US20140323803A1 - Methods of controlling a robotic surgical tool with a display monitor - Google Patents
Methods of controlling a robotic surgical tool with a display monitor Download PDFInfo
- Publication number
- US20140323803A1 US20140323803A1 US14/330,339 US201414330339A US2014323803A1 US 20140323803 A1 US20140323803 A1 US 20140323803A1 US 201414330339 A US201414330339 A US 201414330339A US 2014323803 A1 US2014323803 A1 US 2014323803A1
- Authority
- US
- United States
- Prior art keywords
- image
- fovea
- pixels
- display
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00039—Operational features of endoscopes provided with input arrangements for the user
- A61B1/00042—Operational features of endoscopes provided with input arrangements for the user for mechanical operation
-
- A61B19/56—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/00149—Holding or positioning arrangements using articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00188—Optical arrangements with focusing or zooming features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
-
- A61B19/2203—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/32—Surgical robots operating autonomously
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00199—Electrical control of surgical instruments with a console, e.g. a control panel with a display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00216—Electrical control of surgical instruments with eye tracking or head position tracking control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A61B2019/2207—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/372—Details of monitor hardware
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
Definitions
- the embodiments of the invention relate generally to vision subsystems for minimally invasive robotic surgical systems.
- MIS Minimally invasive surgical
- robotic e.g., telerobotic
- An endoscopic camera is typically used to provide images to a surgeon of the surgical cavity so that the surgeon can manipulate robotic surgical tools therein.
- a surgeon's focus is typically on the tissue or organs of interest in a surgical cavity. He may manually move the endoscopic camera in and around a surgical site or cavity to properly see and manipulate tissue with robotic surgical tools. However, when the endoscopic camera is manually moved inward so that tissue is at desired magnifications, typically a narrow field of view is provided of the surgical cavity by the endoscopic camera. Tools or tissue that are outside the field of view typically require the surgeon to manually cause the endoscopic camera to move to a different position or manually move the camera back out.
- the endoscopic camera is slightly moved left, right, up, and/or down to see a slightly different view or slightly moved out to obtain a slightly larger field of view and then moved right back to the original position to the desired magnification to manipulate tissue.
- a more efficient use of the endoscopic camera may also make surgical procedures with a robotic surgical system more efficient.
- FIG. 1A is a block diagram of a robotic medical system including a stereo viewer and an image guided surgery (IGS) system with a tool tracking sub-system.
- IGS image guided surgery
- FIG. 1B is a block diagram of a patient side cart including robotic surgical arms to support and move robotic instruments.
- FIG. 1C is perspective view of an endoscopic camera manipulator or robotic surgical arm.
- FIG. 2 is a functional block diagram of the video portion of the IGS system to provide a stereo image in both left and right video channels to provide three-dimensional images in a stereo viewer.
- FIG. 3 is a perspective view of a robotic surgical master control console including a stereo viewer and an IGS system with tool tracking sub-system.
- FIG. 4A is a cutaway side view of the stereo viewer with gaze detection in the robotic surgical master control console.
- FIG. 4B is a perspective view of the stereo viewer with gaze detection in the robotic surgical master control console.
- FIG. 4C is a side view of the stereo viewer with gaze detection in the robotic surgical master control console.
- FIG. 5A is perspective view of a video frame including video images of a surgical site with a navigation window.
- FIG. 5B is a schematic view of the video frame including video images of a surgical site with a navigation window.
- FIG. 6A is a perspective view of a video frame including video images of a surgical site with a digital zoomed fovea portion.
- FIG. 6B is an exemplary illustration of a linear mapping between source pixel information and target pixels for a digitally zoomed fovea of a display and a non-linear mapping between source pixel information and target pixels for a background or surround image portion of the display.
- FIG. 6C is a schematic diagram illustrating of a linear mapping between source pixel information and target pixels for a digitally zoomed fovea of a display and a linear mapping between source pixel information and target pixels for a background or surround image portion of the display.
- FIG. 6D is a schematic diagram illustrating a mapping between source pixel information and target pixels of a display.
- FIG. 6E is a schematic diagram illustrating the inner and outer source pixel windows of FIG. 6D .
- FIG. 6F is an exemplary illustration of a linear mapping between source pixel information and target pixels for a digitally zoomed fovea of a display and a linear mapping between source pixel information and target pixels for a background or surround image portion of the display.
- FIGS. 7A-7D are diagrams to illustrate combinations of digital pan and/or mechanical panning of the endoscopic camera of a frame of a video information with a digital zoom portion in response to gaze detection.
- FIG. 8 illustrates a gradual movement of the digital zoom portion over multiple frames of video information.
- FIG. 9 illustrates a face with stereo gaze detection to detect left and right pupil positions.
- FIG. 10 illustrates left and rights graphs as to how the position of the pupil may be sensed with respect to the edges of the eye.
- FIGS. 11A-11B illustrates a face with an upper left gaze position and a lower right left gaze position, respectively.
- FIG. 12 illustrates how vertical head movement may be detected.
- FIG. 13 illustrates how a combination of vertical and horizontal head movement may be detected.
- FIG. 14 illustrates a touch screen user interface in a display device to provide a control input to control a robotic surgical instrument such as an endoscopic camera.
- FIG. 15 illustrates manual movement of a display device to provide a control input to control a robotic surgical instrument such as an endoscopic camera.
- FIG. 16 is a functional block diagram of a digital video zoom subsystem to provide digital zoom portion and automatic panning of video information in a surgical site.
- FIGS. 17A-17B illustrate a perspective view of an image and automatic panning of a fovea within the image using a tool centroid.
- FIGS. 18A-18B illustrate a perspective view of an image and panning a fovea within the image using a robotic surgical tool to poke the fovea around therein.
- aspects of the invention include methods, apparatus and systems for automated panning and digital zooming for video subsystems of robotic surgical systems.
- High definition endoscopic cameras may generate a greater number of pixels than can be displayed by liquid crystal display panels or display monitors. Aspects of some of the disclosed embodiments of the invention may use some of the extra pixel information captured by high definition endoscopic cameras that would otherwise be unused and possibly discarded.
- Automatic camera following an aspect of some embodiments of the invention, is disclosed that may be responsive to robotic surgical instrument location using API information, or selection of an active area in a surgical site into which the surgeon desires to gaze.
- a linear digital zoom another aspect of some embodiments of the invention, is disclosed that linearly scales a spatial subset of a source of high definition video images on one or more displays.
- the full spatial high definition video images may be linearly scaled down or down-sampled and displayed picture-in-picture (PIP) as a navigation window or a pull-back view for example.
- PIP picture-in-picture
- a linear digital zoom of a spatial subset of the source the high definition video images may combined with a non-linear digital zoom of another spatial subset of the source of the high definition video images, in some embodiments of the invention.
- a first spatial subset of the source of the high definition video images may be digitally zoomed linearly and displayed or rendered in a target window portion (fovea) on a display device and concurrently a second spatial subset of the source of the high definition video images around the first spatial subset may be digitally zoomed non-linearly and displayed or rendered in a target frame portion (background or surround) around the target window portion (fovea) on the display device to provide a smooth image transition.
- the frame portion (background or surround) with the second spatial subset of the source of the high definition video images altered by a non-linear digital zoom factor may be used to complete the surgeon's field of view around the window portion (fovea).
- the target window portion (fovea) may be displayed in high-resolution while the frame portion (background or surround) is displayed with a lower-resolution to provide an improved sense of peripheral vision.
- the need for a PIP navigation window of the surgical site displayed on the display monitor is reduced.
- the frame portion (background or surround) with the non-linear digital zoom may reduce the number of otherwise frequent short duration camera control events.
- Short duration camera control events are adjustments in the endoscopic camera that are often made due to a surgeon's desire to see what is just-outside-the-field-of-view or in reaction to lack of peripheral vision, rather than adjustments made to obtain a better field of view of the operative site.
- Automatic camera following may be combined together with a digital zoom in some embodiments of the invention such that the digital zoomed portion of an image tracks or follow a surgeon's motions, such as the gaze of his pupils, without requiring mechanical movement of the endoscopic camera. If the surgeon's motions indicate that the digital zoomed portion extend beyond pixels of the high definition digital image being captured, the endoscopic camera may be mechanically moved or panned automatically.
- different sensing modalities may be used to detect a surgeon's motion so that a digital zoomed portion of interest of an image may be moved around within the pixels of a high definition digital image.
- Some different sensing modalities include (1) robotic surgical tool tracking, (2) surgeon gaze tracking; (3) or a discrete user interface.
- Robotic surgical tool tracking may be performed by kinematics sensing through joint encoders, potentiometers, and the like; video analysis-based tool location tracking; or a combination or fusion of kinematics sensing and video analysis-based tool location tracking.
- a discrete user interface may include one or more of button actuation (such as arrow buttons to the side of a surgeon's console), button presses of master console handle buttons, foot-pedal presses, or voice recognition activation.
- the discrete user interface may be used to re-center the digital zoomed image based on current tool position, gaze location, or the like.
- the discrete user interface may be used to re-center or move the image at discrete times, such as through voice activation, perhaps in concert with tool tracking or gaze detection.
- FIG. 1A a block diagram of a robotic surgery system 100 is illustrated to perform minimally invasive robotic surgical procedures on a patient P on an operating table T using one or more robotic arms 158 A- 158 C (collectively referred to as robotic arms 158 ).
- the one or more robotic arms often support a robotic instrument 101 .
- a robotic surgical arm e.g., the center robotic surgical arm 158 B
- a stereo or three-dimensional surgical image capture device (endoscopic camera) 101 B such as a stereo endoscope (which may be any of a variety of structures such as a stereo laparoscope, arthroscope, hysteroscope, or the like), or, optionally, some other imaging modality (such as ultrasound, fluoroscopy, magnetic resonance imaging, or the like).
- a stereo endoscope which may be any of a variety of structures such as a stereo laparoscope, arthroscope, hysteroscope, or the like
- some other imaging modality such as ultrasound, fluoroscopy, magnetic resonance imaging, or the like.
- Robotic surgery may be used to perform a wide variety of surgical procedures, including but not limited to open surgery, neurosurgical procedures (e.g., stereotaxy), endoscopic procedures (e.g., laparoscopy, arthroscopy, thoracoscopy), and the like.
- neurosurgical procedures e.g., stereotaxy
- endoscopic procedures e.g., laparoscopy, arthroscopy, thoracoscopy
- a user or operator O performs a minimally invasive surgical procedure on patient P by manipulating control input devices (touch sensitive master control handles) 160 at a master control console 150 .
- a computer 151 of the console 150 directs movement of robotically controlled endoscopic surgical instruments (robotic surgical tools or robotic instruments) 101 A- 101 C via control lines 159 , effecting movement of the instruments using a robotic patient-side system 152 (also referred to as a patient-side cart).
- a stereo display device 164 of the master control console 150 the operator O views video images of the surgical site including the robotic surgical tools that are in the field of view of the endoscopic camera 101 B.
- the robotic patient-side system 152 includes one or more robotic arms 158 .
- the robotic patient-side system 152 includes at least three robotic surgical arms 158 A- 158 C (generally referred to as robotic surgical arms 158 ) supported by corresponding positioning set-up arms 156 .
- the central robotic surgical arm 158 B may support an endoscopic camera 101 B.
- the robotic surgical arms 158 A and 158 C to the left and right of center may support robotic instruments 101 A and 101 C, respectively, that may manipulate tissue.
- Robotic instruments are generally referred to herein by the reference number 101 .
- Robotic instruments 101 may be any instrument or tool that couples to a robotic arm that can be manipulated thereby and can report back kinematics information to the robotic system.
- Robotic instruments include, but are not limited to, surgical tools, medical tools, bio-medical tools, and diagnostic instruments (ultrasound, computer tomography (CT) scanner, magnetic resonance imager (MRI)).
- CT computer tomography
- MRI magnetic resonance imager
- the robotic patient-side system 152 includes a positioning portion and a driven portion.
- the positioning portion of the robotic patient-side system 152 remains in a fixed configuration during surgery while manipulating tissue.
- the driven portion of the robotic patient-side system 152 is actively articulated under the direction of the operator O generating control signals at the surgeon's console 150 during surgery.
- the driven portion of the robotic patient-side system 152 may include, but is not limited or restricted to robotic surgical arms 158 A- 158 C.
- the instruments 101 , the robotic surgical arms 158 A- 158 C, and the set up joints 156 , 157 may include one or more displacement transducers, positional sensors, and/or orientational sensors 185 , 186 to assist in acquisition and tracking of robotic instruments. From instrument tip to ground (or world coordinate) of the robotic system, the kinematics information generated by the transducers and the sensors in the robotic patient-side system 152 may be reported back to a tracking system 352 of the robotic surgical system.
- the positioning portion of the robotic patient-side system 152 that is in a fixed configuration during surgery may include, but is not limited or restricted to set-up arms 156 .
- Each set-up arm 156 may include a plurality of links and a plurality of joints.
- Each set-up arm may mount via a first set-up-joint 157 to the patient side system 152 .
- An assistant A may assist in pre-positioning of the robotic patient-side system 152 relative to patient P as well as swapping tools or instruments 101 for alternative tool structures, and the like, while viewing the internal surgical site via an external display 154 .
- the external display 154 or some other external display may be positioned or located elsewhere so that images of the surgical site may be displayed to students or other interested persons during a surgery. Images with additional information may be overlaid onto the images of the surgical site by the robotic surgical system for display on the external display 154 .
- the robotic patient-side system 152 comprises a cart column 170 supported by a base 172 .
- One or more robotic surgical arms 158 are respectively attached to one or more set-up arms 156 that are a part of the positioning portion of robotic patient-side system 152 .
- the cart column 170 includes a protective cover 180 that protects components of a counterbalance subsystem and a braking subsystem (described below) from contaminants.
- each robotic surgical arm 158 is used to control robotic instruments 101 A- 101 C. Moreover, each robotic surgical arm 158 is coupled to a set-up arm 156 that is in turn coupled to a carriage housing 190 in one embodiment of the invention, as described below with reference to FIG. 3 . The one or more robotic surgical arms 158 are each supported by their respective set-up arm 156 , as is illustrated in FIG. 1B .
- the robotic surgical arms 158 A- 158 D may each include one or more displacement transducers, orientational sensors, and/or positional sensors 185 to generate raw uncorrected kinematics data, kinematics datum, and/or kinematics information to assist in acquisition and tracking of robotic instruments.
- the robotic instruments may also include a displacement transducer, a positional sensor, and/or orientation sensor 186 in some embodiments of the invention.
- one or more robotic instruments may include a marker 189 to assist in acquisition and tracking of robotic instruments.
- FIG. 1C a perspective view of the robotic surgical arm 158 B is illustrated.
- the center robotic surgical arm 158 B is for coupling to an endoscopic camera 101 B.
- the endoscopic camera 101 B may not have an end effector that requires controlling. Thus, fewer motors, cables, and pulleys may be employed in controlling the endoscopic camera 101 B.
- the elements of the center robotic surgical arm 158 B are similar to the elements of the robotic surgical arms 158 A, 158 C.
- the fixed remote center point 556 is near the point of insertion of the surgical tool into the patient P.
- the center of rotation 556 may be aligned with the incision point to the internal surgical site, for example, by a trocar or cannula at an abdominal wall during laparoscopic surgery.
- the robotic surgical arm may also be referred as an offset remote center manipulator instead.
- the robotic surgical arm 158 B includes serial links 541 - 545 pivotally coupled in series at joints 512 - 514 near respective ends of the links.
- the first link (Link 1) 541 is pivotally coupled to a drive mount 540 at a first joint 511 near a first end and the second link (Link 2) 542 at the second joint 512 near a second end.
- the third link (Link 3) 543 is pivotally coupled to the second link 542 near a first end and pivotally coupled to the fourth link (Link 4) 544 near a second end.
- the fourth link 544 is substantially in parallel to the insertion axis 574 of the endoscopic camera 101 B.
- a fifth link (Link 5) 545 is slidingly coupled to the fourth link 544 .
- the endoscopic camera 101 B mounts to the fifth link 545 as shown.
- the robotic surgical arm 158 B further includes a mounting base 540 that allows it to be mounted and supported by set-up arms/joints of a patient side system.
- the mounting base 540 is pivotally coupled to the first link 541 and includes a first motor 551 to yaw the robotic surgical arm about a yaw axis at the pivot point.
- the second link 542 houses a second motor 552 to drive and pitch the linkage of the arm about a pitch axis at the pivot point 556 .
- the fourth link 544 may include a third motor 553 to slide the firth link 545 and the endoscopic camera 101 B along the insertion axis 574 .
- the robotic endoscopic camera arm 158 B and the robotic surgical arms 158 A, 158 C have a drive train system driven by the motors 551 - 553 to control the pivoting of the links about the joints 512 - 514 . If the endoscopic camera 101 B is to be mechanically moved, one or more of the motors 551 - 553 coupled to the drive train are energized to move the links of the robotic endoscopic camera arm 158 B. Other tools 101 attached to the robotic surgical arms 158 A, 158 C may be similarly moved.
- the stereo endoscopic camera 101 B includes an endoscope 202 for insertion into a patient, a camera head 204 , a left image forming device (e.g., a charge coupled device (CCD)) 206 L, a right image forming device 206 R, a left camera control unit (CCU) 208 L, and a right camera control unit (CCU) 208 R coupled together as shown.
- the stereo endoscopic camera 101 B generates a left video channel 220 L and a right video channel 220 R of frames of images of the surgical site coupled to a stereo display device 164 through a video board 218 .
- a lock reference signal is coupled between the left and right camera control units 208 L, 208 R.
- the right camera control unit generates the lock signal that is coupled to the left camera control unit to synchronize the left view channel to the right video channel.
- the left camera control unit 208 L may also generate the lock reference signal so that the right video channel synchronizes to the left video channel.
- the stereo display device 164 includes a left monitor 230 L and a right monitor 230 R.
- the viewfinders or monitors 230 L, 230 R may be provided by a left display device 402 L and a right display device 402 R, respectively.
- the stereo images may be provided in color by a pair of color display devices 402 L, 402 R.
- Stereo images of a surgical site may be captured by other types of endoscopic devices and cameras with different structures. For example, a single optical channel may be used with a pair of spatially offset sensors to capture stereo images of the surgical site.
- the master control console 150 of the robotic surgical system 100 may include a computer 151 , a stereo viewer 312 , an arm support 314 , a pair of control input wrists and control input arms in a workspace 316 , foot pedals 318 (including foot pedals 318 A- 318 B), and a head sensor 320 .
- the master control console 150 may further include a digital zoom/panning system 351 and a tracking system 352 coupled to the computer 151 for providing the digital zoomed images, fovea images, and/or PIP images of the surgical site.
- the tracking system 352 may be a tool tracking system or a surgeon motion tracking system, such as for gaze detection/tracking, to provide for the digital panning of the camera images.
- the stereo viewer 312 has two displays where stereo three-dimensional images of the surgical site may be viewed to perform minimally invasive surgery.
- the operator O typically sits in a chair, moves his or her head into alignment with the stereo viewer 312 to view the three-dimensional images of the surgical site.
- the master control console 150 may include a head sensor 320 disposed adjacent the stereo viewer 312 .
- the system operator aligns his or her eyes with the binocular eye pieces of the stereo viewer 312 to view a stereoscopic image of the surgical worksite, the operator's head activates the head sensor 320 to enable the control of the robotic instruments 101 .
- the head sensor 320 is deactivated to disable or stop generating new control signals in response to movements of the touch sensitive master control handles 160 in order to hold the state of the robotic instruments.
- the arm support 314 can be used to rest the elbows or forearms of the operator O (typically a surgeon) while gripping touch sensitive master control handles 160 of the control input wrists, one in each hand, in the workspace 316 to generate control signals.
- the touch sensitive master control handles 160 are positioned in the workspace 316 disposed beyond the arm support 314 and below the viewer 312 . This allows the touch sensitive master control handles 160 to be moved easily in the control space 316 in both position and orientation to generate control signals.
- the operator O can use his feet to control the foot-pedals 318 to change the configuration of the surgical system and generate additional control signals to control the robotic instruments 101 as well as the endoscopic camera.
- the computer 151 may include one or more microprocessors 302 to execute instructions and a storage device 304 to store software with executable instructions that may be used to generate control signals to control the robotic surgical system 100 .
- the computer 151 with its microprocessors 302 interprets movements and actuation of the touch sensitive master control handles 160 (and other inputs from the operator O or other personnel) to generate control signals to control the robotic surgical instruments 101 in the surgical worksite.
- the computer 151 and the stereo viewer 312 map the surgical worksite into the controller workspace 316 so it feels and appears to the operator that the touch sensitive master control handles 160 are working over the surgical worksite.
- the computer 151 may couple to the digital zoom/panning system 351 and the tracking system 352 to execute software and perform computations for the digital zoom/panning system.
- the stereo viewer 312 may include a left display 402 L and one or more left gaze detection sensors 420 L for the left eye EL of a surgeon and a right display 402 R and one or more right gaze detection sensors 420 R (not shown in FIG. 4A , see FIG. 4B ) for the right eye of the surgeon.
- the head sensor 320 illustrated in FIG. 3 may be used to enable/disable the gaze detection system so that other motion is not inadvertently sensed as the surgeon's eye movement.
- FIG. 4C illustrates a magnified side view of the stereo viewer 312 including the left display 402 L and the one or more left gaze detection sensors 420 L for the left eye EL of the surgeon.
- the one or more left gaze detection sensors 420 L may sense X and Y axes movement of a pupil PL along a Z optical axis.
- a fixed lens 450 may be provided between each eye and each respective display device 402 L, 402 R to magnify or adjust the apparent depth of the displayed images I over a depth range 452 .
- the focus on an image in the surgical site is adjusted prior to image capture by a moveable lens in the endoscopic camera 101 B that is in front of the CCD image sensor.
- the viewer 312 includes stereo images for each eye including a left image 400 L and a right image 400 R of the surgical site including any robotic instruments 101 respectively in a left viewfinder 401 L and a right viewfinder 401 R.
- the images 400 L and 400 R in the viewfinders may be provided by a left display device 402 L and a right display device 402 R, respectively.
- the display devices 402 L, 402 R may optionally be pairs of cathode ray tube (CRT) monitors, liquid crystal displays (LCDs), or other type of image display devices (e.g., plasma, digital light projection, etc.).
- the images are provided in color by a pair of color display devices 402 L, 402 R, such as color CRTs or color LCDs.
- three dimensional images of a navigation window or a fovea may be rendered within the main image of the surgical site.
- a right navigation window image 410 R may be merged into or overlaid on the right image 400 R being displayed by the display device 402 R.
- a left navigation window image 410 L may be merged into or overlaid on the left image 400 L of the surgical site provided by the display device 402 L.
- the stereo viewer 312 may include one or more left gaze detection sensors 420 L near the periphery of the display device 402 L for the left eye of the surgeon and one or more right gaze detection sensors 420 R near the periphery of the display device 402 R for the right eye of the surgeon.
- One of the gaze detection sensors for each eye may also include a low level light source 422 L, 422 R to shine light into the eye of the surgeon to detect eye movement with the respective gaze detection sensors 420 L, 420 R.
- a mono video endoscopic camera generating a single video channel of frames of images of the surgical site may also be used in a number of embodiments of the invention. Images, such as a navigation window image, can also be overlaid onto a portion of the frames of images of the single video channel.
- the endoscopic camera 101 B is a digital video camera, it provides digital pixel information regarding the images that are captured.
- the digital images that are captured may be digitally zoomed in order to bring the objects closer in into view in the display of an image.
- the endoscopic camera 101 B may include an optical zoom, in addition to a digital zoom, to magnify objects prior to image capture by using mechanical movement of optics, such as lenses.
- a digital zoom is accomplished electronically without any adjustment of the optics in the endoscopic camera 101 B.
- a digital zoom selects a portion of an image and manipulates the digital pixel information, such as interpolating the pixels to magnify or enlarge the selected portion of the image.
- a digital zoom may crop a portion of an image and then enlarge it by interpolating the pixels to exceed the originally cropped size. While the cropped image may be larger, a digital zoom may decrease or narrow an apparent angle of view of the overall video image.
- a digitally zoomed image alone may have a reduced field of view of the surgical site. Other images may be provided to compensate for the reduced field of view in the digitally zoomed image.
- a region-of-interest is selected from source video images to undergo a digital zoom.
- the selected region of interest is then scaled linearly for presentation to the display (e.g., as a fovea 650 ).
- the region of interest may be scaled up (interpolated), or scaled down (decimated), depending on the number of pixels in the source region-of-interest, relative to the number of pixels allocated (for this tile of video) on the display.
- Digital filtering of the source data is performed as part of the interpolation/decimation process. Selection of a region-of-interest smaller than the full source video frame reduces the surgeon's effective field of view into a surgical site.
- the embodiments of the invention may pan a digital zoomed image up, down, left, and/or right and it may rotate the image and/or change its level of zoom.
- the endoscopic camera 101 B is a high definition camera.
- the high definition endoscopic camera 101 B has a greater resolution than the resolution of the display devices 402 L, 402 R.
- the extra pixel information from the high definition endoscopic camera 101 B may be advantageously used for digital zoom.
- the region of interest selected from the source video need not be mapped one-to-one or magnified.
- a region of interest selected from the source video may contain more pixels than are allocated on the display for presentation of the video source. If that is the case, the pixels in the selected region of interest may be scaled down (decimated), while still appearing to the user to zoom in on objects.
- Texture mapping, pixel mapping, mapping pixels, or mapping texture pixels may be used interchangeably herein as functional equivalents where a source image is sampled at source coordinates or points (t_x,t_y) and a target image is colored at target coordinates or points (v_x,v_y).
- one aspect of some embodiments of the invention may be a linear digital zoom while one aspect of some embodiments of the invention may be a non-linear digital zoom.
- FIG. 5A a perspective view of images 500 in the stereo viewer 312 with a linear digital zoom is illustrated.
- a linear digital zoomed view 501 is displayed in a substantial portion of the display 402 L, 402 R.
- the linear digital zoomed view 501 may magnify the images of tissue 505 and a right side surgical tool 510 R in the surgical site.
- the view 501 may be a spatial subset of high definition images displayed on a portion of the display 402 L, 402 R.
- the navigation window or pull-back view 502 may be the full spatial high definition image that has been down-sampled to be displayed picture-in-picture (PIP) within the smaller display region.
- PIP picture-in-picture
- the stereo endoscopic camera 101 B captures left and right high definition spatial images 510 with a two dimensional array of pixels that is HDX pixels wide by HDY pixels high.
- the two dimensional array of pixels for the high definition spatial images 510 may be 1920 pixels wide by 1080 pixels high.
- the display devices 402 L, 402 R in the stereo view 312 may only display low definition images 511 N with a two-dimensional array of pixels with a native resolution of LDX pixels wide by LDY pixels high that are respectively less than the available spatial resolution of HDX pixels wide by HDY pixels high for the high definition spatial images 510 .
- the two dimensional array of pixels for the low definition spatial images 511 N may be 1280 pixels wide (LDX) by 1024 pixels high (LDY) in contrast to 1920 pixels wide (HDX) by 1080 pixels high (HDY) for exemplary high definition spatial images 510 .
- the display devices 402 L, 402 R in the stereo viewer 312 display a lower native resolution of LDX pixels wide by LDY pixels high, some of the pixel information in the full spatial high definition image 510 may go unused.
- the position and relationship between the low definition images 511 N and the high definition images 510 may be fixed.
- pixels 521 within the resolution of the low definition image 511 N may be displayed on the display devices 402 L, 402 R while some pixels 520 outside the resolution of the low definition image 511 N may not be displayed.
- the display devices may be considered as providing a field of view of a virtual camera inside the endoscopic camera.
- the field of view of the virtual camera within the field of view of the endoscopic camera may be digitally adjusted. That is, the pixels in the high definition images 510 that are to be displayed by the display devices 402 L, 402 R may be user selectable.
- the window of the low definition image 511 N may be moved in X and Y directions to select pixels in the array of HDX by HDY pixels of the high definition spatial image 510 .
- the pixels in the high definition images 510 that are to be displayed by the display devices 402 L, 402 R may also be digitally manipulated.
- a smaller subset of pixels (SX by SY) in the array of HDX by HDY pixels of the high definition spatial image 510 may be respectively selected by a user for magnification into a digital zoom image 511 M.
- the array of SY pixels high by SX pixels wide of the digital zoom image 511 M may be interpolated with a digital filter or sampling algorithm into a larger number of pixels of the array of LDX by LDY pixels to display a magnified image on the display devices 402 L, 402 R.
- 840 pixels wide by 672 pixels high may be magnified and expanded to 1280 pixels wide by 1024 pixels high maintaining the same aspect ratio for display, such as on the display devices 402 L, 402 R.
- the digital zoom image 511 M may be expanded by interpolation into a larger number of pixels to display a magnified image, such as image 501 illustrated in FIG. 5A
- the image resolution of the array of HDX by HDY pixels of the high definition spatial image 510 may decimated or reduced down (down-sampled) to shrink or demagnify its image to fit into a window array 512 of reduced pixels RX pixels high by RY pixels wide to be used for the navigation window 502 illustrated in FIG. 5A .
- high definition spatial images 510 with an array of 1920 pixels wide by 1080 pixels high may be decimated by a factor of ten to a demagnified image array of 192 pixels wide by 108 pixels high.
- the digital zoom for a portion of the display may have a linear relationship with the pixels of the full spatial image
- the digital zoom may also have a non-linear relationship with the pixels of the full spatial image in another portion of the display device.
- a digital zoomed portion (fovea) 650 is displayed within a background or surround portion 651 of the image 600 on the display devices 402 L, 402 R.
- the digital zoomed view 650 may be the focus of the central vision of a surgeon's eyes and surrounded by the surround 651 , the digital zoomed view 650 may also be referred to as a fovea 650 .
- the digital zoomed view 650 may be considered to be a virtual image within a larger image analogous to the virtual camera within the endoscopic camera.
- the digital zoomed view 650 is moveable around the display (moveable fovea) and may magnify the images of tissue 605 and surgical tools 610 R in the surgical site.
- the digital zoomed view or fovea 650 is centrally fixed in position (fixed fovea) within the center of the display device (e.g., see FIG. 6B ). While the fovea may provide a digitally zoomed image or view of the surgical site, the background or surround image 651 may provide an improved sense of peripheral vision to the surgeon, possibly reducing or eliminating the need for one or more navigation windows.
- the fovea 650 is formed by a first mapping of first array or set of source pixel information (source pixels) from the high definition source video images to a first array or set of pixels in the display device (target pixels).
- the surround 651 around the fovea 650 is formed by a second mapping of a second array or set of source pixel information (source pixels) from the high definition source video images to a second array or set of pixels in the display device (target pixels).
- the second mapping differs from the first mapping.
- the first mapping is a linear mapping and the second mapping is a non-linear mapping (e.g., see FIG. 6B ).
- the first mapping and the second mapping are linear mappings (e.g., see FIG. 6F ) but differ in other ways, such as size and/or resolution.
- the digital zoomed view 650 may be a high resolution or high definition image while the background or surround image 651 is a low resolution or low definition image.
- the digital zoomed view 650 and the background or surround portion 651 of the image 600 are displayed in real time to a surgeon over a continuing series of video frame images on the displays 402 L, 402 R of the stereo viewer.
- the images may be continuously updated to view current tool positions and current state of the surgical site and any tissue that is being manipulated therein.
- the digital zoomed view 650 may be provided by a linear digital zoom factor over the given field of view selected by a surgeon to reduce distortion of the image displayed in the fovea 650 .
- the surround view or image 651 may be provided by a linear digital zoom factor (linear mapping) or a non-linear digital zoom factor (non-linear mapping) over the given field of view selected.
- the size of the digital zoom view 650 within the image 600 may be user selectable by a surgeon at the master control console 150 or by an assistant at the external display 154 . That is, a user may selectively expand or contract the x-axis FX and the y-axis FY pixel dimensions of the area of the fovea or linear digital zoom view 650 .
- the digital zoom view 650 may be centered in the display to be in line with a central gaze of the surgeon's eyes.
- a user may selectively position the linear digital zoom view 650 within different positions on the display within the image 600 by different user interface means described herein.
- the source region-of-interest (source zoom pixels) selected for the fovea 650 from the high definition source video images and the source region-of-interest (source background pixels) selected from the high definition source video images for the surround 651 may be adjusted by the user.
- the source pixels for the background around the fovea 650 may selected to be a spatial subset of the high definition source images.
- the source pixels for the background 651 may be selected to be a set of source pixels to complete the full spatial image of the high definition images.
- a surgeon's peripheral vision of the surgical site may be improved. This can help avoid or reduce frequent short duration camera control events that otherwise may be made due to a desire to see what's just outside the field of view.
- the fovea 650 is formed by a first mapping of array or set of source pixel information (source pixels) from the high definition source video images to a first array or set of pixels in the display device (target pixels) and the surround 651 is formed by a second mapping of a second array or set of source pixel information (source pixels) from the high definition source video images to a second array or set of pixels in the display device (target pixels).
- mapping functions for the first and second pixel mappings are determined between coordinates in the source (texture) 660 and coordinates on the target 670 (e.g., display 402 L, 402 R, 154 ). Pixel data is mapped from an inner/outer pair of source windows 661 to an inner/outer pair of target windows 671 .
- the source coordinate system origin 665 is defined to be the upper left corner of the source frame 660 with positive-x right, and positive-y down.
- the inner source window 663 may be defined by selection of a left-top coordinate (t_iL,t_iT) 667 and a right-bottom coordinate (t_iR,t_iB) 668 .
- the outer source window 664 may be defined by its left-top coordinate (t_oL,t_oT) 666 and right-bottom coordinate (t_oR,t_oB) 669 .
- t denotes texture
- i/o refers to inner/outer
- L,T,R,B refers to left, top, right, and bottom, respectively.
- the coordinates for the inner source window 663 and the outer source window 664 may be directly or indirectly and automatically or manually selected by a user (e.g., surgeon O or assistant A) in a number of ways.
- the target coordinate system origin 675 is defined to be the upper left corner of the target frame 670 , with positive-x right and positive-y down.
- the inner target window 673 is defined by its left-top coordinate (v_iL,v_iT) 677 and its right bottom coordinate (v_iR,v_iB) 678 .
- the outer target window 674 is defined by its left-top coordinate (v_oL,v_oT) 676 and its right-bottom coordinate (v_oR,v_oB) 679 .
- v denotes vertex
- i/o refers to inner/outer
- L,T,R,B refers to left, top, right, and bottom, respectively.
- the coordinates for the inner target window 673 and the outer target window 674 may also be directly or indirectly and automatically or manually selected by a user (e.g., surgeon O or assistant A) in a number of ways.
- the region corresponding to the fovea 650 is simply formed by linearly scaling the source pixel array 680 of the inner source window 663 from coordinate (t_iL,t_iT) 667 through coordinate (t_iR,t_iB) 668 into the target pixel array (fovea) 650 of the inner target window 673 from coordinate (v_iL,v_iT) 677 through coordinate (v_iR,v_iB) 678 . Constructing the surround region 651 around the fovea 650 remains.
- the task of mapping source pixels in the frame shaped region 681 between the inner source window 663 and the outer source window 664 into target pixels in the frame shaped surround region 651 between the inner target window 673 and the outer target window 674 is more difficult due to the frame like shape of each.
- the source pixels in the frame shaped region 681 between the inner source window 663 and outer source window 664 is subdivided into a number of N rectangular regions (quads).
- the N rectangular regions may be eight (8) rectangular regions, for example.
- the eight rectangular regions may be formed by coordinates 666 , 686 , 667 , 688 ; 686 , 687 , 683 , 667 ; 687 , 685 , 692 , 683 ; 683 , 692 , 693 , 668 ; 668 , 693 , 669 , 691 ; 682 , 668 , 691 , 690 ; 689 , 682 , 690 , 684 ; and 688 , 667 , 682 , 689 .
- Values for t_x1, t_x2, t_y1, and t_y2 in the coordinate (t_x1,t_oT) 686 , coordinate (t_x2,t_oT) 687 , coordinate (t_oL,t_y1) 688 , coordinate (t_oL,t_y2) 689 , coordinate (t_x1,t_oB) 690 , coordinate (t_x2,t_oB) 691 , coordinate (t_oR,t_y1) 692 , and coordinate (t_oR,t_y2) 693 are determined which allow the subdivision of the frame shaped surround region 681 into the 8 rectangular regions (quads).
- t — x 1 t — oL +( t — oR ⁇ t — oL )*(( v — iL ⁇ v — oL )/( v — oR ⁇ v — oL )) (1)
- the values of t_y1 and t_y2 are respectively proportional to the length of the segments from pixels v_oT through v_iT, and pixels v_oT through v_iB along left and right edges of the outer source window 664 .
- the values of t_y1 and t_y2 may be computed by equations 3 and 4 as follows:
- t — y 1 t — oT +( t — oB ⁇ t — oT )*(( v — iT ⁇ v — oT )/( v — oB ⁇ v — oT )) (3)
- the source pixels along the edges of the quads may be mapped with a predetermined mapping (e.g., equations 1-4) into target pixels values.
- the interpolation may be a non-linear interpolation, such as a bilinear interpolation (BI), or a linear interpolation, where the selection of the interpolation function is arbitrary.
- BI bilinear interpolation
- a non-linear interpolation may distort less than a linear interpolation.
- a quad drawn counter-clockwise, has target vertex coordinates defined as:
- the associated source texture point t_x, t_y is found by interpolation.
- the texture of the source texture point can be sampled using an arbitrary filter function and the target pixel at the target coordinate can be colored with the sampled value of texture. That is, the source texture is sampled at coordinate (t_x,t_y) using a filter function to color the target pixel (v_x,v_y).
- the filter function used in the sampling process may be arbitrarily complicated but consistently used.
- t — x BI[v — x,v — y;v — L,v — T,v — R,v — B;t — LLx,t — LRx,t — URx,t — ULx] (5)
- t — y BI[v — x,v — y;v — L,v — T,v — R,v — B;t — LLy,t — LRy,t — URy,t — ULy] (6)
- t_x and t_y are the interpolated t values at each point (v_x,v_y); v_L,v_T, v_R,v_B are target boundary coordinates; and t_LLx,t_LRx,t_URx,t_ULx are the lower-left, lower-right, upper-right, and upper-left ‘t’ coordinates in x and t_LLy,t_LRy,t_URy,t_ULy are the lower-left, lower-right, upper-right, and upper-left T coordinates in y.
- a bilinear interpolation (BI) is an interpolating function of two variables on a regular grid.
- the bilinear interpolation BI( ) may be defined in pseudo code as:
- a bilinear interpolation is a well known non-linear mathematical function. It is non-linear as it is mathematically proportional to a product of two linear functions such as (a 1 x+a 2 ) (a 3 y+a 4 ).
- the bilinear interpolation is a combination of multiple linear interpolations over a grid to smoothly transition images between the inner and outer areas of interest of the source windows 661 and target windows 671 .
- the bilinear interpolation results in a quadratic warp in the surround 651 around the fovea 650 .
- the texture coordinate (t_x,t_y) of each pixel interior to the quad at position (v_x,v_y) is found via bilinear interpolation.
- the source texture is sampled at coordinate (t_x,t_y) to color the pixel (v_x,v_y) with an arbitrary filter function.
- Each of the N quads is similarly processed once the texture coordinates have been assigned to its vertices. As adjacent quads have the same texture coordinates assigned to their shared vertices, the final image appears to be a smooth warp, without discontinuity across quad-boundaries.
- FIG. 6B the results of a first linear mapping of a checkerboard pattern into the fovea 650 and a non-linear mapping (e.g., using bilinear interpolation) of a checkerboard pattern into eight quads of the surround 651 are illustrated.
- Lines in the checkerboard of the source image illustrated on the display indicate warped pixel information.
- the surround 651 experiences some warping as it changes from the digitally zoomed (magnified) image at the edge of the fovea 650 to a lower digitally zoomed (magnified) image at the outer edges of the surround.
- the warpage in the surround 651 is more noticeable at the corners of the fovea in the FIG. 6B as indicated in the bending lines in the checkerboard.
- a linear mapping may be used but differs from the linear mapping of pixels for the fovea 650 .
- the mapping of the source pixels in the source frame 681 to the target pixels in the surround 651 is piecewise linear for the N quads if the values of t_x1, t_x2, t_y1, and t_y2 are set as follows:
- each of the pixels in the N quads is linearly mapped with a linear scaling function into pixels in the surround 651 .
- FIG. 6F the results of a first linear mapping of a checkerboard pattern into the fovea 650 and a second linear mapping (e.g., piecewise linear) of a checkerboard pattern into eight quads of the surround 651 are illustrated.
- the surround 651 shows only nominal warpage.
- a relatively high digital zoom factor is applied to the fovea 650 to highly magnify objects in the fovea 650 , the surround 651 with no change in digital zoom factor experiences significant warpage.
- a non-linear mapping between source pixels of the frame 681 to target pixels in the surround 651 is preferable.
- the resolution of the fovea 650 and the surround 651 depends upon the selection of the relative sizes of the inner/outer source regions and the selection of the relative sizes of the inner/outer display or target regions. If a user selects to digitally zoom the fovea 650 , the size of the inner source window 663 is typically decreased by changing a digital zoom factor magnifying the image in the fovea 650 . In this case, the size of the frame 681 of the source video will change resulting in a change in the warp of the surround 651 as well.
- various digital filter methods and resampling algorithms may then be used to sample the source pixel texture information for interpolation/decimation into the target pixels of one or more display devices.
- Exemplary digital filters that may be used are a box filter, tent filter, Gaussian filter, sinc filter, and lanczos filter.
- FIG. 6C a schematic diagram illustrates another linear mapping of source pixels from the high definition video source images of the endoscopic camera to target pixels of the display are shown to further explain a linear mapping of the fovea 650 and a linear mapping of the surround or background 651 .
- the high definition spatial images 510 have a two dimensional array of pixels that is HDX pixels wide by HDY pixels high.
- the two dimensional array of pixels for the high definition spatial images 510 may be 1920 pixels wide by 1080 pixels high.
- the display devices 402 L, 402 R in the stereo viewer 312 may display lower native resolution images 511 N with a two-dimensional array of pixels having a native resolution of LDX pixels wide by LDY pixels high.
- the dimensions LDX pixels wide and LDY pixels high of the lower native resolution images 511 N are respectively less than the available spatial resolution of HDX pixels wide and HDY pixels high for the high definition spatial images 510 .
- the fovea 650 may be an image having dimensions FX pixels wide (X-axis pixels) and FY pixels high (Y-axis pixels) of the high definition image without interpolation or decimation such that there is no loss of resolution or detail in the display area of interest to a surgeon. In this case there is a one to one mapping between pixels of the high definition image and pixels of the lower resolution display. However, extra pixels to each side of the fovea 650 need to be compressed or decimated down to fewer pixels in the display.
- the high definition spatial images 510 are 1920 pixels wide (X-axis pixels) by 1080 pixels high (Y-axis pixels) and the native pixel dimensions of the display (low definition spatial images 511 N) are 1280 pixels wide (X-axis pixels) by 1024 pixels high (Y-axis pixels).
- the fovea 650 is an image having dimensions of 640 pixels wide (FX) and 512 pixels high (FY) (Y-axis pixels) to be placed in the center of the display.
- An array of 640 pixels wide (X-axis pixels) and 512 pixels high (Y-axis pixels) in the high definition image 510 is mapped one to one into the 640 pixels wide (FX) (X-axis pixels) and 512 pixels high (FY) (Y-axis pixels) in the fovea 650 .
- a two-to-one decimation or compression in resolution maps the remaining X-axis pixels of the high definition image into the remaining X-axis pixels of the background or surround 651 .
- 284 pixels high (Y-axis pixels) in the high definition image 510 above and below the fovea are to be respectively mapped into 256 pixels high (Y-axis pixels) above and below the fovea in the display image 511 N if the full spatial image is to be displayed.
- approximately a 1.1-to-1 decimation or compression in resolution along the Y-axis maps the remaining Y-axis pixels of the high definition image into the remaining Y-axis pixels of the background or surround 651 . Note that this assumes a total linear mapping in the surround 651 , not a piece-wise linear in each of N quads, which may not work well in the corners.
- the Y-axis compression or decimation may differ from the X-axis compression or decimation.
- the image in the surround will be distorted by being compressed differently along the axis with the greater decimation.
- the source/target windows are defined as a percentage of the source/target extent.
- the raw number of pixels in the surround 651 differs in X,Y, but the percentage change between the inner/outer windows is the same resulting in less distortion.
- the background 651 may be displayed at the native resolution while the fovea 650 is interpolated up to be a magnified image within its pixel array of FX by FY pixels.
- the fovea 650 may be fixed in the center of the display image 511 N and the center of the display device. If the outer-source-window is smaller than the source extent, the inner/outer source windows may be digitally panned within the source frame. In this manner, inner/outer source window and the inner/outer target windows are concentric to minimize distortion in the background/surround 651 around the fovea 650 .
- the fovea 650 may be digitally (or electronically) moved within the display image 511 N by various means in response to an automatically sensed signal or a manually generated signal. That is, the fovea 650 may be digitally (electronically) panned around within the display image. This may be accomplished by changing the coordinates defining the fovea 650 in the mapping of source pixels to target pixels in the display. In this case, the inner/outer source window and the inner/outer target windows may not be concentric.
- a centralization process may occur where the pixels of the display image 511 N may adjust to position the fovea 650 more centrally in the display image 511 N.
- the display image 511 N may digitally adjust its position within the high definition spatial image 510 by selecting different pixels within the high definition spatial image 510 . This is analogous to a virtual camera moving around in the high definition spatial image 510 .
- both the fovea 650 and the display image may be digitally (electronically) panned around within the matrix of pixels of the high definition spatial image 510 .
- the source window for selecting the source of pixel information in the high definition video source images moves to recenter the source area of interest within the fovea and the center of the display in a substantially instantaneous manner.
- the endoscopic camera 101 B may be mechanically moved by the motors in the robotic arm 158 B to adjust the field of view of the surgical site in response thereto.
- the fovea 650 and the display image may be digitally (electronically) panned while the endoscopic camera 101 B is mechanically panned to change the field of view of the surgical site.
- the endoscopic camera 101 B may be slewed slowly both digitally (electronically) and mechanically (physically) to maintain the source area of interest substantially centered in the source video frame.
- the endoscopic camera 101 B may be mechanically moved and concurrently the source window may be digitally moved in the opposite direction until the source-window is re-centered relative to the full-extent of the source video captured by the endoscopic camera.
- FIGS. 7A-7D illustrate digital panning of images and both digital and mechanical panning.
- an initial fovea position 650 A of the fovea 650 is shown centered in an image 702 A on a display 402 L, 402 R.
- the pixels of image 702 A displayed by the display may be centered with respect to the pixels of a high definition spatial image 700 A providing the endoscopic camera 101 B field of view.
- a surgeon or an assistant may desire to move the fovea 650 from the initial fovea position 650 A to a different fovea position 650 B within the display image 511 N or outside the display image 511 N but within the high definition spatial image 700 A.
- a centralization process may occur to select different pixels in the display image 511 N from the high definition spatial image to position the fovea 650 more centrally in the display image 511 N, such as illustrated by the image 702 B in FIG. 7B which has a different matrix of pixels to display on the display 402 L, 402 R.
- the fovea 650 is digitally moved from a first fovea position 650 A displaying a first area of the surgical site to a second fovea position 650 B displaying a second area of the surgical site.
- the fovea position 650 B is once again centered within the image 702 B that is displayed on the display 402 L, 402 R.
- a surgeon or an assistant may desire to move the fovea 650 from the centered fovea position 650 B in FIG. 7B to a different fovea position 650 C outside of the display image 511 N and the field of view of the surgical site captured by the high definition spatial image 700 A corresponding to a given position of the endoscopic camera 101 B.
- the endoscopic camera 101 B may be mechanically panned to a different position to capture a different high definition spatial image to display pixels of the desired fovea position 650 C.
- the camera control system of the robotic surgical system may first move the fovea digitally. If the user out-paces the compensation rate of re-centering the fovea digitally, the camera control system transitions/ramps to full endoscopic camera drive for the motors of the robotic surgical arm 101 B to mechanically move the endoscopic camera. This may happen as the as the user out-paces the compensation rate of the slow re-centering loop that is attempting to keep the zoomed region-of-interest centered in the video frame.
- moving an inner source window relative to an outer source window changes which pixels are mapped to the inner target window. If the source frame region between the inner and outer source windows is being mapped to a surround on the target display, then moving the inner source window may also change the warp of the pixels that are mapped to the surround. For example, in the surround the number of pixels may expand on one side while contracting on the opposite side.
- the fovea 650 may be digitally moved from the first fovea position 650 A to the second fovea position 650 B within the display image 511 N and/or within the high definition spatial image 700 A.
- the fovea 650 may be digitally moved abruptly from the first fovea position 650 A in one video frame to the second fovea position 650 B in the next video frame.
- the fovea 650 may be digitally moved gradually from the first fovea position 650 A to the second fovea position 650 B over a sequence of video frames with intermediate fovea positions there-between.
- the first fovea position 650 A and the second fovea position 650 B are illustrated with a plurality of intermediate fovea positions 850 A- 850 D there-between.
- the fovea 650 may appear to move more gradually from the first fovea position 650 A to the second fovea position 650 B within the display image 511 N and/or within the high definition spatial image 700 A.
- the display image 511 N be digitally panned but the endoscopic camera 101 B be mechanically panned. Additionally, a centering process that further adjust the digital panning of pixels and/or the mechanical panning of the endoscopic camera 101 B may be used to adjust the display image 511 N to an image position 702 C around the fovea in order to center the desired fovea position 650 C therein. In some cases, the centering process may be undesirable.
- the endoscopic camera 101 B may be mechanically panned and the display image 511 N may be digitally panned to a image position 702 D but without any centering process so that the desired fovea position 650 C is off-center within the display 402 L, 402 R.
- FIGS. 7C-7D illustrate combining digital image panning (digital tracking) with mechanical camera panning (servo-mechanical tracking).
- the digital image panning (digital tracking) can be combined with the mechanical camera panning (servo-mechanical tracking) analogous to a micro/macro mechanism or system.
- the digital image panning (digital tracking) makes the relatively small and faster deviations or tracking efforts—digital in this case.
- the mechanical camera panning (servo-mechanical tracking) can handle larger deviations that occur more slowly. Note that the effect of servo mechanical motion of the robotic surgical arm 101 B and the endoscopic camera 101 B may be compensated.
- the zoomed image or fovea 650 may be moved in the opposite direction of the movement of the endoscopic camera across the full special high definition image. In this case, the motion of the endoscopic camera 101 B may be largely imperceptible when viewed in the zoomed image or fovea 650 .
- While automatic panning of the endoscopic camera 101 B is possible, it may be preferable to avoid it and use digital panning alone. Otherwise, the endoscopic camera 101 B may bump into something it should not unless precautions in its movement are taken. In this case, it is more desirable to digitally pan the fovea 650 from one position to another without requiring movement of the endoscopic camera.
- Automatic camera following and digital zoom are combined together such that the digital zoomed portion of an image tracks or follow a surgeon's motions, such as the gaze of his pupils, without requiring mechanical movement of the endoscopic camera. If the surgeon's motions indicate that the digital zoomed portion extend beyond pixels of the high definition digital image being captured, the endoscopic camera may be mechanically moved automatically.
- sensing modalities may be used to detect a surgeon's motion so that a digital zoomed portion of interest of an image may be moved around within the pixels of a high definition digital image.
- Some different sensing modalities include (1) robotic surgical tool tracking, (2) surgeon gaze tracking; (3) or a discrete user interface.
- Robotic surgical tool tracking may be performed by kinematics sensing through joint encoders, potentiometers, and the like; video analysis-based tool location tracking; or a combination or fusion of kinematics sensing and video analysis-based tool location tracking.
- Robotic surgical tool tracking is further disclosed in U.S. patent application Ser. No. 11/130,471 entitled METHODS AND SYSTEM FOR PERFORMING 3-D TOOL TRACKING BY FUSION OF SENSOR AND/OR CAMERA DERIVED DATA DURING MINIMALLY INVASIVE ROBOTIC SURGERY filed by Brian David Hoffman et al. one May 16, 2005, which is incorporated herein by reference and in U.S. patent application Ser. No. 11/865,014 entitled METHODS AND SYSTEMS FOR ROBOTIC INSTRUMENT TOOL TRACKING filed by Wenyi Zhao et al. on Sep. 30, 2007, which is also incorporated herein by reference.
- a centroid (tool centroid) 1701 for the robotic surgical tools 510 L, 510 R may be determined from the respective position information points 1710 L, 1710 R within the surgical site determined from a tool tracking system.
- the tool centroid 1701 may be used as a center point to automatically position the center of the fovea 650 (re-center) within the image 511 N.
- the robotic surgical tool 510 R may shift in the surgical site to a position indicated by the robotic surgical tool 510 R′.
- the position information follows the change in position of the tool to the respective position information point 1710 R′.
- a new position of tool centroid 1701 ′ is determined given the position information points 1710 L, 1710 R′. This makes the fovea 650 off-center from the new position of the tool centroid 1701 ′.
- the new position of the tool centroid 1701 ′ may be used as a center point to automatically re-center the fovea 650 within the image 511 N.
- FIG. 17B illustrates the fovea 650 re-centered within the image 511 N in response to the new position of the tool centroid 1701 ′.
- a discrete user interface may be provided to a surgeon at the master control console to control the position of the fovea 650 within the image 511 N of the display.
- One or more buttons (such as arrow buttons to the side of a surgeon's console), one or more foot pedals, or the master control handles 160 themselves may be used to manipulate the position of the fovea 650 or other image.
- a voice recognition system at the master control console capable of recognizing vocal commands may also be used to adjust the position of the fovea 650 .
- buttons, foot pedals, or combinations thereof may be pressed to manually move the fovea 650 or other images up, down, left, and/or right.
- Voice commands may be used in another configuration to move the fovea 650 or other images up, down, left, and/or right.
- the discrete user interface may be used to actuate an automatic re-centering process of the digital zoomed image 650 based on current tool position, gaze location, or other available information in the surgical system.
- the discrete user interface may be used to re-center or move the image at discrete times, such as through voice activation, perhaps in concert with tool tracking or gaze detection.
- the master control handles 160 themselves may be used to manipulate the position of the fovea 650 or other image.
- one or both, of the master control handles 160 can serve as a two-dimensional or three-dimensional mouse (masters-as-mice).
- one or both of the master control handles 160 can be arranged to perform functions relative to the fovea image 650 in a manner analogous to a conventional mouse relative to a computer screen.
- Each of the master control handles 160 may have at least six degrees of freedom of movement. Accordingly, when used as a three-dimensional mouse, a master control handle can be arranged to control six variables, for example. Therefore, functions such as, shifting, rotating, panning, tilting, scaling, and/or the like, can be performed simultaneously when one, or both, or either, of the masters are used as a three-dimensional mouse, without another input being required. In particular, for two-handed or two-master operation, any windows or overlays can be handled as “elastic” bodies, such that resizing, scaling, warping, and/or the like, can, for example, be controlled by pulling the masters apart, or the like.
- One or both of the master control handles 160 may select and drag the fovea to different positions within the image 511 N, either by adjusting its size/position within the image 511 N, and/or by defining a crop rectangle to generate the fovea 650 from the background image 651 representative of the full spatial high definition images.
- the masters-as-mice functionality of the master control handles 160 can support successive refinement of the position of the fovea as well as control the level of image magnification or zoom within the high definition images.
- the robotic surgical tools may be used to drag the fovea 650 to different positions within the image 511 N and/or move the image 511 N within the matrix of pixel information of the high definition images.
- robotic surgical tool 510 R has a position information point 1810 well away from the edge and closer to center of the fovea 650 .
- a tool tracking system may be used to provide the information regarding the position information point 1810 R of the robotic surgical tool relative to the endoscopic camera 101 B.
- a surgeon may desire to move the fovea 650 within the image 511 N to better magnify a different location within the surgical site.
- the robotic surgical tool 510 may act as a poker to poke or bump an edge of the fovea 650 to move up, down, left, right, and/or combinations thereof within the image 511 N.
- an elastic wall or other haptic interface may be simulated such that when the robotic surgical tool bumps into the outer edge of the fovea, or outer edge of the target window, the center position of the source area-of-interest pans accordingly to be within the fovea 650 .
- the robotic surgical tool 510 R has moved in position to robotic surgical tool position 510 R′ with the position information point 1810 R′ near the edge of the fovea 650 .
- the digital zoom/panning system may pan the fovea 650 in response to the robot surgical tool being in the robotic surgical tool position 510 R′ with the position information point 1810 R′ substantially near the edge of the fovea 650 .
- the fovea 650 has panned from its position in FIG. 18A to the fovea position 650 ′ so that the robotic surgical tool position 510 R′ and position information point 1810 R′ are more centered within the fovea.
- a surgeon may desire to move from the fovea position 650 ′ to another position. In this case, the surgeon may use the robotic surgical tool again to pan the fovea 650 .
- the robotic surgical tool 510 R has moved in position from the robotic surgical tool position 510 R′ to the robotic surgical tool position 510 R′′ with the position information point 1810 R′′ near the top edge of the fovea 650 .
- the fovea 650 will be panned up from its position 650 ′′ in FIG. 18B so that the robotic surgical tool position 510 R′′ and position information point 1810 R′′ will be more centered within the fovea.
- One or more of the manual user interface techniques may be combined with an automatic user interface technique for digital panning/zooming.
- One of the sensing modalities that may be used for automatic camera following or image panning is gaze tracking of a surgeon's eyes in the stereo viewer 312 .
- the stereo viewer 312 may include one or more left gaze detection sensors 420 L near the periphery of the display device 402 L for the left eye of the surgeon and one or more right gaze detection sensors 420 R near the periphery of the display device 402 R for the right eye of the surgeon.
- One of the gaze detection sensors for each eye may also include a low level light source 422 L, 422 R to shine light into the eye of the surgeon to detect eye movement with the respective gaze detection sensors 420 L, 420 R.
- the one or more left gaze detection sensors 420 L and the one or more right gaze detection sensors 420 R are used to determine the location of the central gaze of the surgeon's eyes within the image that is displayed on the display devices 402 L, 402 R respectively.
- the central gaze location within the image may be used to define the center point of the fovea 650 within the image 511 N.
- the fovea 650 may digitally move as well to provide a magnified image where the surgeon is gazing.
- that area of the image may be digitally and/or mechanically automatically re-centered within the image 511 N on the display devices 402 L, 402 R.
- the surgeon's gaze off center of the image 511 N for a predetermined period of time may shift the source area of interest to be in the center of the display within the fovea 650 .
- Exemplary algorithms for gaze detection and tracking are described in detail in “Gaze Contingent Control for Minimally Invasive Robotic Surgery” by Mylonas G. P., Darzi A, Yang G-Z. Computer Aided Surgery, September 2006; 11(5): 256-266; “Visual Search: Psychophysical Models and Practical Applications” by Yang G-Z, Dempere-Marco L, Hu X-P, Rowe A. Image and Vision Computing 2002; 20:291-305; and “Gaze Contingent Depth Recovery and Motion Stabilisation for Minimally Invasive Robotic Surgery” by George P. Mylonas, Ara Darzi, Guang-Zhong Yang; MIAR 2004, LNCS 3150, pp. 311-319, 2004.
- Exemplary algorithms for gaze detection and tracking are also described in U.S. Pat. No. 5,912,721 which is incorporated herein by reference.
- the digitally formed fovea 650 and the digital panning of the fovea within the image 511 N in response to gaze detection, allows the endoscopic camera 101 B to remain stationary, at least for small adjustments.
- the automatic digital panning of the fovea 650 with the full spatial high definition image of the endoscopic camera in the background 651 a surgeon is less likely to be interrupted during surgery to change the view of images. That is, with the automatic digital panning of the fovea 650 and the full spatial high definition image in the background 651 , a surgeon may avoid having to change the view of the surgical site by manual manipulation of the robotic arm 101 B and the endoscopic camera. A decrease in surgeon interruption to change the view and manipulate the camera can improve the efficiency of the robotic surgical system.
- a face is illustrated with stereo gaze detection about the left and right eyes to detect left and right pupil positions for gaze detection.
- the sensors may sense the pupil positions with respect to the left, right, top, and bottom edges of the eye.
- a surgeon may initially gaze directly ahead at a test pattern to calibrate the gaze detection system with left and right eyes gazing to a center position.
- FIG. 11A illustrates left and right eyes gazing to an upper left position.
- FIG. 11B illustrates left and right eyes gazing to a lower right position.
- FIG. 10 illustrates exemplary left and rights graphs 1002 L, 1002 R as to how the edges of the pupil may be sensed with respect to the top, bottom, left, and right corners 1001 T, 1001 B, 1001 L, 1001 R of the left and right eyes 1000 R, 1000 L.
- the edge images for the right eye and left eye of may be formed via known methods, such as a Sobel filter or a Canny filter.
- the edge images can then be mapped in a direction perpendicular to the one-dimensional (1D) axis direction to detect the inner corners of the eyes.
- the image can then be scanned in a direction normal to the 1D-axis, with the lowest brightness point being the point of the inner corner of the eye.
- the peaks in the brightness points on the graphs 1002 L, 1002 R may indicate the position of the edges of the left and right pupils.
- Head movement may be detected by one or more head motion sensors or algorithmically by using one or more gaze detection sensors 420 L, 420 R.
- the level of head motion detected may be removed from gaze detection signals so that inadvertent head movement does not result in movement of the fovea 650 within the image 511 N.
- vertical head movement illustrated by arrow A may be detected by monitoring the movement of a line 1200 formed through the corners 1001 L, 1001 R of the left and right eyes.
- the corners of the left and right eyes may be determined from the edge images of the eyes.
- a combination of vertical and horizontal head movement may be detected using at least two corners 1001 T, 1001 B, 1001 L, 1001 R of the left and right eyes.
- the top corner 1001 T and the left corner 1000 L of the right eye 1000 R and the top corner 1001 T and the right corner 1000 R of the left eye 1000 L may be used to form a polygon having a centroid.
- the centroid moves along a vector.
- the corners of the eyes may be monitored to detect movement in the centroid and the vector so that a combination of vertical and horizontal head movement may be detected.
- a surgeon may desire additional zoom or magnification of an object displayed in the fovea 650 .
- the surgeon may desire less zoom or demagnification of an object displayed in the fovea 650 .
- the level of the level of zoom may be set by manually by the selection of relative sizes of the source windows 661 and target windows 671 illustrated in FIG. 6D .
- methods of automatically determining an appropriate level of zoom may be made by automatically determining the relative sizes of the source windows 661 and target windows 671 .
- An approximation for the desired depth of the fovea 650 may be automatically determined by an average extent of instrument motion.
- the average extent may be determined by making a time weighted average of the motion in the robotic surgical instruments.
- Such extent defines a box or area within the image 511 N or display 402 L, 402 R.
- a determination of the minimum zoom that can display the box or area defined by the extent may be the appropriate level of zoom to select.
- Gaze detection may also be used to automatically determine an approximation for the desired depth of the fovea 650 .
- the gaze motion of the surgeon's pupils or eyes may be stored over time.
- a time-weighted average of the stored gaze motion can be computed to automatically define a two dimensional area or a three dimensional surface within the image 511 N or display 402 L, 402 R.
- a determination of the minimum zoom that can display the two dimensional area or the three dimensional surface defined by the extent of the gaze motion of the surgeon's eyes may be the appropriate level of zoom to select.
- the boundary defined by illumination falloff may be used to automatically select the source area of interest for display within the fovea 650 .
- the digital zoom may momentarily zoom out from the area of interest and then zoom back when the area of interest is substantially centered in the fovea 650 .
- a macro/micro approach can also be adapted along the insertion axis 574 (see FIG. 1C ) of the endoscopic camera 101 B mounted on the robotic surgical arm 158 B.
- the endoscopic camera 101 B may be physically and mechanically moved in and out of the surgical site along the insertion axis 574 by the motor 574 providing a macro adjustment.
- the camera can be virtually moved in along the insertion axis toward the tissue by increasing the digital zoom factor providing a micro adjustment, by decreasing the size of the area-of-interest selected from the source high definition video images.
- the endoscopic camera is virtually (electronically) moved by digital signal processing of the source video images without any physical or mechanical movement.
- the motor 574 may be engaged to physically and mechanically moved the endoscopic camera 101 B along the insertion axis 574 to avoid an interpolation or a level of interpolation of the pixels (source pixels) in the source high definition video.
- This is analogous to mechanically moving (clutching) the camera along yaw/pitch axes when the fovea reaches the edge of the high definition video source.
- endoscopic camera could be slowly adjusted along the insertion axis both electronically digitally and physically so as to maintain a source area-of-interest at a percentage (e.g., approximately 50%) of the source frame size. This is analogous to a slow slew/auto-recentering of the fovea.
- the zoom factor for the fovea 650 may also be automatically determined by a distance from the end of the endoscopic camera to the operative site within the surgical cavity. This is analogous to auto-focus methods in digital cameras and how they derive an estimate of the working depth of focus.
- the same images seen by the surgeon in the stereo viewer may be monitored by an assistant on the external monitor 154 illustrated in FIGS. 1A-1B .
- the assistant A may also choose to see a different image than that of the surgeon without moving the endoscopic camera.
- the assistant A can control a second digital zoom and a second digital pan of the captured high definition digital images from the endoscopic camera 101 B so that they can display a different view of images of the surgical site on a second display device, the external monitor 154 .
- the assistant A may control the selection of the second digital zoom and the second digital pan on the monitor 154 in a number of ways.
- the external monitor 154 may include a touch screen or touch panel interface 1401 to control the selection of the second digital zoom and the second digital pan on the monitor 154 .
- the assistant may touch his finger to the touch panel 1401 and select a region of the display to be the target window or fovea 650 with a linear digital zoom. With the fovea 650 defined and in a fixed position on the display, the assistant may then use one or more fingers F to scroll the image under the fovea to display a desired region of interest in the surgical site captured by the high definition source video images.
- a predetermined rectangular shape may be moved over the image on the touch panel with a finger F to select the desired region of interest to position within a fovea in the center of the display monitor 154 .
- the full frame image may be momentarily displayed on the touch panel 1401 so that the region of interest may be selected and then pop back out to zoomed-in view with the desired magnification of the fovea.
- the assistant does not need to mechanically move the endoscopic camera 101 B, avoiding clutching the robotic surgical arm 158 B to physically move the endoscopic camera to another position.
- one or more control buttons 1404 A- 1404 B may be provided by the monitor 154 to digitally zoom and magnify the image provided by the fovea 650 or to digitally move the center of the fovea to another position within the surgical site.
- Up, down, left, and right pan arrows 1406 may be provided to pan the fovea within the captured pixels of the endoscopic camera to display a different fovea 650 within the image 511 N.
- the assistant may control the digital pan and the digital zoom for the fovea within the image by physical movement of the monitor 154 .
- the monitor may include an inertia sensor 1450 to detect movement from an initial position 154 A to various different positions such as positions 154 B- 154 C illustrated in FIG. 15 .
- the inertia sensor 1450 may detect movement in the X and Y-axes to pan the fovea 650 around the image 511 N displayed on the monitor 154 .
- the inertia sensor 1450 may detect movement in the Z axis to zoom the fovea 650 in and out of the image 511 N displayed on the monitor 154 , for example.
- a support arm 1501 includes a plurality of links 1505 to moveably support the monitor 154 coupled to the side cart 152 .
- the support arm includes a plurality of encoders 1510 in accordance with another embodiment of the invention.
- the position of the monitor 154 is determined by the encoders 1510 .
- the assistant may physically move the monitor 154 by grabbing it with their hands H1-H2.
- the movement in the monitor is translated to the joints through the links of the support arm 1501 and sensed by the encoders 1510 .
- the encoders 1510 can detect movement from an initial position 154 A to various different positions of the monitor 154 such as positions 154 B- 154 C in order to digitally pan or digitally zoom the fovea 650 .
- intuitive camera control can be provided to the assistant, as an alternative to mechanically moving the camera with the camera clutch.
- the monitor 154 may also be moved along and rotated about the axes to possibly control the movements of a robotic surgical tool 101 , such as during initial set up or during surgery to control an extra tool, such as a suction tool for example.
- a robotic surgical tool 101 such as during initial set up or during surgery to control an extra tool, such as a suction tool for example.
- Another extra robotic surgical tool that may be controlled by an assistant is an ultrasound tool.
- the images generated by the ultrasound tool can be displayed on the monitor 154 as well the display devices 402 L, 402 R in the stereo viewer 312 . As the ultrasound tool is moved over surfaces in the surgical site, the ultrasound images that are displayed change.
- the subsystem 1600 is an aspect of the robotic surgical system that may provide the digital zoom portion of video information and the automatic panning of video information in a surgical site.
- the subsystem 1600 may include an image acquisition device (endoscopic camera) 1602 , an image buffer 1604 , a first digital mapper and image filter 1606 A, a first user interface 1608 A, a first display buffer 1610 A, and a first display device 1612 A coupled together as shown.
- the first display device 1612 A may be one of the display device 154 or the stereo display devices 402 L, 402 R, for example.
- the subsystem 1600 may further include a second digital mapper and image filter 1606 B, a second user interface 1608 B, a second display buffer 1610 B, and a second display device 1612 B coupled together as shown and independent of the first devices.
- the image acquisition device 1602 may capture images of a surgical site in a high definition image format.
- the image buffer 1604 buffers one or more frames of a matrix of pixel data.
- the first digital mapper and image filter 1606 may map and filter the pixels in the captured images to properly display pixels on the first display device 1612 A as desired.
- the first display buffer 1610 is coupled between the image filter 1606 and the first display device 1612 A to store one or more frames of pixel information for display on the display device.
- the first user interface 1608 A may include a region of interest (fovea) selector 1620 , a user preference selector 1622 , and an enhanced display mode selector 1624 to select an enhanced display mode 1634 .
- the region of interest (fovea) selector 1620 may function similar to the method and apparatus for automatic digital panning of the fovea 650 as described previously.
- a user may select how the source rectangle should automatically adjust its position with respect to an estimated tool centroid 1630 , depth 1631 , user focal-point, or mean working envelope, for example.
- the user preference selector 1622 allows a user to manually select the source data from a source rectangle 1632 , such as a full-spatial high definition image, and manually select the destination rectangle 1633 for where the image may be preferably displayed on the first display device 1612 A. Without the enhanced display mode being selected, the user may manually select the source rectangle 1632 and the destination rectangle 1633 . If the system is selected to be in an enhanced display mode, the source rectangle 1632 and/or the destination rectangle 1633 may be automatically selected based on one or more of the estimated tool centroid 1630 , the depth 1631 , the user focal-point, or the mean working envelope. In some cases, a user may select a fixed destination rectangle while the source rectangle 1632 is automatically selected.
- the image acquisition device 1602 captures digital pixel data of images of a surgical site that are stored in the image buffer 1604 , the pixel data can be independently selected for viewing by multiple display devices.
- the second digital mapper and image filter 1606 B, the second user interface 1608 B, and the second display buffer 1610 B are for independent selection and display of images on the second display device 1612 B.
- the first display 1612 A may be the stereo display devices 402 L, 402 R in the console 150 while the second display 1612 B may be the assistant's display device 154 illustrated in FIG. 1A .
- a first user may independently select user preferences for the first display with the first user interface 1608 A, while a second user may independently select user preferences for the second display with the second user interface 1608 B.
- the second user interface 1608 B is substantially similar to the first user interface 1608 A and its description is incorporated herein by reference for brevity.
- the second digital mapper and image filter 1606 B, the second user interface 1608 B, and the second display buffer 1610 B may be synchronized to the first devices such that the display of images on the second display device 1612 B are similar to the display of images on the first display device 1612 A.
- a number of elements of the system may be implemented in software and executed by a computer and its processor, such as computer 151 and its processor 302 .
- the elements of the embodiments of the invention are essentially the code segments to perform the necessary tasks.
- the program or code segments can be stored in a processor readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication link.
- the processor readable medium may include any medium that can store or transfer information.
- Examples of the processor readable medium include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable programmable read only memory (EPROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, etc.
- the computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic, RF links, etc.
- the code segments may be downloaded via computer networks such as the Internet, Intranet, etc.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Robotics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Mechanical Engineering (AREA)
- Endoscopes (AREA)
Abstract
In one embodiment of the invention, a method for controlling a robotic surgical tool is disclosed. The method for controlling a robotic surgical tool includes moving a monitor displaying an image of a robotic surgical tool; sensing motion of the monitor; and translating the sensed motion of the monitor into motion of the robotic surgical tool.
Description
- The embodiments of the invention relate generally to vision subsystems for minimally invasive robotic surgical systems.
- Minimally invasive surgical (MIS) procedures have become more common using robotic (e.g., telerobotic) surgical systems. An endoscopic camera is typically used to provide images to a surgeon of the surgical cavity so that the surgeon can manipulate robotic surgical tools therein.
- A surgeon's focus is typically on the tissue or organs of interest in a surgical cavity. He may manually move the endoscopic camera in and around a surgical site or cavity to properly see and manipulate tissue with robotic surgical tools. However, when the endoscopic camera is manually moved inward so that tissue is at desired magnifications, typically a narrow field of view is provided of the surgical cavity by the endoscopic camera. Tools or tissue that are outside the field of view typically require the surgeon to manually cause the endoscopic camera to move to a different position or manually move the camera back out.
- Some times the endoscopic camera is slightly moved left, right, up, and/or down to see a slightly different view or slightly moved out to obtain a slightly larger field of view and then moved right back to the original position to the desired magnification to manipulate tissue.
- Some times a surgeon may have to initially guess which direction to move the endoscopic camera to position the tissue and/or tool of interest in the surgical cavity within the field view of the endoscopic camera.
- A more efficient use of the endoscopic camera may also make surgical procedures with a robotic surgical system more efficient.
- The embodiments of the invention are summarized by the claims that follow below.
-
FIG. 1A is a block diagram of a robotic medical system including a stereo viewer and an image guided surgery (IGS) system with a tool tracking sub-system. -
-
FIG. 1C is perspective view of an endoscopic camera manipulator or robotic surgical arm. -
FIG. 2 is a functional block diagram of the video portion of the IGS system to provide a stereo image in both left and right video channels to provide three-dimensional images in a stereo viewer. -
FIG. 3 is a perspective view of a robotic surgical master control console including a stereo viewer and an IGS system with tool tracking sub-system. -
FIG. 4A is a cutaway side view of the stereo viewer with gaze detection in the robotic surgical master control console. -
FIG. 4B is a perspective view of the stereo viewer with gaze detection in the robotic surgical master control console. -
FIG. 4C is a side view of the stereo viewer with gaze detection in the robotic surgical master control console. -
FIG. 5A is perspective view of a video frame including video images of a surgical site with a navigation window. -
FIG. 5B is a schematic view of the video frame including video images of a surgical site with a navigation window. -
FIG. 6A is a perspective view of a video frame including video images of a surgical site with a digital zoomed fovea portion. -
FIG. 6B is an exemplary illustration of a linear mapping between source pixel information and target pixels for a digitally zoomed fovea of a display and a non-linear mapping between source pixel information and target pixels for a background or surround image portion of the display. -
FIG. 6C is a schematic diagram illustrating of a linear mapping between source pixel information and target pixels for a digitally zoomed fovea of a display and a linear mapping between source pixel information and target pixels for a background or surround image portion of the display. -
FIG. 6D is a schematic diagram illustrating a mapping between source pixel information and target pixels of a display. -
FIG. 6E is a schematic diagram illustrating the inner and outer source pixel windows ofFIG. 6D . -
FIG. 6F is an exemplary illustration of a linear mapping between source pixel information and target pixels for a digitally zoomed fovea of a display and a linear mapping between source pixel information and target pixels for a background or surround image portion of the display. -
FIGS. 7A-7D are diagrams to illustrate combinations of digital pan and/or mechanical panning of the endoscopic camera of a frame of a video information with a digital zoom portion in response to gaze detection. -
FIG. 8 illustrates a gradual movement of the digital zoom portion over multiple frames of video information. -
FIG. 9 illustrates a face with stereo gaze detection to detect left and right pupil positions. -
FIG. 10 illustrates left and rights graphs as to how the position of the pupil may be sensed with respect to the edges of the eye. -
FIGS. 11A-11B illustrates a face with an upper left gaze position and a lower right left gaze position, respectively. -
FIG. 12 illustrates how vertical head movement may be detected. -
FIG. 13 illustrates how a combination of vertical and horizontal head movement may be detected. -
FIG. 14 illustrates a touch screen user interface in a display device to provide a control input to control a robotic surgical instrument such as an endoscopic camera. -
FIG. 15 illustrates manual movement of a display device to provide a control input to control a robotic surgical instrument such as an endoscopic camera. -
FIG. 16 is a functional block diagram of a digital video zoom subsystem to provide digital zoom portion and automatic panning of video information in a surgical site. -
FIGS. 17A-17B illustrate a perspective view of an image and automatic panning of a fovea within the image using a tool centroid. -
FIGS. 18A-18B illustrate a perspective view of an image and panning a fovea within the image using a robotic surgical tool to poke the fovea around therein. - In the following detailed description of the embodiments of the invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one skilled in the art that the embodiments of the invention may be practiced without these specific details. In other instances well known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments of the invention.
- Aspects of the invention include methods, apparatus and systems for automated panning and digital zooming for video subsystems of robotic surgical systems.
- High definition endoscopic cameras may generate a greater number of pixels than can be displayed by liquid crystal display panels or display monitors. Aspects of some of the disclosed embodiments of the invention may use some of the extra pixel information captured by high definition endoscopic cameras that would otherwise be unused and possibly discarded.
- Automatic camera following, an aspect of some embodiments of the invention, is disclosed that may be responsive to robotic surgical instrument location using API information, or selection of an active area in a surgical site into which the surgeon desires to gaze.
- A linear digital zoom, another aspect of some embodiments of the invention, is disclosed that linearly scales a spatial subset of a source of high definition video images on one or more displays. The full spatial high definition video images may be linearly scaled down or down-sampled and displayed picture-in-picture (PIP) as a navigation window or a pull-back view for example.
- On the same display device, a linear digital zoom of a spatial subset of the source the high definition video images may combined with a non-linear digital zoom of another spatial subset of the source of the high definition video images, in some embodiments of the invention. A first spatial subset of the source of the high definition video images may be digitally zoomed linearly and displayed or rendered in a target window portion (fovea) on a display device and concurrently a second spatial subset of the source of the high definition video images around the first spatial subset may be digitally zoomed non-linearly and displayed or rendered in a target frame portion (background or surround) around the target window portion (fovea) on the display device to provide a smooth image transition.
- The frame portion (background or surround) with the second spatial subset of the source of the high definition video images altered by a non-linear digital zoom factor may be used to complete the surgeon's field of view around the window portion (fovea). In one configuration of the invention, the target window portion (fovea) may be displayed in high-resolution while the frame portion (background or surround) is displayed with a lower-resolution to provide an improved sense of peripheral vision. With an improved sense of peripheral vision, the need for a PIP navigation window of the surgical site displayed on the display monitor is reduced. The frame portion (background or surround) with the non-linear digital zoom may reduce the number of otherwise frequent short duration camera control events. Short duration camera control events are adjustments in the endoscopic camera that are often made due to a surgeon's desire to see what is just-outside-the-field-of-view or in reaction to lack of peripheral vision, rather than adjustments made to obtain a better field of view of the operative site.
- Automatic camera following may be combined together with a digital zoom in some embodiments of the invention such that the digital zoomed portion of an image tracks or follow a surgeon's motions, such as the gaze of his pupils, without requiring mechanical movement of the endoscopic camera. If the surgeon's motions indicate that the digital zoomed portion extend beyond pixels of the high definition digital image being captured, the endoscopic camera may be mechanically moved or panned automatically.
- For automatic camera following, different sensing modalities may be used to detect a surgeon's motion so that a digital zoomed portion of interest of an image may be moved around within the pixels of a high definition digital image. Some different sensing modalities include (1) robotic surgical tool tracking, (2) surgeon gaze tracking; (3) or a discrete user interface. Robotic surgical tool tracking may be performed by kinematics sensing through joint encoders, potentiometers, and the like; video analysis-based tool location tracking; or a combination or fusion of kinematics sensing and video analysis-based tool location tracking. A discrete user interface may include one or more of button actuation (such as arrow buttons to the side of a surgeon's console), button presses of master console handle buttons, foot-pedal presses, or voice recognition activation. The discrete user interface may be used to re-center the digital zoomed image based on current tool position, gaze location, or the like. Alternatively, the discrete user interface may be used to re-center or move the image at discrete times, such as through voice activation, perhaps in concert with tool tracking or gaze detection.
- Referring now to
FIG. 1A , a block diagram of arobotic surgery system 100 is illustrated to perform minimally invasive robotic surgical procedures on a patient P on an operating table T using one or morerobotic arms 158A-158C (collectively referred to as robotic arms 158). The one or more robotic arms often support arobotic instrument 101. For instance, a robotic surgical arm (e.g., the center roboticsurgical arm 158B) may be used to support a stereo or three-dimensional surgical image capture device (endoscopic camera) 101B such as a stereo endoscope (which may be any of a variety of structures such as a stereo laparoscope, arthroscope, hysteroscope, or the like), or, optionally, some other imaging modality (such as ultrasound, fluoroscopy, magnetic resonance imaging, or the like). - Robotic surgery may be used to perform a wide variety of surgical procedures, including but not limited to open surgery, neurosurgical procedures (e.g., stereotaxy), endoscopic procedures (e.g., laparoscopy, arthroscopy, thoracoscopy), and the like.
- A user or operator O (generally a surgeon) performs a minimally invasive surgical procedure on patient P by manipulating control input devices (touch sensitive master control handles) 160 at a
master control console 150. Acomputer 151 of theconsole 150 directs movement of robotically controlled endoscopic surgical instruments (robotic surgical tools or robotic instruments) 101A-101C viacontrol lines 159, effecting movement of the instruments using a robotic patient-side system 152 (also referred to as a patient-side cart). In astereo display device 164 of themaster control console 150, the operator O views video images of the surgical site including the robotic surgical tools that are in the field of view of theendoscopic camera 101B. - The robotic patient-
side system 152 includes one or more robotic arms 158. Typically, the robotic patient-side system 152 includes at least three roboticsurgical arms 158A-158C (generally referred to as robotic surgical arms 158) supported by corresponding positioning set-uparms 156. The central roboticsurgical arm 158B may support anendoscopic camera 101B. The roboticsurgical arms robotic instruments - Robotic instruments (robotic surgical tools) are generally referred to herein by the
reference number 101.Robotic instruments 101 may be any instrument or tool that couples to a robotic arm that can be manipulated thereby and can report back kinematics information to the robotic system. Robotic instruments include, but are not limited to, surgical tools, medical tools, bio-medical tools, and diagnostic instruments (ultrasound, computer tomography (CT) scanner, magnetic resonance imager (MRI)). - Generally, the robotic patient-
side system 152 includes a positioning portion and a driven portion. The positioning portion of the robotic patient-side system 152 remains in a fixed configuration during surgery while manipulating tissue. The driven portion of the robotic patient-side system 152 is actively articulated under the direction of the operator O generating control signals at the surgeon'sconsole 150 during surgery. The driven portion of the robotic patient-side system 152 may include, but is not limited or restricted to roboticsurgical arms 158A-158C. - The
instruments 101, the roboticsurgical arms 158A-158C, and the set upjoints orientational sensors side system 152 may be reported back to atracking system 352 of the robotic surgical system. - As an exemplary embodiment, the positioning portion of the robotic patient-
side system 152 that is in a fixed configuration during surgery may include, but is not limited or restricted to set-uparms 156. Each set-uparm 156 may include a plurality of links and a plurality of joints. Each set-up arm may mount via a first set-up-joint 157 to thepatient side system 152. - An assistant A may assist in pre-positioning of the robotic patient-
side system 152 relative to patient P as well as swapping tools orinstruments 101 for alternative tool structures, and the like, while viewing the internal surgical site via anexternal display 154. Theexternal display 154 or some other external display may be positioned or located elsewhere so that images of the surgical site may be displayed to students or other interested persons during a surgery. Images with additional information may be overlaid onto the images of the surgical site by the robotic surgical system for display on theexternal display 154. - Referring now to
FIG. 1B , a perspective view of the robotic patient-side system 152 is illustrated. The robotic patient-side system 152 comprises acart column 170 supported by abase 172. One or more robotic surgical arms 158 are respectively attached to one or more set-uparms 156 that are a part of the positioning portion of robotic patient-side system 152. Situated approximately at a central location onbase 172, thecart column 170 includes aprotective cover 180 that protects components of a counterbalance subsystem and a braking subsystem (described below) from contaminants. - Excluding a
monitor arm 158E for themonitor 154, each robotic surgical arm 158 is used to controlrobotic instruments 101A-101C. Moreover, each robotic surgical arm 158 is coupled to a set-uparm 156 that is in turn coupled to acarriage housing 190 in one embodiment of the invention, as described below with reference toFIG. 3 . The one or more robotic surgical arms 158 are each supported by their respective set-uparm 156, as is illustrated inFIG. 1B . - The robotic
surgical arms 158A-158D may each include one or more displacement transducers, orientational sensors, and/orpositional sensors 185 to generate raw uncorrected kinematics data, kinematics datum, and/or kinematics information to assist in acquisition and tracking of robotic instruments. The robotic instruments may also include a displacement transducer, a positional sensor, and/ororientation sensor 186 in some embodiments of the invention. Moreover, one or more robotic instruments may include amarker 189 to assist in acquisition and tracking of robotic instruments. - Referring now to
FIG. 1C , a perspective view of the roboticsurgical arm 158B is illustrated. As discussed previously, the center roboticsurgical arm 158B is for coupling to anendoscopic camera 101B. Theendoscopic camera 101B may not have an end effector that requires controlling. Thus, fewer motors, cables, and pulleys may be employed in controlling theendoscopic camera 101B. However for the purposes of overall movement (e.g., pitch, yaw, and insertion), the elements of the center roboticsurgical arm 158B are similar to the elements of the roboticsurgical arms - In robotic surgical systems for minimally invasive surgery, it is desirable to move and constrain a robotic surgical tool at a single fixed
remote center point 556. Typically the fixedremote center point 556 is near the point of insertion of the surgical tool into the patient P. The center ofrotation 556 may be aligned with the incision point to the internal surgical site, for example, by a trocar or cannula at an abdominal wall during laparoscopic surgery. As the fixedremote center point 556 is on theinsertion axis 574 of the robotic camera and is offset and remote from ground, the robotic surgical arm may also be referred as an offset remote center manipulator instead. - The robotic
surgical arm 158B includes serial links 541-545 pivotally coupled in series at joints 512-514 near respective ends of the links. The first link (Link 1) 541 is pivotally coupled to adrive mount 540 at a first joint 511 near a first end and the second link (Link 2) 542 at the second joint 512 near a second end. The third link (Link 3) 543 is pivotally coupled to thesecond link 542 near a first end and pivotally coupled to the fourth link (Link 4) 544 near a second end. Generally, thefourth link 544 is substantially in parallel to theinsertion axis 574 of theendoscopic camera 101B. A fifth link (Link 5) 545 is slidingly coupled to thefourth link 544. Theendoscopic camera 101B mounts to thefifth link 545 as shown. - The robotic
surgical arm 158B further includes a mountingbase 540 that allows it to be mounted and supported by set-up arms/joints of a patient side system. The mountingbase 540 is pivotally coupled to thefirst link 541 and includes afirst motor 551 to yaw the robotic surgical arm about a yaw axis at the pivot point. Thesecond link 542 houses asecond motor 552 to drive and pitch the linkage of the arm about a pitch axis at thepivot point 556. Thefourth link 544 may include athird motor 553 to slide the firth link 545 and theendoscopic camera 101B along theinsertion axis 574. - The robotic
endoscopic camera arm 158B and the roboticsurgical arms endoscopic camera 101B is to be mechanically moved, one or more of the motors 551-553 coupled to the drive train are energized to move the links of the roboticendoscopic camera arm 158B.Other tools 101 attached to the roboticsurgical arms - Referring now to
FIG. 2 , the stereoendoscopic camera 101B includes anendoscope 202 for insertion into a patient, acamera head 204, a left image forming device (e.g., a charge coupled device (CCD)) 206L, a rightimage forming device 206R, a left camera control unit (CCU) 208L, and a right camera control unit (CCU) 208R coupled together as shown. The stereoendoscopic camera 101B generates aleft video channel 220L and aright video channel 220R of frames of images of the surgical site coupled to astereo display device 164 through avideo board 218. To initially synchronize left and right frames of data, a lock reference signal is coupled between the left and rightcamera control units camera control unit 208L may also generate the lock reference signal so that the right video channel synchronizes to the left video channel. - The
stereo display device 164 includes aleft monitor 230L and aright monitor 230R. As discussed further herein, the viewfinders or monitors 230L,230R may be provided by aleft display device 402L and aright display device 402R, respectively. The stereo images may be provided in color by a pair ofcolor display devices - Additional details of a stereo endoscopic camera and a stereo display may be found in U.S. Pat. No. 5,577,991 entitled “Three Dimensional Vision Endoscope with Position Adjustment Means for Imaging Device and Visual Field Mask” filed on Jul. 7, 1995 by Akui et al; U.S. Pat. No. 6,139,490 entitled “Stereoscopic Endoscope with Virtual Reality Viewing” filed on Nov. 10, 1997 by Breidenthal et al; and U.S. Pat. No. 6,720,988 entitled “Stereo Imaging System and Method for use in Telerobotic Systems” filed on Aug. 20, 1999 by Gere et al.; all of which are incorporated herein by reference. Stereo images of a surgical site may be captured by other types of endoscopic devices and cameras with different structures. For example, a single optical channel may be used with a pair of spatially offset sensors to capture stereo images of the surgical site.
- Referring now to
FIG. 3 , a perspective view of the robotic surgicalmaster control console 150 is illustrated. Themaster control console 150 of the roboticsurgical system 100 may include acomputer 151, astereo viewer 312, anarm support 314, a pair of control input wrists and control input arms in aworkspace 316, foot pedals 318 (includingfoot pedals 318A-318B), and ahead sensor 320. Themaster control console 150 may further include a digital zoom/panning system 351 and atracking system 352 coupled to thecomputer 151 for providing the digital zoomed images, fovea images, and/or PIP images of the surgical site. Thetracking system 352 may be a tool tracking system or a surgeon motion tracking system, such as for gaze detection/tracking, to provide for the digital panning of the camera images. - The
stereo viewer 312 has two displays where stereo three-dimensional images of the surgical site may be viewed to perform minimally invasive surgery. When using the master control console, the operator O typically sits in a chair, moves his or her head into alignment with thestereo viewer 312 to view the three-dimensional images of the surgical site. To ensure that the operator is viewing the surgical site when controlling therobotic instruments 101, themaster control console 150 may include ahead sensor 320 disposed adjacent thestereo viewer 312. When the system operator aligns his or her eyes with the binocular eye pieces of thestereo viewer 312 to view a stereoscopic image of the surgical worksite, the operator's head activates thehead sensor 320 to enable the control of therobotic instruments 101. When the operator's head is removed from the area of thestereo viewer 312, thehead sensor 320 is deactivated to disable or stop generating new control signals in response to movements of the touch sensitive master control handles 160 in order to hold the state of the robotic instruments. - The
arm support 314 can be used to rest the elbows or forearms of the operator O (typically a surgeon) while gripping touch sensitive master control handles 160 of the control input wrists, one in each hand, in theworkspace 316 to generate control signals. The touch sensitive master control handles 160 are positioned in theworkspace 316 disposed beyond thearm support 314 and below theviewer 312. This allows the touch sensitive master control handles 160 to be moved easily in thecontrol space 316 in both position and orientation to generate control signals. Additionally, the operator O can use his feet to control the foot-pedals 318 to change the configuration of the surgical system and generate additional control signals to control therobotic instruments 101 as well as the endoscopic camera. - The
computer 151 may include one ormore microprocessors 302 to execute instructions and a storage device 304 to store software with executable instructions that may be used to generate control signals to control the roboticsurgical system 100. Thecomputer 151 with itsmicroprocessors 302 interprets movements and actuation of the touch sensitive master control handles 160 (and other inputs from the operator O or other personnel) to generate control signals to control the roboticsurgical instruments 101 in the surgical worksite. In one embodiment of the invention, thecomputer 151 and thestereo viewer 312 map the surgical worksite into thecontroller workspace 316 so it feels and appears to the operator that the touch sensitive master control handles 160 are working over the surgical worksite. Thecomputer 151 may couple to the digital zoom/panning system 351 and thetracking system 352 to execute software and perform computations for the digital zoom/panning system. - Referring now to
FIG. 4A , a side cutaway view of the surgeon'smaster control console 150 is shown to illustrate thestereo viewer 312 with a gaze detection/tracking system. Thestereo viewer 312 may include aleft display 402L and one or more leftgaze detection sensors 420L for the left eye EL of a surgeon and aright display 402R and one or more rightgaze detection sensors 420R (not shown inFIG. 4A , seeFIG. 4B ) for the right eye of the surgeon. Thehead sensor 320 illustrated inFIG. 3 may be used to enable/disable the gaze detection system so that other motion is not inadvertently sensed as the surgeon's eye movement. -
FIG. 4C illustrates a magnified side view of thestereo viewer 312 including theleft display 402L and the one or more leftgaze detection sensors 420L for the left eye EL of the surgeon. The one or more leftgaze detection sensors 420L may sense X and Y axes movement of a pupil PL along a Z optical axis. - A fixed
lens 450 may be provided between each eye and eachrespective display device depth range 452. The focus on an image in the surgical site is adjusted prior to image capture by a moveable lens in theendoscopic camera 101B that is in front of the CCD image sensor. - Referring now to
FIG. 4B , a perspective view of thestereo viewer 312 of themaster control console 150 is illustrated. To provide a three-dimensional perspective, theviewer 312 includes stereo images for each eye including aleft image 400L and aright image 400R of the surgical site including anyrobotic instruments 101 respectively in aleft viewfinder 401L and aright viewfinder 401R. Theimages left display device 402L and aright display device 402R, respectively. Thedisplay devices color display devices - In the
stereo viewer 312, three dimensional images of a navigation window or a fovea may be rendered within the main image of the surgical site. For example, in theright viewfinder 401R a right navigation window image 410R may be merged into or overlaid on theright image 400R being displayed by thedisplay device 402R. In theleft viewfinder 401L, a leftnavigation window image 410L may be merged into or overlaid on theleft image 400L of the surgical site provided by thedisplay device 402L. - If the gaze detection system is used to control the position of the fovea or the digital panning of the digital zoom image of the surgical site, the
stereo viewer 312 may include one or more leftgaze detection sensors 420L near the periphery of thedisplay device 402L for the left eye of the surgeon and one or more rightgaze detection sensors 420R near the periphery of thedisplay device 402R for the right eye of the surgeon. One of the gaze detection sensors for each eye may also include a low levellight source gaze detection sensors - While a stereo
video endoscopic camera 101B has been shown and described, a mono video endoscopic camera generating a single video channel of frames of images of the surgical site may also be used in a number of embodiments of the invention. Images, such as a navigation window image, can also be overlaid onto a portion of the frames of images of the single video channel. - As the
endoscopic camera 101B is a digital video camera, it provides digital pixel information regarding the images that are captured. Thus, the digital images that are captured may be digitally zoomed in order to bring the objects closer in into view in the display of an image. In an alternate embodiment of the invention, theendoscopic camera 101B may include an optical zoom, in addition to a digital zoom, to magnify objects prior to image capture by using mechanical movement of optics, such as lenses. - In contrast to an optical zoom that involves a movement of optics, a digital zoom is accomplished electronically without any adjustment of the optics in the
endoscopic camera 101B. Generally, a digital zoom selects a portion of an image and manipulates the digital pixel information, such as interpolating the pixels to magnify or enlarge the selected portion of the image. In other words, a digital zoom may crop a portion of an image and then enlarge it by interpolating the pixels to exceed the originally cropped size. While the cropped image may be larger, a digital zoom may decrease or narrow an apparent angle of view of the overall video image. To the surgeon, a digitally zoomed image alone may have a reduced field of view of the surgical site. Other images may be provided to compensate for the reduced field of view in the digitally zoomed image. - With some embodiments of invention, a region-of-interest is selected from source video images to undergo a digital zoom. The selected region of interest is then scaled linearly for presentation to the display (e.g., as a fovea 650). The region of interest may be scaled up (interpolated), or scaled down (decimated), depending on the number of pixels in the source region-of-interest, relative to the number of pixels allocated (for this tile of video) on the display. Digital filtering of the source data is performed as part of the interpolation/decimation process. Selection of a region-of-interest smaller than the full source video frame reduces the surgeon's effective field of view into a surgical site.
- Note that there are four degrees of freedom available to a digital zoomed image in a rigid endoscope. The embodiments of the invention may pan a digital zoomed image up, down, left, and/or right and it may rotate the image and/or change its level of zoom.
- As discussed previously herein, the
endoscopic camera 101B is a high definition camera. In one embodiment of the invention, the high definitionendoscopic camera 101B has a greater resolution than the resolution of thedisplay devices endoscopic camera 101B may be advantageously used for digital zoom. The region of interest selected from the source video need not be mapped one-to-one or magnified. In fact, a region of interest selected from the source video may contain more pixels than are allocated on the display for presentation of the video source. If that is the case, the pixels in the selected region of interest may be scaled down (decimated), while still appearing to the user to zoom in on objects. - Texture mapping, pixel mapping, mapping pixels, or mapping texture pixels, may be used interchangeably herein as functional equivalents where a source image is sampled at source coordinates or points (t_x,t_y) and a target image is colored at target coordinates or points (v_x,v_y).
- As discussed previously, one aspect of some embodiments of the invention may be a linear digital zoom while one aspect of some embodiments of the invention may be a non-linear digital zoom.
- Referring now to
FIG. 5A , a perspective view ofimages 500 in thestereo viewer 312 with a linear digital zoom is illustrated. A linear digital zoomedview 501 is displayed in a substantial portion of thedisplay view 501 may magnify the images oftissue 505 and a right sidesurgical tool 510R in the surgical site. Alternatively, theview 501 may be a spatial subset of high definition images displayed on a portion of thedisplay - Within the linear digital zoomed
view 501 may be a navigation window or pull-back view 502. The navigation window or pull-back view 502 may be the full spatial high definition image that has been down-sampled to be displayed picture-in-picture (PIP) within the smaller display region. - Referring now to
FIG. 5B , a pixel map diagram is illustrated for the linear digital zoomedview 501 ofFIG. 5A . The stereoendoscopic camera 101B captures left and right high definitionspatial images 510 with a two dimensional array of pixels that is HDX pixels wide by HDY pixels high. For example, the two dimensional array of pixels for the high definitionspatial images 510 may be 1920 pixels wide by 1080 pixels high. - However, the
display devices stereo view 312 may only displaylow definition images 511N with a two-dimensional array of pixels with a native resolution of LDX pixels wide by LDY pixels high that are respectively less than the available spatial resolution of HDX pixels wide by HDY pixels high for the high definitionspatial images 510. For example, the two dimensional array of pixels for the low definitionspatial images 511N may be 1280 pixels wide (LDX) by 1024 pixels high (LDY) in contrast to 1920 pixels wide (HDX) by 1080 pixels high (HDY) for exemplary high definitionspatial images 510. - As the
display devices stereo viewer 312 display a lower native resolution of LDX pixels wide by LDY pixels high, some of the pixel information in the full spatialhigh definition image 510 may go unused. For example, the position and relationship between thelow definition images 511N and thehigh definition images 510 may be fixed. In which case,pixels 521 within the resolution of thelow definition image 511N may be displayed on thedisplay devices pixels 520 outside the resolution of thelow definition image 511N may not be displayed. In this case, the display devices may be considered as providing a field of view of a virtual camera inside the endoscopic camera. - The field of view of the virtual camera within the field of view of the endoscopic camera may be digitally adjusted. That is, the pixels in the
high definition images 510 that are to be displayed by thedisplay devices low definition image 511N being a window that can be moved over the array of HDX by HDY pixels of the high definitionspatial image 510 to select an array of LDX by LDY pixels to display. The window of thelow definition image 511N may be moved in X and Y directions to select pixels in the array of HDX by HDY pixels of the high definitionspatial image 510. The pixels in thehigh definition images 510 that are to be displayed by thedisplay devices - A smaller subset of pixels (SX by SY) in the array of HDX by HDY pixels of the high definition
spatial image 510 may be respectively selected by a user for magnification into adigital zoom image 511M. The array of SY pixels high by SX pixels wide of thedigital zoom image 511M may be interpolated with a digital filter or sampling algorithm into a larger number of pixels of the array of LDX by LDY pixels to display a magnified image on thedisplay devices display devices - While the
digital zoom image 511M may be expanded by interpolation into a larger number of pixels to display a magnified image, such asimage 501 illustrated inFIG. 5A , the image resolution of the array of HDX by HDY pixels of the high definitionspatial image 510 may decimated or reduced down (down-sampled) to shrink or demagnify its image to fit into awindow array 512 of reduced pixels RX pixels high by RY pixels wide to be used for thenavigation window 502 illustrated inFIG. 5A . For example, high definitionspatial images 510 with an array of 1920 pixels wide by 1080 pixels high may be decimated by a factor of ten to a demagnified image array of 192 pixels wide by 108 pixels high. - While the digital zoom for a portion of the display may have a linear relationship with the pixels of the full spatial image, the digital zoom may also have a non-linear relationship with the pixels of the full spatial image in another portion of the display device.
- Referring now to
FIG. 6A , a perspective view of animage 600 in thestereo viewer 312 with is illustrated. A digital zoomed portion (fovea) 650 is displayed within a background orsurround portion 651 of theimage 600 on thedisplay devices view 650 may be the focus of the central vision of a surgeon's eyes and surrounded by thesurround 651, the digital zoomedview 650 may also be referred to as afovea 650. The digital zoomedview 650 may be considered to be a virtual image within a larger image analogous to the virtual camera within the endoscopic camera. - In
FIG. 6A , the digital zoomedview 650 is moveable around the display (moveable fovea) and may magnify the images oftissue 605 andsurgical tools 610R in the surgical site. In another configuration, the digital zoomed view orfovea 650 is centrally fixed in position (fixed fovea) within the center of the display device (e.g., seeFIG. 6B ). While the fovea may provide a digitally zoomed image or view of the surgical site, the background orsurround image 651 may provide an improved sense of peripheral vision to the surgeon, possibly reducing or eliminating the need for one or more navigation windows. - The
fovea 650 is formed by a first mapping of first array or set of source pixel information (source pixels) from the high definition source video images to a first array or set of pixels in the display device (target pixels). Thesurround 651 around thefovea 650 is formed by a second mapping of a second array or set of source pixel information (source pixels) from the high definition source video images to a second array or set of pixels in the display device (target pixels). - The second mapping differs from the first mapping. In one embodiment of the invention, the first mapping is a linear mapping and the second mapping is a non-linear mapping (e.g., see
FIG. 6B ). In another embodiment of the invention, the first mapping and the second mapping are linear mappings (e.g., seeFIG. 6F ) but differ in other ways, such as size and/or resolution. For example, the digital zoomedview 650 may be a high resolution or high definition image while the background orsurround image 651 is a low resolution or low definition image. - The digital zoomed
view 650 and the background orsurround portion 651 of theimage 600 are displayed in real time to a surgeon over a continuing series of video frame images on thedisplays - At its edges, there may be a sharp or gradual transition from the digital zoomed
view 650 to the background or surroundingimage 651. For ease of discussion herein, a sharp or hard edge between thefovea 650 and thebackground 651 may be assumed. - The digital zoomed
view 650 may be provided by a linear digital zoom factor over the given field of view selected by a surgeon to reduce distortion of the image displayed in thefovea 650. The surround view orimage 651 may be provided by a linear digital zoom factor (linear mapping) or a non-linear digital zoom factor (non-linear mapping) over the given field of view selected. - The size of the
digital zoom view 650 within theimage 600 may be user selectable by a surgeon at themaster control console 150 or by an assistant at theexternal display 154. That is, a user may selectively expand or contract the x-axis FX and the y-axis FY pixel dimensions of the area of the fovea or lineardigital zoom view 650. Thedigital zoom view 650 may be centered in the display to be in line with a central gaze of the surgeon's eyes. Alternatively, a user may selectively position the lineardigital zoom view 650 within different positions on the display within theimage 600 by different user interface means described herein. - Additionally, the source region-of-interest (source zoom pixels) selected for the
fovea 650 from the high definition source video images and the source region-of-interest (source background pixels) selected from the high definition source video images for thesurround 651 may be adjusted by the user. For example, the source pixels for the background around thefovea 650 may selected to be a spatial subset of the high definition source images. Alternatively, the source pixels for thebackground 651 may be selected to be a set of source pixels to complete the full spatial image of the high definition images. With a larger field of view provided by thebackground 651 around thefovea 650, a surgeon's peripheral vision of the surgical site may be improved. This can help avoid or reduce frequent short duration camera control events that otherwise may be made due to a desire to see what's just outside the field of view. - As discussed previously, the
fovea 650 is formed by a first mapping of array or set of source pixel information (source pixels) from the high definition source video images to a first array or set of pixels in the display device (target pixels) and thesurround 651 is formed by a second mapping of a second array or set of source pixel information (source pixels) from the high definition source video images to a second array or set of pixels in the display device (target pixels). - Referring now to
FIG. 6D , mapping functions for the first and second pixel mappings are determined between coordinates in the source (texture) 660 and coordinates on the target 670 (e.g.,display source windows 661 to an inner/outer pair oftarget windows 671. - The source coordinate
system origin 665 is defined to be the upper left corner of thesource frame 660 with positive-x right, and positive-y down. Theinner source window 663 may be defined by selection of a left-top coordinate (t_iL,t_iT) 667 and a right-bottom coordinate (t_iR,t_iB) 668. Theouter source window 664 may be defined by its left-top coordinate (t_oL,t_oT) 666 and right-bottom coordinate (t_oR,t_oB) 669. In the parenthetical coordinate description, the prefix t denotes texture, i/o refers to inner/outer, and L,T,R,B refers to left, top, right, and bottom, respectively. The coordinates for theinner source window 663 and theouter source window 664 may be directly or indirectly and automatically or manually selected by a user (e.g., surgeon O or assistant A) in a number of ways. - The target coordinate
system origin 675 is defined to be the upper left corner of thetarget frame 670, with positive-x right and positive-y down. Theinner target window 673 is defined by its left-top coordinate (v_iL,v_iT) 677 and its right bottom coordinate (v_iR,v_iB) 678. The outer target window 674 is defined by its left-top coordinate (v_oL,v_oT) 676 and its right-bottom coordinate (v_oR,v_oB) 679. In the parenthetical coordinate description, the prefix v denotes vertex, i/o refers to inner/outer, and L,T,R,B refers to left, top, right, and bottom, respectively. The coordinates for theinner target window 673 and the outer target window 674 may also be directly or indirectly and automatically or manually selected by a user (e.g., surgeon O or assistant A) in a number of ways. - Referring now to
FIGS. 6D-6E , the region corresponding to thefovea 650 is simply formed by linearly scaling thesource pixel array 680 of theinner source window 663 from coordinate (t_iL,t_iT) 667 through coordinate (t_iR,t_iB) 668 into the target pixel array (fovea) 650 of theinner target window 673 from coordinate (v_iL,v_iT) 677 through coordinate (v_iR,v_iB) 678. Constructing thesurround region 651 around thefovea 650 remains. - The task of mapping source pixels in the frame shaped
region 681 between theinner source window 663 and theouter source window 664 into target pixels in the frame shapedsurround region 651 between theinner target window 673 and the outer target window 674 is more difficult due to the frame like shape of each. - Referring now to
FIG. 6E , the source pixels in the frame shapedregion 681 between theinner source window 663 andouter source window 664 is subdivided into a number of N rectangular regions (quads). The N rectangular regions may be eight (8) rectangular regions, for example. Starting at the upper left hand corner and working clockwise, the eight rectangular regions may be formed bycoordinates surround region 681 into the 8 rectangular regions (quads). - Referring now to
FIGS. 6D-6E , if the source pixels t_oL through t_oR on top and bottom edges ofouter source window 664 are mapped linearly into the target pixels v_oL through v_oR on top and bottom edges of outer target window 674, then the values of t_x1 and t_x2 are respectively proportional to the length of the line segments from pixels v_oL through v_iL and pixels v_oL through v_iR along top and bottom edges of theouter source window 664, and may be computed byequations -
t — x1=t — oL+(t — oR−t — oL)*((v — iL−v — oL)/(v — oR−v — oL)) (1) -
t — x2=t — oL+(t — oR−t — oL)*((v — iR−v — oL)/(v — oR−v — oL)) (2) - Similarly, if the source pixels t_oT through t_oB on the right and left edges of
outer source window 664 are mapped linearly into the target pixels v_oT through v_oB on left and right edges of outer target window 674, then the values of t_y1 and t_y2 are respectively proportional to the length of the segments from pixels v_oT through v_iT, and pixels v_oT through v_iB along left and right edges of theouter source window 664. Thus, the values of t_y1 and t_y2 may be computed byequations 3 and 4 as follows: -
t — y1=t — oT+(t — oB−t — oT)*((v — iT−v — oT)/(v — oB−v — oT)) (3) -
t — y2=t — oT+(t — oB−t — oT)*((v — iB−v — oT)/(v — oB−v — oT)) (4) - Thus, the source pixels along the edges of the quads may be mapped with a predetermined mapping (e.g., equations 1-4) into target pixels values.
- For each interior pixel point (v_x,v_y) in the
surround 651 of each quad of the N quads in thesource frame 681, we may perform an interpolation to map source pixels into respective t_x and t_y values of the target pixels. The interpolation may be a non-linear interpolation, such as a bilinear interpolation (BI), or a linear interpolation, where the selection of the interpolation function is arbitrary. At larger zoom factors of thefovea 650, a non-linear interpolation may distort less than a linear interpolation. - A quad drawn counter-clockwise, has target vertex coordinates defined as:
- Lower Left: v_L, v_B
- Lower Right: v_R, v_B
- Upper Right: v_R, v_T
- Upper Left: v_L, v_T
- and associated source texture coordinates defined as:
- Lower Left: t_LLx, t_LLy
- Lower Right: t_LRx, t_LRy
- Upper Right: t_URx, t_URy
- Upper Left: t_ULx, t_ULy
- For each interior target point v_x,v_y within each quad, the associated source texture point t_x, t_y is found by interpolation. With the source texture point or coordinate being known for the source pixel, the texture of the source texture point can be sampled using an arbitrary filter function and the target pixel at the target coordinate can be colored with the sampled value of texture. That is, the source texture is sampled at coordinate (t_x,t_y) using a filter function to color the target pixel (v_x,v_y). The filter function used in the sampling process may be arbitrarily complicated but consistently used.
- Assuming that a bilinear interpolation (BI) is performed for each interior pixel point (v_x,v_y) in the
surround 651, we may perform a bilinear interpolation (BI) into respective t_x and t_y values (generally referred to as t values) which are specified on the quad boundary by equations 5 and 6 as: -
t — x=BI[v — x,v — y;v — L,v — T,v — R,v — B;t — LLx,t — LRx,t — URx,t — ULx] (5) -
t — y=BI[v — x,v — y;v — L,v — T,v — R,v — B;t — LLy,t — LRy,t — URy,t — ULy] (6) - where t_x and t_y are the interpolated t values at each point (v_x,v_y); v_L,v_T, v_R,v_B are target boundary coordinates; and t_LLx,t_LRx,t_URx,t_ULx are the lower-left, lower-right, upper-right, and upper-left ‘t’ coordinates in x and t_LLy,t_LRy,t_URy,t_ULy are the lower-left, lower-right, upper-right, and upper-left T coordinates in y. A bilinear interpolation (BI) is an interpolating function of two variables on a regular grid. With the values of t_x1, t_x2, t_y1, and t_y2 being known from equations 1-4, there are known coordinates 686-692 along the edges of the
outer source window 664 that may be used as known points for the interpolation within each of the N quads. - The bilinear interpolation BI( ) may be defined in pseudo code as:
-
BI(v_x,v_y, v_L,v_T,v_R,v_B, t_LL,t_LR,t_UR,t_UL) { a1 = lerp(v_x, v_L, v_R, t_LL, t_LR); a2 = lerp(v_x, v_L, v_R, t_UL, t_UR); b1 = lerp(v_y, v_T, v_B, a2, a1); // NOTE: swap a2,a1 due to Y+ downward return(b1); }
with lerp( ) being defined in pseudo code as: -
lerp(v, v1, v2, q1, q2) { return( q1*((v2−v)/(v2−v1)) + q2*((v−v1)/(v2−v1)) ); } - A bilinear interpolation (BI) is a well known non-linear mathematical function. It is non-linear as it is mathematically proportional to a product of two linear functions such as (a1x+a2) (a3y+a4). In this case, the bilinear interpolation is a combination of multiple linear interpolations over a grid to smoothly transition images between the inner and outer areas of interest of the
source windows 661 andtarget windows 671. The bilinear interpolation results in a quadratic warp in thesurround 651 around thefovea 650. - For example in
FIG. 6E , consider the upper left quad of source pixels in thesource frame 681 and mapping them into upper left quad of thesurround 651. The source texture coordinates assigned to each of the four vertices of the quad of source pixels is determined in accordance with equations 1-4 described herein. For the upper left quad the following mapping of vertices is determined: - (t_oL,t_y1) maps to (v_oL,v_y1)
- (t_iL,t_y1) maps to (v_iL,v_y1)
- (t_iL,t_oT) maps to (v_iL,v_oT)
- (t_oL,t_oT) maps to (v_oL,v_oT)
- Then the texture coordinate (t_x,t_y) of each pixel interior to the quad at position (v_x,v_y) is found via bilinear interpolation. The source texture is sampled at coordinate (t_x,t_y) to color the pixel (v_x,v_y) with an arbitrary filter function.
- Each of the N quads is similarly processed once the texture coordinates have been assigned to its vertices. As adjacent quads have the same texture coordinates assigned to their shared vertices, the final image appears to be a smooth warp, without discontinuity across quad-boundaries.
- Referring now to
FIG. 6B , the results of a first linear mapping of a checkerboard pattern into thefovea 650 and a non-linear mapping (e.g., using bilinear interpolation) of a checkerboard pattern into eight quads of thesurround 651 are illustrated. Lines in the checkerboard of the source image illustrated on the display indicate warped pixel information. As the lines are straight and equidistant in thefovea 650, it is digitally zoomed without any mapping distortion being added. Thesurround 651 experiences some warping as it changes from the digitally zoomed (magnified) image at the edge of thefovea 650 to a lower digitally zoomed (magnified) image at the outer edges of the surround. The warpage in thesurround 651 is more noticeable at the corners of the fovea in theFIG. 6B as indicated in the bending lines in the checkerboard. - Instead of a non-linear mapping between source pixels and the target pixels in the N quads of the
source frame 681, a linear mapping may be used but differs from the linear mapping of pixels for thefovea 650. The mapping of the source pixels in thesource frame 681 to the target pixels in thesurround 651 is piecewise linear for the N quads if the values of t_x1, t_x2, t_y1, and t_y2 are set as follows: - t_x1=t_iL;
- t_x2=t_iR;
- t_y1=t_iT;
- t_y2=t_iB;
- That is, each of the pixels in the N quads is linearly mapped with a linear scaling function into pixels in the
surround 651. - Referring now to
FIG. 6F , the results of a first linear mapping of a checkerboard pattern into thefovea 650 and a second linear mapping (e.g., piecewise linear) of a checkerboard pattern into eight quads of thesurround 651 are illustrated. At relatively low digital zoom factors for thefovea 650, thesurround 651 shows only nominal warpage. However if a relatively high digital zoom factor is applied to thefovea 650 to highly magnify objects in thefovea 650, thesurround 651 with no change in digital zoom factor experiences significant warpage. Thus, it has been determined that a non-linear mapping between source pixels of theframe 681 to target pixels in thesurround 651 is preferable. - Note that the resolution of the
fovea 650 and thesurround 651 depends upon the selection of the relative sizes of the inner/outer source regions and the selection of the relative sizes of the inner/outer display or target regions. If a user selects to digitally zoom thefovea 650, the size of theinner source window 663 is typically decreased by changing a digital zoom factor magnifying the image in thefovea 650. In this case, the size of theframe 681 of the source video will change resulting in a change in the warp of thesurround 651 as well. - With the first and second mappings determined from source to target for the
fovea 650 and thesurround 651, various digital filter methods and resampling algorithms may then be used to sample the source pixel texture information for interpolation/decimation into the target pixels of one or more display devices. Exemplary digital filters that may be used are a box filter, tent filter, Gaussian filter, sinc filter, and lanczos filter. - Referring now to
FIG. 6C , a schematic diagram illustrates another linear mapping of source pixels from the high definition video source images of the endoscopic camera to target pixels of the display are shown to further explain a linear mapping of thefovea 650 and a linear mapping of the surround orbackground 651. - As discussed previously with reference to
FIG. 5B , the high definitionspatial images 510 have a two dimensional array of pixels that is HDX pixels wide by HDY pixels high. For example, the two dimensional array of pixels for the high definitionspatial images 510 may be 1920 pixels wide by 1080 pixels high. Thedisplay devices stereo viewer 312 may display lowernative resolution images 511N with a two-dimensional array of pixels having a native resolution of LDX pixels wide by LDY pixels high. The dimensions LDX pixels wide and LDY pixels high of the lowernative resolution images 511N are respectively less than the available spatial resolution of HDX pixels wide and HDY pixels high for the high definitionspatial images 510. - The
fovea 650 may be an image having dimensions FX pixels wide (X-axis pixels) and FY pixels high (Y-axis pixels) of the high definition image without interpolation or decimation such that there is no loss of resolution or detail in the display area of interest to a surgeon. In this case there is a one to one mapping between pixels of the high definition image and pixels of the lower resolution display. However, extra pixels to each side of thefovea 650 need to be compressed or decimated down to fewer pixels in the display. - For example, the high definition
spatial images 510 are 1920 pixels wide (X-axis pixels) by 1080 pixels high (Y-axis pixels) and the native pixel dimensions of the display (low definitionspatial images 511N) are 1280 pixels wide (X-axis pixels) by 1024 pixels high (Y-axis pixels). Consider in this case that thefovea 650 is an image having dimensions of 640 pixels wide (FX) and 512 pixels high (FY) (Y-axis pixels) to be placed in the center of the display. An array of 640 pixels wide (X-axis pixels) and 512 pixels high (Y-axis pixels) in thehigh definition image 510 is mapped one to one into the 640 pixels wide (FX) (X-axis pixels) and 512 pixels high (FY) (Y-axis pixels) in thefovea 650. This leaves 640 pixels wide (X-axis pixels) in thehigh definition image 510 to each side of the fovea to be respectively mapped into 320 pixels wide (X-axis pixels) to each side of the fovea in thedisplay image 511N resulting in a two-to-one decimation if the full spatial image is to be displayed. Thus, a two-to-one decimation or compression in resolution maps the remaining X-axis pixels of the high definition image into the remaining X-axis pixels of the background orsurround 651. Continuing with the Y-axis pixels, 284 pixels high (Y-axis pixels) in thehigh definition image 510 above and below the fovea are to be respectively mapped into 256 pixels high (Y-axis pixels) above and below the fovea in thedisplay image 511N if the full spatial image is to be displayed. Thus, approximately a 1.1-to-1 decimation or compression in resolution along the Y-axis maps the remaining Y-axis pixels of the high definition image into the remaining Y-axis pixels of the background orsurround 651. Note that this assumes a total linear mapping in thesurround 651, not a piece-wise linear in each of N quads, which may not work well in the corners. - Note that with the total linear mapping in the
surround 651 described with reference toFIG. 6C , the Y-axis compression or decimation may differ from the X-axis compression or decimation. In this case, the image in the surround will be distorted by being compressed differently along the axis with the greater decimation. In the case of the mappings illustrated byFIGS. 6D-6E , the source/target windows are defined as a percentage of the source/target extent. Thus, the raw number of pixels in thesurround 651 differs in X,Y, but the percentage change between the inner/outer windows is the same resulting in less distortion. - If the display is a high definition display with the same resolution of high definition special images of the endoscopic camera, the
background 651 may be displayed at the native resolution while thefovea 650 is interpolated up to be a magnified image within its pixel array of FX by FY pixels. - In one embodiment of the invention, the
fovea 650 may be fixed in the center of thedisplay image 511N and the center of the display device. If the outer-source-window is smaller than the source extent, the inner/outer source windows may be digitally panned within the source frame. In this manner, inner/outer source window and the inner/outer target windows are concentric to minimize distortion in the background/surround 651 around thefovea 650. - Alternatively in another configuration, the
fovea 650 may be digitally (or electronically) moved within thedisplay image 511N by various means in response to an automatically sensed signal or a manually generated signal. That is, thefovea 650 may be digitally (electronically) panned around within the display image. This may be accomplished by changing the coordinates defining thefovea 650 in the mapping of source pixels to target pixels in the display. In this case, the inner/outer source window and the inner/outer target windows may not be concentric. - In either case, if an image is digitally panned without any mechanical panning of the endoscopic camera, the surgeon's perspective (angle at which the surgical site is viewed) on the surgical site is unchanged.
- In the case of the moving fovea, if the
fovea 650 nears the edge of thedisplay image 511N, a centralization process may occur where the pixels of thedisplay image 511N may adjust to position thefovea 650 more centrally in thedisplay image 511N. Moreover if the desired location offovea 650 is outside the matrix of pixels in thedisplay image 511N, thedisplay image 511N may digitally adjust its position within the high definitionspatial image 510 by selecting different pixels within the high definitionspatial image 510. This is analogous to a virtual camera moving around in the high definitionspatial image 510. In this case, both thefovea 650 and the display image may be digitally (electronically) panned around within the matrix of pixels of the high definitionspatial image 510. - In the alternate embodiment of the invention where the
fovea 650 is fixed in the center of the display, the source window for selecting the source of pixel information in the high definition video source images moves to recenter the source area of interest within the fovea and the center of the display in a substantially instantaneous manner. - Further more, if the desired location of
fovea 650 not only exceeds the pixels in thedisplay image 511N but also the pixels of the high definitionspatial image 510, theendoscopic camera 101B may be mechanically moved by the motors in therobotic arm 158B to adjust the field of view of the surgical site in response thereto. In this case, thefovea 650 and the display image may be digitally (electronically) panned while theendoscopic camera 101B is mechanically panned to change the field of view of the surgical site. In alternate embodiment of the invention, theendoscopic camera 101B may be slewed slowly both digitally (electronically) and mechanically (physically) to maintain the source area of interest substantially centered in the source video frame. If the source area-of-interest is moved off-center, theendoscopic camera 101B may be mechanically moved and concurrently the source window may be digitally moved in the opposite direction until the source-window is re-centered relative to the full-extent of the source video captured by the endoscopic camera. - Reference is now made to
FIGS. 7A-7D to illustrate digital panning of images and both digital and mechanical panning. - In
FIG. 7A , aninitial fovea position 650A of thefovea 650 is shown centered in animage 702A on adisplay image 702A displayed by the display may be centered with respect to the pixels of a high definitionspatial image 700A providing theendoscopic camera 101B field of view. - A surgeon or an assistant may desire to move the
fovea 650 from theinitial fovea position 650A to adifferent fovea position 650B within thedisplay image 511N or outside thedisplay image 511N but within the high definitionspatial image 700A. As mention previously, a centralization process may occur to select different pixels in thedisplay image 511N from the high definition spatial image to position thefovea 650 more centrally in thedisplay image 511N, such as illustrated by theimage 702B inFIG. 7B which has a different matrix of pixels to display on thedisplay display image 511N and/or within the high definitionspatial image 700A, thefovea 650 is digitally moved from afirst fovea position 650A displaying a first area of the surgical site to asecond fovea position 650B displaying a second area of the surgical site. - In
FIG. 7B , thefovea position 650B is once again centered within theimage 702B that is displayed on thedisplay fovea 650 from the centeredfovea position 650B inFIG. 7B to adifferent fovea position 650C outside of thedisplay image 511N and the field of view of the surgical site captured by the high definitionspatial image 700A corresponding to a given position of theendoscopic camera 101B. In this case, theendoscopic camera 101B may be mechanically panned to a different position to capture a different high definition spatial image to display pixels of the desiredfovea position 650C. - The camera control system of the robotic surgical system may first move the fovea digitally. If the user out-paces the compensation rate of re-centering the fovea digitally, the camera control system transitions/ramps to full endoscopic camera drive for the motors of the robotic
surgical arm 101B to mechanically move the endoscopic camera. This may happen as the as the user out-paces the compensation rate of the slow re-centering loop that is attempting to keep the zoomed region-of-interest centered in the video frame. - Note that moving an inner source window relative to an outer source window changes which pixels are mapped to the inner target window. If the source frame region between the inner and outer source windows is being mapped to a surround on the target display, then moving the inner source window may also change the warp of the pixels that are mapped to the surround. For example, in the surround the number of pixels may expand on one side while contracting on the opposite side.
- As mentioned previously, the
fovea 650 may be digitally moved from thefirst fovea position 650A to thesecond fovea position 650B within thedisplay image 511N and/or within the high definitionspatial image 700A. Thefovea 650 may be digitally moved abruptly from thefirst fovea position 650A in one video frame to thesecond fovea position 650B in the next video frame. Alternatively, thefovea 650 may be digitally moved gradually from thefirst fovea position 650A to thesecond fovea position 650B over a sequence of video frames with intermediate fovea positions there-between. - Referring now to
FIG. 8 , thefirst fovea position 650A and thesecond fovea position 650B are illustrated with a plurality of intermediate fovea positions 850A-850D there-between. In this manner, thefovea 650 may appear to move more gradually from thefirst fovea position 650A to thesecond fovea position 650B within thedisplay image 511N and/or within the high definitionspatial image 700A. - Referring now to
FIG. 7C , not only may thedisplay image 511N be digitally panned but theendoscopic camera 101B be mechanically panned. Additionally, a centering process that further adjust the digital panning of pixels and/or the mechanical panning of theendoscopic camera 101B may be used to adjust thedisplay image 511N to animage position 702C around the fovea in order to center the desiredfovea position 650C therein. In some cases, the centering process may be undesirable. - In
FIG. 7D , theendoscopic camera 101B may be mechanically panned and thedisplay image 511N may be digitally panned to aimage position 702D but without any centering process so that the desiredfovea position 650C is off-center within thedisplay -
FIGS. 7C-7D illustrate combining digital image panning (digital tracking) with mechanical camera panning (servo-mechanical tracking). The digital image panning (digital tracking) can be combined with the mechanical camera panning (servo-mechanical tracking) analogous to a micro/macro mechanism or system. The digital image panning (digital tracking) makes the relatively small and faster deviations or tracking efforts—digital in this case. The mechanical camera panning (servo-mechanical tracking) can handle larger deviations that occur more slowly. Note that the effect of servo mechanical motion of the roboticsurgical arm 101B and theendoscopic camera 101B may be compensated. The zoomed image orfovea 650 may be moved in the opposite direction of the movement of the endoscopic camera across the full special high definition image. In this case, the motion of theendoscopic camera 101B may be largely imperceptible when viewed in the zoomed image orfovea 650. - While automatic panning of the
endoscopic camera 101B is possible, it may be preferable to avoid it and use digital panning alone. Otherwise, theendoscopic camera 101B may bump into something it should not unless precautions in its movement are taken. In this case, it is more desirable to digitally pan thefovea 650 from one position to another without requiring movement of the endoscopic camera. - In some embodiments of the invention, it may be desirable to have the image of the fovea or
digital zoom area 650 automatically track or follow some direct or indirect motions of the surgeon without moving theendoscopic camera 101B. In other embodiments of the invention, it may be desirable to select the position of the fovea ordigital zoom area 650 within thebackground image 651 of the display. In still other embodiments of the invention, it may be desirable combine characteristics of an automatic tracking system with a manual selection system such as by setting preferences or making a choice regarding the fovea ordigital zoom area 650 and allow it to track a surgeon's motion in response thereto. - Automatic camera following and digital zoom are combined together such that the digital zoomed portion of an image tracks or follow a surgeon's motions, such as the gaze of his pupils, without requiring mechanical movement of the endoscopic camera. If the surgeon's motions indicate that the digital zoomed portion extend beyond pixels of the high definition digital image being captured, the endoscopic camera may be mechanically moved automatically.
- For automatic camera following, different sensing modalities may be used to detect a surgeon's motion so that a digital zoomed portion of interest of an image may be moved around within the pixels of a high definition digital image. Some different sensing modalities include (1) robotic surgical tool tracking, (2) surgeon gaze tracking; (3) or a discrete user interface.
- Robotic surgical tool tracking may be performed by kinematics sensing through joint encoders, potentiometers, and the like; video analysis-based tool location tracking; or a combination or fusion of kinematics sensing and video analysis-based tool location tracking. Robotic surgical tool tracking is further disclosed in U.S. patent application Ser. No. 11/130,471 entitled METHODS AND SYSTEM FOR PERFORMING 3-D TOOL TRACKING BY FUSION OF SENSOR AND/OR CAMERA DERIVED DATA DURING MINIMALLY INVASIVE ROBOTIC SURGERY filed by Brian David Hoffman et al. one May 16, 2005, which is incorporated herein by reference and in U.S. patent application Ser. No. 11/865,014 entitled METHODS AND SYSTEMS FOR ROBOTIC INSTRUMENT TOOL TRACKING filed by Wenyi Zhao et al. on Sep. 30, 2007, which is also incorporated herein by reference.
- Referring now to
FIGS. 17A-17B , a centroid (tool centroid) 1701 for the roboticsurgical tools tool centroid 1701 may be used as a center point to automatically position the center of the fovea 650 (re-center) within theimage 511N. - For example, the robotic
surgical tool 510R may shift in the surgical site to a position indicated by the roboticsurgical tool 510R′. The position information follows the change in position of the tool to the respectiveposition information point 1710R′. A new position oftool centroid 1701′ is determined given the position information points 1710L,1710R′. This makes thefovea 650 off-center from the new position of thetool centroid 1701′. The new position of thetool centroid 1701′ may be used as a center point to automatically re-center thefovea 650 within theimage 511N. -
FIG. 17B illustrates thefovea 650 re-centered within theimage 511N in response to the new position of thetool centroid 1701′. - A discrete user interface may be provided to a surgeon at the master control console to control the position of the
fovea 650 within theimage 511N of the display. One or more buttons (such as arrow buttons to the side of a surgeon's console), one or more foot pedals, or the master control handles 160 themselves may be used to manipulate the position of thefovea 650 or other image. A voice recognition system at the master control console capable of recognizing vocal commands may also be used to adjust the position of thefovea 650. - One or more buttons, foot pedals, or combinations thereof may be pressed to manually move the
fovea 650 or other images up, down, left, and/or right. Voice commands may be used in another configuration to move thefovea 650 or other images up, down, left, and/or right. - Alternatively, the discrete user interface may be used to actuate an automatic re-centering process of the digital zoomed
image 650 based on current tool position, gaze location, or other available information in the surgical system. Alternatively, the discrete user interface may be used to re-center or move the image at discrete times, such as through voice activation, perhaps in concert with tool tracking or gaze detection. - As mentioned herein, the master control handles 160 themselves may be used to manipulate the position of the
fovea 650 or other image. In such a case, one or both, of the master control handles 160 can serve as a two-dimensional or three-dimensional mouse (masters-as-mice). Accordingly, one or both of the master control handles 160 can be arranged to perform functions relative to thefovea image 650 in a manner analogous to a conventional mouse relative to a computer screen. - Each of the master control handles 160 may have at least six degrees of freedom of movement. Accordingly, when used as a three-dimensional mouse, a master control handle can be arranged to control six variables, for example. Therefore, functions such as, shifting, rotating, panning, tilting, scaling, and/or the like, can be performed simultaneously when one, or both, or either, of the masters are used as a three-dimensional mouse, without another input being required. In particular, for two-handed or two-master operation, any windows or overlays can be handled as “elastic” bodies, such that resizing, scaling, warping, and/or the like, can, for example, be controlled by pulling the masters apart, or the like.
- One or both of the master control handles 160 may select and drag the fovea to different positions within the
image 511N, either by adjusting its size/position within theimage 511N, and/or by defining a crop rectangle to generate thefovea 650 from thebackground image 651 representative of the full spatial high definition images. The masters-as-mice functionality of the master control handles 160 can support successive refinement of the position of the fovea as well as control the level of image magnification or zoom within the high definition images. - In yet another configuration, the robotic surgical tools may be used to drag the
fovea 650 to different positions within theimage 511N and/or move theimage 511N within the matrix of pixel information of the high definition images. - Referring now to
FIG. 18A , roboticsurgical tool 510R has a position information point 1810 well away from the edge and closer to center of thefovea 650. A tool tracking system may be used to provide the information regarding theposition information point 1810R of the robotic surgical tool relative to theendoscopic camera 101B. A surgeon may desire to move thefovea 650 within theimage 511N to better magnify a different location within the surgical site. In this case, the roboticsurgical tool 510 may act as a poker to poke or bump an edge of thefovea 650 to move up, down, left, right, and/or combinations thereof within theimage 511N. - In an alternate embodiment of the invention with the
fovea 650 in a fixed position in the center of the display, an elastic wall or other haptic interface may be simulated such that when the robotic surgical tool bumps into the outer edge of the fovea, or outer edge of the target window, the center position of the source area-of-interest pans accordingly to be within thefovea 650. - In
FIG. 18A , the roboticsurgical tool 510R has moved in position to roboticsurgical tool position 510R′ with theposition information point 1810R′ near the edge of thefovea 650. The digital zoom/panning system may pan thefovea 650 in response to the robot surgical tool being in the roboticsurgical tool position 510R′ with theposition information point 1810R′ substantially near the edge of thefovea 650. - Referring now to
FIG. 18B , thefovea 650 has panned from its position inFIG. 18A to thefovea position 650′ so that the roboticsurgical tool position 510R′ and positioninformation point 1810R′ are more centered within the fovea. However, a surgeon may desire to move from thefovea position 650′ to another position. In this case, the surgeon may use the robotic surgical tool again to pan thefovea 650. The roboticsurgical tool 510R has moved in position from the roboticsurgical tool position 510R′ to the roboticsurgical tool position 510R″ with theposition information point 1810R″ near the top edge of thefovea 650. In this case, thefovea 650 will be panned up from itsposition 650″ inFIG. 18B so that the roboticsurgical tool position 510R″ and positioninformation point 1810R″ will be more centered within the fovea. - One or more of the manual user interface techniques may be combined with an automatic user interface technique for digital panning/zooming.
- One of the sensing modalities that may be used for automatic camera following or image panning is gaze tracking of a surgeon's eyes in the
stereo viewer 312. - As described with reference to
FIGS. 4A-4C , thestereo viewer 312 may include one or more leftgaze detection sensors 420L near the periphery of thedisplay device 402L for the left eye of the surgeon and one or more rightgaze detection sensors 420R near the periphery of thedisplay device 402R for the right eye of the surgeon. One of the gaze detection sensors for each eye may also include a low levellight source gaze detection sensors - The one or more left
gaze detection sensors 420L and the one or more rightgaze detection sensors 420R are used to determine the location of the central gaze of the surgeon's eyes within the image that is displayed on thedisplay devices fovea 650 within theimage 511N. As the surgeon's gaze moves around with theimage 511N, thefovea 650 may digitally move as well to provide a magnified image where the surgeon is gazing. Moreover, if the surgeon gazes in a location for a predetermined period of time, that area of the image may be digitally and/or mechanically automatically re-centered within theimage 511N on thedisplay devices fovea 650 is in a fixed position in the center of the display, the surgeon's gaze off center of theimage 511N for a predetermined period of time may shift the source area of interest to be in the center of the display within thefovea 650. - Exemplary algorithms for gaze detection and tracking are described in detail in “Gaze Contingent Control for Minimally Invasive Robotic Surgery” by Mylonas G. P., Darzi A, Yang G-Z. Computer Aided Surgery, September 2006; 11(5): 256-266; “Visual Search: Psychophysical Models and Practical Applications” by Yang G-Z, Dempere-Marco L, Hu X-P, Rowe A. Image and Vision Computing 2002; 20:291-305; and “Gaze Contingent Depth Recovery and Motion Stabilisation for Minimally Invasive Robotic Surgery” by George P. Mylonas, Ara Darzi, Guang-Zhong Yang; MIAR 2004, LNCS 3150, pp. 311-319, 2004. Exemplary algorithms for gaze detection and tracking are also described in U.S. Pat. No. 5,912,721 which is incorporated herein by reference.
- The digitally formed
fovea 650 and the digital panning of the fovea within theimage 511N in response to gaze detection, allows theendoscopic camera 101B to remain stationary, at least for small adjustments. The automatic digital panning of thefovea 650 with the full spatial high definition image of the endoscopic camera in thebackground 651, a surgeon is less likely to be interrupted during surgery to change the view of images. That is, with the automatic digital panning of thefovea 650 and the full spatial high definition image in thebackground 651, a surgeon may avoid having to change the view of the surgical site by manual manipulation of therobotic arm 101B and the endoscopic camera. A decrease in surgeon interruption to change the view and manipulate the camera can improve the efficiency of the robotic surgical system. - Referring now to
FIG. 9 , a face is illustrated with stereo gaze detection about the left and right eyes to detect left and right pupil positions for gaze detection. The sensors may sense the pupil positions with respect to the left, right, top, and bottom edges of the eye. InFIG. 9 , a surgeon may initially gaze directly ahead at a test pattern to calibrate the gaze detection system with left and right eyes gazing to a center position. - In contrast with the center position of
FIG. 9 ,FIG. 11A illustrates left and right eyes gazing to an upper left position.FIG. 11B illustrates left and right eyes gazing to a lower right position. - The gaze of the pupils can be detected in a number of different ways.
FIG. 10 illustrates exemplary left andrights graphs right corners right eyes - The edge images for the right eye and left eye of may be formed via known methods, such as a Sobel filter or a Canny filter. The edge images can then be mapped in a direction perpendicular to the one-dimensional (1D) axis direction to detect the inner corners of the eyes. The image can then be scanned in a direction normal to the 1D-axis, with the lowest brightness point being the point of the inner corner of the eye. The peaks in the brightness points on the
graphs - As the pupils move horizontally left or right, the position of the peaks along the
graphs - It may be desirable to detect head movement within the
stereo viewer 312 for a more accurate gaze detection system. Head movement may be detected by one or more head motion sensors or algorithmically by using one or moregaze detection sensors fovea 650 within theimage 511N. - Referring now to
FIG. 12 , vertical head movement illustrated by arrow A may be detected by monitoring the movement of aline 1200 formed through thecorners - Referring now to
FIG. 13 , a combination of vertical and horizontal head movement may be detected using at least twocorners top corner 1001T and theleft corner 1000L of theright eye 1000R and thetop corner 1001T and theright corner 1000R of theleft eye 1000L may be used to form a polygon having a centroid. The centroid moves along a vector. The corners of the eyes may be monitored to detect movement in the centroid and the vector so that a combination of vertical and horizontal head movement may be detected. - A surgeon may desire additional zoom or magnification of an object displayed in the
fovea 650. Alternatively, the surgeon may desire less zoom or demagnification of an object displayed in thefovea 650. The level of the level of zoom may be set by manually by the selection of relative sizes of thesource windows 661 andtarget windows 671 illustrated inFIG. 6D . However, methods of automatically determining an appropriate level of zoom may be made by automatically determining the relative sizes of thesource windows 661 andtarget windows 671. - An approximation for the desired depth of the
fovea 650 may be automatically determined by an average extent of instrument motion. The average extent may be determined by making a time weighted average of the motion in the robotic surgical instruments. Such extent defines a box or area within theimage 511N ordisplay - Gaze detection may also be used to automatically determine an approximation for the desired depth of the
fovea 650. As the surgeons eyes move over thebackground 651 in theimage 511N, the gaze motion of the surgeon's pupils or eyes may be stored over time. A time-weighted average of the stored gaze motion can be computed to automatically define a two dimensional area or a three dimensional surface within theimage 511N ordisplay - In another configuration, the boundary defined by illumination falloff may be used to automatically select the source area of interest for display within the
fovea 650. - If an automated digital panning occurs of the
fovea 650 or the image under thefovea 650, the digital zoom may momentarily zoom out from the area of interest and then zoom back when the area of interest is substantially centered in thefovea 650. - A macro/micro approach can also be adapted along the insertion axis 574 (see
FIG. 1C ) of theendoscopic camera 101B mounted on the roboticsurgical arm 158B. Theendoscopic camera 101B may be physically and mechanically moved in and out of the surgical site along theinsertion axis 574 by themotor 574 providing a macro adjustment. However initially from a fixed position, if the surgeon wishes to see a slightly narrower field of view, the camera can be virtually moved in along the insertion axis toward the tissue by increasing the digital zoom factor providing a micro adjustment, by decreasing the size of the area-of-interest selected from the source high definition video images. In this case, the endoscopic camera is virtually (electronically) moved by digital signal processing of the source video images without any physical or mechanical movement. - When the digital zoom exceeds a predetermined limit or the source window crosses over a predetermined lower size limit, the
motor 574 may be engaged to physically and mechanically moved theendoscopic camera 101B along theinsertion axis 574 to avoid an interpolation or a level of interpolation of the pixels (source pixels) in the source high definition video. This is analogous to mechanically moving (clutching) the camera along yaw/pitch axes when the fovea reaches the edge of the high definition video source. Alternately, endoscopic camera could be slowly adjusted along the insertion axis both electronically digitally and physically so as to maintain a source area-of-interest at a percentage (e.g., approximately 50%) of the source frame size. This is analogous to a slow slew/auto-recentering of the fovea. - The zoom factor for the
fovea 650 may also be automatically determined by a distance from the end of the endoscopic camera to the operative site within the surgical cavity. This is analogous to auto-focus methods in digital cameras and how they derive an estimate of the working depth of focus. - Much of the discussion regarding digital zooming and digital panning is with regards to a surgeon O at the
controls 160 of themaster console 150. The same images seen by the surgeon in the stereo viewer may be monitored by an assistant on theexternal monitor 154 illustrated inFIGS. 1A-1B . However, the assistant A may also choose to see a different image than that of the surgeon without moving the endoscopic camera. The assistant A can control a second digital zoom and a second digital pan of the captured high definition digital images from theendoscopic camera 101B so that they can display a different view of images of the surgical site on a second display device, theexternal monitor 154. The assistant A may control the selection of the second digital zoom and the second digital pan on themonitor 154 in a number of ways. - Referring now to
FIG. 14 , theexternal monitor 154 may include a touch screen ortouch panel interface 1401 to control the selection of the second digital zoom and the second digital pan on themonitor 154. For example, the assistant may touch his finger to thetouch panel 1401 and select a region of the display to be the target window orfovea 650 with a linear digital zoom. With thefovea 650 defined and in a fixed position on the display, the assistant may then use one or more fingers F to scroll the image under the fovea to display a desired region of interest in the surgical site captured by the high definition source video images. Alternatively, a predetermined rectangular shape may be moved over the image on the touch panel with a finger F to select the desired region of interest to position within a fovea in the center of thedisplay monitor 154. With the finger F on thetouch panel 1401, the full frame image may be momentarily displayed on thetouch panel 1401 so that the region of interest may be selected and then pop back out to zoomed-in view with the desired magnification of the fovea. In these cases, the assistant does not need to mechanically move theendoscopic camera 101B, avoiding clutching the roboticsurgical arm 158B to physically move the endoscopic camera to another position. - Alternatively, one or
more control buttons 1404A-1404B may be provided by themonitor 154 to digitally zoom and magnify the image provided by thefovea 650 or to digitally move the center of the fovea to another position within the surgical site. Up, down, left, andright pan arrows 1406 may be provided to pan the fovea within the captured pixels of the endoscopic camera to display adifferent fovea 650 within theimage 511N. - In another configuration, the assistant may control the digital pan and the digital zoom for the fovea within the image by physical movement of the
monitor 154. In this case, the monitor may include aninertia sensor 1450 to detect movement from aninitial position 154A to various different positions such aspositions 154B-154C illustrated inFIG. 15 . For example, theinertia sensor 1450 may detect movement in the X and Y-axes to pan thefovea 650 around theimage 511N displayed on themonitor 154. Theinertia sensor 1450 may detect movement in the Z axis to zoom thefovea 650 in and out of theimage 511N displayed on themonitor 154, for example. - Referring now to
FIG. 15 , asupport arm 1501 includes a plurality oflinks 1505 to moveably support themonitor 154 coupled to theside cart 152. At a plurality ofjoints 1512 between thelinks 1505, the support arm includes a plurality ofencoders 1510 in accordance with another embodiment of the invention. - In this case, the position of the
monitor 154 is determined by theencoders 1510. The assistant may physically move themonitor 154 by grabbing it with their hands H1-H2. The movement in the monitor is translated to the joints through the links of thesupport arm 1501 and sensed by theencoders 1510. Theencoders 1510 can detect movement from aninitial position 154A to various different positions of themonitor 154 such aspositions 154B-154C in order to digitally pan or digitally zoom thefovea 650. In this manner, intuitive camera control can be provided to the assistant, as an alternative to mechanically moving the camera with the camera clutch. - As another aspect of the invention, the
monitor 154 may also be moved along and rotated about the axes to possibly control the movements of a roboticsurgical tool 101, such as during initial set up or during surgery to control an extra tool, such as a suction tool for example. Another extra robotic surgical tool that may be controlled by an assistant is an ultrasound tool. The images generated by the ultrasound tool can be displayed on themonitor 154 as well thedisplay devices stereo viewer 312. As the ultrasound tool is moved over surfaces in the surgical site, the ultrasound images that are displayed change. - Referring now to
FIG. 16 , a functional block diagram of a digitalvideo zoom subsystem 1600 is illustrated. Thesubsystem 1600 is an aspect of the robotic surgical system that may provide the digital zoom portion of video information and the automatic panning of video information in a surgical site. - The
subsystem 1600 may include an image acquisition device (endoscopic camera) 1602, animage buffer 1604, a first digital mapper andimage filter 1606A, afirst user interface 1608A, a first display buffer 1610A, and afirst display device 1612A coupled together as shown. Thefirst display device 1612A may be one of thedisplay device 154 or thestereo display devices subsystem 1600 may further include a second digital mapper and image filter 1606B, asecond user interface 1608B, asecond display buffer 1610B, and asecond display device 1612B coupled together as shown and independent of the first devices. - The
image acquisition device 1602 may capture images of a surgical site in a high definition image format. Theimage buffer 1604 buffers one or more frames of a matrix of pixel data. The first digital mapper and image filter 1606 may map and filter the pixels in the captured images to properly display pixels on thefirst display device 1612A as desired. The first display buffer 1610 is coupled between the image filter 1606 and thefirst display device 1612A to store one or more frames of pixel information for display on the display device. - The
first user interface 1608A may include a region of interest (fovea)selector 1620, auser preference selector 1622, and an enhanceddisplay mode selector 1624 to select anenhanced display mode 1634. The region of interest (fovea)selector 1620 may function similar to the method and apparatus for automatic digital panning of thefovea 650 as described previously. A user may select how the source rectangle should automatically adjust its position with respect to an estimatedtool centroid 1630,depth 1631, user focal-point, or mean working envelope, for example. Theuser preference selector 1622 allows a user to manually select the source data from asource rectangle 1632, such as a full-spatial high definition image, and manually select thedestination rectangle 1633 for where the image may be preferably displayed on thefirst display device 1612A. Without the enhanced display mode being selected, the user may manually select thesource rectangle 1632 and thedestination rectangle 1633. If the system is selected to be in an enhanced display mode, thesource rectangle 1632 and/or thedestination rectangle 1633 may be automatically selected based on one or more of the estimatedtool centroid 1630, thedepth 1631, the user focal-point, or the mean working envelope. In some cases, a user may select a fixed destination rectangle while thesource rectangle 1632 is automatically selected. - As the
image acquisition device 1602 captures digital pixel data of images of a surgical site that are stored in theimage buffer 1604, the pixel data can be independently selected for viewing by multiple display devices. - The second digital mapper and image filter 1606B, the
second user interface 1608B, and thesecond display buffer 1610B are for independent selection and display of images on thesecond display device 1612B. For example, thefirst display 1612A may be thestereo display devices console 150 while thesecond display 1612B may be the assistant'sdisplay device 154 illustrated inFIG. 1A . A first user may independently select user preferences for the first display with thefirst user interface 1608A, while a second user may independently select user preferences for the second display with thesecond user interface 1608B. Thesecond user interface 1608B is substantially similar to thefirst user interface 1608A and its description is incorporated herein by reference for brevity. Alternatively, the second digital mapper and image filter 1606B, thesecond user interface 1608B, and thesecond display buffer 1610B may be synchronized to the first devices such that the display of images on thesecond display device 1612B are similar to the display of images on thefirst display device 1612A. - The embodiments of the invention have now been described.
- A number of elements of the system may be implemented in software and executed by a computer and its processor, such as
computer 151 and itsprocessor 302. When implemented in software, the elements of the embodiments of the invention are essentially the code segments to perform the necessary tasks. The program or code segments can be stored in a processor readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication link. The processor readable medium may include any medium that can store or transfer information. Examples of the processor readable medium include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable programmable read only memory (EPROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, etc. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic, RF links, etc. The code segments may be downloaded via computer networks such as the Internet, Intranet, etc. - While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the embodiments of the invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may become apparent after reading the disclosure. For example, while the inner/outer pair of
source windows 661 and inner/outer pair oftarget windows 671 have been shown and described as being rectangular in shape, they may be circular in shape in alternate embodiments of the invention. Additionally, some embodiments of the invention have been described with reference to a video system in a robotic surgical system. However, these embodiments may be equally applicable to other video systems. Thus, the embodiments of the invention should be construed according to the claims that follow below.
Claims (10)
1. A method for controlling a robotic surgical tool, the method comprising:
supporting a monitor with a supporting device;
displaying an image of a robotic surgical tool on the monitor;
moving the monitor displaying the image of the robotic surgical tool;
sensing motion of the monitor; and
translating the sensed motion of the monitor into motion of the robotic surgical tool.
2. The method of claim 1 , wherein
the motion of the monitor is sensed by an inertia sensor coupled thereto.
3. The method of claim 1 , wherein
the supporting device is a set-up arm; and
the motion of the monitor is sensed by one or more rotary encoders at one or more joints of the set-up arm supporting the monitor.
4. The method of claim 1 , further comprising:
prior to moving the monitor, grasping sides of the monitor with a pair of hands.
5-15. (canceled)
16. The method of claim 1 , wherein moving the monitor further includes
moving a setup arm coupled to a housing of the monitor, including one or more serial links between the housing and a mechanical ground; and
sensing the motion of the one or more serial links with one or more motion sensing devices to determine direction and distance of motion of the monitor.
17. The method of claim 16 , wherein
the one or more motion sensing devices are one or more rotary encoders at one or more joints of the one or more serial links supporting the monitor.
18. The method of claim 1 , wherein
the robotic surgical tool is an ultrasound tool.
19. The method of claim 1 , wherein
the robotic surgical tool is an endoscopic camera.
20. The method of claim 19 , wherein
the motion of the endoscopic camera mechanically pans a center of a video frame displayed on the monitor.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/330,339 US20140323803A1 (en) | 2008-03-28 | 2014-07-14 | Methods of controlling a robotic surgical tool with a display monitor |
US15/725,153 US10674900B2 (en) | 2008-03-28 | 2017-10-04 | Display monitor control of a telesurgical tool |
US16/859,867 US11076748B2 (en) | 2008-03-28 | 2020-04-27 | Display monitor control of a telesurgical tool |
US17/361,122 US20210321865A1 (en) | 2008-03-28 | 2021-06-28 | Display Monitor Control of a Telesurgical Tool |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/058,661 US8808164B2 (en) | 2008-03-28 | 2008-03-28 | Controlling a robotic surgical tool with a display monitor |
US14/330,339 US20140323803A1 (en) | 2008-03-28 | 2014-07-14 | Methods of controlling a robotic surgical tool with a display monitor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/058,661 Division US8808164B2 (en) | 2008-03-28 | 2008-03-28 | Controlling a robotic surgical tool with a display monitor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/725,153 Continuation US10674900B2 (en) | 2008-03-28 | 2017-10-04 | Display monitor control of a telesurgical tool |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140323803A1 true US20140323803A1 (en) | 2014-10-30 |
Family
ID=41118300
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/058,661 Active 2032-12-24 US8808164B2 (en) | 2008-03-28 | 2008-03-28 | Controlling a robotic surgical tool with a display monitor |
US14/330,339 Abandoned US20140323803A1 (en) | 2008-03-28 | 2014-07-14 | Methods of controlling a robotic surgical tool with a display monitor |
US15/725,153 Active 2028-04-10 US10674900B2 (en) | 2008-03-28 | 2017-10-04 | Display monitor control of a telesurgical tool |
US16/859,867 Active US11076748B2 (en) | 2008-03-28 | 2020-04-27 | Display monitor control of a telesurgical tool |
US17/361,122 Pending US20210321865A1 (en) | 2008-03-28 | 2021-06-28 | Display Monitor Control of a Telesurgical Tool |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/058,661 Active 2032-12-24 US8808164B2 (en) | 2008-03-28 | 2008-03-28 | Controlling a robotic surgical tool with a display monitor |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/725,153 Active 2028-04-10 US10674900B2 (en) | 2008-03-28 | 2017-10-04 | Display monitor control of a telesurgical tool |
US16/859,867 Active US11076748B2 (en) | 2008-03-28 | 2020-04-27 | Display monitor control of a telesurgical tool |
US17/361,122 Pending US20210321865A1 (en) | 2008-03-28 | 2021-06-28 | Display Monitor Control of a Telesurgical Tool |
Country Status (1)
Country | Link |
---|---|
US (5) | US8808164B2 (en) |
Cited By (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140187857A1 (en) * | 2012-02-06 | 2014-07-03 | Vantage Surgical Systems Inc. | Apparatus and Methods for Enhanced Visualization and Control in Minimally Invasive Surgery |
CN104688347A (en) * | 2013-12-09 | 2015-06-10 | 韩商未来股份有限公司 | Surgical robot system and method for controlling surgical robot system |
US9078685B2 (en) | 2007-02-16 | 2015-07-14 | Globus Medical, Inc. | Method and system for performing invasive medical procedures using a surgical robot |
CN105012023A (en) * | 2015-08-19 | 2015-11-04 | 哈尔滨工业大学 | Instrument holding mechanical arm used for minimally-invasive robot |
DE102014016843A1 (en) * | 2014-11-13 | 2016-05-19 | Kuka Roboter Gmbh | System with a medical instrument and a receiving means |
CN105686883A (en) * | 2016-03-14 | 2016-06-22 | 昆山邦泰汽车零部件制造有限公司 | Redundant-freedom-degree laparoscope-holding mechanical arm |
US20170000574A1 (en) * | 2014-03-17 | 2017-01-05 | Intuitive Surgical Operations, Inc. | System and method for recentering imaging devices and input controls |
US9699445B2 (en) | 2008-03-28 | 2017-07-04 | Intuitive Surgical Operations, Inc. | Apparatus for automated panning and digital zooming in robotic surgical systems |
US9782229B2 (en) | 2007-02-16 | 2017-10-10 | Globus Medical, Inc. | Surgical robot platform |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US10292778B2 (en) | 2014-04-24 | 2019-05-21 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US10569794B2 (en) | 2015-10-13 | 2020-02-25 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US10580217B2 (en) | 2015-02-03 | 2020-03-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
US10646283B2 (en) | 2018-02-19 | 2020-05-12 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US10660712B2 (en) | 2011-04-01 | 2020-05-26 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
DE102019201277A1 (en) * | 2019-01-31 | 2020-08-06 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Device for guiding a medical flexible shaft |
US10813704B2 (en) | 2013-10-04 | 2020-10-27 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
US10925681B2 (en) | 2015-07-31 | 2021-02-23 | Globus Medical Inc. | Robot arm and methods of use |
US10939968B2 (en) | 2014-02-11 | 2021-03-09 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
US10945742B2 (en) | 2014-07-14 | 2021-03-16 | Globus Medical Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
US10973594B2 (en) | 2015-09-14 | 2021-04-13 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US11033338B2 (en) | 2016-02-24 | 2021-06-15 | Sony Corporation | Medical information processing apparatus, information processing method, and medical information processing system |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US11076748B2 (en) | 2008-03-28 | 2021-08-03 | Intuitive Surgical Operations, Inc. | Display monitor control of a telesurgical tool |
US11109922B2 (en) | 2012-06-21 | 2021-09-07 | Globus Medical, Inc. | Surgical tool systems and method |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
EP3737326A4 (en) * | 2018-01-10 | 2021-12-29 | Covidien LP | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11266470B2 (en) | 2015-02-18 | 2022-03-08 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11337769B2 (en) | 2015-07-31 | 2022-05-24 | Globus Medical, Inc. | Robot arm and methods of use |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US11529195B2 (en) | 2017-01-18 | 2022-12-20 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11628039B2 (en) | 2006-02-16 | 2023-04-18 | Globus Medical Inc. | Surgical tool systems and methods |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11737766B2 (en) | 2014-01-15 | 2023-08-29 | Globus Medical Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11813030B2 (en) | 2017-03-16 | 2023-11-14 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
US11819365B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11850009B2 (en) | 2021-07-06 | 2023-12-26 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11872000B2 (en) | 2015-08-31 | 2024-01-16 | Globus Medical, Inc | Robotic surgical systems and methods |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US11911225B2 (en) | 2012-06-21 | 2024-02-27 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11944325B2 (en) | 2019-03-22 | 2024-04-02 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
USD1022197S1 (en) | 2020-11-19 | 2024-04-09 | Auris Health, Inc. | Endoscope |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11974886B2 (en) | 2016-04-11 | 2024-05-07 | Globus Medical Inc. | Surgical tool systems and methods |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US12102406B2 (en) | 2017-10-25 | 2024-10-01 | Intuitive Surgical Operations, Inc. | System and method for repositioning input control devices |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12121240B2 (en) | 2023-11-01 | 2024-10-22 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
Families Citing this family (625)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US8971597B2 (en) | 2005-05-16 | 2015-03-03 | Intuitive Surgical Operations, Inc. | Efficient vision and kinematic data fusion for robotic surgical instruments and other applications |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US10555775B2 (en) | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US8073528B2 (en) | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7907166B2 (en) * | 2005-12-30 | 2011-03-15 | Intuitive Surgical Operations, Inc. | Stereo telestration for robotic surgery |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8062211B2 (en) * | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8814779B2 (en) | 2006-12-21 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Stereoscopic endoscope |
US8556807B2 (en) | 2006-12-21 | 2013-10-15 | Intuitive Surgical Operations, Inc. | Hermetically sealed distal sensor endoscope |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US20090069804A1 (en) * | 2007-09-12 | 2009-03-12 | Jensen Jeffrey L | Apparatus for efficient power delivery |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US9089254B2 (en) * | 2008-08-28 | 2015-07-28 | Biosense Webster, Inc. | Synchronization of medical devices via digital interface |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8698898B2 (en) * | 2008-12-11 | 2014-04-15 | Lucasfilm Entertainment Company Ltd. | Controlling robotic motion of camera |
US8184880B2 (en) | 2008-12-31 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Robust sparse image matching for robotic surgery |
US8830224B2 (en) | 2008-12-31 | 2014-09-09 | Intuitive Surgical Operations, Inc. | Efficient 3-D telestration for local robotic proctoring |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
BRPI1008667A2 (en) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | improvement of the operated surgical stapler |
DE102009010263B4 (en) * | 2009-02-24 | 2011-01-20 | Reiner Kunz | Method for navigating an endoscopic instrument during technical endoscopy and associated device |
US8423182B2 (en) * | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US9155592B2 (en) * | 2009-06-16 | 2015-10-13 | Intuitive Surgical Operations, Inc. | Virtual measurement tool for minimally invasive surgery |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
US8935003B2 (en) | 2010-09-21 | 2015-01-13 | Intuitive Surgical Operations | Method and system for hand presence detection in a minimally invasive surgical system |
US8996173B2 (en) | 2010-09-21 | 2015-03-31 | Intuitive Surgical Operations, Inc. | Method and apparatus for hand gesture control in a minimally invasive surgical system |
US8521331B2 (en) * | 2009-11-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument |
AU2010324494B2 (en) * | 2009-11-27 | 2014-11-06 | Centre For Surgical Invention & Innovation | Automated in-bore MR guided robotic diagnostic and therapeutic system |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
IT1401669B1 (en) * | 2010-04-07 | 2013-08-02 | Sofar Spa | ROBOTIC SURGERY SYSTEM WITH PERFECT CONTROL. |
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
EP3263058A1 (en) | 2010-06-28 | 2018-01-03 | Brainlab AG | Generating images for at least two displays in image-guided surgery |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
JP5565258B2 (en) * | 2010-10-12 | 2014-08-06 | ソニー株式会社 | Image processing apparatus, image processing method, and program |
JP5770061B2 (en) * | 2010-10-20 | 2015-08-26 | 株式会社東芝 | Ultrasonic diagnostic apparatus, control method, and image processing apparatus |
US9486189B2 (en) | 2010-12-02 | 2016-11-08 | Hitachi Aloka Medical, Ltd. | Assembly for use with surgery system |
US9026247B2 (en) | 2011-03-30 | 2015-05-05 | University of Washington through its Center for Communication | Motion and video capture for tracking and evaluating robotic surgery and associated systems and methods |
BR112013027794B1 (en) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE SET |
US10120438B2 (en) * | 2011-05-25 | 2018-11-06 | Sony Interactive Entertainment Inc. | Eye gaze to alter device behavior |
JP5855358B2 (en) * | 2011-05-27 | 2016-02-09 | オリンパス株式会社 | Endoscope apparatus and method for operating endoscope apparatus |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
JP5865606B2 (en) | 2011-05-27 | 2016-02-17 | オリンパス株式会社 | Endoscope apparatus and method for operating endoscope apparatus |
CN103607971B (en) * | 2011-07-07 | 2016-08-31 | 奥林巴斯株式会社 | Medical master slave manipulator |
JP5800616B2 (en) * | 2011-07-15 | 2015-10-28 | オリンパス株式会社 | Manipulator system |
US9918681B2 (en) * | 2011-09-16 | 2018-03-20 | Auris Surgical Robotics, Inc. | System and method for virtually tracking a surgical tool on a movable display |
EP2774380B1 (en) * | 2011-11-02 | 2019-05-22 | Intuitive Surgical Operations, Inc. | Method and system for stereo gaze tracking |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
CN104334098B (en) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | Tissue thickness compensator comprising capsules defining a low pressure environment |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
BR112014024194B1 (en) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | STAPLER CARTRIDGE SET FOR A SURGICAL STAPLER |
KR101967635B1 (en) * | 2012-05-15 | 2019-04-10 | 삼성전자주식회사 | End effector and remote control apparatus |
JP6103827B2 (en) * | 2012-06-14 | 2017-03-29 | オリンパス株式会社 | Image processing apparatus and stereoscopic image observation system |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9642606B2 (en) | 2012-06-27 | 2017-05-09 | Camplex, Inc. | Surgical visualization system |
US9216068B2 (en) | 2012-06-27 | 2015-12-22 | Camplex, Inc. | Optics for video cameras on a surgical visualization system |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
RU2636861C2 (en) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Blocking of empty cassette with clips |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US8880223B2 (en) * | 2012-07-16 | 2014-11-04 | Florida Institute for Human & Maching Cognition | Anthro-centric multisensory interface for sensory augmentation of telesurgery |
US20140024889A1 (en) * | 2012-07-17 | 2014-01-23 | Wilkes University | Gaze Contingent Control System for a Robotic Laparoscope Holder |
US10806325B2 (en) * | 2012-08-15 | 2020-10-20 | Intuitive Surgical Operations, Inc. | Methods and systems for optimizing video streaming |
JP6385935B2 (en) | 2012-09-17 | 2018-09-05 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Method and system for assigning input devices to remotely operated surgical instrument functions |
US10631939B2 (en) | 2012-11-02 | 2020-04-28 | Intuitive Surgical Operations, Inc. | Systems and methods for mapping flux supply paths |
JP6323335B2 (en) * | 2012-11-15 | 2018-05-16 | コニカミノルタ株式会社 | Image processing apparatus, image processing method, and program |
US10884577B2 (en) * | 2013-01-15 | 2021-01-05 | Poow Innovation Ltd. | Identification of dynamic icons based on eye movement |
US10507066B2 (en) * | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
RU2669463C2 (en) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Surgical instrument with soft stop |
US9532840B2 (en) * | 2013-03-08 | 2017-01-03 | Hansen Medical, Inc. | Slider control of catheters and wires |
US9566414B2 (en) | 2013-03-13 | 2017-02-14 | Hansen Medical, Inc. | Integrated catheter and guide wire controller |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9375844B2 (en) * | 2013-03-15 | 2016-06-28 | Intuitive Surgical Operations, Inc. | Geometrically appropriate tool selection assistance for determined work site dimensions |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US10849702B2 (en) | 2013-03-15 | 2020-12-01 | Auris Health, Inc. | User input devices for controlling manipulation of guidewires and catheters |
US9271663B2 (en) | 2013-03-15 | 2016-03-01 | Hansen Medical, Inc. | Flexible instrument localization from both remote and elongation sensors |
US11747895B2 (en) * | 2013-03-15 | 2023-09-05 | Intuitive Surgical Operations, Inc. | Robotic system providing user selectable actions associated with gaze tracking |
US9283046B2 (en) | 2013-03-15 | 2016-03-15 | Hansen Medical, Inc. | User interface for active drive apparatus with finite range of motion |
US9629595B2 (en) | 2013-03-15 | 2017-04-25 | Hansen Medical, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
WO2014153396A1 (en) | 2013-03-20 | 2014-09-25 | Covidien Lp | System and method for enhancing picture-in-picture display for imaging devices used for surgical procedures |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US9451161B2 (en) * | 2013-05-20 | 2016-09-20 | Stc.Unm | System and methods for video image processing |
WO2014189969A1 (en) | 2013-05-21 | 2014-11-27 | Camplex, Inc. | Surgical visualization systems |
US11020016B2 (en) * | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
US9179051B1 (en) * | 2013-06-13 | 2015-11-03 | Clara Stoudt | Voice-activated hands-free camera holder systems |
DE102013012839B4 (en) * | 2013-08-02 | 2019-05-09 | Abb Schweiz Ag | robot system |
WO2015023513A1 (en) * | 2013-08-14 | 2015-02-19 | Intuitive Surgical Operations, Inc. | Endoscope control system |
JP6416260B2 (en) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | Firing member retractor for a powered surgical instrument |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
JP6410022B2 (en) * | 2013-09-06 | 2018-10-24 | パナソニックIpマネジメント株式会社 | Master-slave robot control device and control method, robot, master-slave robot control program, and integrated electronic circuit for master-slave robot control |
US10881286B2 (en) | 2013-09-20 | 2021-01-05 | Camplex, Inc. | Medical apparatus for use with a surgical tubular retractor |
WO2015042460A1 (en) | 2013-09-20 | 2015-03-26 | Camplex, Inc. | Surgical visualization systems and displays |
WO2015046081A1 (en) * | 2013-09-24 | 2015-04-02 | ソニー・オリンパスメディカルソリューションズ株式会社 | Medical robot arm device, medical robot arm control system, medical robot arm control method, and program |
CN105794205B (en) * | 2013-12-04 | 2017-07-21 | 奥林巴斯株式会社 | Wireless transmitting system |
EP3079608B8 (en) | 2013-12-11 | 2020-04-01 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
CN104757928A (en) * | 2014-01-02 | 2015-07-08 | 中国科学院沈阳自动化研究所 | Digestive endoscopy assisting interventional robot control system and method |
CN103767659B (en) * | 2014-01-02 | 2015-06-03 | 中国人民解放军总医院 | Digestion endoscope robot |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
EP3119338B1 (en) * | 2014-03-17 | 2020-05-06 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
USD768295S1 (en) * | 2014-03-17 | 2016-10-04 | Intuitive Surgical Operations, Inc. | Surgical instrument end portion |
USD767129S1 (en) * | 2014-03-17 | 2016-09-20 | Intuitive Surgical Operations, Inc. | Surgical instrument end portion |
USD760387S1 (en) * | 2014-03-17 | 2016-06-28 | Intuitive Surgical Operations, Inc. | Surgical instrument end portion |
USD767130S1 (en) * | 2014-03-17 | 2016-09-20 | Intuitive Surgical Operations, Inc. | Surgical instrument end portion |
WO2015142956A1 (en) * | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Systems and methods for offscreen indication of instruments in a teleoperational medical system |
JP6644699B2 (en) * | 2014-03-19 | 2020-02-12 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Medical devices, systems and methods using gaze tracking |
JP6689203B2 (en) * | 2014-03-19 | 2020-04-28 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Medical system integrating eye tracking for stereo viewer |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
WO2015146850A1 (en) | 2014-03-28 | 2015-10-01 | ソニー株式会社 | Robot arm device, and method and program for controlling robot arm device |
US10932657B2 (en) * | 2014-04-02 | 2021-03-02 | Transenterix Europe S.A.R.L. | Endoscope with wide angle lens and adjustable view |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
JP6532889B2 (en) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | Fastener cartridge assembly and staple holder cover arrangement |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
US20170202624A1 (en) * | 2014-06-08 | 2017-07-20 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery utilizing a touch screen |
CN106659538B (en) | 2014-08-13 | 2019-05-10 | 柯惠Lp公司 | The clamping with mechanical dominance of robot control |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (en) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Surgical stapling buttresses and adjunct materials. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US9833254B1 (en) | 2014-10-03 | 2017-12-05 | Verily Life Sciences Llc | Controlled dissection of biological tissue |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10702353B2 (en) * | 2014-12-05 | 2020-07-07 | Camplex, Inc. | Surgical visualizations systems and displays |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
MX2017008108A (en) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge. |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
JP6576042B2 (en) * | 2015-01-14 | 2019-09-18 | キヤノン株式会社 | Display control apparatus and method, and program |
US10773329B2 (en) | 2015-01-20 | 2020-09-15 | Illinois Tool Works Inc. | Multiple input welding vision system |
AU2016220501B2 (en) | 2015-02-19 | 2020-02-13 | Covidien Lp | Repositioning method of input device for robotic surgical system |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
WO2016144741A1 (en) * | 2015-03-06 | 2016-09-15 | Illinois Tool Works Inc. | Sensor assisted head mounted displays for welding |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
EP3268949B1 (en) | 2015-03-09 | 2021-05-26 | Illinois Tool Works Inc. | Methods and apparatus to provide visual information associated with welding operations |
US10716639B2 (en) | 2015-03-10 | 2020-07-21 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
WO2016154589A1 (en) | 2015-03-25 | 2016-09-29 | Camplex, Inc. | Surgical visualization systems and displays |
US9977242B2 (en) | 2015-03-26 | 2018-05-22 | Illinois Tool Works Inc. | Control of mediated reality welding system based on lighting conditions |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
EP3294184B1 (en) | 2015-05-11 | 2023-07-12 | Covidien LP | Coupling instrument drive unit and robotic surgical instrument |
US10959788B2 (en) | 2015-06-03 | 2021-03-30 | Covidien Lp | Offset instrument drive unit |
AU2016279993B2 (en) | 2015-06-16 | 2021-09-09 | Covidien Lp | Robotic surgical system torque transduction sensing |
CN107708598A (en) * | 2015-06-18 | 2018-02-16 | 奥林巴斯株式会社 | Medical system |
US10667877B2 (en) | 2015-06-19 | 2020-06-02 | Covidien Lp | Controlling robotic surgical instruments with bidirectional coupling |
AU2016284040B2 (en) | 2015-06-23 | 2020-04-30 | Covidien Lp | Robotic surgical assemblies |
US10363632B2 (en) | 2015-06-24 | 2019-07-30 | Illinois Tool Works Inc. | Time of flight camera for welding machine vision |
US10674982B2 (en) * | 2015-08-06 | 2020-06-09 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
EP3130276B8 (en) | 2015-08-12 | 2020-02-26 | TransEnterix Europe Sàrl | Endoscope with wide angle lens and adjustable view |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
AU2016323982A1 (en) | 2015-09-18 | 2018-04-12 | Auris Health, Inc. | Navigation of tubular networks |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
CN108024835B (en) | 2015-09-25 | 2021-08-31 | 柯惠Lp公司 | Robotic surgical assembly and instrument drive connector therefor |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
CN108882964B (en) * | 2015-10-09 | 2021-10-22 | 柯惠Lp公司 | Method for visualizing a body cavity using an angled endoscope employing a robotic surgical system |
EP3156880A1 (en) * | 2015-10-14 | 2017-04-19 | Ecole Nationale de l'Aviation Civile | Zoom effect in gaze tracking interface |
US10912449B2 (en) | 2015-10-23 | 2021-02-09 | Covidien Lp | Surgical system for detecting gradual changes in perfusion |
EP3376988B1 (en) | 2015-11-19 | 2023-08-23 | Covidien LP | Optical force sensor for robotic surgical system |
WO2017091704A1 (en) | 2015-11-25 | 2017-06-01 | Camplex, Inc. | Surgical visualization systems and displays |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
WO2017109912A1 (en) * | 2015-12-24 | 2017-06-29 | オリンパス株式会社 | Medical manipulator system and image display method for same |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
CN107306492B (en) * | 2016-02-25 | 2019-10-25 | 奥林巴斯株式会社 | The working method of endoscopic system and endoscopic system |
WO2017160792A1 (en) * | 2016-03-14 | 2017-09-21 | Endochoice, Inc. | System and method for guiding and tracking a region of interest using an endoscope |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
WO2017173524A1 (en) | 2016-04-07 | 2017-10-12 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
AU2017269271B2 (en) | 2016-05-26 | 2021-07-08 | Covidien Lp | Robotic surgical assemblies |
WO2017205576A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Instrument drive units |
US11612446B2 (en) | 2016-06-03 | 2023-03-28 | Covidien Lp | Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator |
CN114504387A (en) | 2016-06-03 | 2022-05-17 | 柯惠Lp公司 | Passive shaft system for robotic surgical system |
EP3463163A4 (en) | 2016-06-03 | 2020-02-12 | Covidien LP | Robotic surgical system with an embedded imager |
CN107735040B (en) | 2016-06-03 | 2021-06-18 | 柯惠Lp公司 | Control arm for robotic surgical system |
CN105943161A (en) * | 2016-06-04 | 2016-09-21 | 深圳市前海康启源科技有限公司 | Surgical navigation system and method based on medical robot |
USD865164S1 (en) | 2016-07-14 | 2019-10-29 | Intuitive Surgical Operations, Inc. | Surgical instrument actuator end portion |
USD864386S1 (en) | 2016-07-14 | 2019-10-22 | Intuitive Surgical Operations, Inc. | Surgical instrument actuator end portion |
USD865163S1 (en) | 2016-07-14 | 2019-10-29 | Intuitive Surgical Operations, Inc. | Surgical instrument actuator end portion |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10413373B2 (en) | 2016-08-16 | 2019-09-17 | Ethicon, Llc | Robotic visualization and collision avoidance |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
CN110114014B (en) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Surgical instrument system including end effector and firing assembly lockout |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
MX2019007311A (en) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Surgical stapling systems. |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
TWI616192B (en) * | 2017-01-06 | 2018-03-01 | 陳炯年 | A probe-path planning system and a treatment apparatus |
AU2018221456A1 (en) | 2017-02-15 | 2019-07-11 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
JP2020510474A (en) * | 2017-03-07 | 2020-04-09 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for controlling a tool having an articulatable distal portion |
US20200037847A1 (en) * | 2017-03-24 | 2020-02-06 | Sony Corporation | Control apparatus for medical system, control method for medical system, and medical system |
AU2018243364B2 (en) | 2017-03-31 | 2023-10-05 | Auris Health, Inc. | Robotic systems for navigation of luminal networks that compensate for physiological noise |
WO2018208691A1 (en) | 2017-05-08 | 2018-11-15 | Camplex, Inc. | Variable light source |
CN110650705B (en) | 2017-05-24 | 2023-04-28 | 柯惠Lp公司 | Presence detection of electrosurgical tools in robotic systems |
US11553974B2 (en) | 2017-05-25 | 2023-01-17 | Covidien Lp | Systems and methods for detection of objects within a field of view of an image capture device |
US11839441B2 (en) | 2017-05-25 | 2023-12-12 | Covidien Lp | Robotic surgical system with automated guidance |
US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
JP6976720B2 (en) * | 2017-05-26 | 2021-12-08 | ソニー・オリンパスメディカルソリューションズ株式会社 | Medical observation device and zoom control method |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
JP6933016B2 (en) * | 2017-06-22 | 2021-09-08 | コニカミノルタ株式会社 | Radiation imaging system |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
EP3644886A4 (en) | 2017-06-28 | 2021-03-24 | Auris Health, Inc. | Electromagnetic distortion detection |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
CN110809452B (en) | 2017-06-28 | 2023-05-23 | 奥瑞斯健康公司 | Electromagnetic field generator alignment |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US11589933B2 (en) * | 2017-06-29 | 2023-02-28 | Ix Innovation Llc | Guiding a robotic surgical system to perform a surgical procedure |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11382662B2 (en) | 2017-08-04 | 2022-07-12 | The Brigham And Women's Hospital, Inc. | Trocars and veress-type needles with illuminated guidance and safety features |
JP7208993B2 (en) * | 2017-08-04 | 2023-01-19 | ブリガム アンド ウィメンズ ホスピタル,インク. | Veress-type needle with illuminated guides and safety features |
EP3678572A4 (en) | 2017-09-05 | 2021-09-29 | Covidien LP | Collision handling algorithms for robotic surgical systems |
JP2020533061A (en) | 2017-09-06 | 2020-11-19 | コヴィディエン リミテッド パートナーシップ | Boundary scaling of surgical robots |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) * | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10395624B2 (en) | 2017-11-21 | 2019-08-27 | Nvidia Corporation | Adjusting an angular sampling rate during rendering utilizing gaze information |
EP3716882A4 (en) | 2017-12-01 | 2021-08-25 | Covidien LP | Drape management assembly for robotic surgical systems |
WO2019113391A1 (en) | 2017-12-08 | 2019-06-13 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
CA3079816C (en) * | 2017-12-14 | 2023-02-14 | Verb Surgical Inc. | Multi-panel graphical user interface for a robotic surgical system |
CN110869173B (en) | 2017-12-14 | 2023-11-17 | 奥瑞斯健康公司 | System and method for estimating instrument positioning |
US11071595B2 (en) | 2017-12-14 | 2021-07-27 | Verb Surgical Inc. | Multi-panel graphical user interface for a robotic surgical system |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US11160615B2 (en) | 2017-12-18 | 2021-11-02 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
CN111556735A (en) | 2018-01-04 | 2020-08-18 | 柯惠Lp公司 | Systems and assemblies for mounting surgical accessories to robotic surgical systems and providing access therethrough |
US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
JP2021514220A (en) | 2018-03-08 | 2021-06-10 | コヴィディエン リミテッド パートナーシップ | Surgical robot system |
CN110913791B (en) | 2018-03-28 | 2021-10-08 | 奥瑞斯健康公司 | System and method for displaying estimated instrument positioning |
KR102489198B1 (en) | 2018-03-28 | 2023-01-18 | 아우리스 헬스, 인코포레이티드 | Systems and Methods for Matching Position Sensors |
US11647888B2 (en) | 2018-04-20 | 2023-05-16 | Covidien Lp | Compensation for observer movement in robotic surgical systems having stereoscopic displays |
USD884892S1 (en) | 2018-04-20 | 2020-05-19 | Intuitive Surgical Operations, Inc. | Surgical instrument backend housing |
US11986261B2 (en) | 2018-04-20 | 2024-05-21 | Covidien Lp | Systems and methods for surgical robotic cart placement |
US20210068799A1 (en) * | 2018-05-15 | 2021-03-11 | Intuitive Surgical Operations, Inc. | Method and apparatus for manipulating tissue |
US20210212773A1 (en) * | 2018-05-16 | 2021-07-15 | Intuitive Surgical Operations, Inc. | System and method for hybrid control using eye tracking |
EP3793465A4 (en) | 2018-05-18 | 2022-03-02 | Auris Health, Inc. | Controllers for robotically-enabled teleoperated systems |
JP7250824B2 (en) | 2018-05-30 | 2023-04-03 | オーリス ヘルス インコーポレイテッド | Systems and methods for location sensor-based branch prediction |
EP3801189B1 (en) | 2018-05-31 | 2024-09-11 | Auris Health, Inc. | Path-based navigation of tubular networks |
EP3801280B1 (en) | 2018-05-31 | 2024-10-02 | Auris Health, Inc. | Robotic systems for navigation of luminal network that detect physiological noise |
JP7146949B2 (en) | 2018-05-31 | 2022-10-04 | オーリス ヘルス インコーポレイテッド | Image-based airway analysis and mapping |
DE102019004233B4 (en) | 2018-06-15 | 2022-09-22 | Mako Surgical Corp. | SYSTEMS AND METHODS FOR TRACKING OBJECTS |
US10895757B2 (en) * | 2018-07-03 | 2021-01-19 | Verb Surgical Inc. | Systems and methods for three-dimensional visualization during robotic surgery |
WO2020009830A1 (en) | 2018-07-03 | 2020-01-09 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
RU2672925C1 (en) * | 2018-07-05 | 2018-11-21 | Открытое акционерное общество "Оптические медицинские приборы "Оптимед" | Stereoendoskope |
JP6770025B2 (en) * | 2018-07-12 | 2020-10-14 | ファナック株式会社 | robot |
WO2020028777A1 (en) | 2018-08-03 | 2020-02-06 | Intuitive Surgical Operations, Inc. | System and method of displaying images from imaging devices |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11998288B2 (en) | 2018-09-17 | 2024-06-04 | Covidien Lp | Surgical robotic systems |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
CN111134849B (en) * | 2018-11-02 | 2024-05-31 | 威博外科公司 | Surgical robot system |
CN109324462A (en) * | 2018-12-13 | 2019-02-12 | 长春长光恒德光电科技有限公司 | A kind of attachment device of robot vision camera |
EP3671305A1 (en) * | 2018-12-18 | 2020-06-24 | Eberhard Karls Universität Tübingen | Exoscope system and use of such an exoscope system |
US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
US11450233B2 (en) | 2019-02-19 | 2022-09-20 | Illinois Tool Works Inc. | Systems for simulating joining operations using mobile devices |
US11521512B2 (en) | 2019-02-19 | 2022-12-06 | Illinois Tool Works Inc. | Systems for simulating joining operations using mobile devices |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
KR20220004950A (en) * | 2019-05-01 | 2022-01-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and Methods for Imaging Devices and Integrated Motion |
EP3753519A1 (en) * | 2019-06-19 | 2020-12-23 | Karl Storz SE & Co. KG | Medical handling device |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
EP3989793A4 (en) | 2019-06-28 | 2023-07-19 | Auris Health, Inc. | Console overlay and methods of using same |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US12042240B2 (en) * | 2019-07-16 | 2024-07-23 | Asensus Surgical Us, Inc. | Augmented reality using eye tracking in a robot assisted surgical system |
KR102582407B1 (en) * | 2019-07-28 | 2023-09-26 | 구글 엘엘씨 | Methods, systems, and media for rendering immersive video content with foveated meshes |
KR20220058569A (en) | 2019-08-30 | 2022-05-09 | 아우리스 헬스, 인코포레이티드 | System and method for weight-based registration of position sensors |
JP7451686B2 (en) | 2019-08-30 | 2024-03-18 | オーリス ヘルス インコーポレイテッド | Instrument image reliability system and method |
JP7494290B2 (en) | 2019-09-03 | 2024-06-03 | オーリス ヘルス インコーポレイテッド | Electromagnetic Distortion Detection and Compensation |
WO2021047520A1 (en) * | 2019-09-10 | 2021-03-18 | 深圳市精锋医疗科技有限公司 | Surgical robot and control method and control device for distal instrument thereof |
US11322037B2 (en) | 2019-11-25 | 2022-05-03 | Illinois Tool Works Inc. | Weld training simulations using mobile devices, modular workpieces, and simulated welding equipment |
US11721231B2 (en) | 2019-11-25 | 2023-08-08 | Illinois Tool Works Inc. | Weld training simulations using mobile devices, modular workpieces, and simulated welding equipment |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
CN118383870A (en) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | Alignment interface for percutaneous access |
WO2021137109A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment techniques for percutaneous access |
EP4084721A4 (en) | 2019-12-31 | 2024-01-03 | Auris Health, Inc. | Anatomical feature identification and targeting |
CA3167157A1 (en) * | 2020-02-06 | 2021-08-12 | Vicarious Surgical Inc. | System and method for determining depth perception in vivo in a surgical robotic system |
US10835106B1 (en) | 2020-02-21 | 2020-11-17 | Ambu A/S | Portable monitor |
US11166622B2 (en) | 2020-02-21 | 2021-11-09 | Ambu A/S | Video processing apparatus |
US11109741B1 (en) | 2020-02-21 | 2021-09-07 | Ambu A/S | Video processing apparatus |
US10980397B1 (en) * | 2020-02-21 | 2021-04-20 | Ambu A/S | Video processing device |
US11633247B2 (en) | 2020-03-03 | 2023-04-25 | Verb Surgical Inc. | Graphical user guidance for a robotic surgical system |
US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
KR20230049062A (en) * | 2020-06-09 | 2023-04-12 | 스트리커 라이빙거 게엠바하 운트 콤파니 카게 | Spatial Awareness Displays for Computer-Aided Interventions |
USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11806107B2 (en) | 2020-12-07 | 2023-11-07 | Virtuoso Surgical, Inc. | Physician input device for a concentric tube surgical robot |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11844583B2 (en) | 2021-03-31 | 2023-12-19 | Moon Surgical Sas | Co-manipulation surgical system having an instrument centering mode for automatic scope movements |
US11832909B2 (en) | 2021-03-31 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having actuatable setup joints |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
AU2022247392A1 (en) | 2021-03-31 | 2023-09-28 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery |
US11812938B2 (en) | 2021-03-31 | 2023-11-14 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
US11819302B2 (en) | 2021-03-31 | 2023-11-21 | Moon Surgical Sas | Co-manipulation surgical system having user guided stage control |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US20220384016A1 (en) * | 2021-05-28 | 2022-12-01 | Cilag Gmbh International | Monitoring a health care professional movement relative to a virtual boundary in an operating room |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
WO2024006079A1 (en) * | 2022-06-29 | 2024-01-04 | Covidien Lp | Surgical robotic system for conducting a plurality of concurrent colonoscopies |
DE102022116672A1 (en) | 2022-07-04 | 2024-01-04 | Karl Storz Se & Co. Kg | Imaging device with extended zoom functionality and focus tracking |
US11839442B1 (en) | 2023-01-09 | 2023-12-12 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5602566A (en) * | 1993-08-24 | 1997-02-11 | Hitachi, Ltd. | Small-sized information processor capable of scrolling screen in accordance with tilt, and scrolling method therefor |
US5836869A (en) * | 1994-12-13 | 1998-11-17 | Olympus Optical Co., Ltd. | Image tracking endoscope system |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5971976A (en) * | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US6036637A (en) * | 1994-12-13 | 2000-03-14 | Olympus Optical Co., Ltd. | Treating system utilizing an endoscope |
US6120433A (en) * | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US20010013764A1 (en) * | 1998-08-04 | 2001-08-16 | Blumenkranz Steven J. | Manipulator positioning linkage for robotic surgery |
US6436107B1 (en) * | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US20020120188A1 (en) * | 2000-12-21 | 2002-08-29 | Brock David L. | Medical mapping system |
US20020128552A1 (en) * | 1998-11-20 | 2002-09-12 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US20040095507A1 (en) * | 2002-11-18 | 2004-05-20 | Medicapture, Inc. | Apparatus and method for capturing, processing and storing still images captured inline from an analog video stream and storing in a digital format on removable non-volatile memory |
US20040186345A1 (en) * | 1996-02-20 | 2004-09-23 | Computer Motion, Inc. | Medical robotic arm that is attached to an operating table |
US20040261179A1 (en) * | 1999-08-03 | 2004-12-30 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
US6858003B2 (en) * | 1998-11-20 | 2005-02-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US6977675B2 (en) * | 2002-12-30 | 2005-12-20 | Motorola, Inc. | Method and apparatus for virtually expanding a display |
US20070022455A1 (en) * | 2005-07-11 | 2007-01-25 | Takeshi Endou | Image display device, image display method and image display system |
US20070167702A1 (en) * | 2005-12-30 | 2007-07-19 | Intuitive Surgical Inc. | Medical robotic system providing three-dimensional telestration |
US20070265638A1 (en) * | 2001-07-03 | 2007-11-15 | Lipow Kenneth L | Surgical robot and robotic controller |
US20070265495A1 (en) * | 2005-12-15 | 2007-11-15 | Medivision, Inc. | Method and apparatus for field of view tracking |
US20070268246A1 (en) * | 2006-05-17 | 2007-11-22 | Edward Craig Hyatt | Electronic equipment with screen pan and zoom functions using motion |
US20080033240A1 (en) * | 2005-10-20 | 2008-02-07 | Intuitive Surgical Inc. | Auxiliary image display and manipulation on a computer display in a medical robotic system |
US20080234866A1 (en) * | 2007-03-20 | 2008-09-25 | Kosuke Kishi | Master-slave manipulator system |
US20090105785A1 (en) * | 2007-09-26 | 2009-04-23 | Medtronic, Inc. | Therapy program selection |
US20090204261A1 (en) * | 2006-02-17 | 2009-08-13 | Abb Research Ltd. | Industrial robot system |
US20100031186A1 (en) * | 2008-05-28 | 2010-02-04 | Erick Tseng | Accelerated Panning User Interface Interactions |
US20100033588A1 (en) * | 2008-08-05 | 2010-02-11 | Sony Ericsson Mobile Communications Ab | Shadow and reflection identification in image capturing devices |
US20100039350A1 (en) * | 2008-08-15 | 2010-02-18 | Sony Ericsson Mobile Communications Ab | Methods, systems, and computer program products for operating handheld electronic devices including moveable displays and related devices |
US20100039506A1 (en) * | 2008-08-15 | 2010-02-18 | Amir Sarvestani | System for and method of visualizing an interior of body |
US20100097318A1 (en) * | 2000-10-02 | 2010-04-22 | Wehrenberg Paul J | Methods and apparatuses for operating a portable device based on an accelerometer |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179823A (en) | 1978-01-13 | 1979-12-25 | The Singer Company | Real-time simulation of a polygon face object system as viewed by a moving observer |
US4267555A (en) | 1979-06-29 | 1981-05-12 | International Business Machines Corporation | Rotatable raster scan display |
US4542377A (en) | 1982-12-27 | 1985-09-17 | International Business Machines Corporation | Rotatable display work station |
US5293474A (en) | 1989-04-10 | 1994-03-08 | Cirrus Logic, Inc. | System for raster imaging with automatic centering and image compression |
USD321179S (en) | 1989-12-01 | 1991-10-29 | Radius, Inc. | Pivotable display monitor |
EP0439087B1 (en) | 1990-01-25 | 1996-12-11 | Radius Inc. | Method for resizing and moving computer display windows |
US5247612A (en) | 1990-06-29 | 1993-09-21 | Radius Inc. | Pixel display apparatus and method using a first-in, first-out buffer |
US5333029A (en) | 1990-10-12 | 1994-07-26 | Nikon Corporation | Camera capable of detecting eye-gaze |
US5329289A (en) | 1991-04-26 | 1994-07-12 | Sharp Kabushiki Kaisha | Data processor with rotatable display |
AU687045B2 (en) * | 1993-03-31 | 1998-02-19 | Luma Corporation | Managing information in an endoscopy system |
GB9315011D0 (en) * | 1993-07-20 | 1993-09-01 | British Telecomm | Dispersion compensation |
US6208325B1 (en) | 1993-10-01 | 2001-03-27 | Cirrus Logic, Inc. | Image rotation for video displays |
US5912721A (en) | 1996-03-13 | 1999-06-15 | Kabushiki Kaisha Toshiba | Gaze detection apparatus and its method as well as information display apparatus |
GB2315858A (en) | 1996-08-01 | 1998-02-11 | Sharp Kk | System for eye detection and gaze direction determination |
US5831667A (en) | 1996-09-27 | 1998-11-03 | Enhanced Vision Systems | X-Y viewing table and adapter for low vision enhancement systems |
US5986634A (en) | 1996-12-11 | 1999-11-16 | Silicon Light Machines | Display/monitor with orientation dependent rotatable image |
US6618117B2 (en) | 1997-07-12 | 2003-09-09 | Silverbrook Research Pty Ltd | Image sensing apparatus including a microcontroller |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6451027B1 (en) | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
US6208372B1 (en) * | 1999-07-29 | 2001-03-27 | Netergy Networks, Inc. | Remote electromechanical control of a video communications system |
US7037258B2 (en) * | 1999-09-24 | 2006-05-02 | Karl Storz Imaging, Inc. | Image orientation for endoscopic video displays |
US6456262B1 (en) | 2000-05-09 | 2002-09-24 | Intel Corporation | Microdisplay with eye gaze detection |
US6529331B2 (en) | 2001-04-20 | 2003-03-04 | Johns Hopkins University | Head mounted display with full field of view and high resolution |
US6578962B1 (en) | 2001-04-27 | 2003-06-17 | International Business Machines Corporation | Calibration-free eye gaze tracking |
US6779065B2 (en) | 2001-08-31 | 2004-08-17 | Intel Corporation | Mechanism for interrupt handling in computer systems that support concurrent execution of multiple threads |
US6995774B2 (en) | 2002-07-10 | 2006-02-07 | L3 Communications Corporation | Display system and method of diminishing unwanted artifacts |
WO2004040915A1 (en) | 2002-11-01 | 2004-05-13 | Matsushita Electric Industrial Co., Ltd. | Motion picture encoding method and motion picture decoding method |
JP4655991B2 (en) | 2006-04-21 | 2011-03-23 | カシオ計算機株式会社 | Imaging apparatus, electronic zoom method, and program |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US8155479B2 (en) | 2008-03-28 | 2012-04-10 | Intuitive Surgical Operations Inc. | Automated panning and digital zooming for robotic surgical systems |
-
2008
- 2008-03-28 US US12/058,661 patent/US8808164B2/en active Active
-
2014
- 2014-07-14 US US14/330,339 patent/US20140323803A1/en not_active Abandoned
-
2017
- 2017-10-04 US US15/725,153 patent/US10674900B2/en active Active
-
2020
- 2020-04-27 US US16/859,867 patent/US11076748B2/en active Active
-
2021
- 2021-06-28 US US17/361,122 patent/US20210321865A1/en active Pending
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5602566A (en) * | 1993-08-24 | 1997-02-11 | Hitachi, Ltd. | Small-sized information processor capable of scrolling screen in accordance with tilt, and scrolling method therefor |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US6120433A (en) * | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US5836869A (en) * | 1994-12-13 | 1998-11-17 | Olympus Optical Co., Ltd. | Image tracking endoscope system |
US6036637A (en) * | 1994-12-13 | 2000-03-14 | Olympus Optical Co., Ltd. | Treating system utilizing an endoscope |
US20040186345A1 (en) * | 1996-02-20 | 2004-09-23 | Computer Motion, Inc. | Medical robotic arm that is attached to an operating table |
US5971976A (en) * | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US6436107B1 (en) * | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US20010013764A1 (en) * | 1998-08-04 | 2001-08-16 | Blumenkranz Steven J. | Manipulator positioning linkage for robotic surgery |
US20020128552A1 (en) * | 1998-11-20 | 2002-09-12 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6858003B2 (en) * | 1998-11-20 | 2005-02-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US20040261179A1 (en) * | 1999-08-03 | 2004-12-30 | Intuitive Surgical, Inc. | Ceiling and floor mounted surgical robot set-up arms |
US20100097318A1 (en) * | 2000-10-02 | 2010-04-22 | Wehrenberg Paul J | Methods and apparatuses for operating a portable device based on an accelerometer |
US20020120188A1 (en) * | 2000-12-21 | 2002-08-29 | Brock David L. | Medical mapping system |
US20070265638A1 (en) * | 2001-07-03 | 2007-11-15 | Lipow Kenneth L | Surgical robot and robotic controller |
US20040095507A1 (en) * | 2002-11-18 | 2004-05-20 | Medicapture, Inc. | Apparatus and method for capturing, processing and storing still images captured inline from an analog video stream and storing in a digital format on removable non-volatile memory |
US6977675B2 (en) * | 2002-12-30 | 2005-12-20 | Motorola, Inc. | Method and apparatus for virtually expanding a display |
US20070022455A1 (en) * | 2005-07-11 | 2007-01-25 | Takeshi Endou | Image display device, image display method and image display system |
US20080033240A1 (en) * | 2005-10-20 | 2008-02-07 | Intuitive Surgical Inc. | Auxiliary image display and manipulation on a computer display in a medical robotic system |
US20070265495A1 (en) * | 2005-12-15 | 2007-11-15 | Medivision, Inc. | Method and apparatus for field of view tracking |
US20070167702A1 (en) * | 2005-12-30 | 2007-07-19 | Intuitive Surgical Inc. | Medical robotic system providing three-dimensional telestration |
US20090204261A1 (en) * | 2006-02-17 | 2009-08-13 | Abb Research Ltd. | Industrial robot system |
US20070268246A1 (en) * | 2006-05-17 | 2007-11-22 | Edward Craig Hyatt | Electronic equipment with screen pan and zoom functions using motion |
US20080234866A1 (en) * | 2007-03-20 | 2008-09-25 | Kosuke Kishi | Master-slave manipulator system |
US20090105785A1 (en) * | 2007-09-26 | 2009-04-23 | Medtronic, Inc. | Therapy program selection |
US20100031186A1 (en) * | 2008-05-28 | 2010-02-04 | Erick Tseng | Accelerated Panning User Interface Interactions |
US20100033588A1 (en) * | 2008-08-05 | 2010-02-11 | Sony Ericsson Mobile Communications Ab | Shadow and reflection identification in image capturing devices |
US7920179B2 (en) * | 2008-08-05 | 2011-04-05 | Sony Ericsson Mobile Communications Ab | Shadow and reflection identification in image capturing devices |
US20100039350A1 (en) * | 2008-08-15 | 2010-02-18 | Sony Ericsson Mobile Communications Ab | Methods, systems, and computer program products for operating handheld electronic devices including moveable displays and related devices |
US20100039506A1 (en) * | 2008-08-15 | 2010-02-18 | Amir Sarvestani | System for and method of visualizing an interior of body |
Cited By (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11628039B2 (en) | 2006-02-16 | 2023-04-18 | Globus Medical Inc. | Surgical tool systems and methods |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US10172678B2 (en) | 2007-02-16 | 2019-01-08 | Globus Medical, Inc. | Method and system for performing invasive medical procedures using a surgical robot |
US9078685B2 (en) | 2007-02-16 | 2015-07-14 | Globus Medical, Inc. | Method and system for performing invasive medical procedures using a surgical robot |
US9782229B2 (en) | 2007-02-16 | 2017-10-10 | Globus Medical, Inc. | Surgical robot platform |
US10038888B2 (en) | 2008-03-28 | 2018-07-31 | Intuitive Surgical Operations, Inc. | Apparatus for automated panning and zooming in robotic surgical systems |
US10432921B2 (en) | 2008-03-28 | 2019-10-01 | Intuitive Surgical Operations, Inc. | Automated panning in robotic surgical systems based on tool tracking |
US11019329B2 (en) | 2008-03-28 | 2021-05-25 | Intuitive Surgical Operations, Inc. | Automated panning and zooming in teleoperated surgical systems with stereo displays |
US9699445B2 (en) | 2008-03-28 | 2017-07-04 | Intuitive Surgical Operations, Inc. | Apparatus for automated panning and digital zooming in robotic surgical systems |
US11076748B2 (en) | 2008-03-28 | 2021-08-03 | Intuitive Surgical Operations, Inc. | Display monitor control of a telesurgical tool |
US11744648B2 (en) | 2011-04-01 | 2023-09-05 | Globus Medicall, Inc. | Robotic system and method for spinal and other surgeries |
US11202681B2 (en) | 2011-04-01 | 2021-12-21 | Globus Medical, Inc. | Robotic system and method for spinal and other surgeries |
US12096994B2 (en) | 2011-04-01 | 2024-09-24 | KB Medical SA | Robotic system and method for spinal and other surgeries |
US10660712B2 (en) | 2011-04-01 | 2020-05-26 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
US20140187857A1 (en) * | 2012-02-06 | 2014-07-03 | Vantage Surgical Systems Inc. | Apparatus and Methods for Enhanced Visualization and Control in Minimally Invasive Surgery |
US11684437B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US10835328B2 (en) | 2012-06-21 | 2020-11-17 | Globus Medical, Inc. | Surgical robot platform |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US10485617B2 (en) | 2012-06-21 | 2019-11-26 | Globus Medical, Inc. | Surgical robot platform |
US10531927B2 (en) | 2012-06-21 | 2020-01-14 | Globus Medical, Inc. | Methods for performing invasive medical procedures using a surgical robot |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US10639112B2 (en) | 2012-06-21 | 2020-05-05 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11284949B2 (en) | 2012-06-21 | 2022-03-29 | Globus Medical, Inc. | Surgical robot platform |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US12016645B2 (en) | 2012-06-21 | 2024-06-25 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11911225B2 (en) | 2012-06-21 | 2024-02-27 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11819283B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical Inc. | Systems and methods related to robotic guidance in surgery |
US11135022B2 (en) | 2012-06-21 | 2021-10-05 | Globus Medical, Inc. | Surgical robot platform |
US12070285B2 (en) | 2012-06-21 | 2024-08-27 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11103320B2 (en) | 2012-06-21 | 2021-08-31 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US10835326B2 (en) | 2012-06-21 | 2020-11-17 | Globus Medical Inc. | Surgical robot platform |
US11819365B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11744657B2 (en) | 2012-06-21 | 2023-09-05 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US10912617B2 (en) | 2012-06-21 | 2021-02-09 | Globus Medical, Inc. | Surgical robot platform |
US11191598B2 (en) | 2012-06-21 | 2021-12-07 | Globus Medical, Inc. | Surgical robot platform |
US11331153B2 (en) | 2012-06-21 | 2022-05-17 | Globus Medical, Inc. | Surgical robot platform |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US11026756B2 (en) | 2012-06-21 | 2021-06-08 | Globus Medical, Inc. | Surgical robot platform |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11690687B2 (en) | 2012-06-21 | 2023-07-04 | Globus Medical Inc. | Methods for performing medical procedures using a surgical robot |
US11109922B2 (en) | 2012-06-21 | 2021-09-07 | Globus Medical, Inc. | Surgical tool systems and method |
US11684433B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical Inc. | Surgical tool systems and method |
US11684431B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical, Inc. | Surgical robot platform |
US11103317B2 (en) | 2012-06-21 | 2021-08-31 | Globus Medical, Inc. | Surgical robot platform |
US11896363B2 (en) | 2013-03-15 | 2024-02-13 | Globus Medical Inc. | Surgical robot platform |
US10813704B2 (en) | 2013-10-04 | 2020-10-27 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
CN104688347A (en) * | 2013-12-09 | 2015-06-10 | 韩商未来股份有限公司 | Surgical robot system and method for controlling surgical robot system |
US11737766B2 (en) | 2014-01-15 | 2023-08-29 | Globus Medical Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
US10939968B2 (en) | 2014-02-11 | 2021-03-09 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
US10398521B2 (en) * | 2014-03-17 | 2019-09-03 | Intuitive Surgical Operations, Inc. | System and method for recentering imaging devices and input controls |
US11246671B2 (en) | 2014-03-17 | 2022-02-15 | Intuitive Surgical Operations, Inc. | Systems and methods for recentering input controls |
US20170000574A1 (en) * | 2014-03-17 | 2017-01-05 | Intuitive Surgical Operations, Inc. | System and method for recentering imaging devices and input controls |
US11793583B2 (en) | 2014-04-24 | 2023-10-24 | Globus Medical Inc. | Surgical instrument holder for use with a robotic surgical system |
US10292778B2 (en) | 2014-04-24 | 2019-05-21 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
US10828116B2 (en) | 2014-04-24 | 2020-11-10 | Kb Medical, Sa | Surgical instrument holder for use with a robotic surgical system |
US10945742B2 (en) | 2014-07-14 | 2021-03-16 | Globus Medical Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
US20170354469A1 (en) * | 2014-11-13 | 2017-12-14 | Kuka Roboter Gmbh | System With A Medical Instrument And A Recording Means |
DE102014016843A1 (en) * | 2014-11-13 | 2016-05-19 | Kuka Roboter Gmbh | System with a medical instrument and a receiving means |
US10646287B2 (en) | 2014-11-13 | 2020-05-12 | Kuka Deutschland Gmbh | System with a medical instrument and a recording means |
US11062522B2 (en) | 2015-02-03 | 2021-07-13 | Global Medical Inc | Surgeon head-mounted display apparatuses |
US10580217B2 (en) | 2015-02-03 | 2020-03-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
US11266470B2 (en) | 2015-02-18 | 2022-03-08 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
US12076095B2 (en) | 2015-02-18 | 2024-09-03 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
US10925681B2 (en) | 2015-07-31 | 2021-02-23 | Globus Medical Inc. | Robot arm and methods of use |
US11672622B2 (en) | 2015-07-31 | 2023-06-13 | Globus Medical, Inc. | Robot arm and methods of use |
US11337769B2 (en) | 2015-07-31 | 2022-05-24 | Globus Medical, Inc. | Robot arm and methods of use |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US10786313B2 (en) | 2015-08-12 | 2020-09-29 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US11751950B2 (en) | 2015-08-12 | 2023-09-12 | Globus Medical Inc. | Devices and methods for temporary mounting of parts to bone |
CN105012023A (en) * | 2015-08-19 | 2015-11-04 | 哈尔滨工业大学 | Instrument holding mechanical arm used for minimally-invasive robot |
US11872000B2 (en) | 2015-08-31 | 2024-01-16 | Globus Medical, Inc | Robotic surgical systems and methods |
US10973594B2 (en) | 2015-09-14 | 2021-04-13 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US11066090B2 (en) | 2015-10-13 | 2021-07-20 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US10569794B2 (en) | 2015-10-13 | 2020-02-25 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US11801022B2 (en) | 2016-02-03 | 2023-10-31 | Globus Medical, Inc. | Portable medical imaging system |
US10687779B2 (en) | 2016-02-03 | 2020-06-23 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US10849580B2 (en) | 2016-02-03 | 2020-12-01 | Globus Medical Inc. | Portable medical imaging system |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US12016714B2 (en) | 2016-02-03 | 2024-06-25 | Globus Medical Inc. | Portable medical imaging system |
US11523784B2 (en) | 2016-02-03 | 2022-12-13 | Globus Medical, Inc. | Portable medical imaging system |
US11986333B2 (en) | 2016-02-03 | 2024-05-21 | Globus Medical Inc. | Portable medical imaging system |
US11033338B2 (en) | 2016-02-24 | 2021-06-15 | Sony Corporation | Medical information processing apparatus, information processing method, and medical information processing system |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
US12044552B2 (en) | 2016-03-14 | 2024-07-23 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
US11920957B2 (en) | 2016-03-14 | 2024-03-05 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
CN105686883A (en) * | 2016-03-14 | 2016-06-22 | 昆山邦泰汽车零部件制造有限公司 | Redundant-freedom-degree laparoscope-holding mechanical arm |
US11668588B2 (en) | 2016-03-14 | 2023-06-06 | Globus Medical Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
US11974886B2 (en) | 2016-04-11 | 2024-05-07 | Globus Medical Inc. | Surgical tool systems and methods |
US11529195B2 (en) | 2017-01-18 | 2022-12-20 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
US11779408B2 (en) | 2017-01-18 | 2023-10-10 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
US11813030B2 (en) | 2017-03-16 | 2023-11-14 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
US11771499B2 (en) | 2017-07-21 | 2023-10-03 | Globus Medical Inc. | Robot surgical platform |
US11253320B2 (en) | 2017-07-21 | 2022-02-22 | Globus Medical Inc. | Robot surgical platform |
US12102406B2 (en) | 2017-10-25 | 2024-10-01 | Intuitive Surgical Operations, Inc. | System and method for repositioning input control devices |
US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US11786144B2 (en) | 2017-11-10 | 2023-10-17 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
EP3737326A4 (en) * | 2018-01-10 | 2021-12-29 | Covidien LP | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
US12029510B2 (en) | 2018-01-10 | 2024-07-09 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
US10646283B2 (en) | 2018-02-19 | 2020-05-12 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US11100668B2 (en) | 2018-04-09 | 2021-08-24 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US11694355B2 (en) | 2018-04-09 | 2023-07-04 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
US11832863B2 (en) | 2018-11-05 | 2023-12-05 | Globus Medical, Inc. | Compliant orthopedic driver |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11751927B2 (en) | 2018-11-05 | 2023-09-12 | Globus Medical Inc. | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11969224B2 (en) | 2018-12-04 | 2024-04-30 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
DE102019201277A1 (en) * | 2019-01-31 | 2020-08-06 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Device for guiding a medical flexible shaft |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11744598B2 (en) | 2019-03-22 | 2023-09-05 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11944325B2 (en) | 2019-03-22 | 2024-04-02 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11737696B2 (en) | 2019-03-22 | 2023-08-29 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11850012B2 (en) | 2019-03-22 | 2023-12-26 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US12076097B2 (en) | 2019-07-10 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11844532B2 (en) | 2019-10-14 | 2023-12-19 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11690697B2 (en) | 2020-02-19 | 2023-07-04 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US12115028B2 (en) | 2020-05-08 | 2024-10-15 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11838493B2 (en) | 2020-05-08 | 2023-12-05 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11839435B2 (en) | 2020-05-08 | 2023-12-12 | Globus Medical, Inc. | Extended reality headset tool tracking and control |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11890122B2 (en) | 2020-09-24 | 2024-02-06 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
USD1022197S1 (en) | 2020-11-19 | 2024-04-09 | Auris Health, Inc. | Endoscope |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11850009B2 (en) | 2021-07-06 | 2023-12-26 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US11622794B2 (en) | 2021-07-22 | 2023-04-11 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US11918304B2 (en) | 2021-12-20 | 2024-03-05 | Globus Medical, Inc | Flat panel registration fixture and method of using same |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
US12127803B2 (en) | 2023-01-05 | 2024-10-29 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US12121240B2 (en) | 2023-11-01 | 2024-10-22 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
US12121278B2 (en) | 2023-12-05 | 2024-10-22 | Globus Medical, Inc. | Compliant orthopedic driver |
Also Published As
Publication number | Publication date |
---|---|
US10674900B2 (en) | 2020-06-09 |
US11076748B2 (en) | 2021-08-03 |
US20090248036A1 (en) | 2009-10-01 |
US20180028054A1 (en) | 2018-02-01 |
US20200323423A1 (en) | 2020-10-15 |
US8808164B2 (en) | 2014-08-19 |
US20210321865A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11076748B2 (en) | Display monitor control of a telesurgical tool | |
US11019329B2 (en) | Automated panning and zooming in teleoperated surgical systems with stereo displays | |
US11865729B2 (en) | Tool position and identification indicator displayed in a boundary area of a computer display screen | |
JP7248554B2 (en) | Systems and methods for controlling the orientation of an imaging instrument | |
JP4172816B2 (en) | Remote operation method and system with a sense of reality | |
CN102892372B (en) | Telepresence system including the go-cart supporting robot face and suspension video camera | |
US20110050852A1 (en) | Stereo telestration for robotic surgery | |
Breedveld et al. | Theoretical background and conceptual solution for depth perception and eye-hand coordination problems in laparoscopic surgery | |
US12042236B2 (en) | Touchscreen user interface for interacting with a virtual model | |
JP2022514635A (en) | Endoscope with dual image sensors | |
US12102391B2 (en) | System and method for registration and coordinated manipulation of augmented reality image components | |
US20230139425A1 (en) | Systems and methods for optimizing configurations of a computer-assisted surgical system for reachability of target objects | |
CN116546931A (en) | Techniques for adjusting a field of view of an imaging device based on head movement of an operator | |
KR20230029999A (en) | Systems and methods for rendering onscreen identification of instruments in a teleoperational medical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |