed duration within the timing cycle corresponding to the desired acceleration rate; and
supply a control signal to an input of a power switch connected to one or more electro-magnetic conversion devices, each connected to a respective one of the one or more wheels, to place the switch in one of an ON state during each pulse and an OFF state after each pulse to cause power to flow within the respective electro-magnetic conversion device connected to each electrically driven wheel during the ON state and cause the respective electromagnetic conversion device to exchange a desired power with each electrically driven wheel over the timing cycle; and further wherein a first pulse with wheel slip is measured by monitoring and recording a first time duration of the pulse until the wheel slips and a second recovery time duration of the pulse, and using these time durations to generate the subsequent pulses in the timing cycle.
39. The computer program product of claim 38 , wherein the computer-readable storage medium comprises flash memory.
40. The computer program product of claim 38 , wherein the computer-readable storage medium comprises ROM memory.
41. The computer program product of claim 38 , wherein the one or more electrically driven wheels comprises two wheels.
42. The computer program product of claim 38 , wherein the one or more electrically driven wheels comprises four wheels.
43. The computer program product of claim 38 , wherein providing the timing cycle includes establishing a timing cycle of a constant length and the power exchanged with each wheel is varied by changing the number of generated pulses from one timing cycle to another timing cycle.
44. The computer program product of claim 38 , wherein the duration of each pulse of the control signal is equal to a period of time between pulses in the timing cycle.
45. The computer program product of claim 38 , wherein the duration of each pulse of the control signal is less than or equal to a period of time between pulses in the timing cycle.
46. The computer program product of claim 38 , wherein the number of pulses in a timing cycle varies from zero to a maximum number corresponding to a power level of an electromagnetic conversion device from zero to a maximum power level.
47. The computer program product of claim 38 , further comprising an instruction to adjust the timing cycle of the pulses of fixed frequency and fixed duration.
48. The computer program product of claim 38 , further comprising an instruction to adjust the timing cycle based on a sensed coefficient of friction of the driving wheel.
49. The computer program product of claim 38 , further comprising an instruction to adjust the timing cycle for real-time adjustment, wherein changing traction conditions can be accommodated.
50. The computer program product of claim 38 , further comprising an instruction for automatic measurement, storage, and use of the pulse length for the ON pulse.
51. The computer program product of claim 38 , further comprising an instruction for automatic measurement, storage, and use of the pulse length for the OFF pulse.
52. The computer program product of claim 38 , wherein the wheel slip information comprises a coefficient of starting friction or coefficient of sliding friction.
53. The computer program product of claim 38 , further comprising an instruction for providing synchronization of pulses provided to two or more electromagnetic conversion device for synchronized two-wheel exchange or four-wheel exchange operation.
54. The computer program product of claim 38 , further comprising an instruction for detecting which wheels have a minimum acceptable traction for inclusion in a synchronized power pulse exchanged with the wheels.
55. The computer program product of claim 54 , wherein detecting the minimum acceptable traction is based on a minimum time before a slide starts to occur.
56. The computer program product of claim 55 , wherein the minimum time IS about 15 milliseconds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/517,354 US20150051777A1 (en) | 2009-10-30 | 2014-10-17 | Traction systems for electrically powered vehicles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/609,545 US8903577B2 (en) | 2009-10-30 | 2009-10-30 | Traction system for electrically powered vehicles |
US14/517,354 US20150051777A1 (en) | 2009-10-30 | 2014-10-17 | Traction systems for electrically powered vehicles |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/609,545 Continuation US8903577B2 (en) | 2007-07-31 | 2009-10-30 | Traction system for electrically powered vehicles |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150051777A1 true US20150051777A1 (en) | 2015-02-19 |
Family
ID=43828292
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/609,545 Active 2031-11-08 US8903577B2 (en) | 2007-07-31 | 2009-10-30 | Traction system for electrically powered vehicles |
US14/517,354 Abandoned US20150051777A1 (en) | 2009-10-30 | 2014-10-17 | Traction systems for electrically powered vehicles |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/609,545 Active 2031-11-08 US8903577B2 (en) | 2007-07-31 | 2009-10-30 | Traction system for electrically powered vehicles |
Country Status (10)
Country | Link |
---|---|
US (2) | US8903577B2 (en) |
EP (1) | EP2493717A2 (en) |
JP (2) | JP5559890B2 (en) |
CN (1) | CN102844216A (en) |
AU (2) | AU2010313581B2 (en) |
CA (1) | CA2777759C (en) |
IL (1) | IL219323A0 (en) |
MX (1) | MX2012005119A (en) |
NZ (1) | NZ599317A (en) |
WO (1) | WO2011053514A2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8604709B2 (en) * | 2007-07-31 | 2013-12-10 | Lsi Industries, Inc. | Methods and systems for controlling electrical power to DC loads |
US7598683B1 (en) * | 2007-07-31 | 2009-10-06 | Lsi Industries, Inc. | Control of light intensity using pulses of a fixed duration and frequency |
US20130175953A1 (en) * | 2011-12-16 | 2013-07-11 | Carl William Astley | Sequential pulse firing of multiple motors in an flywheel array |
US9479014B2 (en) * | 2012-03-28 | 2016-10-25 | Acme Product Development, Ltd. | System and method for a programmable electric converter |
US9352737B2 (en) * | 2012-10-08 | 2016-05-31 | Ford Global Technologies, Llc | Method and system for operating a hybrid powertrain |
US9085205B2 (en) * | 2012-12-21 | 2015-07-21 | Continental Automotive Systems, Inc. | Tire tread temperature sensor and diagnostics for in-vehicle display |
US9139088B2 (en) * | 2013-08-30 | 2015-09-22 | Ford Global Technologies, Llc | System and method for hybrid vehicle control during wheel slip events to limit generator speed |
US9248745B1 (en) | 2014-09-16 | 2016-02-02 | Robert Bosch Gmbh | Wheel stability control based on the moment of an electrical motor |
EP3213971B1 (en) * | 2014-12-16 | 2022-02-02 | BYD Company Limited | Electric vehicle, and active safety control system for electric vehicle and control method therefor |
JP6984557B2 (en) * | 2018-07-18 | 2021-12-22 | トヨタ自動車株式会社 | Seat belt controller |
DE102019100968A1 (en) * | 2019-01-16 | 2020-07-16 | Schaeffler Technologies AG & Co. KG | Method for actively damping a starting resonance of a torsion damper when starting an internal combustion engine |
US11637513B2 (en) * | 2021-03-15 | 2023-04-25 | Tula eTechnology, Inc. | Methods of optimizing waveforms for electric motors |
US11888424B1 (en) | 2022-07-18 | 2024-01-30 | Tula eTechnology, Inc. | Methods for improving rate of rise of torque in electric machines with stator current biasing |
Family Cites Families (863)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4970958A (en) | 1962-12-31 | 1990-11-20 | The United States Of America As Represented By The Secretary Of The Navy | Marine mine fire control mechanism |
US4982384A (en) | 1971-09-27 | 1991-01-01 | The United States Of America As Represented By The Secretary Of The Navy | Split beam sonar |
US5023527A (en) | 1974-06-24 | 1991-06-11 | General Electric Company | Control circuits, electronically commutated motor systems and methods |
US4763347A (en) | 1983-02-02 | 1988-08-09 | General Electric Company | Control system, electronically commutated motor system, blower apparatus and methods |
US4654566A (en) | 1974-06-24 | 1987-03-31 | General Electric Company | Control system, method of operating an electronically commutated motor, and laundering apparatus |
US5227704A (en) | 1974-06-24 | 1993-07-13 | General Electric Company | Motor controls, refrigeration systems and methods of motor operation and control |
US4090189A (en) | 1976-05-20 | 1978-05-16 | General Electric Company | Brightness control circuit for LED displays |
US4163969A (en) | 1977-06-20 | 1979-08-07 | American District Telegraph Company | Variable frequency light pulser for smoke detectors |
US4583365A (en) | 1979-08-23 | 1986-04-22 | Georgina C. Hirtle | Reticulated electrothermal fluid motor |
US4284884A (en) | 1980-04-09 | 1981-08-18 | Northern Telecom Limited | Electro-optic devices |
US4686437A (en) | 1980-06-20 | 1987-08-11 | Kollmorgen Technologies Corporation | Electromechanical energy conversion system |
IN157249B (en) | 1980-09-26 | 1986-02-15 | Nat Res Dev | |
JPS59763B2 (en) | 1980-11-20 | 1984-01-09 | 株式会社デンソー | Automotive electronic meter |
NZ201460A (en) | 1981-08-17 | 1986-11-12 | Allware Agencies Ltd | Multipurpose microprocessor controlled heating and cooling fan |
JPS5865950A (en) | 1981-10-14 | 1983-04-19 | Nippon Denso Co Ltd | Method of controlling internal-combustion engine |
AU530227B2 (en) | 1981-10-19 | 1983-07-07 | Canon Kabushiki Kaisha | Serial printer |
US4574686A (en) | 1981-11-09 | 1986-03-11 | Caterpillar Tractor Co. | Digital proportional spool position control of compensated valves |
JPH0672566B2 (en) | 1982-02-05 | 1994-09-14 | ロ−ベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for diagnosing vehicle function with microcomputer-controlled switching device |
US4605883A (en) | 1982-02-05 | 1986-08-12 | Sunbeam Corporation | Motor speed control circuit |
EP0100682A1 (en) | 1982-08-03 | 1984-02-15 | Peritronic Medical Industries Plc | Fluid flow control process and apparatus |
DE3235194A1 (en) | 1982-09-23 | 1984-03-29 | Robert Bosch Gmbh, 7000 Stuttgart | METHOD AND DEVICE FOR SECURING TOOLS |
US4652265A (en) | 1982-09-23 | 1987-03-24 | Mcdougall David A | Implantable blood pump and integral apparatus for the operation thereof |
US5184114A (en) | 1982-11-04 | 1993-02-02 | Integrated Systems Engineering, Inc. | Solid state color display system and light emitting diode pixels therefor |
US4577240A (en) | 1982-11-15 | 1986-03-18 | Digital Engineering, Ltd. | Multiple zone multiple disk video recording system |
US4724495A (en) | 1982-11-15 | 1988-02-09 | Hedberg David J | Digital formatter, controller, and head assembly for video disk recording system, and method |
US4879501A (en) | 1982-12-10 | 1989-11-07 | Commercial Shearing, Inc. | Constant speed hydrostatic drive system |
JPS59122400A (en) | 1982-12-24 | 1984-07-14 | Fujitsu Ltd | Control system for stepping motor |
US4583027A (en) | 1982-12-27 | 1986-04-15 | Hitachi Metals International, Ltd. | Moving magnet linear motor |
US4589520A (en) | 1983-01-06 | 1986-05-20 | Tapfer David L | Platform service vehicle |
RO82939A2 (en) | 1983-01-24 | 1985-10-31 | Institutul De Cercetare Stiintifica Si Inginerie Tehnologica Pentru Industria Electrotehnica,Ro | ELECTRONIC CONTROL INSTALLATION OF CONTROL SYSTEMS FOR ACTUATION SYSTEMS WITH ELECTROMAGNETIC COUPLINGS FOR SEWING AND / OR FASTENING MACHINES |
DE3406408A1 (en) | 1983-02-23 | 1984-08-23 | Canon K.K., Tokio/Tokyo | Device and method for controlling a vibrational-wave motor |
US4584511A (en) | 1983-02-25 | 1986-04-22 | Johnson Service Company | Controllable rotary actuator |
GB2135745B (en) | 1983-02-26 | 1987-01-07 | Bosch Gmbh Robert | Circuit for controlling the brake pressure in anti-lock vehicle brake systems |
JPS59170825A (en) | 1983-03-17 | 1984-09-27 | Olympus Optical Co Ltd | Motor driving device |
DE3314714A1 (en) | 1983-04-22 | 1984-10-25 | Gebr. Märklin & Cie GmbH, 7320 Göppingen | CONTROL UNIT FOR MODEL VEHICLES, HOW MODEL RAILWAYS, MODEL CARS, ETC. |
GB8312069D0 (en) | 1983-05-03 | 1983-06-08 | Peritronic Medical Ind Plc | Peristaltic pumps |
JPS60502044A (en) | 1983-08-06 | 1985-11-28 | インデツクス−ベルバルトウングス−ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Multi-axis automatic lathe |
US4667951A (en) | 1983-08-23 | 1987-05-26 | Canon Kabushiki Kaisha | Original feeding apparatus |
JPS6053639A (en) | 1983-09-01 | 1985-03-27 | Sanshin Ind Co Ltd | Engine over-rotation preventing device |
US4618761A (en) | 1983-09-14 | 1986-10-21 | Inoue-Japax Research Incorporation | Electrode cutting apparatus for wire cut electric discharge machine |
DE3486449T2 (en) | 1983-11-28 | 1997-11-27 | Matsushita Electric Ind Co Ltd | PULSE WIDTH MODULATION INVERTER DEVICE |
JPH0732618B2 (en) | 1983-12-02 | 1995-04-10 | 三洋電機株式会社 | DC motor braking device |
US4592087B1 (en) | 1983-12-08 | 1996-08-13 | Knowles Electronics Inc | Class D hearing aid amplifier |
JPS60137652A (en) | 1983-12-09 | 1985-07-22 | Rengo Co Ltd | Printing system |
US4642537A (en) | 1983-12-13 | 1987-02-10 | General Electric Company | Laundering apparatus |
JPS60131096A (en) | 1983-12-20 | 1985-07-12 | Mitsubishi Electric Corp | 2-phase 90 degree motor |
GB2153495B (en) | 1984-01-25 | 1987-10-21 | Plessey Co Plc | Improvements relating to variable timing and power storage arrangements |
FR2559321B1 (en) | 1984-02-06 | 1986-11-21 | Applic Mach Motrices | LOW-VOLTAGE ELECTRIC DRIVE DEVICE FOR A HIGH-INERTIA ROTATING MASS AND MOTOR BEING PART OF THIS DEVICE |
GB8404062D0 (en) | 1984-02-16 | 1984-03-21 | Pa Consulting Services | Heat sealing thermoplastic straps |
US4684855A (en) | 1984-03-12 | 1987-08-04 | Joseph Kallos | Permanent magnet direct current motor apparatus |
DE3413380A1 (en) | 1984-04-10 | 1985-10-17 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart | DEVICE FOR OPENING AND CLOSING A TOP OF A MOTOR VEHICLE |
JPS60230641A (en) | 1984-04-28 | 1985-11-16 | Canon Inc | Battery check device |
CH654974GA3 (en) | 1984-05-04 | 1986-03-27 | ||
US4686436A (en) | 1984-07-06 | 1987-08-11 | General Electric Company | Electronic control circuit, electronically commutated motor system and method for controlling same, laundry apparatus, and methods for operating apparatus for switching high voltage DC and for controlling electrical load powering apparatus |
JPS6124365A (en) | 1984-07-12 | 1986-02-03 | Matsushita Electric Ind Co Ltd | Hand scanner |
US4675575A (en) | 1984-07-13 | 1987-06-23 | E & G Enterprises | Light-emitting diode assemblies and systems therefore |
US5060151A (en) | 1984-07-19 | 1991-10-22 | Cymatics, Inc. | Speed control for orbital shaker with reversing mode |
US4649287A (en) | 1984-07-31 | 1987-03-10 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Bidirectional control system for energy flow in solar powered flywheel |
US4574225A (en) | 1984-08-06 | 1986-03-04 | Pacific Scientific Company | Apparatus for accommodating inductive flyback in pulsed motor windings |
DE3428931C1 (en) | 1984-08-06 | 1985-06-05 | Norton Christensen, Inc., Salt Lake City, Utah | Device for the remote transmission of information from a borehole to the surface of the earth during the operation of a drilling rig |
US4734861A (en) | 1984-08-27 | 1988-03-29 | Twin Disc, Incorporated | Electronic control for motor vehicle transmission |
US4624334A (en) | 1984-08-30 | 1986-11-25 | Eaton Corporation | Electric power assisted steering system |
US4651068A (en) | 1984-10-01 | 1987-03-17 | Electro-Craft Corporation | Brushless motor control circuitry with optimum current vector control |
DE3439322C2 (en) | 1984-10-26 | 1987-01-08 | Infors GmbH, 8000 München | Infusion pump |
US4610739A (en) | 1984-11-02 | 1986-09-09 | Adolph Coors Company | Method and device for providing longitudinal and lateral stretch control in laminated webs |
US4843297A (en) | 1984-11-13 | 1989-06-27 | Zycron Systems, Inc. | Microprocessor speed controller |
US4812724A (en) | 1984-11-13 | 1989-03-14 | Liebel-Flarsheim Corporation | Injector control |
US4591769A (en) | 1984-11-29 | 1986-05-27 | Beckerman Howard L | Arrangement for controlling the speed of a DC motor |
US4598787A (en) | 1984-11-30 | 1986-07-08 | Trw Inc. | Control apparatus for power assist steering system |
GB8431691D0 (en) | 1984-12-14 | 1985-01-30 | Smiths Industries Plc | Phase control |
US4626763A (en) | 1985-01-14 | 1986-12-02 | Westinghouse Electric Corp. | Inverter system with hysteresis transition between pulse width modulation mode and pure square wave mode of operation |
US4839814A (en) | 1985-01-29 | 1989-06-13 | Moore Business Forms, Inc. | Size independent modular web processing line and modules |
JPH07858B2 (en) | 1985-02-21 | 1995-01-11 | 株式会社豊田中央研究所 | Control device for a plurality of weft yarn selective storage devices in a jet turm |
US4660977A (en) | 1985-02-22 | 1987-04-28 | The Perkin-Elmer Corporation | Synchronous wavelength drive and data acquisition conversion for a sequential spectrophotometer |
US4622499A (en) | 1985-02-27 | 1986-11-11 | Miniscribe Corporation | Method and apparatus for controlling a motor |
US4777603A (en) | 1985-03-08 | 1988-10-11 | Cybermation, Inc. | Controller for multiple-axis machine |
US4652260A (en) | 1985-03-11 | 1987-03-24 | Strato Medical Corporation | Infusion device |
US4611154A (en) | 1985-03-28 | 1986-09-09 | Gulf & Western Manufacturing Company | Method and apparatus for controlling the operation of a DC load |
JPS61229968A (en) | 1985-04-02 | 1986-10-14 | Nippon Denso Co Ltd | Control device for motor-driven fuel pump |
US4667137A (en) | 1985-04-04 | 1987-05-19 | Applied Motion Products, Inc. | Single excitation pulse brushless DC motor |
US4635439A (en) | 1985-04-11 | 1987-01-13 | Caterpillar Industrial Inc. | Fluid operated system control |
US4639653A (en) | 1985-04-15 | 1987-01-27 | Applied Microbotics Corporation | Method and apparatus for performing work in a three dimensional space |
JPS61248881A (en) | 1985-04-22 | 1986-11-06 | 三菱電機株式会社 | Controller for elevator |
US4634944A (en) | 1985-05-02 | 1987-01-06 | Johnson Fishing Inc. | Cyclic speed motor control circuit |
GB8515992D0 (en) | 1985-06-25 | 1985-07-31 | Hester R | Wheelchair |
IE851629L (en) | 1985-06-28 | 1986-12-28 | Kollmorgen Ireland Ltd | Electrical drive systems |
US4617637A (en) | 1985-07-09 | 1986-10-14 | Lifecare Services, Inc. | Servo control system for a reciprocating piston respirator |
US4622500A (en) | 1985-07-11 | 1986-11-11 | The Machlett Laboratories, Inc. | Electric motor controller |
EP0210047A3 (en) | 1985-07-16 | 1987-09-30 | Maghemite Inc. | Motor control and operation |
CA1238102A (en) | 1985-07-22 | 1988-06-14 | Joseph T. Woyton | Variable speed drive |
US4804266A (en) | 1985-07-26 | 1989-02-14 | Barspec Ltd. | Continuously rotating grating rapid-scan spectrophotometer |
US4651070A (en) | 1985-08-01 | 1987-03-17 | Westinghouse Electric Corp. | Transit vehicle start-up propulsion motor control apparatus and method |
GB8521009D0 (en) | 1985-08-22 | 1985-09-25 | Jones G | Electrical machines |
US4636706A (en) | 1985-09-12 | 1987-01-13 | General Motors Corporation | Generator voltage regulating system |
US4774914A (en) | 1985-09-24 | 1988-10-04 | Combustion Electromagnetics, Inc. | Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark |
US4614901A (en) | 1985-10-15 | 1986-09-30 | Kennedy Company | Servo power amplifier having load equalization |
US4800974A (en) | 1985-10-23 | 1989-01-31 | Trw Inc. | Electric steering gear |
US4879623A (en) | 1985-12-02 | 1989-11-07 | Caterpillar Industrial Inc. | Voltage transients |
US4891764A (en) | 1985-12-06 | 1990-01-02 | Tensor Development Inc. | Program controlled force measurement and control system |
US5097494A (en) | 1985-12-09 | 1992-03-17 | X-Ray Industries, Inc. | X-ray automatic synchronous inspection system |
US5252905A (en) | 1985-12-23 | 1993-10-12 | York International Corporation | Driving system for single phase A-C induction motor |
DE3672796D1 (en) | 1985-12-24 | 1990-08-23 | Omnitech Europ | PACKING MACHINES OF THE TYPE "MOLD-FILL-CLOSE" IN A HORIZONTAL LINE. |
EP0237682B1 (en) | 1985-12-24 | 1991-02-27 | Kabushiki Kaisha Toshiba | Control system for optical information reproducing apparatus |
US4654924A (en) | 1985-12-31 | 1987-04-07 | Whirlpool Corporation | Microcomputer control system for a canister vacuum cleaner |
JPH0697854B2 (en) | 1986-01-11 | 1994-11-30 | 株式会社日立製作所 | Power converter control device |
US4843533A (en) | 1986-01-15 | 1989-06-27 | Square D Company | Transient ride-through AC inverter |
US4698577A (en) | 1986-01-16 | 1987-10-06 | General Electric Company | Method of digital flux reconstruction with DC elimination |
GB8603084D0 (en) | 1986-02-07 | 1986-03-12 | Trw Cam Gears Ltd | Road vehicle power assisted steering system |
US4705997A (en) | 1986-02-21 | 1987-11-10 | United Technologies Automotive, Inc. | Bidirectional motor drive circuit |
US4663575A (en) | 1986-02-21 | 1987-05-05 | United Technologies Automotive, Inc. | Speed control for a window wiper system |
US4749933A (en) | 1986-02-26 | 1988-06-07 | Ben Aaron Max | Polyphase induction motor system and operating method |
DE3610253A1 (en) | 1986-03-26 | 1987-10-08 | Sgs Halbleiterbauelemente Gmbh | CONTROL CIRCUIT FOR A COMMUTATORLESS DC MOTOR |
JP2790273B2 (en) | 1986-03-31 | 1998-08-27 | キヤノン株式会社 | Drive |
FI77331C (en) | 1986-04-10 | 1989-02-10 | Valmet Oy | FOERFARANDE OCH ANORDNING FOER MAETNING AV LUFTGENOMTRAENGLIGHETEN HOS EN VAEGG, SAERSKILT EN VIRA ELLER FILT I EN PAPPERSMASKIN. |
US4750837A (en) | 1986-04-11 | 1988-06-14 | Sclavo Inc. | Fluorometer with reference light source |
US4802768A (en) | 1986-04-11 | 1989-02-07 | Sclavo, Inc. | Two light source reference system for a fluorometer |
US4854902A (en) | 1986-04-17 | 1989-08-08 | Havins Felton H | Boat speed and direction control system |
US4680512A (en) | 1986-05-19 | 1987-07-14 | Caterpillar Industrial Inc. | Fault protection apparatus for traction motor circuit |
US5005088A (en) | 1986-05-21 | 1991-04-02 | Canon Kabushiki Kaisha | Recording and/or reproducing apparatus adapted to minimize electrical energy consumption |
DE3620137A1 (en) | 1986-06-14 | 1987-12-17 | Raimund Wilhelm | SCREW MACHINE AND METHOD FOR THEIR OPERATION |
JPS6325063A (en) | 1986-07-17 | 1988-02-02 | Seiko Epson Corp | Printing method |
US4890047A (en) | 1986-06-25 | 1989-12-26 | Harris Corporation | Digital pulse width modulation control of brushless DC motors |
US4771930A (en) | 1986-06-30 | 1988-09-20 | Kulicke And Soffa Industries Inc. | Apparatus for supplying uniform tail lengths |
US4876491A (en) | 1986-07-01 | 1989-10-24 | Conner Peripherals, Inc. | Method and apparatus for brushless DC motor speed control |
US4691797A (en) | 1986-07-10 | 1987-09-08 | Trw Inc. | Fluid flow control apparatus for a power steering system |
US4716409A (en) | 1986-07-16 | 1987-12-29 | Homestead Products, Inc. | Electrical appliance control system |
US4705500A (en) | 1986-07-17 | 1987-11-10 | Mentor O & O, Inc. | Ophthalmic aspirator-irrigator |
DE3713288A1 (en) | 1986-07-25 | 1988-02-04 | Man Nutzfahrzeuge Gmbh | CONTROL DEVICE FOR ADJUSTING THE INJECTION TIME AND / OR THE DELIVERY QUANTITY OF A FUEL INJECTION PUMP |
DE3625375A1 (en) | 1986-07-26 | 1988-02-04 | Porsche Ag | COOLING FLAP AND BLOWER CONTROL FOR MOTOR VEHICLES |
US4719361A (en) | 1986-08-18 | 1988-01-12 | Dresser Industries, Inc. | Mobile, off-road, heavy-duty haulage vehicle |
JPS6368440A (en) | 1986-09-11 | 1988-03-28 | N S K Warner Kk | Passive seat belt system |
US4749181A (en) | 1986-09-30 | 1988-06-07 | Pittaway James W | Motor-driven exercise apparatus having runaway prevention system |
US4931715A (en) | 1986-11-03 | 1990-06-05 | Teledyne Inet | Synchronous motor torque control device |
US4906906A (en) | 1986-11-04 | 1990-03-06 | Lautzenhiser Lloyd L | Conveyance with electronic control for left and right motors |
US5012165A (en) | 1986-11-04 | 1991-04-30 | Lautzenhiser Lloyd L | Conveyance with electronic control for left and right motors |
US4903004A (en) | 1986-11-05 | 1990-02-20 | Starke Jeffrey W | All-weather digital distance measuring and signalling system |
US4874997A (en) | 1986-11-20 | 1989-10-17 | Unimation, Inc. | Digital robot control providing pulse width modulation for a brushless DC drive |
US4734626A (en) | 1986-12-23 | 1988-03-29 | Sundstrand Corporation | Double differential, electrically compensated constant speed drive |
US4774916A (en) | 1987-02-11 | 1988-10-04 | The Budd Company | Measured shot ether system |
US4888531A (en) | 1987-02-12 | 1989-12-19 | Hormann Kg Antriebs- Und Steuerungstechnik | Variable drive mechanism for the panel of a gate or similar structure |
USRE34399E (en) | 1987-02-26 | 1993-10-05 | Micropolis Corporation | Winchester disk drive motor circuitry |
DE3706152A1 (en) | 1987-02-26 | 1988-09-08 | Sueddeutsche Kuehler Behr | METHOD FOR CONTROLLING A VEHICLE AIR CONDITIONER AND VEHICLE AIR CONDITIONER FOR IMPLEMENTING THE METHOD |
US4839754A (en) | 1987-02-26 | 1989-06-13 | Micropolis Corporation | Winchester disk drive motor circuitry |
US4925443A (en) | 1987-02-27 | 1990-05-15 | Heilman Marlin S | Biocompatible ventricular assist and arrhythmia control device |
US4785927A (en) | 1987-03-02 | 1988-11-22 | Mars Incorporated | Vending machine control with product delivery motor home detection, motor speed control and power supply |
DE3708086A1 (en) | 1987-03-13 | 1988-09-22 | Henkel Kgaa | MOBILE FLOOR CLEANING MACHINE |
US4751978A (en) | 1987-03-16 | 1988-06-21 | Trw Inc. | Electric assist steering system with alternator power source |
JPH0698120B2 (en) | 1987-03-23 | 1994-12-07 | オリンパス光学工業株式会社 | Video scope system |
US4837753A (en) | 1987-04-10 | 1989-06-06 | Amoco Corporation | Method and apparatus for logging a borehole |
US4771224A (en) | 1987-04-16 | 1988-09-13 | Westinghouse Electric Corp. | Digital pulse generator for controlled thyristor switches and motor drive embodying the same |
US4799126A (en) | 1987-04-16 | 1989-01-17 | Navistar International Transportation Corp. | Overload protection for D.C. circuits |
EP0578079B1 (en) | 1987-05-08 | 1996-04-10 | Tsudakoma Corporation | A pile warp yarn tension controller |
US4811901A (en) | 1987-05-26 | 1989-03-14 | Curtis Dyna-Products Corporation | Pulse fog generator |
US4777382A (en) | 1987-06-19 | 1988-10-11 | Allied-Signal, Inc. | Pulse width logic/power isolation circuit |
WO1988004868A1 (en) | 1987-07-01 | 1988-06-30 | Moog Inc. | Opto-electrical power transmission and control system |
US4795314A (en) | 1987-08-24 | 1989-01-03 | Cobe Laboratories, Inc. | Condition responsive pump control utilizing integrated, commanded, and sensed flowrate signals |
DE3728390A1 (en) | 1987-08-26 | 1989-03-09 | Lach Spezial Werkzeuge Gmbh | METHOD FOR CONTROLLING THE INPUT AND TOUCH MOTION OF A GRINDING WHEEL |
US4808994A (en) | 1987-08-27 | 1989-02-28 | Riley Robert E | Logic interchange system |
US4805750A (en) | 1987-09-28 | 1989-02-21 | Saturn Corporation | Steady state slip detection/correction for a motor vehicle transmission |
US4803415A (en) | 1987-10-07 | 1989-02-07 | Commercial Shearing, Inc. | Stepper motor control circuit and apparatus |
US4815278A (en) | 1987-10-14 | 1989-03-28 | Sundstrand Corporation | Electrically driven fuel pump for gas turbine engines |
US4952196A (en) | 1987-10-21 | 1990-08-28 | Autra-Bike Co., Inc. | Variable diameter sprocket assembly |
US4818920A (en) | 1987-10-26 | 1989-04-04 | Jacob Keith D | Digital oem ceiling fan |
US4820092A (en) | 1987-11-04 | 1989-04-11 | American Hofmann Corporation | Touch sensing method and apparatus |
JPH01129255A (en) | 1987-11-14 | 1989-05-22 | Dainippon Screen Mfg Co Ltd | Method for preventing deviation in scanning line of input /output separation type scanner |
US5045172A (en) | 1987-11-25 | 1991-09-03 | Princeton Biochemicals, Inc. | Capillary electrophoresis apparatus |
US4808895A (en) | 1987-11-30 | 1989-02-28 | Toshiba Machine Co., Ltd. | Acceleration control apparatus |
US4856286A (en) | 1987-12-02 | 1989-08-15 | American Standard Inc. | Refrigeration compressor driven by a DC motor |
US4914592A (en) | 1987-12-03 | 1990-04-03 | Trw Inc. | Apparatus for controlling a steering-by-driving system |
US4827196A (en) | 1987-12-03 | 1989-05-02 | E. I. Du Pont De Nemours And Company | Motor control arrangement |
US5059876A (en) | 1987-12-10 | 1991-10-22 | Shah Emanuel E | Brushless rotating electrical machine |
US5140248A (en) | 1987-12-23 | 1992-08-18 | Allen-Bradley Company, Inc. | Open loop motor control with both voltage and current regulation |
US4954764A (en) | 1987-12-30 | 1990-09-04 | Samsung Electronic Co., Ltd. | Circuit and method for power efficiency improvement of induction motors |
FR2627312B1 (en) | 1988-01-29 | 1994-02-18 | Canon Kk | DATA RECORDER |
US4889097A (en) | 1988-02-29 | 1989-12-26 | Fred Bevill | Electronic fuel control device and method |
US4806841A (en) | 1988-02-29 | 1989-02-21 | Teledyne Inet | Constant speed and frequency generating system |
US4859921A (en) | 1988-03-10 | 1989-08-22 | General Electric Company | Electronic control circuits, electronically commutated motor systems, switching regulator power supplies, and methods |
JP2683655B2 (en) * | 1988-03-28 | 1997-12-03 | マツダ株式会社 | Torque distribution device for four-wheel drive vehicle |
US5020125A (en) | 1988-03-28 | 1991-05-28 | Losic Novica A | Synthesis of load-independent DC drive system |
US5023531A (en) | 1988-05-19 | 1991-06-11 | Arx, Inc. | Dual hybrid demand refrigeration control apparatus |
US4942529A (en) | 1988-05-26 | 1990-07-17 | The Raymond Corporation | Lift truck control systems |
US4904919A (en) | 1988-06-21 | 1990-02-27 | Allen-Bradley Company, Inc. | Dual mode control of a PWM motor drive for current limiting |
US4877956A (en) | 1988-06-23 | 1989-10-31 | Halliburton Company | Closed feedback injection system for radioactive materials using a high pressure radioactive slurry injector |
US5041070A (en) | 1988-07-29 | 1991-08-20 | Amplas, Inc. | Intermittent web feed apparatus |
US4935641A (en) | 1988-08-02 | 1990-06-19 | Nartron Corporation | Electronic rheostat method and apparatus |
JPH0695427B2 (en) | 1988-08-30 | 1994-11-24 | 株式会社東芝 | Read / write drive control circuit for magnetic recording / reproducing apparatus |
GB2222468B (en) | 1988-09-03 | 1992-06-10 | T & N Technology Ltd | Machine tool control |
CA2000049C (en) | 1988-10-05 | 1995-08-22 | Christian Werner | Lidar arrangement for measuring atmospheric turbidities |
US5281919A (en) | 1988-10-14 | 1994-01-25 | Alliedsignal Inc. | Automotive battery status monitor |
US4926037A (en) | 1988-11-23 | 1990-05-15 | Martin Lopez Fernando R | Apparatus and method to control the precisional position of a light weight motor energized by radiant energy |
DE3841147A1 (en) | 1988-12-07 | 1990-06-13 | Mulfingen Elektrobau Ebm | METHOD FOR DRIVING AN AC MOTOR, AND ACCORDINGLY DRIVABLE AC MOTOR BY THIS METHOD |
US4908822A (en) | 1988-12-07 | 1990-03-13 | Chrysler Motors Corporation | Electrical devices command system, single wire bus and smart dual controller arrangement therefor |
US4920532A (en) | 1988-12-07 | 1990-04-24 | Chrysler Corporation | Electrical device command system, single wire bus and smart single controller arrangement therefor |
US4907223A (en) | 1988-12-07 | 1990-03-06 | Chrysler Motors Corporation | Electrical devices command system, single wire bus and smart quad controller arrangement therefor |
US5119136A (en) | 1988-12-13 | 1992-06-02 | Minolta Camera Kabushiki Kaisha | Original scanning apparatus |
US4899338A (en) | 1988-12-15 | 1990-02-06 | Chrysler Motors Corporation | Electrical device command system, single wire bus and smart octal controller arrangement therefor |
US4867080A (en) | 1988-12-15 | 1989-09-19 | Card-Monroe Corporation | Computer controlled tufting machine and a process of controlling the parameters of operation of a tufting machine |
US4938474A (en) | 1988-12-23 | 1990-07-03 | Laguna Tectrix, Inc. | Exercise apparatus and method which simulate stair climbing |
US4887118A (en) | 1988-12-27 | 1989-12-12 | Polaroid Corporation | Electronic flash camera having reduced cycle time |
US4969739A (en) | 1989-01-09 | 1990-11-13 | Nirsystems Incorporated | Spectrometer with direct drive high speed oscillating grating |
US4967134A (en) | 1989-02-27 | 1990-10-30 | Losic Novica A | Synthesis of load-independent ac drive systems |
US4897882A (en) | 1989-03-10 | 1990-01-30 | Caterpillar Industrial Inc. | Motor control apparatus and method |
US5442276A (en) | 1989-03-27 | 1995-08-15 | Integrated Technology Corporation | Apparatus for providing controlled mechanical braking torque |
FR2645390B1 (en) | 1989-03-31 | 1991-07-12 | Equip Electr Moteur | CONTROL SYSTEM FOR OVER-DEFROSTING AN ELECTRIC WINDSCREEN OF A MOTOR VEHICLE |
KR930007174B1 (en) | 1989-03-31 | 1993-07-31 | 가부시기가이샤 도시바 | Pick-up transferring device |
US4888985A (en) | 1989-04-03 | 1989-12-26 | Siemer Dennis K | Method and apparatus for testing tape bond strength |
US5241257A (en) | 1989-04-17 | 1993-08-31 | Emerson Electric Co. | Drive system for household appliances |
US5129317A (en) | 1989-06-23 | 1992-07-14 | Amp Incorporated | Press driven by an electric motor through reduction gearing |
US5281956A (en) | 1989-08-11 | 1994-01-25 | Whirlpool Corporation | Heater diagnostics and electronic control for a clothes dryer |
JPH03170923A (en) | 1989-08-18 | 1991-07-24 | Minolta Camera Co Ltd | Image scanning device |
JP2712608B2 (en) | 1989-08-21 | 1998-02-16 | トヨタ自動車株式会社 | Drive for electric vehicles |
US4941325A (en) | 1989-09-06 | 1990-07-17 | Nuding Douglas J | Energy efficient electronic control system for air-conditioning and heat pump systems |
US5189246A (en) | 1989-09-28 | 1993-02-23 | Csir | Timing apparatus |
JPH03135392A (en) | 1989-10-19 | 1991-06-10 | Sankyo Seiki Mfg Co Ltd | Circuit for driving brushless motor |
US5015937A (en) | 1989-10-26 | 1991-05-14 | Siemens-Bendix Automotive Electronics L.P. | Parametric current control for microstepping unipolar motor |
US5070292A (en) | 1989-11-13 | 1991-12-03 | Performance Controls, Inc. | Pulse-width modulated circuit for driving a load |
US5032772A (en) | 1989-12-04 | 1991-07-16 | Gully Wilfred J | Motor driver circuit for resonant linear cooler |
US5013998A (en) | 1989-12-18 | 1991-05-07 | Varga Ljubomir D | Synthesis of zero-impedance converter |
US5293906A (en) | 1989-12-18 | 1994-03-15 | Quadrax Corporation | Circular loom for and method of weaving ribbon-shaped weft |
US5001770A (en) | 1989-12-26 | 1991-03-19 | Losic Novica A | Synthesis of improved zero-impedance converter |
US5049046A (en) | 1990-01-10 | 1991-09-17 | Escue Research And Development Company | Pump control system for a downhole motor-pump assembly and method of using same |
US4990001A (en) | 1990-01-22 | 1991-02-05 | Losic Novica A | Synthesis of drive systems of infinite disturbance rejection ratio and zero-dynamics/instantaneous response |
ES2047305T3 (en) | 1990-01-25 | 1994-02-16 | Pamag Ag | PROCEDURE FOR PACKAGING IN PACKAGING BOXES OR TUBES AND MACHINE FOR PERFORMING THE PROCEDURE. |
FR2657735B1 (en) | 1990-01-26 | 1995-06-02 | Siemens Automotive Sa | DEVICE FOR CONTROLLING THE ELECTRICAL SUPPLY OF A STEPPER MOTOR AND STEPPER MOTOR EQUIPPED WITH SUCH A DEVICE. |
JP2541350B2 (en) | 1990-02-06 | 1996-10-09 | 日本ビクター株式会社 | Method for controlling rotation of brushless DC motor without position detector in information recording medium disk recording / reproducing apparatus and information recording medium disk recording / reproducing apparatus |
US4969128A (en) | 1990-02-06 | 1990-11-06 | Mobil Oil Corporation | Borehole acoustic logging system having synchronization |
JPH03237413A (en) | 1990-02-15 | 1991-10-23 | Asahi Optical Co Ltd | Electric focal distance changing device |
US5278481A (en) | 1990-02-22 | 1994-01-11 | British Technological Group Ltd. | Control of stepping motors |
US4973174A (en) | 1990-02-26 | 1990-11-27 | Losic Novica A | Parameter-free synthesis of zero-impedance converter |
US5034622A (en) | 1990-03-07 | 1991-07-23 | Snc Manufacturing Co., Inc. | Power supply interface apparatus for communication facilities at a power station |
US4980620A (en) | 1990-04-02 | 1990-12-25 | Losic Novica A | Current-free synthesis of parameter-free zero-impedance converter |
DE4012062A1 (en) | 1990-04-10 | 1991-10-17 | Schlueter Gerd | ELECTRIC DRIVE SYSTEM FOR A VEHICLE |
US5126647A (en) | 1990-04-17 | 1992-06-30 | Sundstrand Corporation | Pulse by pulse current limit and phase current monitor for a pulse width modulated inverter |
JP2712743B2 (en) | 1990-04-18 | 1998-02-16 | 松下電器産業株式会社 | Disc playback device |
US4998520A (en) | 1990-05-11 | 1991-03-12 | Siemens Automotive L.P. | Redundant reset for electronic throttle control |
US5087356A (en) | 1990-05-16 | 1992-02-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Solder dross removal apparatus |
US5068582A (en) | 1990-05-29 | 1991-11-26 | A. O. Smith Corporation | Brushless pulsed D.C. motor |
US5036307A (en) | 1990-06-04 | 1991-07-30 | School Bus Parts Co. Of Canada, Inc. | Weather resistant control system for school bus safety device |
FI87501C (en) | 1990-06-12 | 1993-01-11 | Kone Oy | Procedure for controlling an asynchronous motor |
GB9013630D0 (en) | 1990-06-19 | 1990-08-08 | Normalair Garrett Ltd | Aircraft aircrew life support apparatus |
US5117165A (en) | 1990-06-29 | 1992-05-26 | Seagate Technology, Inc. | Closed-loop control of a brushless DC motor from standstill to medium speed |
US5050681A (en) | 1990-07-10 | 1991-09-24 | Halliburton Company | Hydraulic system for electronically controlled pressure activated downhole testing tool |
US5161073A (en) | 1990-07-20 | 1992-11-03 | Micropolis Corporation | Low power disk drive spindle motor controller |
US5246479A (en) | 1990-07-20 | 1993-09-21 | Micropolis Corporation | Drive motor controller for low power disk drive |
US5108322A (en) | 1990-07-24 | 1992-04-28 | Zebco Corporation | Relay control of auxiliary functions in a trolling motor |
US5171173A (en) | 1990-07-24 | 1992-12-15 | Zebco Corporation | Trolling motor steering and speed control |
US5034872A (en) | 1990-08-09 | 1991-07-23 | Losic Novica A | Current-free synthesis of improved parameter-free zero-impedance converter |
US5126677A (en) | 1990-08-14 | 1992-06-30 | Electric Power Research Institute, Inc. | Apparatus and method for preventing spurious signals to the radio frequency monitor used for early warning of impending failure in electric generators and other equipment |
US5132602A (en) | 1990-10-02 | 1992-07-21 | Calsonic International, Inc. | Actuator positioning apparatus |
US5180023A (en) | 1990-10-22 | 1993-01-19 | Reimers Eric W | Self propelled golf bag cart |
US5017854A (en) | 1990-10-29 | 1991-05-21 | Hughes Aircraft Company | Variable duty cycle pulse width modulated motor control system |
US5185071A (en) | 1990-10-30 | 1993-02-09 | Board Of Regents, The University Of Texas System | Programmable electrophoresis with integrated and multiplexed control |
US5234066A (en) | 1990-11-13 | 1993-08-10 | Staodyn, Inc. | Power-assisted wheelchair |
US5319352A (en) | 1990-11-30 | 1994-06-07 | Telesis Controls Corporation | Speed monitoring of in-plant, operator controlled vehicles |
NZ236541A (en) | 1990-12-19 | 1995-09-26 | Fisher & Paykel | Braking an electronically commutated motor of washing machine |
US5231747A (en) | 1990-12-21 | 1993-08-03 | The Boeing Company | Drill/rivet device |
US5089759A (en) | 1990-12-21 | 1992-02-18 | V.T.M. Industries, Inc., D/B/A Profiled Motion Division | Electrical motor position controller |
US5099186A (en) | 1990-12-31 | 1992-03-24 | General Motors Inc. | Integrated motor drive and recharge system |
US5170108A (en) | 1991-01-31 | 1992-12-08 | Daylighting, Inc. | Motion control method and apparatus for motorized window blinds and and the like |
SE9100612L (en) | 1991-02-06 | 1992-08-07 | Lauzun Corp | HYBRID DRIVE SYSTEM FOR MOTOR VEHICLE |
EP0551450A1 (en) | 1991-02-22 | 1993-07-21 | KENETECH Windpower, Inc. | Four quadrant motor controller |
US5122719A (en) | 1991-02-27 | 1992-06-16 | Eastman Kodak Company | Method and apparatus for reducing recurrent fluctuations in motor torque |
WO1992016046A1 (en) | 1991-03-07 | 1992-09-17 | Kabushikigaisya Sekogiken | High-speed motor |
US5181616A (en) | 1991-03-08 | 1993-01-26 | Star Partners | Grain processor |
US5084658A (en) | 1991-03-27 | 1992-01-28 | Caterpillar Industrial Inc. | Motor speed control system for an electrically powered vehicle |
US5506487A (en) | 1991-03-28 | 1996-04-09 | General Electric Company | Systems and methods for driving a compressor with a motor |
US5270631A (en) | 1991-04-16 | 1993-12-14 | Olympus Optical Co., Ltd. | Linear DC motor driving device |
US5160925C1 (en) | 1991-04-17 | 2001-03-06 | Halliburton Co | Short hop communication link for downhole mwd system |
US5142861A (en) | 1991-04-26 | 1992-09-01 | Schlicher Rex L | Nonlinear electromagnetic propulsion system and method |
JPH057239U (en) | 1991-05-03 | 1993-02-02 | カツトラー スタンレイ | Pine surge device |
US5151017A (en) | 1991-05-15 | 1992-09-29 | Itt Corporation | Variable speed hydromassage pump control |
US5142468A (en) | 1991-05-16 | 1992-08-25 | General Atomics | Power conditioning system for use with two PWM inverters and at least one other load |
US5450156A (en) | 1991-05-21 | 1995-09-12 | Asahi Kogaku Kogyo Kabushiki Kaisha | Power zoom lens and camera having same |
US5396306A (en) | 1991-05-21 | 1995-03-07 | Asahi Kogaku Kogyo Kabushiki Kaisha | Power lens and camera system |
US5156005A (en) | 1991-05-24 | 1992-10-20 | Sunpower, Inc. | Control of stirling cooler displacement by pulse width modulation of drive motor voltage |
US5670858A (en) | 1991-06-03 | 1997-09-23 | Condyne Technology, Inc. | Single-phase induction motor safety controller |
US5202951A (en) | 1991-06-05 | 1993-04-13 | Gas Research Institute | Mass flow rate control system and method |
JPH04372590A (en) | 1991-06-19 | 1992-12-25 | Brother Ind Ltd | Motor controller |
KR930005714B1 (en) | 1991-06-25 | 1993-06-24 | 주식회사 금성사 | Attratus and method for controlling speed of suction motor in vacuum cleaner |
JP3217391B2 (en) | 1991-07-01 | 2001-10-09 | 株式会社東芝 | Power converter |
US5159218A (en) | 1991-07-09 | 1992-10-27 | Allied-Signal Inc. | Motor with integral controller |
WO1993002887A1 (en) | 1991-08-01 | 1993-02-18 | Wavedriver Limited | Battery powered electric vehicle and electrical supply system |
DE59104262D1 (en) | 1991-08-08 | 1995-02-23 | Ossberger Turbinen | Device for producing a preform for blow molding a bellows. |
US5282181A (en) | 1991-08-23 | 1994-01-25 | Shelly Karen Entner | Silent alarm timepiece |
JP2918366B2 (en) | 1991-09-04 | 1999-07-12 | 大日本スクリーン製造株式会社 | Cylindrical inner surface scanning type image recording device |
US5234050A (en) | 1991-09-06 | 1993-08-10 | Interdynamics, Inc. | Automatic climate control system |
US5694020A (en) | 1991-09-26 | 1997-12-02 | Braun Aktiengesellschaft | Apparatus for controlling battery discharge |
DE4132881A1 (en) | 1991-10-03 | 1993-07-29 | Papst Motoren Gmbh & Co Kg | Brushless DC motor control circuit - has circuit for phase displacement of commutation times depending on motor speed using functional relationship |
DE4134495A1 (en) | 1991-10-18 | 1993-04-22 | Bosch Gmbh Robert | CONTROL DEVICE FOR ELECTRIC MOTORS IN VEHICLES |
EP0665025B1 (en) | 1991-10-23 | 2002-02-27 | Terumo Kabushiki Kaisha | Medical pump driving device |
US5200697B1 (en) * | 1991-11-27 | 1996-06-18 | Ntn Toyo Bearing Co Ltd | Hub and bearing assembly with integrated rotation sensor including a tone ring and annular transducer |
DE4142062A1 (en) | 1991-12-19 | 1993-07-01 | Salzkotten Tankanlagen | Metering system for fuel delivery pump at filling station |
JP2602999Y2 (en) | 1991-12-26 | 2000-02-07 | 株式会社村上開明堂 | Electric retractable door mirror control device |
US5297394A (en) | 1991-12-31 | 1994-03-29 | Whirlpool Corporation | Clear cube ice maker |
DE4200046C2 (en) | 1992-01-03 | 1995-08-24 | Daimler Benz Ag | Brake system with adjustable variable front / rear axle brake force distribution |
JPH06229155A (en) | 1992-01-13 | 1994-08-16 | C & M Technology Inc | Security lock mechanism |
US5321231A (en) | 1992-01-24 | 1994-06-14 | General Motors Corporation | System for supplying power to an electrically heated catalyst |
US5287051A (en) | 1992-02-14 | 1994-02-15 | General Electric Company | Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive |
US5811946A (en) | 1992-03-16 | 1998-09-22 | Lockheed Martin Corporation | System and method for velocity control of a D.C. Motor |
DE4308220C2 (en) | 1992-03-23 | 1994-11-17 | Seikosha Kk | Drive unit for a decorative rotating element |
WO1993020426A1 (en) | 1992-03-27 | 1993-10-14 | Brockland, Robert, J. | Automotive diagnostic testing apparatus |
US5332954A (en) | 1992-03-30 | 1994-07-26 | Solaria Research Enterprises Ltd. | Optimal DC motor/controller configuration |
US5331258A (en) | 1992-03-30 | 1994-07-19 | Solaria Research Enterprises, Ltd. | Synchronous-rectification type control for direct current motors and method of making |
US5249046A (en) | 1992-03-30 | 1993-09-28 | Kaman Aerospace Corporation | Method and apparatus for three dimensional range resolving imaging |
US6348752B1 (en) | 1992-04-06 | 2002-02-19 | General Electric Company | Integral motor and control |
US5563481A (en) | 1992-04-13 | 1996-10-08 | Smith & Nephew Endoscopy, Inc. | Brushless motor |
EP0591557B1 (en) | 1992-04-27 | 1999-07-21 | Citizen Watch Co. Ltd. | Hand-indication electronic timepiece |
US5317307A (en) | 1992-05-22 | 1994-05-31 | Intel Corporation | Method for pulse width modulation of LEDs with power demand load leveling |
US5270624A (en) | 1992-05-28 | 1993-12-14 | Lautzenhiser John L | Apparatus and method for enhancing torque of power wheelchair |
US5205636A (en) | 1992-06-05 | 1993-04-27 | Carpenter Duane P | Rotating display |
US5325031A (en) | 1992-06-15 | 1994-06-28 | Tilden Mark W | Adaptive robotic nervous systems and control circuits therefor |
US5361768A (en) | 1992-06-30 | 1994-11-08 | Cardiovascular Imaging Systems, Inc. | Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same |
US5404085A (en) | 1992-07-10 | 1995-04-04 | Rosemount Aerospace, Inc. | Multifunction aircraft windscreen wiper control system |
JP3066622B2 (en) | 1992-08-04 | 2000-07-17 | 本田技研工業株式会社 | Synchronous motor controller for electric vehicles |
US5302945A (en) | 1992-08-24 | 1994-04-12 | Technimedics Corporation | Electric appliance fault monitor and indicator |
US5254936A (en) | 1992-09-14 | 1993-10-19 | General Motors Corporation | Dual generator electrical system |
US5333655A (en) | 1992-09-15 | 1994-08-02 | Nuovopignone Industrie Meccaniche E Fonderia Spa | System for effective vapor recovery without seal members in fuel filling installations |
JPH06119090A (en) | 1992-10-07 | 1994-04-28 | Hitachi Ltd | Power economization control system |
US5637975A (en) | 1992-10-16 | 1997-06-10 | Pummer; Alexander C. | Power factor corrector for A.C. induction motors |
JPH06125762A (en) | 1992-10-21 | 1994-05-10 | Daicel Chem Ind Ltd | Production apparatus for cigarette filter rod |
JP2849293B2 (en) | 1992-10-21 | 1999-01-20 | 株式会社小糸製作所 | Power window device with safety device |
JP2962948B2 (en) | 1992-11-02 | 1999-10-12 | キヤノン株式会社 | Image forming device |
US5331539A (en) | 1992-12-01 | 1994-07-19 | Pitney Bowes Inc. | Mailing machine including multiple channel pulse width modulated signal circuit |
US5304911A (en) | 1992-12-14 | 1994-04-19 | Energy Consortium Inc | Power control system for an A.C. induction motor |
US5282641A (en) | 1992-12-18 | 1994-02-01 | Mclaughlin Richard J | Truck/trailer control system |
US5673028A (en) | 1993-01-07 | 1997-09-30 | Levy; Henry A. | Electronic component failure indicator |
US5359272A (en) | 1993-02-05 | 1994-10-25 | Emerson Electric Co. | Sensorless drive control and method for doubly-fed reluctance motor |
US5232052A (en) | 1993-02-09 | 1993-08-03 | Hypro Corporation | Apparatus and method for controlling the introduction of chemical foamant into a water stream in fire-fighting equipment |
US5315218A (en) | 1993-03-08 | 1994-05-24 | Eaton Corporation | Motor controls |
US5650679A (en) | 1993-03-18 | 1997-07-22 | Boggs, Iii; Paul Dewey | Eddy current drive |
US5422014A (en) | 1993-03-18 | 1995-06-06 | Allen; Ross R. | Automatic chemical monitor and control system |
US5389864A (en) | 1993-03-29 | 1995-02-14 | Lake Center Industries, Inc. | Actuator with motor and feedback driven by a common power supply |
US6746419B1 (en) | 1993-04-19 | 2004-06-08 | Stryker Corporation | Irrigation handpiece with built in pulsing pump |
US5448035A (en) | 1993-04-28 | 1995-09-05 | Advanced Surfaces And Processes, Inc. | Method and apparatus for pulse fusion surfacing |
US5430362A (en) | 1993-05-12 | 1995-07-04 | Sundstrand Corporation | Engine starting system utilizing multiple controlled acceleration rates |
US5506775A (en) | 1993-05-20 | 1996-04-09 | Kansei Corporation | Power source circuit for an occupant protecting device of motor vehicles |
JPH06339252A (en) | 1993-05-27 | 1994-12-06 | Mabuchi Motor Co Ltd | Rotation detecting device for small dc motor |
US5698958A (en) | 1993-06-11 | 1997-12-16 | Harmonic Design, Inc. | Head rail-mounted actuator for window coverings |
US5729103A (en) | 1993-06-11 | 1998-03-17 | Harmonic Design, Inc. | Head rail-mounted actuator for window coverings |
GB9312131D0 (en) | 1993-06-11 | 1993-07-28 | Blatchford & Sons Ltd | Prosthesis control system |
US6060852A (en) | 1993-06-11 | 2000-05-09 | Harmonic Design, Inc. | Head rail-mounted actuator for window covering |
US5370112A (en) | 1993-07-01 | 1994-12-06 | Devilbiss Health Care, Inc. | Method and means for powering portable oxygen supply systems |
US6424799B1 (en) | 1993-07-06 | 2002-07-23 | Black & Decker Inc. | Electrical power tool having a motor control circuit for providing control over the torque output of the power tool |
DE4322744C2 (en) | 1993-07-08 | 1998-08-27 | Baumueller Nuernberg Gmbh | Electrical drive system and positioning method for the synchronous adjustment of several rotatable and / or pivotable functional parts in devices and machines, drive arrangement with an angular position encoder and printing machine |
US5905347A (en) | 1993-07-16 | 1999-05-18 | Dell Usa, L.P. | System and method for controlling a computer drive motor |
US5530326A (en) | 1993-07-19 | 1996-06-25 | Quantum Corporation | Brushless DC spindle motor startup control |
US5340295A (en) | 1993-07-19 | 1994-08-23 | The Conair Group, Inc. | Vacuum sizing apparatus with controlled vacuum |
GB2280762A (en) | 1993-07-31 | 1995-02-08 | Lucas Ind Plc | Testing and speed control of ABS pump motors |
US5447051A (en) | 1993-08-05 | 1995-09-05 | Hewlett-Packard Company | Method and apparatus for testing a piezoelectric force sensor |
DE4426199C3 (en) | 1993-08-27 | 1998-06-18 | Mayer Textilmaschf | Device for driving a warp beam |
US5489831A (en) | 1993-09-16 | 1996-02-06 | Honeywell Inc. | Pulse width modulating motor controller |
US5488283A (en) | 1993-09-28 | 1996-01-30 | Globe-Union, Inc. | Vehicle battery system providing battery back-up and opportunity charging |
US5489771A (en) | 1993-10-15 | 1996-02-06 | University Of Virginia Patent Foundation | LED light standard for photo- and videomicroscopy |
IT1268472B1 (en) | 1993-10-22 | 1997-03-04 | St Microelectronics Srl | BUCK CONVERTER WITH OPERATING MODE AUTOMATICALLY DETERMINED BY THE LOAD LEVEL |
US5494112A (en) | 1993-10-29 | 1996-02-27 | Hypro Corporation | System for introduction of concentrated liquid chemical foamant into a water stream for fighting fires |
US5451851A (en) | 1993-12-06 | 1995-09-19 | Delco Electronics Corp. | Method and apparatus for one wire motor speed and direction decoding |
US5585709A (en) | 1993-12-22 | 1996-12-17 | Wisconsin Alumni Research Foundation | Method and apparatus for transducerless position and velocity estimation in drives for AC machines |
JP2953284B2 (en) | 1993-12-24 | 1999-09-27 | 株式会社デンソー | Drive device for pulse motor |
US5623334A (en) | 1993-12-29 | 1997-04-22 | Hyundai Electronics Industries Co., Ltd. | Optical distance measurement apparatus and method using cleaning device |
US5446359A (en) | 1993-12-29 | 1995-08-29 | Emerson Electric Co. | Current decay control in switched reluctance motor |
US5519496A (en) | 1994-01-07 | 1996-05-21 | Applied Intelligent Systems, Inc. | Illumination system and method for generating an image of an object |
US5616994A (en) | 1994-01-12 | 1997-04-01 | Mitsubishi Denki Kabushiki Kaisha | Drive circuit for brushless motor |
JP3325697B2 (en) | 1994-01-20 | 2002-09-17 | 三菱電機株式会社 | Power device control device and motor drive control device |
US5512811A (en) | 1994-01-21 | 1996-04-30 | Sundstrand Corporation | Starter/generator system having multivoltage generation capability |
US5406186A (en) | 1994-01-25 | 1995-04-11 | Sundstrand Corporation | One switch multi-phase modulator |
US5462504A (en) | 1994-02-04 | 1995-10-31 | True Fitness Technology Inc. | Fitness apparatus with heart rate control system and method of operation |
US5513058A (en) | 1994-03-03 | 1996-04-30 | General Electric Company | DC link circuit for an electronically commutated motor |
TW349289B (en) | 1994-03-15 | 1999-01-01 | Seiko Epson Corp | Brushless DC motor drive apparatus |
DE4408809C1 (en) | 1994-03-16 | 1995-06-14 | Braun Ag | Depilator with hand-held housing containing motor |
JP3212215B2 (en) | 1994-03-17 | 2001-09-25 | 三菱電機株式会社 | Electric power steering control device |
US5581254A (en) | 1994-03-30 | 1996-12-03 | Burr-Brown Corporation | Electric motor control chip and method |
DE4412224A1 (en) | 1994-04-09 | 1995-10-12 | Graebener Pressensysteme Gmbh | Press for cold forming metal workpieces |
US5526460A (en) | 1994-04-25 | 1996-06-11 | Black & Decker Inc. | Impact wrench having speed control circuit |
US5493642A (en) | 1994-04-26 | 1996-02-20 | Jocatek, Inc. | Graphically constructed control and scheduling system |
US5669470A (en) | 1994-05-05 | 1997-09-23 | H. R. Ross Industries, Inc. | Roadway-powered electric vehicle system |
JPH07336501A (en) | 1994-06-08 | 1995-12-22 | Minolta Co Ltd | Image pickup system including light source |
US5485140A (en) | 1994-06-24 | 1996-01-16 | Bussin; George N. | Vehicle obstacle detector and alarm system |
US6098000A (en) | 1994-06-24 | 2000-08-01 | Mccord Winn Textron Inc. | Interactive, individually controlled, multiple bladder seating comfort adjustment system and method |
US5481176A (en) | 1994-07-05 | 1996-01-02 | Ford Motor Company | Enhanced vehicle charging system |
US5575761A (en) | 1994-07-27 | 1996-11-19 | Hajianpour; Mohammed-Ali | Massage device applying variable-frequency vibration in a variable pulse sequence |
DE9412147U1 (en) | 1994-07-27 | 1994-09-22 | Hugo Junkers Werke GmbH, 82216 Maisach | Mobile hydraulic system |
US5450521A (en) | 1994-08-03 | 1995-09-12 | Sunpower, Inc. | Pulse width modulator |
EP0781404A4 (en) | 1994-09-14 | 1999-07-21 | X Rite Inc | Compact spectrophotometer |
US5886504A (en) | 1994-09-14 | 1999-03-23 | Coleman Powermate, Inc. | Throttle controlled generator system |
US6018200A (en) | 1994-09-14 | 2000-01-25 | Coleman Powermate, Inc. | Load demand throttle control for portable generator and other applications |
US6118186A (en) | 1994-09-14 | 2000-09-12 | Coleman Powermate, Inc. | Throttle control for small engines and other applications |
DE19519183A1 (en) | 1994-10-05 | 1996-04-11 | Marantec Antrieb Steuerung | Control for driving an object that can be moved back and forth between two end positions |
DE19520776C3 (en) | 1994-10-05 | 2003-02-13 | Metabowerke Gmbh | Interval control for a commutator motor |
US5542921A (en) | 1994-11-04 | 1996-08-06 | Gerber Products Company | Electric breast pump |
DE69523408T2 (en) | 1994-11-04 | 2002-06-20 | Trw Inc., Lyndhurst | Method and device for controlling an electric motor |
US5569910A (en) | 1994-11-10 | 1996-10-29 | Spacesaver Corporation | Photodetector system for detecting obstacles in aisles between mobile shelving carriages |
US6016288A (en) | 1994-12-05 | 2000-01-18 | Thomas Tools, Inc. | Servo-driven mud pulser |
US5818183A (en) | 1994-12-06 | 1998-10-06 | Auto-Tilt Enterprises, Ltd. | Blind tilt controller |
US5644494A (en) | 1994-12-13 | 1997-07-01 | Check Technology Corporation | Printing system |
US5644302A (en) | 1994-12-27 | 1997-07-01 | Najib Hana | Device for remotely changing the set temperature of a thermostat |
JP3362537B2 (en) | 1994-12-27 | 2003-01-07 | 日産自動車株式会社 | Fail-safe control of drive motor for electric vehicles |
CA2163288A1 (en) | 1994-12-30 | 1996-07-01 | William L. Learman | Engine demand fuel delivery system |
US5503059A (en) | 1995-01-03 | 1996-04-02 | Pacholok; David R. | Vehicle disabling device and method |
US5801509A (en) | 1995-01-27 | 1998-09-01 | Kabushiki Kaisha Yaskawa Denki | Method of starting a permanent-magnet synchronous motor equipped with angular position detector and apparatus for controlling such motor |
USRE38400E1 (en) | 1995-02-06 | 2004-01-27 | Daimlerchrysler Corporation | Control function-power operated lift gate |
US5652485A (en) | 1995-02-06 | 1997-07-29 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance |
US6163275A (en) | 1995-02-15 | 2000-12-19 | Charles James Hartzell | Remotely controlled dimmer |
US5497064A (en) | 1995-03-14 | 1996-03-05 | A. O. Smith Corporation | Apparatus for starting a switched reluctance motor |
US5502957A (en) | 1995-03-29 | 1996-04-02 | Robertson; Charles W. | Electric lawn mower with intelligent control |
US5569990A (en) | 1995-03-31 | 1996-10-29 | Seagate Technology, Inc. | Detection of starting motor position in a brushless DC motor |
US5841252A (en) | 1995-03-31 | 1998-11-24 | Seagate Technology, Inc. | Detection of starting motor position in a brushless DC motor |
US5524461A (en) | 1995-04-24 | 1996-06-11 | Techno-Craft, Inc. | Control system for yarn feed gearbox |
US5633792A (en) | 1995-05-01 | 1997-05-27 | Massey; John C. U. | Pulse width rotary inverter |
US5582013A (en) | 1995-05-09 | 1996-12-10 | Regents Of The University Of California | Electromechanical cryocooler |
US6291911B1 (en) | 1995-05-15 | 2001-09-18 | Cooper Industries, Inc. | Electrical switchgear with synchronous control system and actuator |
EP0827482A2 (en) | 1995-05-15 | 1998-03-11 | REUMERT, Jens | An apparatus for dispensing individually predetermined lengths of a web material |
US5908286A (en) | 1995-05-19 | 1999-06-01 | Uis, Inc. | Motor driven fuel pump and control system for internal combustion engines |
US5691898A (en) | 1995-09-27 | 1997-11-25 | Immersion Human Interface Corp. | Safe and low cost computer peripherals with force feedback for consumer applications |
US5655380A (en) | 1995-06-06 | 1997-08-12 | Engelhard/Icc | Step function inverter system |
US5723963A (en) | 1995-06-07 | 1998-03-03 | Sgs-Thomson Microelectronics, Inc. | Apparatus and method for controlling transition between PWM and linear operation of a motor |
US5637971A (en) | 1995-06-12 | 1997-06-10 | Solectria Corporation | Suppression of multiple noise-related signals in pulse width modulated signals |
US5670859A (en) | 1995-06-23 | 1997-09-23 | General Resource Corporation | Feedback control of an inverter output bridge and motor system |
US5802844A (en) | 1995-06-30 | 1998-09-08 | Chrysler Corporation | After-burner heated catalyst system and associated control circuit and method |
DE19524408C2 (en) | 1995-07-04 | 1997-09-04 | Siemens Ag | Voltage converter for generating a regulated output voltage from an input voltage |
KR0163688B1 (en) | 1995-07-28 | 1999-03-20 | 전주범 | Internal circuit measuring device |
US5804999A (en) | 1995-08-09 | 1998-09-08 | Johnson Controls, Inc. | Appliance AC power control apparatus |
DE19531517C1 (en) | 1995-08-26 | 1996-11-14 | Bosch Gmbh Robert | Electrical ac signal output control method esp. for sinusoidal waveforms |
US6148784A (en) | 1995-08-31 | 2000-11-21 | Isad Electronic Systems Gmbh & Co. Kg | Drive systems, especially for a motor vehicle, and method of operating same |
US6158405A (en) | 1995-08-31 | 2000-12-12 | Isad Electronic Systems | System for actively reducing rotational nonuniformity of a shaft, in particular, the drive shaft of an internal combustion engine, and method of operating the system |
US5729110A (en) | 1995-10-10 | 1998-03-17 | Eaton Corporation | Method for controlling an electronic X-Y shifting mechanism for a vehicle transmission |
US5616997A (en) | 1995-10-10 | 1997-04-01 | Itt Automotive Electrical Systems, Inc. | Auto up window with obstacle detection system |
US5841464A (en) | 1995-10-25 | 1998-11-24 | Gerber Scientific Products, Inc. | Apparatus and method for making graphic products by laser thermal transfer |
US6198970B1 (en) | 1995-10-27 | 2001-03-06 | Esd Limited Liability Company | Method and apparatus for treating oropharyngeal respiratory and oral motor neuromuscular disorders with electrical stimulation |
DE19541130A1 (en) | 1995-10-27 | 1997-04-30 | Hartmann & Braun Ag | Method for positioning a pen in a registration device |
DE19540620A1 (en) | 1995-10-31 | 1997-05-07 | Marantec Antrieb Steuerung | Monitoring the movement of a drivable, single or multi-part door or gate leaf |
US5585702A (en) | 1995-11-03 | 1996-12-17 | Itt Automotive Electrical Systems, Inc. | Auto up window with osbtacle detection system |
US5774626A (en) | 1995-11-16 | 1998-06-30 | Polaroid Corporation | Programmable dual-phase digital motor control with sliding proportionality |
US5682144A (en) | 1995-11-20 | 1997-10-28 | Mannik; Kallis Hans | Eye actuated sleep prevention devices and other eye controlled devices |
US5752385A (en) | 1995-11-29 | 1998-05-19 | Litton Systems, Inc. | Electronic controller for linear cryogenic coolers |
DE19647983A1 (en) | 1995-12-04 | 1997-06-05 | Papst Motoren Gmbh & Co Kg | Physical variable control method and device e.g. for electronically commutated electric motor |
US5676475A (en) | 1995-12-15 | 1997-10-14 | Encad, Inc. | Smart print carriage incorporating circuitry for processing data |
US5784541A (en) | 1996-01-18 | 1998-07-21 | Ruff; John D. | System for controlling multiple controllable devices according to a script transmitted from a personal computer |
US6230078B1 (en) | 1996-01-18 | 2001-05-08 | John D. Ruff | Simplified animatronic and CNC system |
US5739664A (en) | 1996-02-05 | 1998-04-14 | Ford Global Technologies, Inc. | Induction motor drive controller |
US5798623A (en) | 1996-02-12 | 1998-08-25 | Quantum Corporation | Switch mode sine wave driver for polyphase brushless permanent magnet motor |
US5709350A (en) | 1996-02-14 | 1998-01-20 | Davis; Joseph Louis | Device for transferring fishing line |
FR2745336B1 (en) | 1996-02-28 | 1998-05-07 | Valeo Equip Electr Moteur | METHOD AND DEVICE FOR SHUTTING DOWN A STARTER OF A MOTOR VEHICLE AFTER STARTING ITS ENGINE |
IT1285280B1 (en) | 1996-03-01 | 1998-06-03 | Bitron Spa | HIGH EFFICIENCY ELECTRONICALLY COMMUTED ELECTRIC MOTOR. |
CN1055574C (en) | 1996-03-06 | 2000-08-16 | 杨泰和 | Automatically-monitored and engine-driven assistant accumulator charging system |
US5652928A (en) | 1996-03-27 | 1997-07-29 | Eastman Kodak Company | Method and apparatus for automatic deployment of camera lens |
UA48221C2 (en) | 1996-04-01 | 2002-08-15 | Валєрій Івановіч Кобозєв | Electrical gastro-intestinal tract stimulator |
US5804133A (en) | 1996-04-23 | 1998-09-08 | Denton; Daniel Webster | Motorized cutting torch attachment |
US5847526A (en) | 1996-04-24 | 1998-12-08 | Lasko; William E. | Microprocessor controlled fan |
US5714862A (en) | 1996-05-02 | 1998-02-03 | The United States Of America As Represented By The Department Of Energy | Method and apparatus for monitoring the rotating frequency of de-energized induction motors |
SE516604C2 (en) | 1996-05-10 | 2002-02-05 | Nord Ct I Kalmar Ab | Method and apparatus for electrically braking an all-current motor |
GB9610846D0 (en) | 1996-05-23 | 1996-07-31 | Switched Reluctance Drives Ltd | Output smoothing in a switched reluctance machine |
US5727372A (en) | 1996-05-30 | 1998-03-17 | The Toro Company | On-board charging system for electric lawn mower |
US5630398A (en) | 1996-06-05 | 1997-05-20 | Cummins Engine Company, Inc. | Stepped rotation fuel distribution valve |
SE512071C2 (en) | 1996-06-12 | 2000-01-24 | Haellde Maskiner Ab | Device at cutting machine for food preparation |
US5708312A (en) | 1996-11-19 | 1998-01-13 | Rosen Motors, L.P. | Magnetic bearing system including a control system for a flywheel and method for operating same |
JP3741171B2 (en) | 1996-06-17 | 2006-02-01 | 株式会社安川電機 | Multiple pulse width modulation power converter |
AU3185397A (en) | 1996-06-25 | 1998-01-14 | John Judson | A.c. electrical machine and method of transducing power between two different systems |
US5868175A (en) | 1996-06-28 | 1999-02-09 | Franklin Electric Co., Inc. | Apparatus for recovery of fuel vapor |
DE19628585C2 (en) | 1996-07-16 | 2001-12-20 | Danfoss As | Method for commutating a brushless motor and supply circuit for a brushless motor |
US5893425A (en) | 1996-07-22 | 1999-04-13 | Finkle; Louis J. | Remote control electric powered skateboard |
JP3577392B2 (en) | 1996-07-25 | 2004-10-13 | アルプス電気株式会社 | Waveform shaping circuit |
US5953681A (en) | 1996-07-30 | 1999-09-14 | Bayer Corporation | Autonomous node for a test instrument system having a distributed logic nodal architecture |
US5883516A (en) | 1996-07-31 | 1999-03-16 | Scientific Drilling International | Apparatus and method for electric field telemetry employing component upper and lower housings in a well pipestring |
US5747971A (en) | 1996-08-08 | 1998-05-05 | Sundstrand Corporation | Position and velocity sensorless control for a motor generator system operated as a motor using exciter impedance |
JP3315872B2 (en) | 1996-08-20 | 2002-08-19 | 三洋電機株式会社 | Torque limiting device for electric vehicle motor |
US5793174A (en) | 1996-09-06 | 1998-08-11 | Hunter Douglas Inc. | Electrically powered window covering assembly |
DE19640190A1 (en) | 1996-09-30 | 1998-04-16 | Bosch Gmbh Robert | Electrical circuit for determining a load current |
US5789883A (en) | 1996-09-30 | 1998-08-04 | Honeywell Inc. | Pulse duration modulated switched reluctance motor control |
US5780997A (en) | 1996-10-03 | 1998-07-14 | Sundstrand Corporation | Variable reluctance alternating current generator |
IT1289670B1 (en) | 1996-11-20 | 1998-10-16 | Fiat Ricerche | DEVICE FOR THE CONTROL OF A CLUTCH ELECTROMAGNET FOR STARTING AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR FOR |
BR9714775A (en) | 1996-12-03 | 2001-10-30 | Elliott Energy Systems Inc | Electric system for turbine / alternator on a common axis |
US5838127A (en) | 1996-12-05 | 1998-11-17 | General Electric Company | Single phase motor for laundering apparatus |
US5914578A (en) | 1996-12-19 | 1999-06-22 | Rakov; Mikhail A. | Method and systems for electrical drive control |
US5804948A (en) | 1996-12-24 | 1998-09-08 | Foust; John W. | System for zero emission generation of electricity |
US5731649A (en) | 1996-12-27 | 1998-03-24 | Caama+E,Otl N+Ee O; Ramon A. | Electric motor or generator |
US5848634A (en) | 1996-12-27 | 1998-12-15 | Latron Electronics Co. Inc. | Motorized window shade system |
KR100212561B1 (en) | 1996-12-31 | 1999-08-02 | 전주범 | Apparatus for controlling circulation of tray roullet in optical disc changer system |
US5915925A (en) | 1997-01-07 | 1999-06-29 | North, Jr.; Howard L. | Pulseless liquid supply system for flow cytometry |
IT1296006B1 (en) | 1997-01-13 | 1999-06-04 | Sgs Thomson Microelectronics | PILOTING OF A THREE-PHASE MOTOR WITH FUZZY SLIDING CONTROL |
US5857061A (en) | 1997-01-28 | 1999-01-05 | Eaton Corporation | Power window switch which incorporates express up/down and window motor speed control features using a force sensitive resistor or capacitor |
JP3541601B2 (en) | 1997-02-07 | 2004-07-14 | セイコーエプソン株式会社 | Control device for stepping motor, control method thereof, and timing device |
JP3344914B2 (en) | 1997-02-17 | 2002-11-18 | 株式会社三協精機製作所 | Speed controller for three-phase motor |
US5869946A (en) | 1997-02-27 | 1999-02-09 | Stmicroelectronics, Inc. | PWM control of motor driver |
JPH10248112A (en) | 1997-02-28 | 1998-09-14 | Toshiba Corp | Electric car |
US5832558A (en) | 1997-02-28 | 1998-11-10 | Ehret; David B. | Heated windshield wiper blade assembly |
US5780990A (en) | 1997-03-06 | 1998-07-14 | Weber; Harold J. | Parasynchronous induction motor control method and apparatus |
DE19710363A1 (en) | 1997-03-13 | 1998-09-24 | Bosch Gmbh Robert | Circuit arrangement for supplying a consumer with electrical energy |
WO1998041906A1 (en) | 1997-03-17 | 1998-09-24 | Citizen Watch Co., Ltd. | Electronic watch provided with generator |
TW333724B (en) | 1997-03-17 | 1998-06-11 | Ind Tech Res Inst | The spindle motor of optic disk driver |
DE19711183A1 (en) | 1997-03-18 | 1998-09-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method and circuit arrangement for operating at least one discharge lamp |
US5877798A (en) | 1997-03-21 | 1999-03-02 | Lexmark International Inc. | Method and apparatus for automatically determining the style printhead installed in a laser printer |
WO1998045925A1 (en) | 1997-04-09 | 1998-10-15 | Dax Industries Inc. | Combination battery charger/controller |
US5991324A (en) | 1998-03-11 | 1999-11-23 | Cymer, Inc. | Reliable. modular, production quality narrow-band KRF excimer laser |
US6128323A (en) | 1997-04-23 | 2000-10-03 | Cymer, Inc. | Reliable modular production quality narrow-band high REP rate excimer laser |
EP0980325B1 (en) | 1997-05-06 | 2004-06-09 | Kelsey-Hayes Company | An electronic brake management system with a signal modulation controller and a brushless motor |
DE19722451C1 (en) | 1997-05-28 | 1998-09-10 | Doehler Peter Dipl Kaufm | Electrical model railway with central signalling station |
DE19722453C1 (en) | 1997-05-28 | 1998-10-15 | Doehler Peter Dipl Kaufm | Electrical power drive system |
US6150771A (en) | 1997-06-11 | 2000-11-21 | Precision Solar Controls Inc. | Circuit for interfacing between a conventional traffic signal conflict monitor and light emitting diodes replacing a conventional incandescent bulb in the signal |
US5874818A (en) | 1997-06-11 | 1999-02-23 | Agile Systems, Inc. | Method and apparatus for sensing load current in a motor controller |
JP3708292B2 (en) | 1997-06-17 | 2005-10-19 | 三菱電機株式会社 | Method and apparatus for controlling PWM inverter device |
US6018537A (en) | 1997-07-18 | 2000-01-25 | Cymer, Inc. | Reliable, modular, production quality narrow-band high rep rate F2 laser |
US6330261B1 (en) | 1997-07-18 | 2001-12-11 | Cymer, Inc. | Reliable, modular, production quality narrow-band high rep rate ArF excimer laser |
USRE38054E1 (en) | 1997-07-18 | 2003-04-01 | Cymer, Inc. | Reliable, modular, production quality narrow-band high rep rate F2 laser |
US6757316B2 (en) | 1999-12-27 | 2004-06-29 | Cymer, Inc. | Four KHz gas discharge laser |
US5887302A (en) | 1997-08-05 | 1999-03-30 | Dimucci; Vito A. | Circuit for providing jog pulse, jog-off high limit, and low battery detect |
US5982118A (en) | 1997-08-06 | 1999-11-09 | Matsushita Electric Industrial Co., Ltd. | Motor with electronic distributing configuration |
US6819303B1 (en) | 1998-08-17 | 2004-11-16 | Daktronics, Inc. | Control system for an electronic sign (video display system) |
US6540533B1 (en) | 1997-08-12 | 2003-04-01 | James W. Schreiber | Remote electrical plug ejector |
US6717376B2 (en) | 1997-08-26 | 2004-04-06 | Color Kinetics, Incorporated | Automotive information systems |
US6975079B2 (en) | 1997-08-26 | 2005-12-13 | Color Kinetics Incorporated | Systems and methods for controlling illumination sources |
US6965205B2 (en) | 1997-08-26 | 2005-11-15 | Color Kinetics Incorporated | Light emitting diode based products |
US6624597B2 (en) | 1997-08-26 | 2003-09-23 | Color Kinetics, Inc. | Systems and methods for providing illumination in machine vision systems |
US7014336B1 (en) | 1999-11-18 | 2006-03-21 | Color Kinetics Incorporated | Systems and methods for generating and modulating illumination conditions |
US20020113555A1 (en) | 1997-08-26 | 2002-08-22 | Color Kinetics, Inc. | Lighting entertainment system |
US6016038A (en) | 1997-08-26 | 2000-01-18 | Color Kinetics, Inc. | Multicolored LED lighting method and apparatus |
US7113541B1 (en) | 1997-08-26 | 2006-09-26 | Color Kinetics Incorporated | Method for software driven generation of multiple simultaneous high speed pulse width modulated signals |
US6548967B1 (en) | 1997-08-26 | 2003-04-15 | Color Kinetics, Inc. | Universal lighting network methods and systems |
US6806659B1 (en) | 1997-08-26 | 2004-10-19 | Color Kinetics, Incorporated | Multicolored LED lighting method and apparatus |
US6211626B1 (en) | 1997-08-26 | 2001-04-03 | Color Kinetics, Incorporated | Illumination components |
US6608453B2 (en) | 1997-08-26 | 2003-08-19 | Color Kinetics Incorporated | Methods and apparatus for controlling devices in a networked lighting system |
US7352339B2 (en) | 1997-08-26 | 2008-04-01 | Philips Solid-State Lighting Solutions | Diffuse illumination systems and methods |
US6243635B1 (en) | 1997-08-27 | 2001-06-05 | Nartron Corporation | Integrated seat control with adaptive capabilities |
US5998946A (en) | 1997-10-08 | 1999-12-07 | Daewoo Electronics Co., Ltd. | Method and apparatus for controlling a rotation of a sensorless and brushless DC motor |
US5943223A (en) | 1997-10-15 | 1999-08-24 | Reliance Electric Industrial Company | Electric switches for reducing on-state power loss |
DE19745849A1 (en) | 1997-10-16 | 1999-04-22 | Bosch Gmbh Robert | Power distribution device for motor vehicles |
DE19845135A1 (en) | 1997-10-25 | 1999-04-29 | Marquardt Gmbh | Electric operating switch for automobile electrical load |
US6069465A (en) | 1997-10-31 | 2000-05-30 | Hunter Douglas International N.V. | Group control system for light regulating devices |
DE19752029B4 (en) | 1997-11-24 | 2004-02-26 | Siemens Ag | Anti-theft system for a motor vehicle |
US6198242B1 (en) | 1997-12-02 | 2001-03-06 | Mitsui Kinzoku Kogyo Kabushiki Kaisha | Powered sliding device for vehicle slide door |
US6259225B1 (en) | 1997-12-10 | 2001-07-10 | Seiko Epson Corporation | Stepping motor control unit and method, printer employing the same, and information recording medium |
IT1296642B1 (en) | 1997-12-15 | 1999-07-14 | Bitron Spa | POWER SYSTEM OF AN ELECTRONICALLY SWITCHED ELECTRIC MOTOR FOR AIR CONDITIONING DEVICES TO BE INSTALLED INSIDE |
US7132804B2 (en) | 1997-12-17 | 2006-11-07 | Color Kinetics Incorporated | Data delivery track |
US6038918A (en) | 1997-12-22 | 2000-03-21 | William T. Newton | Instrument for testing automatic transmission fluid control devices |
US6325142B1 (en) | 1998-01-05 | 2001-12-04 | Capstone Turbine Corporation | Turbogenerator power control system |
US6222172B1 (en) | 1998-02-04 | 2001-04-24 | Photobit Corporation | Pulse-controlled light emitting diode source |
US6039137A (en) | 1998-02-10 | 2000-03-21 | Schless; Ely | Multi-terrain electric motor driven cycle |
US6164258A (en) | 1998-02-23 | 2000-12-26 | The United States Of America As Represented By The Secretary Of The Army | Diesel engine starting controller and method |
US6020712A (en) | 1998-02-23 | 2000-02-01 | Precise Power Corporation | Rotor control for synchronous AC machines |
US6876105B1 (en) | 1998-02-26 | 2005-04-05 | Anorad Corporation | Wireless encoder |
JP2000116027A (en) | 1998-03-10 | 2000-04-21 | Fiderikkusu:Kk | Power supply device |
JPH11256919A (en) | 1998-03-13 | 1999-09-21 | Koito Mfg Co Ltd | Power window device with safety device |
JP4039728B2 (en) | 1998-03-13 | 2008-01-30 | オリエンタルモーター株式会社 | Stepping motor control device |
US6393212B1 (en) | 1998-03-18 | 2002-05-21 | Harwil Corporation | Portable steam generating system |
US6095661A (en) | 1998-03-19 | 2000-08-01 | Ppt Vision, Inc. | Method and apparatus for an L.E.D. flashlight |
US6724692B1 (en) | 1998-04-21 | 2004-04-20 | Seiko Epson Corporation | Time measurement device and method |
US6375630B1 (en) | 1998-04-28 | 2002-04-23 | Inseat Solutions, Llc | Microcontroller based massage system |
BE1011896A3 (en) | 1998-04-29 | 2000-02-01 | Reels Besloten Vennootschap Me | Improved hose reel. |
US6023135A (en) | 1998-05-18 | 2000-02-08 | Capstone Turbine Corporation | Turbogenerator/motor control system |
US6054823A (en) | 1998-05-19 | 2000-04-25 | Telcom Semiconductor, Inc. | Verification of fan operation |
US6604497B2 (en) | 1998-06-05 | 2003-08-12 | Buehrle, Ii Harry W. | Internal combustion engine valve operating mechanism |
US5986539A (en) | 1998-06-08 | 1999-11-16 | Ultracision, Inc. | Hafe-duplex two-wire DC power-line communication system |
WO1999065138A1 (en) | 1998-06-09 | 1999-12-16 | Nsk Ltd. | Motor drive control apparatus |
US6002226A (en) | 1998-06-17 | 1999-12-14 | General Motors Corporation | Brushless DC motor control method and apparatus for reduced commutation noise |
US6075688A (en) | 1998-06-19 | 2000-06-13 | Cleaveland/Price Inc. | Motor operator with ac power circuit continuity sensor |
DE19827556A1 (en) | 1998-06-20 | 1999-12-23 | Bosch Gmbh Robert | Voltage regulator for electrical generator driven by i.c. engine e.g. regulating onboard voltage for automobile electrical loads |
JP3164065B2 (en) * | 1998-06-24 | 2001-05-08 | 日本電気株式会社 | Semiconductor device |
US6246207B1 (en) | 1998-06-26 | 2001-06-12 | A. O. Smith Corporation | Method and apparatus for controlling an induction motor |
US6442181B1 (en) | 1998-07-18 | 2002-08-27 | Cymer, Inc. | Extreme repetition rate gas discharge laser |
US6477193B2 (en) | 1998-07-18 | 2002-11-05 | Cymer, Inc. | Extreme repetition rate gas discharge laser with improved blower motor |
EP1762416A3 (en) * | 1998-07-21 | 2007-03-21 | TOKYO R&D CO., LTD. | Hybrid vehicle |
US6128436A (en) | 1998-08-03 | 2000-10-03 | Visteon Global Technologies, Inc. | Speed monitoring and control for a brushless motor |
US6285146B1 (en) | 1998-08-07 | 2001-09-04 | Nidec America Corporation | Apparatus and method of regulating the speed of a brushless DC motor |
US6188187B1 (en) | 1998-08-07 | 2001-02-13 | Nidec America Corporation | Apparatus and method of regulating the speed of a DC brushless motor |
DE19837919A1 (en) | 1998-08-20 | 1999-03-11 | Siemens Ag | Switched mode power supply e.g. for television (TV) receivers |
FR2782855B1 (en) | 1998-08-25 | 2000-11-17 | Jouan | DEVICE FOR CONTROLLING THE ROTATION SPEED OF AN ELECTRIC MOTOR AND CENTRIFUGATION APPARATUS EQUIPPED WITH SUCH A DEVICE |
US6118238A (en) | 1998-08-26 | 2000-09-12 | Satcon Technology Corporation | Motor starting apparatus for an engine driven generator |
EP1605457A3 (en) | 1998-09-02 | 2007-05-23 | Matsushita Electric Industrial Co., Ltd. | Disk drive apparatus |
US6567450B2 (en) | 1999-12-10 | 2003-05-20 | Cymer, Inc. | Very narrow band, two chamber, high rep rate gas discharge laser system |
US6766874B2 (en) | 1998-09-29 | 2004-07-27 | Hitachi, Ltd. | System for driving hybrid vehicle, method thereof and electric power supply system therefor |
US6078156A (en) | 1998-10-02 | 2000-06-20 | Eastman Kodak Company | Method and apparatus for improved electronic braking of a DC motor |
US6164788A (en) | 1998-11-02 | 2000-12-26 | Gemmell; Thomas | Drop down emergency lighting unit |
US6429936B1 (en) | 1998-11-06 | 2002-08-06 | C&L Instruments | Synchronous multiwavelength fluorescence system |
US6123312A (en) | 1998-11-16 | 2000-09-26 | Dai; Yuzhong | Proactive shock absorption and vibration isolation |
US6272073B1 (en) | 1998-11-20 | 2001-08-07 | Gary L. Doucette | Underwater location and communication device |
US6175204B1 (en) | 1998-11-25 | 2001-01-16 | Westinghouse Air Brake Company | Dynamic brake for power door |
US6467557B1 (en) | 1998-12-18 | 2002-10-22 | Western Well Tool, Inc. | Long reach rotary drilling assembly |
US6308052B1 (en) | 1999-01-15 | 2001-10-23 | Imran A. Jamali | Half-duplex radios for indicating signal transmissions |
US5993354A (en) | 1999-01-25 | 1999-11-30 | New Venture Gear, Inc. | Transfer case shift control system using automatic shutdown relay circuit |
US6194851B1 (en) | 1999-01-27 | 2001-02-27 | Hy-Security Gate, Inc. | Barrier operator system |
DE19903443A1 (en) | 1999-01-29 | 2000-08-03 | Sram De Gmbh | Drive unit for an electrically powered vehicle |
US6227807B1 (en) | 1999-02-02 | 2001-05-08 | Eric Chase | Constant flow fluid pump |
US6150789A (en) | 1999-02-13 | 2000-11-21 | Tri-Tech, Inc. | Stepper motor control |
US5936371A (en) | 1999-02-16 | 1999-08-10 | Lexmark International, Inc. | Method and apparatus for controlling a servo motor using a stepper motor controller integrated circuit |
US6100655A (en) | 1999-02-19 | 2000-08-08 | Mcintosh; Douglas S. | Mechanical return fail-safe actuator for damper, valve, elevator or other positioning device |
US6027515A (en) | 1999-03-02 | 2000-02-22 | Sound Surgical Technologies Llc | Pulsed ultrasonic device and method |
US6726698B2 (en) | 1999-03-02 | 2004-04-27 | Sound Surgical Technologies Llc | Pulsed ultrasonic device and method |
US6330260B1 (en) | 1999-03-19 | 2001-12-11 | Cymer, Inc. | F2 laser with visible red and IR control |
US6519029B1 (en) | 1999-03-22 | 2003-02-11 | Arc Second, Inc. | Low cost transmitter with calibration means for use in position measurement systems |
KR100406875B1 (en) | 1999-03-22 | 2003-11-21 | 페어차일드코리아반도체 주식회사 | A Controlling Circuit Of Motor and A Method Thereof |
DE19983946B4 (en) | 1999-04-01 | 2010-04-29 | EPS Energy and Propulsion Systems Inc., Sherbrooke | Brushless high-performance motor and control for an electric vehicle engine |
US6888280B2 (en) | 1999-04-01 | 2005-05-03 | Jean-Yves Dubé | High performance brushless motor and drive for an electrical vehicle motorization |
US6118243A (en) | 1999-04-07 | 2000-09-12 | Overhead Door Corporation | Door operator system |
TW445192B (en) | 1999-04-12 | 2001-07-11 | Tri Tool Inc | Control method and apparatus for an arc welding system |
US6459225B1 (en) | 1999-04-27 | 2002-10-01 | Canon Kabushiki Kaisha | Servo-control apparatus for motor |
BE1012634A3 (en) | 1999-04-28 | 2001-01-09 | Barco Nv | Method for displaying images on a display device, and display device used for this purpose. |
US6625191B2 (en) | 1999-12-10 | 2003-09-23 | Cymer, Inc. | Very narrow band, two chamber, high rep rate gas discharge laser system |
US6801560B2 (en) | 1999-05-10 | 2004-10-05 | Cymer, Inc. | Line selected F2 two chamber laser system |
US6882674B2 (en) | 1999-12-27 | 2005-04-19 | Cymer, Inc. | Four KHz gas discharge laser system |
US6370174B1 (en) | 1999-10-20 | 2002-04-09 | Cymer, Inc. | Injection seeded F2 lithography laser |
US6348775B1 (en) | 1999-05-11 | 2002-02-19 | Borealis Technical Limited | Drive wave form synchronization for induction motors |
US6034978A (en) | 1999-05-12 | 2000-03-07 | Cymer, Inc. | Gas discharge laser with gas temperature control |
US6157661A (en) | 1999-05-12 | 2000-12-05 | Laserphysics, Inc. | System for producing a pulsed, varied and modulated laser output |
JP2000323695A (en) | 1999-05-14 | 2000-11-24 | Nec Corp | Solid-state image sensor and its manufacture |
US6448676B1 (en) | 1999-05-18 | 2002-09-10 | Siemens Automotive Inc. | Pulse width modulated engine cooling fan motor with integrated MOSFET |
US6364726B1 (en) | 1999-05-18 | 2002-04-02 | Sanshin Kogyo Kabushiki Kaisha | Control system for outboard motor |
US6786625B2 (en) | 1999-05-24 | 2004-09-07 | Jam Strait, Inc. | LED light module for vehicles |
US6237461B1 (en) | 1999-05-28 | 2001-05-29 | Non-Lethal Defense, Inc. | Non-lethal personal defense device |
JP3680216B2 (en) * | 1999-06-08 | 2005-08-10 | トヨタ自動車株式会社 | Vehicle traction control device |
US6418581B1 (en) | 1999-06-24 | 2002-07-16 | Ipso-Usa, Inc. | Control system for measuring load imbalance and optimizing spin speed in a laundry washing machine |
JP2001016877A (en) | 1999-06-25 | 2001-01-19 | Asmo Co Ltd | Ultrasonic motor drive circuit |
KR100302384B1 (en) | 1999-07-01 | 2001-09-22 | 김오영 | Digital unified control apparatus and method in automobile electric device |
DE19931199A1 (en) | 1999-07-07 | 2001-01-18 | Daimler Chrysler Ag | Method for controlling a power drive system |
US6721989B1 (en) | 1999-07-16 | 2004-04-20 | Robert N. Barlow | Slapping windshield wiper for de-icing |
US6194877B1 (en) | 1999-08-02 | 2001-02-27 | Visteon Global Technologies, Inc. | Fault detection in a motor vehicle charging system |
US6482145B1 (en) | 2000-02-14 | 2002-11-19 | Obtech Medical Ag | Hydraulic anal incontinence treatment |
US6204479B1 (en) | 1999-08-13 | 2001-03-20 | Illinois Tool Works Inc. | Thermistor protection for a wire feed motor |
AU6708800A (en) | 1999-08-17 | 2001-03-13 | Black & Decker Incorporated | Electrical machines |
US6222332B1 (en) | 1999-09-16 | 2001-04-24 | Honeywell International Inc. | Low cost high performance single board motor controller |
US6850468B2 (en) | 1999-09-17 | 2005-02-01 | Seiko Epson Corporation | Electronic timepiece, control method for electronic timepiece, regulating system for electronic timepiece, and regulating method for electronic timepiece |
US7481140B2 (en) | 2005-04-15 | 2009-01-27 | Sd3, Llc | Detection systems for power equipment |
US6353299B1 (en) | 1999-10-19 | 2002-03-05 | Fasco Industries, Inc. | Control algorithm for brushless DC motor/blower system |
US6396042B1 (en) | 1999-10-19 | 2002-05-28 | Raytheon Company | Digital laser image recorder including delay lines |
IT1311256B1 (en) | 1999-10-26 | 2002-03-04 | Lgl Electronics Spa | DEVICE AND METHOD OF HANDLING AND CONTROL OF THE WEFT WINDING ARM IN WEFT FEEDERS FOR WINDOW FRAMES |
US6448724B1 (en) | 1999-10-28 | 2002-09-10 | Delphi Technologies, Inc. | Apparatus and method for commutation noise reduction |
DE19952817A1 (en) | 1999-11-02 | 2001-08-30 | Rr Elektronische Geraete Gmbh | Reflector antenna with a stator part and a rotor part rotatably mounted relative to this |
US6191542B1 (en) | 1999-11-12 | 2001-02-20 | International Business Machines Corporation | Method and apparatus for cleaning a DC motor commutator-brush interface |
US6309268B1 (en) | 1999-11-15 | 2001-10-30 | Westerbeke Corporation | Marine outboard electrical generator and assembly method |
DE19956384C1 (en) | 1999-11-24 | 2000-11-16 | Bosch Gmbh Robert | Impulse starting method for i.c. engine uses acceleration of flywheel mass during run-up phase with subsequrent coupling to engine crankshaft |
FR2801444B1 (en) | 1999-11-24 | 2002-02-08 | Dassault Aviat | AUTONOMOUS ELECTRIC GENERATOR, ESPECIALLY FOR AIRCRAFT |
US6459222B1 (en) | 1999-11-29 | 2002-10-01 | Chung Shan Institute Of Science And Technology | Bicycle control system for controlling an elebike |
EP1107444B1 (en) | 1999-12-06 | 2007-10-03 | Matsushita Electric Industrial Co., Ltd. | Motor and disk drive apparatus |
US6286609B1 (en) | 1999-12-10 | 2001-09-11 | Black & Decker Inc. | AC/DC chopper for power tool |
US6512199B1 (en) | 1999-12-20 | 2003-01-28 | Anthony M. Blazina | Constant-speed motor-driven modular welding apparatus with electronic power control apparatus, electrode holder operation controls, and safety interlock |
DE19962728A1 (en) | 1999-12-23 | 2001-06-28 | Grundfos As | Cooler |
DE19963001A1 (en) | 1999-12-24 | 2001-06-28 | Bosch Gmbh Robert | Motor vehicle radar system for focussing sensor beams to control speed feeds external temperature and vehicle net speed from a CAN bus to a control device via control wires. |
US6462506B2 (en) | 1999-12-30 | 2002-10-08 | Textron Inc. | Electric golf car with low-speed regenerative braking |
US6538403B2 (en) | 2000-01-07 | 2003-03-25 | Black & Decker Inc. | Brushless DC motor sensor control system and method |
JP3897506B2 (en) | 2000-01-20 | 2007-03-28 | 日本電産サンキョー株式会社 | Brushless motor |
JP2001218461A (en) | 2000-01-31 | 2001-08-10 | Sony Corp | Switching power supply unit |
DE60120563T2 (en) | 2000-02-03 | 2007-05-31 | Koninklijke Philips Electronics N.V. | CIRCUIT ARRANGEMENT FOR A LED LIGHTING MODULE |
JP3368890B2 (en) | 2000-02-03 | 2003-01-20 | 日亜化学工業株式会社 | Image display device and control method thereof |
ATE324087T1 (en) | 2000-02-14 | 2006-05-15 | Potencia Medical Ag | MALE IMPOTENCY PROSTHESIS DEVICE WITH WIRELESS POWER SUPPLY |
US6667869B2 (en) | 2000-02-24 | 2003-12-23 | Acuity Imaging, Llc | Power control system and method for illumination array |
US6561962B1 (en) | 2000-03-10 | 2003-05-13 | Converting Systems, Inc. | Line plastic bag machine |
US6515584B2 (en) | 2000-03-21 | 2003-02-04 | Deyoung John W. | Distinctive hazard flash patterns for motor vehicles and for portable emergency warning devices with pulse generators to produce such patterns |
US6545438B1 (en) | 2000-03-31 | 2003-04-08 | Ljm Products, Inc. | Cooling module and related control circuits useful therefor incorporating a communication port for receiving digital command signals to control module |
US6424106B2 (en) | 2000-03-31 | 2002-07-23 | Matsushita Electric Industrial Co., Ltd. | Motor |
US6379025B1 (en) | 2000-03-31 | 2002-04-30 | Pacfab, Inc. | Submersible lighting fixture with color wheel |
DE10017245B4 (en) * | 2000-04-06 | 2011-10-06 | Robert Bosch Gmbh | Method and device for controlling the drive unit of a vehicle |
US6497267B1 (en) | 2000-04-07 | 2002-12-24 | Lutron Electronics Co., Inc. | Motorized window shade with ultraquiet motor drive and ESD protection |
JP3459808B2 (en) | 2000-04-18 | 2003-10-27 | Necエレクトロニクス株式会社 | Motor driving circuit and driving method thereof |
DE10019675C1 (en) | 2000-04-19 | 2001-11-08 | Webasto Vehicle Sys Int Gmbh | Solar system for a vehicle |
US6263267B1 (en) * | 2000-05-09 | 2001-07-17 | Ford Global Technologies, Inc. | Traction control system for a hybrid electric vehicle |
US6366049B1 (en) | 2000-05-10 | 2002-04-02 | Ecostar Electric Drive Systems L.L.C. | Motor starter and speed controller system |
DE10023370A1 (en) | 2000-05-12 | 2001-11-22 | Mulfingen Elektrobau Ebm | System for the electronic commutation of a brushless DC motor |
JP2001326569A (en) | 2000-05-16 | 2001-11-22 | Toshiba Corp | Led driving circuit and optical transmission module |
US6555935B1 (en) | 2000-05-18 | 2003-04-29 | Rockwell Automation Technologies, Inc. | Apparatus and method for fast FET switching in a digital output device |
US6933822B2 (en) | 2000-05-24 | 2005-08-23 | Magtech As | Magnetically influenced current or voltage regulator and a magnetically influenced converter |
US6304473B1 (en) | 2000-06-02 | 2001-10-16 | Iwatt | Operating a power converter at optimal efficiency |
US6950272B1 (en) | 2000-06-09 | 2005-09-27 | Maxtor Corporation | Method and apparatus for the acoustic improvement of the pulsed current method for controlling the velocity of a transducer head |
US6914919B2 (en) | 2000-06-19 | 2005-07-05 | Cymer, Inc. | Six to ten KHz, or greater gas discharge laser system |
US6537229B1 (en) | 2000-06-27 | 2003-03-25 | Wei-Kung Wang | Method and apparatus for monitoring and improving blood circulation by resonance |
US6355987B1 (en) | 2000-06-27 | 2002-03-12 | General Electric Company | Power converter and control for microturbine |
US6957897B1 (en) | 2000-06-27 | 2005-10-25 | General Electric Company | Flashlight with light emitting diode source |
US6305419B1 (en) | 2000-07-14 | 2001-10-23 | Clark Equipment Company | Variable pilot pressure control for pilot valves |
US6419014B1 (en) | 2000-07-20 | 2002-07-16 | Schlumberger Technology Corporation | Apparatus and method for orienting a downhole tool |
US6586902B2 (en) | 2000-07-26 | 2003-07-01 | Matsushita Electric Industrial Co., Ltd. | Disk drive apparatus and motor |
US6482064B1 (en) | 2000-08-02 | 2002-11-19 | Interlego Ag | Electronic toy system and an electronic ball |
US6367180B2 (en) | 2000-08-03 | 2002-04-09 | Richard S. Weiss | Electronic illuminated house sign |
DE10040275A1 (en) | 2000-08-14 | 2002-02-28 | Braun Gmbh | Circuit arrangement and electrical device with an electric motor and a choke converter |
US6410992B1 (en) | 2000-08-23 | 2002-06-25 | Capstone Turbine Corporation | System and method for dual mode control of a turbogenerator/motor |
US6388419B1 (en) | 2000-09-01 | 2002-05-14 | Ford Global Technologies, Inc. | Motor control system |
US6808508B1 (en) | 2000-09-13 | 2004-10-26 | Cardiacassist, Inc. | Method and system for closed chest blood flow support |
US6362586B1 (en) | 2000-09-15 | 2002-03-26 | General Motors Corporation | Method and device for optimal torque control of a permanent magnet synchronous motor over an extended speed range |
US6449870B1 (en) | 2000-09-15 | 2002-09-17 | Louis Perez | Portable hair dryer |
SE519223C2 (en) | 2000-09-18 | 2003-02-04 | Hoernell Internat Ab | Method and apparatus for constant flow of a fan |
US6591201B1 (en) | 2000-09-28 | 2003-07-08 | Thomas Allen Hyde | Fluid energy pulse test system |
US6412293B1 (en) | 2000-10-11 | 2002-07-02 | Copeland Corporation | Scroll machine with continuous capacity modulation |
US6856638B2 (en) | 2000-10-23 | 2005-02-15 | Lambda Physik Ag | Resonator arrangement for bandwidth control |
US6591593B1 (en) | 2000-10-23 | 2003-07-15 | Dennis Brandon | Electric riding lawn mower powered by an internal combustion engine and generator system |
EP1610321B1 (en) | 2000-10-27 | 2006-12-27 | Matsushita Electric Industries Co., Ltd. | Motor and disk drive apparatus using said motor |
US6566827B2 (en) | 2000-11-09 | 2003-05-20 | Matsushita Electric Industrial Co., Ltd. | Disk drive apparatus and motor |
DE10056146A1 (en) | 2000-11-13 | 2002-06-06 | Siemens Ag | Method and device for automatically assigning a motor encoder to a power unit within an electrical drive system |
DE10058293A1 (en) | 2000-11-23 | 2002-05-29 | Siemens Ag | Active noise compensation |
US6402042B1 (en) | 2000-11-29 | 2002-06-11 | Blue Earth Research | Uniform temperature control system |
DE10059172A1 (en) | 2000-11-29 | 2002-06-13 | Siemens Ag | Safe speed monitoring for encoderless three-phase drives |
US6486643B2 (en) | 2000-11-30 | 2002-11-26 | Analog Technologies, Inc. | High-efficiency H-bridge circuit using switched and linear stages |
US6279541B1 (en) | 2000-12-01 | 2001-08-28 | Walbro Corporation | Fuel supply system responsive to engine fuel demand |
US6665976B2 (en) | 2000-12-19 | 2003-12-23 | Daron K. West | Method and fishing lure for producing oscillatory movement |
FI109430B (en) | 2000-12-21 | 2002-07-31 | Mauri Kalevi Drufva | Lighting method and device |
US6733293B2 (en) | 2001-01-26 | 2004-05-11 | Provision Entertainment, Inc. | Personal simulator |
DE10105207B4 (en) | 2001-01-30 | 2010-04-22 | Gebrüder Märklin & Cie. GmbH | Method and control unit for speed control of a DC motor for model vehicles |
ES2229106T3 (en) | 2001-01-30 | 2005-04-16 | True Solar Autonomy Holding B.V. | VOLTAGE CONVERSION CIRCUIT. |
US6713982B2 (en) | 2001-02-20 | 2004-03-30 | E. I. Du Pont De Nemours And Company | Segmented induction electric machine with interdigiated disk-type rotor and stator construction |
US20060038516A1 (en) | 2001-02-20 | 2006-02-23 | Burse Ronald O | Segmented switched reluctance electric machine with interdigitated disk-type rotor and stator construction |
FR2821391B1 (en) | 2001-02-23 | 2003-06-27 | Jeumont Ind | METHOD AND DEVICE FOR CONTROLLING AN ELECTRIC POWER GENERATION INSTALLATION COMPRISING A WIND TURBINE |
US6592449B2 (en) | 2001-02-24 | 2003-07-15 | International Business Machines Corporation | Smart fan modules and system |
US6680593B2 (en) | 2001-03-02 | 2004-01-20 | Matsushita Electric Industrial Co., Ltd. | Disk drive apparatus and motor |
US7038399B2 (en) | 2001-03-13 | 2006-05-02 | Color Kinetics Incorporated | Methods and apparatus for providing power to lighting devices |
US6510995B2 (en) | 2001-03-16 | 2003-01-28 | Koninklijke Philips Electronics N.V. | RGB LED based light driver using microprocessor controlled AC distributed power system |
DE10115873A1 (en) | 2001-03-30 | 2002-10-17 | Bosch Gmbh Robert | Method for controlling an electronically commutated direct current motor |
US6664749B2 (en) | 2001-04-06 | 2003-12-16 | Seagate Technology Llc | Spindle motor initialization after a control processor reset condition in a disc drive |
US6690704B2 (en) | 2001-04-09 | 2004-02-10 | Cymer, Inc. | Control system for a two chamber gas discharge laser |
US6538400B2 (en) | 2001-05-08 | 2003-03-25 | Meritor Light Vehicle Technology, Llc | Control system for an electric motor |
US6515443B2 (en) | 2001-05-21 | 2003-02-04 | Agere Systems Inc. | Programmable pulse width modulated waveform generator for a spindle motor controller |
CN1701643A (en) | 2001-05-26 | 2005-11-23 | 尼克斯特克电力系统公司 | Remote control of electronic light ballast and other devices field of the invention |
US6617817B2 (en) | 2001-06-01 | 2003-09-09 | Stmicroelectronics, Ltd. | Electrical time constant compensation method for switched, voltage-mode driver circuit |
US6504330B2 (en) | 2001-06-05 | 2003-01-07 | Honeywell International Inc. | Single board motor controller |
KR100412486B1 (en) | 2001-06-22 | 2003-12-31 | 삼성전자주식회사 | Photographing apparatus having the function of preventing blur of still image |
FR2826521B1 (en) | 2001-06-26 | 2003-09-26 | Somfy | RADIO-CONTROLLED CONTROL DEVICE |
US6867516B2 (en) | 2001-07-02 | 2005-03-15 | Valeo Motoren Und Aktuatoren Gmbh | Drive device with anti-lash mechanism |
US7293467B2 (en) | 2001-07-09 | 2007-11-13 | Nartron Corporation | Anti-entrapment system |
US6696814B2 (en) | 2001-07-09 | 2004-02-24 | Tyco Electronics Corporation | Microprocessor for controlling the speed and frequency of a motor shaft in a power tool |
US7162928B2 (en) | 2004-12-06 | 2007-01-16 | Nartron Corporation | Anti-entrapment system |
US6943510B2 (en) | 2001-08-06 | 2005-09-13 | Black & Decker Inc. | Excitation circuit and control method for flux switching motor |
US6397735B1 (en) | 2001-08-21 | 2002-06-04 | Kayue Electric Company Limited | Electronic food processor |
GB2369730B (en) | 2001-08-30 | 2002-11-13 | Integrated Syst Tech Ltd | Illumination control system |
US6710495B2 (en) | 2001-10-01 | 2004-03-23 | Wisconsin Alumni Research Foundation | Multi-phase electric motor with third harmonic current injection |
US6895175B2 (en) | 2001-10-01 | 2005-05-17 | Cummins, Inc. | Electrical control circuit and method |
US6495996B1 (en) | 2001-10-31 | 2002-12-17 | Robert Walter Redlich | Linear motor control with triac and phase locked loop |
US6770186B2 (en) | 2001-11-13 | 2004-08-03 | Eldat Communication Ltd. | Rechargeable hydrogen-fueled motor vehicle |
EP1446869A1 (en) | 2001-11-23 | 2004-08-18 | Danfoss Drives A/S | Frequency converter for different mains voltages |
US6876104B1 (en) | 2001-11-27 | 2005-04-05 | Yazaki North America, Inc. | High-speed switching circuit and automotive accessory controller using same |
US6927524B2 (en) | 2001-11-27 | 2005-08-09 | Wavecrest Laboratories, Llc | Rotary electric motor having separate control modules for respective stator electromagnets |
GB0128844D0 (en) | 2001-12-01 | 2002-01-23 | Westland Helicopters | Power control device |
JP3672866B2 (en) | 2001-12-04 | 2005-07-20 | 松下電器産業株式会社 | Motor driving apparatus and motor driving method |
JP3998960B2 (en) | 2001-12-12 | 2007-10-31 | 株式会社ルネサステクノロジ | Sensorless motor drive control system |
DE10162181A1 (en) | 2001-12-18 | 2003-07-10 | Bosch Gmbh Robert | Method and circuit arrangement for protecting an electric motor against overload |
CA2366030A1 (en) | 2001-12-20 | 2003-06-20 | Global E Bang Inc. | Profiling system |
JP2003207248A (en) | 2002-01-15 | 2003-07-25 | Toshiba Corp | Refrigerator |
US6798812B2 (en) | 2002-01-23 | 2004-09-28 | Cymer, Inc. | Two chamber F2 laser system with F2 pressure based line selection |
US6595897B1 (en) | 2002-03-01 | 2003-07-22 | Briggs & Stratton Corporation | Combination speed limiter and transmission interlock system |
JP4024057B2 (en) | 2002-03-06 | 2007-12-19 | 富士フイルム株式会社 | Digital camera |
US7256505B2 (en) | 2003-03-05 | 2007-08-14 | Microstrain, Inc. | Shaft mounted energy harvesting for wireless sensor operation and data transmission |
DE10212493A1 (en) | 2002-03-21 | 2003-10-02 | Ballard Power Systems | Arrangement for monitoring insulation of equipment of DC system isolated from earth has dual insulation monitoring devices operating alternately |
EP1350647B1 (en) | 2002-03-28 | 2005-01-05 | Catem GmbH & Co.KG | Electric heater for a motor vehicle |
US6917502B2 (en) | 2002-03-28 | 2005-07-12 | Delphi Technologies, Inc. | Power supply circuit and method for a motor vehicle electrical accessory load |
FR2838599B1 (en) | 2002-04-11 | 2004-08-06 | Valeo Climatisation | ELECTRIC HEATING DEVICE, PARTICULARLY FOR VEHICLE HEATING AND AIR CONDITIONING APPARATUS |
US7146749B2 (en) | 2002-04-22 | 2006-12-12 | The Procter & Gamble Company | Fabric article treating apparatus with safety device and controller |
US6995679B2 (en) | 2002-04-30 | 2006-02-07 | International Rectifier Corporation | Electronically controlled power steering system for vehicle and method and system for motor control |
US6871126B2 (en) | 2002-05-03 | 2005-03-22 | Donnelly Corporation | Variable blower controller for vehicle |
EP1361156A1 (en) | 2002-05-07 | 2003-11-12 | Smiths Aerospace, Inc. | Boom deploy system |
US6841947B2 (en) | 2002-05-14 | 2005-01-11 | Garmin At, Inc. | Systems and methods for controlling brightness of an avionics display |
US6641245B1 (en) | 2002-05-23 | 2003-11-04 | Hewlett-Packard Development Company, L.P. | Printing apparatus with adaptive servicing sled control and method |
US6977588B2 (en) | 2002-06-03 | 2005-12-20 | Alwin Manufacturing Co. | Automatic dispenser apparatus |
US6940685B2 (en) | 2002-06-14 | 2005-09-06 | Stmicroelectronics S.R.L. | Voltage-mode drive for driving complex impedance loads |
AU2002313299A1 (en) | 2002-06-28 | 2004-01-19 | Fujitsu Limited | Information storage device |
JP3888247B2 (en) | 2002-07-15 | 2007-02-28 | 松下電器産業株式会社 | Motor drive device |
US7005646B1 (en) | 2002-07-24 | 2006-02-28 | Canberra Industries, Inc. | Stabilized scintillation detector for radiation spectroscopy and method |
US20050052080A1 (en) * | 2002-07-31 | 2005-03-10 | Maslov Boris A. | Adaptive electric car |
CN2565531Y (en) | 2002-08-07 | 2003-08-13 | 浙江欧美环境工程有限公司 | Roll type electric salt remover with constant current output dc power supply |
JP4485768B2 (en) | 2002-08-27 | 2010-06-23 | 株式会社東海理化電機製作所 | Motor control circuit for mirror device |
ES2201922B2 (en) | 2002-09-06 | 2006-07-01 | Sacopa, S.A.U | LIGHTING SYSTEM FOR POOLS FOR POOLS. |
GB0221070D0 (en) | 2002-09-11 | 2002-10-23 | Davison Ernest | Flexispline motor |
US6979967B2 (en) | 2002-10-15 | 2005-12-27 | International Rectifier Corporation | Efficiency optimization control for permanent magnet motor drive |
US7077345B2 (en) | 2002-12-12 | 2006-07-18 | Vermeer Manufacturing Company | Control of a feed system of a grinding machine |
US6799877B2 (en) | 2002-12-13 | 2004-10-05 | Don't Die, Llc | Emergency light signal |
JP4379053B2 (en) | 2002-12-16 | 2009-12-09 | 株式会社デンソー | Electric actuator system |
KR100452553B1 (en) | 2002-12-17 | 2004-10-14 | 삼성전자주식회사 | Transfer power supply apparatus for image forming machine |
WO2004064729A2 (en) | 2003-01-15 | 2004-08-05 | Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California | Treatments for snoring using injectable neuromuscular stimulators |
DE602004026796D1 (en) | 2003-01-17 | 2010-06-10 | Tokendo | Videoscope |
US7007782B2 (en) | 2003-02-14 | 2006-03-07 | Automotive Components Holdings Llc | Control of a hydraulic coupling system |
US6844714B2 (en) | 2003-02-21 | 2005-01-18 | Keith G. Balmain | Satellite charge monitor |
KR100400068B1 (en) | 2003-02-21 | 2003-09-29 | Bong Taek Kim | Performance test equipment system of train driving device and test method thereof |
US6825624B2 (en) | 2003-03-11 | 2004-11-30 | Visteon Global Technologies, Inc. | Hill hold for electric vehicle |
DE10316539A1 (en) | 2003-04-10 | 2004-11-11 | Siemens Ag | Circuit arrangement and method for controlling a brushless, permanently excited DC motor |
US7015825B2 (en) | 2003-04-14 | 2006-03-21 | Carpenter Decorating Co., Inc. | Decorative lighting system and decorative illumination device |
US7091874B2 (en) | 2003-04-18 | 2006-08-15 | Smithson Bradley D | Temperature compensated warning light |
JP3924548B2 (en) | 2003-04-22 | 2007-06-06 | 株式会社東海理化電機製作所 | Window glass pinching presence / absence detection device |
US7102801B2 (en) | 2003-04-26 | 2006-09-05 | Hewlett-Packard Development Company, L.P. | Pulse-width modulated drivers for light-emitting units of scanning mechanism |
US6864662B2 (en) | 2003-04-30 | 2005-03-08 | Visteon Global Technologies, Inc. | Electric power assist steering system and method of operation |
US7057153B2 (en) | 2003-05-12 | 2006-06-06 | T.J. Feetures Inc. | Multiple sensing automatic lighting system for personal safety |
FR2855677B1 (en) | 2003-05-30 | 2016-11-04 | Valeo Equip Electr Moteur | PULSE WIDTH MODULATION CONTROL CIRCUIT FOR MULTI MODE ELECTRIC MACHINE AND MULTI MODE ELECTRIC MACHINE EQUIPPED WITH SUCH A CONTROL CIRCUIT |
FR2855679B1 (en) | 2003-06-02 | 2005-07-22 | Alstom | METHOD AND SYSTEM FOR REGULATING THE INSTANTANE ELECTROMAGNETIC TORQUE, AND RECORDING MEDIUM FOR IMPLEMENTING THE METHOD |
JP4030471B2 (en) | 2003-06-06 | 2008-01-09 | 日本テキサス・インスツルメンツ株式会社 | Pulse signal generation circuit |
US6814172B1 (en) | 2003-07-21 | 2004-11-09 | Oanh Ngoc Vu | Electric power unit for two-wheel vehicles |
US7123211B2 (en) | 2003-07-31 | 2006-10-17 | Hewlett-Packard Development Company, L.P. | Surround-vision display system |
US6891294B1 (en) | 2003-08-18 | 2005-05-10 | Clarence D. Deal | Electric motor vehicle comprising same |
US7124691B2 (en) | 2003-08-26 | 2006-10-24 | Railpower Technologies Corp. | Method for monitoring and controlling locomotives |
US7296913B2 (en) | 2004-07-16 | 2007-11-20 | Technology Assessment Group | Light emitting diode replacement lamp |
JP4420317B2 (en) | 2003-09-26 | 2010-02-24 | 株式会社ルネサステクノロジ | Motor driving device and integrated circuit device for motor driving |
US6850020B1 (en) | 2003-09-26 | 2005-02-01 | Red Devil Equipment Company | Multizone clamping system for paint mixer |
US7064513B2 (en) | 2003-10-01 | 2006-06-20 | J. L. Behmer Corporation | Phase angle control for synchronous machine control |
JP4269878B2 (en) | 2003-10-10 | 2009-05-27 | 株式会社デンソー | Electronic control unit |
US7193379B2 (en) | 2003-10-20 | 2007-03-20 | Wabtec Holding Corp. | Electronic circuit arrangement for switching an electrical load in a fail safe manner |
WO2005041231A1 (en) | 2003-10-28 | 2005-05-06 | Noboru Wakatsuki | Electrical contact opening/closing device and power consumption suppressing circuit |
US6935595B2 (en) | 2003-10-28 | 2005-08-30 | Honeywell International Inc. | Pilot director light utilizing light emitting diode (LED) technology |
US7116075B2 (en) | 2003-10-31 | 2006-10-03 | Valeo Electrical Systems, Inc. | Electric power steering system for a vehicle |
US7498786B2 (en) | 2003-12-01 | 2009-03-03 | Fairchild Semiconductor Corporation | Digital control of switching voltage regulators |
US6968707B2 (en) | 2003-12-02 | 2005-11-29 | Electrolux Home Products, Inc. | Variable speed, electronically controlled, room air conditioner |
TWI291311B (en) | 2003-12-08 | 2007-12-11 | Beyond Innovation Tech Co Ltd | PWM illumination control circuit with low visual noise for LED |
WO2005059964A2 (en) | 2003-12-16 | 2005-06-30 | Microsemi Corporation | Current-mode driver |
JP4092502B2 (en) | 2003-12-19 | 2008-05-28 | 日産自動車株式会社 | Motor output control device for motor four-wheel drive vehicle |
JP4625632B2 (en) * | 2003-12-25 | 2011-02-02 | 日立オートモティブシステムズ株式会社 | Vehicle drive device |
US7119498B2 (en) | 2003-12-29 | 2006-10-10 | Texas Instruments Incorporated | Current control device for driving LED devices |
US7038594B2 (en) | 2004-01-08 | 2006-05-02 | Delphi Technologies, Inc. | Led driver current amplifier |
US6979257B2 (en) | 2004-01-14 | 2005-12-27 | Honeywell International, Inc. | Cabin pressure control method and apparatus using all-electric control without outflow valve position feedback |
AU2005210624A1 (en) | 2004-01-30 | 2005-08-18 | Solomon Technologies, Inc. | Regenerative motor propulsion system |
US7064507B2 (en) | 2004-02-17 | 2006-06-20 | Railpower Technologies Corp. | Managing wheel skid in a locomotive |
US7095002B2 (en) | 2004-02-23 | 2006-08-22 | Delphi Technologies, Inc. | Adaptive lighting control for vision-based occupant sensing |
US7193377B2 (en) | 2004-03-04 | 2007-03-20 | Hewlett-Packard Development Company, L.P. | System and method for controlling motor speed using a biased pulse width modulated drive signal |
US7129652B2 (en) | 2004-03-26 | 2006-10-31 | Texas Instruments Incorporated | System and method for driving a plurality of loads |
US7145302B2 (en) | 2004-04-06 | 2006-12-05 | General Electric Company | Method and apparatus for driving a brushless direct current motor |
US7096591B2 (en) | 2004-04-08 | 2006-08-29 | Trimble Navigation Limited | Dual axis single motor platform adjustments system |
JP4315044B2 (en) | 2004-04-19 | 2009-08-19 | パナソニック電工株式会社 | Linear vibration motor |
US6967445B1 (en) | 2004-04-19 | 2005-11-22 | Jewell Dan J | Circuit continuity and function monitor |
JP4397739B2 (en) | 2004-06-03 | 2010-01-13 | 本田技研工業株式会社 | Method for setting voltage state of fuel cell vehicle |
US6987787B1 (en) | 2004-06-28 | 2006-01-17 | Rockwell Collins | LED brightness control system for a wide-range of luminance control |
JP4422567B2 (en) | 2004-06-30 | 2010-02-24 | 株式会社日立製作所 | Motor drive device, electric actuator, and electric power steering device |
CN100417539C (en) | 2004-07-05 | 2008-09-10 | 段志辉 | Electro-mechanic mixed driving system of automobile |
GB0415153D0 (en) | 2004-07-06 | 2004-08-11 | Newage Int Ltd | Electrical machine rotor position identification |
US7488079B2 (en) | 2004-07-21 | 2009-02-10 | Thinc Design, Inc. | System and method for projecting images onto a moving screen |
US7384009B2 (en) | 2004-08-20 | 2008-06-10 | Tetra Corporation | Virtual electrode mineral particle disintegrator |
US7487773B2 (en) | 2004-09-24 | 2009-02-10 | Nellcor Puritan Bennett Llc | Gas flow control method in a blower based ventilation system |
US7012396B1 (en) | 2004-09-30 | 2006-03-14 | Agere Systems Inc. | Increased digital spindle motor control resolution through dither |
JP3938175B2 (en) | 2004-10-01 | 2007-06-27 | 船井電機株式会社 | Optical disc recording / reproducing apparatus |
JP4657796B2 (en) | 2004-10-19 | 2011-03-23 | 本田技研工業株式会社 | Overcurrent prevention device for legged mobile robot |
US7332881B2 (en) | 2004-10-28 | 2008-02-19 | Textron Inc. | AC drive system for electrically operated vehicle |
US7449860B2 (en) | 2005-01-05 | 2008-11-11 | Honeywell International Inc. | Control technique for limiting the current of an induction machine drive system |
US7256727B2 (en) | 2005-01-07 | 2007-08-14 | Time Domain Corporation | System and method for radiating RF waveforms using discontinues associated with a utility transmission line |
US7218010B2 (en) | 2005-02-15 | 2007-05-15 | General Motors Corporation | Engine restart apparatus and method |
US7298101B2 (en) | 2005-02-28 | 2007-11-20 | Panint Electronic Ltd. | Continuously variable frequency swinging armature motor and drive |
US7518528B2 (en) | 2005-02-28 | 2009-04-14 | Scientific Drilling International, Inc. | Electric field communication for short range data transmission in a borehole |
DE102005011273A1 (en) | 2005-03-11 | 2006-09-21 | Zf Friedrichshafen Ag | Method for controlling shift sequences in an automatic gearbox in countershaft design |
US7471055B2 (en) | 2005-03-15 | 2008-12-30 | The Boeing Company | Controller, drive assembly and half-bridge assembly for providing a voltage |
US7414862B2 (en) | 2005-03-21 | 2008-08-19 | Chan Woong Park | Method and apparatus for regulating an output current from a power converter |
US7263953B2 (en) | 2005-03-30 | 2007-09-04 | Krishnamurthy Sundararajan | Automatic pet trainer |
US7199883B1 (en) | 2005-04-18 | 2007-04-03 | Union Switch & Signal, Inc. | System and method for sensing position of a vehicle |
MX2007015387A (en) | 2005-06-06 | 2008-02-19 | Lutron Electronics Co | Method and apparatus for quiet variable motor speed control. |
FR2887394B1 (en) | 2005-06-17 | 2015-04-17 | Valeo Vision | METHOD AND DEVICE FOR BALLAST MANAGEMENT, IN PARTICULAR FOR A MOTOR VEHICLE PROJECTOR |
US7412835B2 (en) | 2005-06-27 | 2008-08-19 | Legall Edwin L | Apparatus and method for controlling a cryocooler by adjusting cooler gas flow oscillating frequency |
JP4002279B2 (en) | 2005-06-27 | 2007-10-31 | 本田技研工業株式会社 | Vehicle traction control device |
JP4745745B2 (en) | 2005-07-21 | 2011-08-10 | パナソニック株式会社 | Motor driving apparatus and motor driving method |
JP4188348B2 (en) * | 2005-08-10 | 2008-11-26 | 株式会社日立製作所 | ELECTRIC VEHICLE TRAVEL CONTROL DEVICE AND ELECTRIC TRAVEL CONTROL SYSTEM |
CN100494983C (en) | 2005-08-12 | 2009-06-03 | 深圳迈瑞生物医疗电子股份有限公司 | Method and device for automatically correcting and measuring gas concentration using infrared light absorption characteristic |
US7339344B2 (en) | 2005-08-25 | 2008-03-04 | International Rectifier Corporation | Self tuning method and apparatus for permanent magnet sensorless control |
JP4735201B2 (en) | 2005-11-11 | 2011-07-27 | 株式会社デンソー | Motor drive device for vehicle air conditioner |
US7485979B1 (en) | 2005-11-17 | 2009-02-03 | Staalesen Haakon A | Method and system for controlling power generator having hydraulic motor drive |
JP4098803B2 (en) | 2005-11-18 | 2008-06-11 | 三菱電機株式会社 | In-vehicle drive control device |
FR2893787B1 (en) | 2005-11-22 | 2007-12-21 | Schneider Toshiba Inverter | POWER FACTOR CORRECTION DEVICE FOR SPEED DRIVE |
US7145298B1 (en) | 2005-11-23 | 2006-12-05 | Productive Solutions, Inc. | Compact battery powered heavy roll mover |
DE102005059585A1 (en) | 2005-12-14 | 2007-06-21 | Robert Bosch Gmbh | Method and device for determining the rotational speed of an electrical machine |
TWI288525B (en) | 2005-12-30 | 2007-10-11 | Yen Sun Technology Corp | Control circuit of a brushless DC motor |
US7145834B1 (en) | 2006-02-14 | 2006-12-05 | Jeter John D | Well bore communication pulser |
JP4685655B2 (en) | 2006-02-15 | 2011-05-18 | トヨタ自動車株式会社 | Control device for electric vehicle |
EP1985002A1 (en) | 2006-02-16 | 2008-10-29 | Kadant Inc. | Linear traversing carriage incorporating an air gap inductive motivator |
US7509945B2 (en) | 2006-03-15 | 2009-03-31 | Chrysler Llc | Fuel pump speed control system |
US7391181B2 (en) | 2006-03-16 | 2008-06-24 | General Motors Corporation | Loss minimized PWM for voltage source inverters taking into account inverter non-linearity |
JP2007295671A (en) | 2006-04-21 | 2007-11-08 | Toyota Motor Corp | Vehicle drive control device and wheel slip determination method |
JP2007296933A (en) * | 2006-04-28 | 2007-11-15 | Toyota Motor Corp | Vehicle and its control method |
JP2007325388A (en) | 2006-05-31 | 2007-12-13 | Hitachi Ltd | Control unit for motor, and in-vehicle motor driven system |
US7487758B1 (en) | 2006-09-12 | 2009-02-10 | Dedenbear Products, Inc. | Control apparatus for a throttle stop of an internal combustion engine |
US7479754B2 (en) | 2006-10-17 | 2009-01-20 | Desa Ip Llc | Hybrid electric lawnmower |
US7453241B2 (en) | 2006-11-29 | 2008-11-18 | Sunpower, Inc. | Electronic controller matching engine power to alternator power and maintaining engine frequency for a free-piston stirling engine driving a linear alternator |
DE102007017821A1 (en) * | 2007-04-16 | 2008-10-23 | Liebherr-Werk Biberach Gmbh | Lorry |
US7535116B2 (en) | 2007-04-16 | 2009-05-19 | General Electric Company | System and method for controlling an output of an auxiliary power source of a diesel powered system |
US7508149B2 (en) | 2007-06-07 | 2009-03-24 | Gm Global Technology Operations, Inc. | Oil pump systems and methods for preventing torque overload in motors of oil pump systems |
TW200849778A (en) | 2007-06-13 | 2008-12-16 | Richtek Technology Corp | Method and device to improve the light-load performance of switching-type converter |
JP4835528B2 (en) | 2007-07-19 | 2011-12-14 | トヨタ自動車株式会社 | Anomaly monitoring apparatus and anomaly monitoring method |
US7638950B1 (en) | 2007-07-31 | 2009-12-29 | Lsi Industries, Inc. | Power line preconditioner for improved LED intensity control |
US7598683B1 (en) | 2007-07-31 | 2009-10-06 | Lsi Industries, Inc. | Control of light intensity using pulses of a fixed duration and frequency |
US7956558B2 (en) * | 2007-12-03 | 2011-06-07 | Pg Trionic, Inc. | Automatic traction control for two separately excited motors utilizing a single electronic control |
US20110017529A1 (en) * | 2009-07-24 | 2011-01-27 | A Truly Electric Car Company | Truly electric car |
-
2009
- 2009-10-30 US US12/609,545 patent/US8903577B2/en active Active
-
2010
- 2010-10-22 EP EP10774086A patent/EP2493717A2/en not_active Withdrawn
- 2010-10-22 JP JP2012536895A patent/JP5559890B2/en not_active Expired - Fee Related
- 2010-10-22 NZ NZ599317A patent/NZ599317A/en not_active IP Right Cessation
- 2010-10-22 CA CA2777759A patent/CA2777759C/en not_active Expired - Fee Related
- 2010-10-22 CN CN201080049041XA patent/CN102844216A/en active Pending
- 2010-10-22 MX MX2012005119A patent/MX2012005119A/en active IP Right Grant
- 2010-10-22 AU AU2010313581A patent/AU2010313581B2/en not_active Ceased
- 2010-10-22 WO PCT/US2010/053653 patent/WO2011053514A2/en active Application Filing
-
2012
- 2012-04-19 IL IL219323A patent/IL219323A0/en unknown
-
2014
- 2014-06-06 JP JP2014117278A patent/JP2014197979A/en not_active Withdrawn
- 2014-06-11 AU AU2014203155A patent/AU2014203155A1/en not_active Withdrawn
- 2014-10-17 US US14/517,354 patent/US20150051777A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US8903577B2 (en) | 2014-12-02 |
AU2014203155A1 (en) | 2014-07-10 |
CN102844216A (en) | 2012-12-26 |
JP2013509857A (en) | 2013-03-14 |
CA2777759C (en) | 2015-03-24 |
AU2010313581A1 (en) | 2012-05-03 |
WO2011053514A2 (en) | 2011-05-05 |
WO2011053514A3 (en) | 2012-12-27 |
JP2014197979A (en) | 2014-10-16 |
IL219323A0 (en) | 2012-06-28 |
US20110106350A1 (en) | 2011-05-05 |
AU2010313581B2 (en) | 2014-04-10 |
NZ599317A (en) | 2014-02-28 |
JP5559890B2 (en) | 2014-07-23 |
CA2777759A1 (en) | 2011-05-05 |
EP2493717A2 (en) | 2012-09-05 |
MX2012005119A (en) | 2012-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8903577B2 (en) | Traction system for electrically powered vehicles | |
JP4413931B2 (en) | Vehicle and vehicle control device | |
CN102267459B (en) | Driving antiskid adjustment and control method for motor-driven vehicle | |
CN112537307B (en) | Self-optimizing drive anti-skid control method and system for four-wheel hub motor | |
WO2019042453A1 (en) | Road surface adaptive anti-slip regulation method and system for distributed-drive electric vehicle | |
CN106163852A (en) | For the method that the electro-motor having in the serial mixed power vehicle of the vehicle bridge that at least two is operated alone or all-electric vehicle is driven control | |
JPH06351104A (en) | Anti-skid control by regenerative braking of electric motor vehicle | |
CN105984468A (en) | Method for operating an electric drive module | |
JP4754766B2 (en) | Vehicle control method and vehicle control apparatus | |
CN106114287B (en) | A kind of electric automobile antiskid control system and control method | |
CN104859657B (en) | Vehicle | |
JP2005124287A (en) | Drive control arrangement for vehicle | |
Pusca et al. | Fuzzy-logic-based control applied to a hybrid electric vehicle with four separate wheel drives | |
CN211809553U (en) | Electric vehicle driving/braking anti-skid control system based on electric transmission | |
JP3651327B2 (en) | Driving force control device for four-wheel drive vehicle | |
JP2001138888A (en) | Control method and device for driving unit of vehicle | |
JP2904580B2 (en) | Drive slip control device | |
JP3713995B2 (en) | Vehicle travel control device | |
JP2001082199A (en) | Driving force control device for four-wheel drive vehicle | |
JP2005529793A (en) | Brake control method and apparatus | |
JP2001334842A (en) | Apparatus of follow-up control for vehicle running ahead | |
JPH0310013B2 (en) | ||
CN115593241A (en) | Drive slip control method and system based on maximum transferable drive force estimation | |
CN113306409A (en) | Distributed driving electric automobile driving anti-skid control method based on energy method | |
JPS6453440U (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LSI INDUSTRIES, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JALBOUT, BASSAM D.;WONG, BRIAN;REEL/FRAME:034107/0784 Effective date: 20091221 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |