US20140322635A1 - Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component - Google Patents
Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component Download PDFInfo
- Publication number
- US20140322635A1 US20140322635A1 US14/364,498 US201214364498A US2014322635A1 US 20140322635 A1 US20140322635 A1 US 20140322635A1 US 201214364498 A US201214364498 A US 201214364498A US 2014322635 A1 US2014322635 A1 US 2014322635A1
- Authority
- US
- United States
- Prior art keywords
- photosensitive resin
- group
- resin composition
- component
- preferable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 229920005989 resin Polymers 0.000 claims abstract description 92
- 239000011347 resin Substances 0.000 claims abstract description 92
- -1 nitrogen-containing aromatic compound Chemical class 0.000 claims abstract description 77
- 150000001875 compounds Chemical class 0.000 claims abstract description 68
- 239000002253 acid Substances 0.000 claims abstract description 24
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 10
- 125000003277 amino group Chemical group 0.000 claims abstract description 8
- 229910052799 carbon Chemical group 0.000 claims abstract description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 4
- 239000010410 layer Substances 0.000 claims description 113
- 239000000758 substrate Substances 0.000 claims description 54
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 40
- 239000005011 phenolic resin Substances 0.000 claims description 37
- 150000002989 phenols Chemical class 0.000 claims description 34
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 32
- 239000007864 aqueous solution Substances 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 27
- 239000003513 alkali Substances 0.000 claims description 26
- 239000011229 interlayer Substances 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 150000008065 acid anhydrides Chemical class 0.000 claims description 17
- 150000007519 polyprotic acids Polymers 0.000 claims description 16
- 125000000962 organic group Chemical group 0.000 claims description 12
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical group O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 claims description 10
- 229910000077 silane Inorganic materials 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 50
- 239000004065 semiconductor Substances 0.000 description 38
- 150000002430 hydrocarbons Chemical group 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000004090 dissolution Methods 0.000 description 18
- 230000035945 sensitivity Effects 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 17
- 230000035939 shock Effects 0.000 description 17
- 239000000178 monomer Substances 0.000 description 16
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 16
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 15
- 229920001971 elastomer Polymers 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000004020 conductor Substances 0.000 description 14
- 239000000806 elastomer Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 125000000217 alkyl group Chemical group 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 235000019198 oils Nutrition 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 11
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001723 curing Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 150000001299 aldehydes Chemical class 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 7
- 235000015112 vegetable and seed oil Nutrition 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 6
- 239000008158 vegetable oil Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- JESXATFQYMPTNL-UHFFFAOYSA-N mono-hydroxyphenyl-ethylene Natural products OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 5
- 238000006068 polycondensation reaction Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 5
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- XOYZYOURGXJJOC-UHFFFAOYSA-N bis(2-tert-butylphenyl)iodanium Chemical class CC(C)(C)C1=CC=CC=C1[I+]C1=CC=CC=C1C(C)(C)C XOYZYOURGXJJOC-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- VPVSTMAPERLKKM-UHFFFAOYSA-N glycoluril Chemical compound N1C(=O)NC2NC(=O)NC21 VPVSTMAPERLKKM-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000000944 linseed oil Substances 0.000 description 4
- 235000021388 linseed oil Nutrition 0.000 description 4
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 4
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000011415 microwave curing Methods 0.000 description 4
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 4
- 125000004482 piperidin-4-yl group Chemical group N1CCC(CC1)* 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- NWPIOULNZLJZHU-UHFFFAOYSA-N (1,2,2,6,6-pentamethylpiperidin-4-yl) 2-methylprop-2-enoate Chemical compound CN1C(C)(C)CC(OC(=O)C(C)=C)CC1(C)C NWPIOULNZLJZHU-UHFFFAOYSA-N 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 3
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XLLXMBCBJGATSP-UHFFFAOYSA-N 2-phenylethenol Chemical compound OC=CC1=CC=CC=C1 XLLXMBCBJGATSP-UHFFFAOYSA-N 0.000 description 3
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 3
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 3
- WXYSZTISEJBRHW-UHFFFAOYSA-N 4-[2-[4-[1,1-bis(4-hydroxyphenyl)ethyl]phenyl]propan-2-yl]phenol Chemical compound C=1C=C(C(C)(C=2C=CC(O)=CC=2)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 WXYSZTISEJBRHW-UHFFFAOYSA-N 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 125000005520 diaryliodonium group Chemical group 0.000 description 3
- GMEXDATVSHAMEP-UHFFFAOYSA-N dimethyl(phenyl)sulfanium Chemical class C[S+](C)C1=CC=CC=C1 GMEXDATVSHAMEP-UHFFFAOYSA-N 0.000 description 3
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical class C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 3
- ORKZATPRQQSLDT-UHFFFAOYSA-N diphenylmethanethiol Chemical class C=1C=CC=CC=1C(S)C1=CC=CC=C1 ORKZATPRQQSLDT-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229940014800 succinic anhydride Drugs 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 3
- NRZWQKGABZFFKE-UHFFFAOYSA-N trimethylsulfonium Chemical class C[S+](C)C NRZWQKGABZFFKE-UHFFFAOYSA-N 0.000 description 3
- 239000002383 tung oil Substances 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- UFLXKQBCEYNCDU-UHFFFAOYSA-N (2,2,6,6-tetramethylpiperidin-4-yl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CC(C)(C)NC(C)(C)C1 UFLXKQBCEYNCDU-UHFFFAOYSA-N 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- 125000004484 1-methylpiperidin-4-yl group Chemical group CN1CCC(CC1)* 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- OGRAOKJKVGDSFR-UHFFFAOYSA-N 2,3,5-trimethylphenol Chemical compound CC1=CC(C)=C(C)C(O)=C1 OGRAOKJKVGDSFR-UHFFFAOYSA-N 0.000 description 2
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 2
- NKTOLZVEWDHZMU-UHFFFAOYSA-N 2,5-xylenol Chemical compound CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- PETRWTHZSKVLRE-UHFFFAOYSA-N 2-Methoxy-4-methylphenol Chemical compound COC1=CC(C)=CC=C1O PETRWTHZSKVLRE-UHFFFAOYSA-N 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 2
- GJYCVCVHRSWLNY-UHFFFAOYSA-N 2-butylphenol Chemical compound CCCCC1=CC=CC=C1O GJYCVCVHRSWLNY-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- BNCADMBVWNPPIZ-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n,6-n-hexakis(methoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound COCN(COC)C1=NC(N(COC)COC)=NC(N(COC)COC)=N1 BNCADMBVWNPPIZ-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- FDQQNNZKEJIHMS-UHFFFAOYSA-N 3,4,5-trimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1C FDQQNNZKEJIHMS-UHFFFAOYSA-N 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N 3,4-xylenol Chemical compound CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- TUAMRELNJMMDMT-UHFFFAOYSA-N 3,5-xylenol Chemical compound CC1=CC(C)=CC(O)=C1 TUAMRELNJMMDMT-UHFFFAOYSA-N 0.000 description 2
- HMNKTRSOROOSPP-UHFFFAOYSA-N 3-Ethylphenol Chemical compound CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 2
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- BRPSWMCDEYMRPE-UHFFFAOYSA-N 4-[1,1-bis(4-hydroxyphenyl)ethyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=C(O)C=C1 BRPSWMCDEYMRPE-UHFFFAOYSA-N 0.000 description 2
- WFCQTAXSWSWIHS-UHFFFAOYSA-N 4-[bis(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 WFCQTAXSWSWIHS-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- NGSWKAQJJWESNS-UHFFFAOYSA-N 4-coumaric acid Chemical compound OC(=O)C=CC1=CC=C(O)C=C1 NGSWKAQJJWESNS-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- XQXPVVBIMDBYFF-UHFFFAOYSA-N 4-hydroxyphenylacetic acid Chemical compound OC(=O)CC1=CC=C(O)C=C1 XQXPVVBIMDBYFF-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 235000019498 Walnut oil Nutrition 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 229940118056 cresol / formaldehyde Drugs 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 2
- 229960004232 linoleic acid Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 125000005409 triarylsulfonium group Chemical group 0.000 description 2
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008170 walnut oil Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GWHCXVQVJPWHRF-KTKRTIGZSA-N (15Z)-tetracosenoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-KTKRTIGZSA-N 0.000 description 1
- XEDWWPGWIXPVRQ-UHFFFAOYSA-N (2,3,4-trihydroxyphenyl)-(3,4,5-trihydroxyphenyl)methanone Chemical compound OC1=C(O)C(O)=CC=C1C(=O)C1=CC(O)=C(O)C(O)=C1 XEDWWPGWIXPVRQ-UHFFFAOYSA-N 0.000 description 1
- SLKJWNJPOGWYLH-UHFFFAOYSA-N (2,3-dihydroxyphenyl)-(2,3,4-trihydroxyphenyl)methanone Chemical compound OC1=CC=CC(C(=O)C=2C(=C(O)C(O)=CC=2)O)=C1O SLKJWNJPOGWYLH-UHFFFAOYSA-N 0.000 description 1
- MHKDCMPFNKSQAJ-UHFFFAOYSA-N (2-hydroxyphenyl) 2-oxoacetate Chemical compound OC1=CC=CC=C1OC(=O)C=O MHKDCMPFNKSQAJ-UHFFFAOYSA-N 0.000 description 1
- RJHSCCZVRVXSEF-UHFFFAOYSA-N (2-hydroxyphenyl) benzoate Chemical compound OC1=CC=CC=C1OC(=O)C1=CC=CC=C1 RJHSCCZVRVXSEF-UHFFFAOYSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- ZRDYULMDEGRWRC-UHFFFAOYSA-N (4-hydroxyphenyl)-(2,3,4-trihydroxyphenyl)methanone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C(O)=C1O ZRDYULMDEGRWRC-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- CUXYLFPMQMFGPL-UHFFFAOYSA-N (9Z,11E,13E)-9,11,13-Octadecatrienoic acid Natural products CCCCC=CC=CC=CCCCCCCCC(O)=O CUXYLFPMQMFGPL-UHFFFAOYSA-N 0.000 description 1
- JXNPEDYJTDQORS-HZJYTTRNSA-N (9Z,12Z)-octadecadien-1-ol Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCO JXNPEDYJTDQORS-HZJYTTRNSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- CDUQMGQIHYISOP-RMKNXTFCSA-N (e)-2-cyano-3-phenylprop-2-enoic acid Chemical compound OC(=O)C(\C#N)=C\C1=CC=CC=C1 CDUQMGQIHYISOP-RMKNXTFCSA-N 0.000 description 1
- FWUIHQFQLSWYED-ARJAWSKDSA-N (z)-4-oxo-4-propan-2-yloxybut-2-enoic acid Chemical compound CC(C)OC(=O)\C=C/C(O)=O FWUIHQFQLSWYED-ARJAWSKDSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- GQNTZAWVZSKJKE-UHFFFAOYSA-N 1,1,3,3-tetrakis(methoxymethyl)urea Chemical compound COCN(COC)C(=O)N(COC)COC GQNTZAWVZSKJKE-UHFFFAOYSA-N 0.000 description 1
- FQERLIOIVXPZKH-UHFFFAOYSA-N 1,2,4-trioxane Chemical compound C1COOCO1 FQERLIOIVXPZKH-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- HTQNYBBTZSBWKL-UHFFFAOYSA-N 2,3,4-trihydroxbenzophenone Chemical compound OC1=C(O)C(O)=CC=C1C(=O)C1=CC=CC=C1 HTQNYBBTZSBWKL-UHFFFAOYSA-N 0.000 description 1
- KUFFULVDNCHOFZ-UHFFFAOYSA-N 2,4-xylenol Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GEQWCUVIQMRCAZ-UHFFFAOYSA-N 2-(4-hydroxyphenyl)butanoic acid Chemical compound CCC(C(O)=O)C1=CC=C(O)C=C1 GEQWCUVIQMRCAZ-UHFFFAOYSA-N 0.000 description 1
- YCCILVSKPBXVIP-UHFFFAOYSA-N 2-(4-hydroxyphenyl)ethanol Chemical compound OCCC1=CC=C(O)C=C1 YCCILVSKPBXVIP-UHFFFAOYSA-N 0.000 description 1
- IXQGCWUGDFDQMF-UHFFFAOYSA-N 2-Ethylphenol Chemical compound CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 1
- PKZJLOCLABXVMC-UHFFFAOYSA-N 2-Methoxybenzaldehyde Chemical compound COC1=CC=CC=C1C=O PKZJLOCLABXVMC-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- FMCWGKXGRNQNLD-UHFFFAOYSA-N 2-[3,5-bis(2-hydroxypropan-2-yl)phenyl]propan-2-ol Chemical compound CC(C)(O)C1=CC(C(C)(C)O)=CC(C(C)(C)O)=C1 FMCWGKXGRNQNLD-UHFFFAOYSA-N 0.000 description 1
- QIRNGVVZBINFMX-UHFFFAOYSA-N 2-allylphenol Chemical compound OC1=CC=CC=C1CC=C QIRNGVVZBINFMX-UHFFFAOYSA-N 0.000 description 1
- KZLDGFZCFRXUIB-UHFFFAOYSA-N 2-amino-4-(3-amino-4-hydroxyphenyl)phenol Chemical group C1=C(O)C(N)=CC(C=2C=C(N)C(O)=CC=2)=C1 KZLDGFZCFRXUIB-UHFFFAOYSA-N 0.000 description 1
- KECOIASOKMSRFT-UHFFFAOYSA-N 2-amino-4-(3-amino-4-hydroxyphenyl)sulfonylphenol Chemical compound C1=C(O)C(N)=CC(S(=O)(=O)C=2C=C(N)C(O)=CC=2)=C1 KECOIASOKMSRFT-UHFFFAOYSA-N 0.000 description 1
- MSTZGVRUOMBULC-UHFFFAOYSA-N 2-amino-4-[2-(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phenol Chemical compound C1=C(O)C(N)=CC(C(C=2C=C(N)C(O)=CC=2)(C(F)(F)F)C(F)(F)F)=C1 MSTZGVRUOMBULC-UHFFFAOYSA-N 0.000 description 1
- UHIDYCYNRPVZCK-UHFFFAOYSA-N 2-amino-4-[2-(3-amino-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(N)=CC=1C(C)(C)C1=CC=C(O)C(N)=C1 UHIDYCYNRPVZCK-UHFFFAOYSA-N 0.000 description 1
- ZGDMDBHLKNQPSD-UHFFFAOYSA-N 2-amino-5-(4-amino-3-hydroxyphenyl)phenol Chemical group C1=C(O)C(N)=CC=C1C1=CC=C(N)C(O)=C1 ZGDMDBHLKNQPSD-UHFFFAOYSA-N 0.000 description 1
- KHAFBBNQUOEYHB-UHFFFAOYSA-N 2-amino-5-(4-amino-3-hydroxyphenyl)sulfonylphenol Chemical compound C1=C(O)C(N)=CC=C1S(=O)(=O)C1=CC=C(N)C(O)=C1 KHAFBBNQUOEYHB-UHFFFAOYSA-N 0.000 description 1
- ZDRNVPNSQJRIRN-UHFFFAOYSA-N 2-amino-5-[2-(4-amino-3-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phenol Chemical compound C1=C(O)C(N)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(N)C(O)=C1 ZDRNVPNSQJRIRN-UHFFFAOYSA-N 0.000 description 1
- JDFAWEKPFLGRAK-UHFFFAOYSA-N 2-amino-5-[2-(4-amino-3-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(N)C(O)=CC=1C(C)(C)C1=CC=C(N)C(O)=C1 JDFAWEKPFLGRAK-UHFFFAOYSA-N 0.000 description 1
- CDMGNVWZXRKJNS-UHFFFAOYSA-N 2-benzylphenol Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1 CDMGNVWZXRKJNS-UHFFFAOYSA-N 0.000 description 1
- RIGHPXPUHJFRHG-UHFFFAOYSA-N 2-chloro-2-phenylacetaldehyde Chemical compound O=CC(Cl)C1=CC=CC=C1 RIGHPXPUHJFRHG-UHFFFAOYSA-N 0.000 description 1
- QSKPIOLLBIHNAC-UHFFFAOYSA-N 2-chloro-acetaldehyde Chemical compound ClCC=O QSKPIOLLBIHNAC-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- JCISRQNKHZNVHJ-UHFFFAOYSA-N 2-hydroxy-2-phenylacetaldehyde Chemical compound O=CC(O)C1=CC=CC=C1 JCISRQNKHZNVHJ-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- YIUPEMZFEIYROV-UHFFFAOYSA-N 2-methoxy-2-phenylacetaldehyde Chemical compound COC(C=O)C1=CC=CC=C1 YIUPEMZFEIYROV-UHFFFAOYSA-N 0.000 description 1
- GVSTYPOYHNVKHY-UHFFFAOYSA-N 2-methoxybutanoic acid Chemical compound CCC(OC)C(O)=O GVSTYPOYHNVKHY-UHFFFAOYSA-N 0.000 description 1
- VOKUMXABRRXHAR-UHFFFAOYSA-N 2-methyl-3-oxopropanoic acid Chemical compound O=CC(C)C(O)=O VOKUMXABRRXHAR-UHFFFAOYSA-N 0.000 description 1
- HULXHFBCDAMNOZ-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n,6-n-hexakis(butoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound CCCCOCN(COCCCC)C1=NC(N(COCCCC)COCCCC)=NC(N(COCCCC)COCCCC)=N1 HULXHFBCDAMNOZ-UHFFFAOYSA-N 0.000 description 1
- XYJFAQCWRMHWFT-UHFFFAOYSA-N 2-sulfonylnaphthalene-1,4-dione Chemical class S(=O)(=O)=C1C(C2=CC=CC=C2C(C1)=O)=O XYJFAQCWRMHWFT-UHFFFAOYSA-N 0.000 description 1
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 236TMPh Natural products CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 1
- OLQWMCSSZKNOLQ-UHFFFAOYSA-N 3-(2,5-dioxooxolan-3-yl)oxolane-2,5-dione Chemical compound O=C1OC(=O)CC1C1C(=O)OC(=O)C1 OLQWMCSSZKNOLQ-UHFFFAOYSA-N 0.000 description 1
- AKNULLWISZQWNS-UHFFFAOYSA-N 3-(2-hydroxyethyl)-2-methylphenol Chemical compound CC1=C(O)C=CC=C1CCO AKNULLWISZQWNS-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- NJCVPQRHRKYSAZ-UHFFFAOYSA-N 3-(4-Hydroxyphenyl)-1-propanol Chemical compound OCCCC1=CC=C(O)C=C1 NJCVPQRHRKYSAZ-UHFFFAOYSA-N 0.000 description 1
- OXTNCQMOKLOUAM-UHFFFAOYSA-N 3-Oxoglutaric acid Chemical compound OC(=O)CC(=O)CC(O)=O OXTNCQMOKLOUAM-UHFFFAOYSA-N 0.000 description 1
- 229940018563 3-aminophenol Drugs 0.000 description 1
- MQSXUKPGWMJYBT-UHFFFAOYSA-N 3-butylphenol Chemical compound CCCCC1=CC=CC(O)=C1 MQSXUKPGWMJYBT-UHFFFAOYSA-N 0.000 description 1
- YMRNNXFGMKFZPK-UHFFFAOYSA-N 3-hydroxy-2-phenoxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1OC1=CC=CC=C1 YMRNNXFGMKFZPK-UHFFFAOYSA-N 0.000 description 1
- DSUYDXCCZCHMQF-UHFFFAOYSA-N 3-hydroxy-2-phenylbenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1C1=CC=CC=C1 DSUYDXCCZCHMQF-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- OAKURXIZZOAYBC-UHFFFAOYSA-N 3-oxopropanoic acid Chemical compound OC(=O)CC=O OAKURXIZZOAYBC-UHFFFAOYSA-N 0.000 description 1
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- ICNFHJVPAJKPHW-UHFFFAOYSA-N 4,4'-Thiodianiline Chemical compound C1=CC(N)=CC=C1SC1=CC=C(N)C=C1 ICNFHJVPAJKPHW-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- PIFPCDRPHCQLSJ-WYIJOVFWSA-N 4,8,12,15,19-Docosapentaenoic acid Chemical compound CC\C=C\CC\C=C\C\C=C\CC\C=C\CC\C=C\CCC(O)=O PIFPCDRPHCQLSJ-WYIJOVFWSA-N 0.000 description 1
- QWEDBUUPMLVCDP-UHFFFAOYSA-N 4-(4-hydroxybutyl)phenol Chemical compound OCCCCC1=CC=C(O)C=C1 QWEDBUUPMLVCDP-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- NBLFJUWXERDUEN-UHFFFAOYSA-N 4-[(2,3,4-trihydroxyphenyl)methyl]benzene-1,2,3-triol Chemical compound OC1=C(O)C(O)=CC=C1CC1=CC=C(O)C(O)=C1O NBLFJUWXERDUEN-UHFFFAOYSA-N 0.000 description 1
- NYIWTDSCYULDTJ-UHFFFAOYSA-N 4-[2-(2,3,4-trihydroxyphenyl)propan-2-yl]benzene-1,2,3-triol Chemical compound C=1C=C(O)C(O)=C(O)C=1C(C)(C)C1=CC=C(O)C(O)=C1O NYIWTDSCYULDTJ-UHFFFAOYSA-N 0.000 description 1
- KATHZKOXTKAHQL-UHFFFAOYSA-N 4-[[4-hydroxy-3,5-bis(methoxymethyl)phenyl]methyl]-2,6-bis(methoxymethyl)phenol Chemical compound COCC1=C(O)C(COC)=CC(CC=2C=C(COC)C(O)=C(COC)C=2)=C1 KATHZKOXTKAHQL-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-M 4-hydroxybenzoate Chemical compound OC1=CC=C(C([O-])=O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-M 0.000 description 1
- 125000006181 4-methyl benzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])C([H])([H])* 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- JPXMEXHMWFGLEO-UHFFFAOYSA-N 5,10-dimethyl-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrol Chemical compound OC1=CC(O)=C2C(C)C3C(C=C(O)C=C4O)=C4C(C)C3C2=C1 JPXMEXHMWFGLEO-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- XZGLNCKSNVGDNX-UHFFFAOYSA-N 5-methyl-2h-tetrazole Chemical compound CC=1N=NNN=1 XZGLNCKSNVGDNX-UHFFFAOYSA-N 0.000 description 1
- MGTZCLMLSSAXLD-UHFFFAOYSA-N 5-oxohexanoic acid Chemical compound CC(=O)CCCC(O)=O MGTZCLMLSSAXLD-UHFFFAOYSA-N 0.000 description 1
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UHFFFAOYSA-N 826-62-0 Chemical compound C1C2C3C(=O)OC(=O)C3C1C=C2 KNDQHSIWLOJIGP-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 244000226021 Anacardium occidentale Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- PIFPCDRPHCQLSJ-UHFFFAOYSA-N Clupanodonic acid Natural products CCC=CCCC=CCC=CCCC=CCCC=CCCC(O)=O PIFPCDRPHCQLSJ-UHFFFAOYSA-N 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- OPGOLNDOMSBSCW-CLNHMMGSSA-N Fursultiamine hydrochloride Chemical compound Cl.C1CCOC1CSSC(\CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N OPGOLNDOMSBSCW-CLNHMMGSSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000001549 Ipomoea eriocarpa Species 0.000 description 1
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- XJXROGWVRIJYMO-SJDLZYGOSA-N Nervonic acid Natural products O=C(O)[C@@H](/C=C/CCCCCCCC)CCCCCCCCCCCC XJXROGWVRIJYMO-SJDLZYGOSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- QHWKHLYUUZGSCW-UHFFFAOYSA-N Tetrabromophthalic anhydride Chemical compound BrC1=C(Br)C(Br)=C2C(=O)OC(=O)C2=C1Br QHWKHLYUUZGSCW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- RGUYBCFEQGVKBV-UHFFFAOYSA-N [4-[3,4-bis(hydroxymethyl)phenoxy]-2-(hydroxymethyl)phenyl]methanol Chemical compound C1=C(CO)C(CO)=CC=C1OC1=CC=C(CO)C(CO)=C1 RGUYBCFEQGVKBV-UHFFFAOYSA-N 0.000 description 1
- IUBMTLKTDZQUBG-UHFFFAOYSA-N [4-[diethyl(hydroxy)silyl]phenyl]-diethyl-hydroxysilane Chemical compound CC[Si](O)(CC)C1=CC=C([Si](O)(CC)CC)C=C1 IUBMTLKTDZQUBG-UHFFFAOYSA-N 0.000 description 1
- XHWWBQNCFZGYKO-UHFFFAOYSA-N [4-[dihydroxy(methyl)silyl]phenyl]-dihydroxy-methylsilane Chemical compound C[Si](O)(O)C1=CC=C([Si](C)(O)O)C=C1 XHWWBQNCFZGYKO-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- CUXYLFPMQMFGPL-SUTYWZMXSA-N all-trans-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C\CCCCCCCC(O)=O CUXYLFPMQMFGPL-SUTYWZMXSA-N 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- WXNRYSGJLQFHBR-UHFFFAOYSA-N bis(2,4-dihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1O WXNRYSGJLQFHBR-UHFFFAOYSA-N 0.000 description 1
- RXJOJBFXAIQIGT-UHFFFAOYSA-N bis(4-tert-butylphenyl)iodanium;nitrate Chemical compound [O-][N+]([O-])=O.C1=CC(C(C)(C)C)=CC=C1[I+]C1=CC=C(C(C)(C)C)C=C1 RXJOJBFXAIQIGT-UHFFFAOYSA-N 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 239000004842 bisphenol F epoxy resin Substances 0.000 description 1
- LOAHSXWXMKGELU-UHFFFAOYSA-N butoxy-hydroxy-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](O)(OCCCC)C1=CC=CC=C1 LOAHSXWXMKGELU-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- LDOKGSQCTMGUCO-UHFFFAOYSA-N butyl-ethyl-hydroxy-phenylsilane Chemical compound CCCC[Si](O)(CC)C1=CC=CC=C1 LDOKGSQCTMGUCO-UHFFFAOYSA-N 0.000 description 1
- GEEVFOWFGFZMKW-UHFFFAOYSA-N butyl-hydroxy-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](O)(CCCC)C1=CC=CC=C1 GEEVFOWFGFZMKW-UHFFFAOYSA-N 0.000 description 1
- JZQYTILZARPJMT-UHFFFAOYSA-N butyl-hydroxy-methyl-phenylsilane Chemical compound CCCC[Si](C)(O)C1=CC=CC=C1 JZQYTILZARPJMT-UHFFFAOYSA-N 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- GWHCXVQVJPWHRF-UHFFFAOYSA-N cis-tetracosenoic acid Natural products CCCCCCCCC=CCCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- STZIXLPVKZUAMV-UHFFFAOYSA-N cyclopentane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC1(C(O)=O)C(O)=O STZIXLPVKZUAMV-UHFFFAOYSA-N 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- UJPSLBWRTYKBLG-UHFFFAOYSA-N dibutyl-[4-[dibutyl(hydroxy)silyl]phenyl]-hydroxysilane Chemical compound CCCC[Si](O)(CCCC)C1=CC=C([Si](O)(CCCC)CCCC)C=C1 UJPSLBWRTYKBLG-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- FLISWPFVWWWNNP-BQYQJAHWSA-N dihydro-3-(1-octenyl)-2,5-furandione Chemical compound CCCCCC\C=C\C1CC(=O)OC1=O FLISWPFVWWWNNP-BQYQJAHWSA-N 0.000 description 1
- OLLFKUHHDPMQFR-UHFFFAOYSA-N dihydroxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](O)(O)C1=CC=CC=C1 OLLFKUHHDPMQFR-UHFFFAOYSA-N 0.000 description 1
- XGUNOBQJSJSFLG-UHFFFAOYSA-N dihydroxy-(2-methylpropyl)-phenylsilane Chemical compound CC(C)C[Si](O)(O)C1=CC=CC=C1 XGUNOBQJSJSFLG-UHFFFAOYSA-N 0.000 description 1
- RBSBUSKLSKHTBA-UHFFFAOYSA-N dihydroxy-methyl-phenylsilane Chemical compound C[Si](O)(O)C1=CC=CC=C1 RBSBUSKLSKHTBA-UHFFFAOYSA-N 0.000 description 1
- BGGSHDAFUHWTJY-UHFFFAOYSA-N dihydroxy-phenyl-propan-2-ylsilane Chemical compound CC(C)[Si](O)(O)C1=CC=CC=C1 BGGSHDAFUHWTJY-UHFFFAOYSA-N 0.000 description 1
- VTOJOSYEOUXEDF-UHFFFAOYSA-N dihydroxy-phenyl-propylsilane Chemical compound CCC[Si](O)(O)C1=CC=CC=C1 VTOJOSYEOUXEDF-UHFFFAOYSA-N 0.000 description 1
- LGPSGXJFQQZYMS-UHFFFAOYSA-M diphenyliodanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 LGPSGXJFQQZYMS-UHFFFAOYSA-M 0.000 description 1
- RSJLWBUYLGJOBD-UHFFFAOYSA-M diphenyliodanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 RSJLWBUYLGJOBD-UHFFFAOYSA-M 0.000 description 1
- WQIRVUAXANLUPO-UHFFFAOYSA-M diphenyliodanium;iodide Chemical compound [I-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 WQIRVUAXANLUPO-UHFFFAOYSA-M 0.000 description 1
- CQZCVYWWRJDZBO-UHFFFAOYSA-N diphenyliodanium;nitrate Chemical compound [O-][N+]([O-])=O.C=1C=CC=CC=1[I+]C1=CC=CC=C1 CQZCVYWWRJDZBO-UHFFFAOYSA-N 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UHKJHMOIRYZSTH-UHFFFAOYSA-N ethyl 2-ethoxypropanoate Chemical compound CCOC(C)C(=O)OCC UHKJHMOIRYZSTH-UHFFFAOYSA-N 0.000 description 1
- HSFOEYCTUIQQES-UHFFFAOYSA-N ethyl-[4-[ethyl(dihydroxy)silyl]phenyl]-dihydroxysilane Chemical compound CC[Si](O)(O)C1=CC=C([Si](O)(O)CC)C=C1 HSFOEYCTUIQQES-UHFFFAOYSA-N 0.000 description 1
- AVHQYNBSFNOKCT-UHFFFAOYSA-N ethyl-dihydroxy-phenylsilane Chemical compound CC[Si](O)(O)C1=CC=CC=C1 AVHQYNBSFNOKCT-UHFFFAOYSA-N 0.000 description 1
- ZFERNGZLZDSUPH-UHFFFAOYSA-N ethyl-hydroxy-(2-methylpropyl)-phenylsilane Chemical compound CC(C)C[Si](O)(CC)C1=CC=CC=C1 ZFERNGZLZDSUPH-UHFFFAOYSA-N 0.000 description 1
- UFAHFMYBTCNZPM-UHFFFAOYSA-N ethyl-hydroxy-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](O)(CC)C1=CC=CC=C1 UFAHFMYBTCNZPM-UHFFFAOYSA-N 0.000 description 1
- JFBTVTLFBGJGPA-UHFFFAOYSA-N ethyl-hydroxy-methyl-phenylsilane Chemical compound CC[Si](C)(O)C1=CC=CC=C1 JFBTVTLFBGJGPA-UHFFFAOYSA-N 0.000 description 1
- MGLPUHWTRVIBKO-UHFFFAOYSA-N ethyl-hydroxy-phenyl-propan-2-ylsilane Chemical compound CC[Si](O)(C(C)C)C1=CC=CC=C1 MGLPUHWTRVIBKO-UHFFFAOYSA-N 0.000 description 1
- SOFJSIIYDIMYKZ-UHFFFAOYSA-N ethyl-hydroxy-phenyl-propylsilane Chemical compound CCC[Si](O)(CC)C1=CC=CC=C1 SOFJSIIYDIMYKZ-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-QXMHVHEDSA-N gadoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCC(O)=O LQJBNNIYVWPHFW-QXMHVHEDSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- CHAJJKUXTUIBMZ-UHFFFAOYSA-N hydroxy-(2-methylpropyl)-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](O)(CC(C)C)C1=CC=CC=C1 CHAJJKUXTUIBMZ-UHFFFAOYSA-N 0.000 description 1
- YBNBOGKRCOCJHH-UHFFFAOYSA-N hydroxy-[4-[hydroxy(dimethyl)silyl]phenyl]-dimethylsilane Chemical compound C[Si](C)(O)C1=CC=C([Si](C)(C)O)C=C1 YBNBOGKRCOCJHH-UHFFFAOYSA-N 0.000 description 1
- OJFNNSOQCXZVCY-UHFFFAOYSA-N hydroxy-[4-[hydroxy(dipropyl)silyl]phenyl]-dipropylsilane Chemical compound CCC[Si](O)(CCC)C1=CC=C([Si](O)(CCC)CCC)C=C1 OJFNNSOQCXZVCY-UHFFFAOYSA-N 0.000 description 1
- XPNHTKZQLZVYHZ-UHFFFAOYSA-N hydroxy-diphenyl-propan-2-ylsilane Chemical compound C=1C=CC=CC=1[Si](O)(C(C)C)C1=CC=CC=C1 XPNHTKZQLZVYHZ-UHFFFAOYSA-N 0.000 description 1
- ONVJULYGRCXHAY-UHFFFAOYSA-N hydroxy-diphenyl-propylsilane Chemical compound C=1C=CC=CC=1[Si](O)(CCC)C1=CC=CC=C1 ONVJULYGRCXHAY-UHFFFAOYSA-N 0.000 description 1
- YVHRVGSGHBWDOI-UHFFFAOYSA-N hydroxy-methyl-(2-methylpropyl)-phenylsilane Chemical compound CC(C)C[Si](C)(O)C1=CC=CC=C1 YVHRVGSGHBWDOI-UHFFFAOYSA-N 0.000 description 1
- MLPRTGXXQKWLDM-UHFFFAOYSA-N hydroxy-methyl-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](O)(C)C1=CC=CC=C1 MLPRTGXXQKWLDM-UHFFFAOYSA-N 0.000 description 1
- LLENFDWLUJBNFC-UHFFFAOYSA-N hydroxy-methyl-phenyl-propan-2-ylsilane Chemical compound CC(C)[Si](C)(O)C1=CC=CC=C1 LLENFDWLUJBNFC-UHFFFAOYSA-N 0.000 description 1
- FQQOMIXCGMRXEH-UHFFFAOYSA-N hydroxy-methyl-phenyl-propylsilane Chemical compound CCC[Si](C)(O)C1=CC=CC=C1 FQQOMIXCGMRXEH-UHFFFAOYSA-N 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000011416 infrared curing Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- JXNPEDYJTDQORS-UHFFFAOYSA-N linoleyl alcohol Natural products CCCCCC=CCC=CCCCCCCCCO JXNPEDYJTDQORS-UHFFFAOYSA-N 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- HWYJZXYVLPKDLM-UHFFFAOYSA-N methyl 2-methyl-3-oxopropanoate Chemical compound COC(=O)C(C)C=O HWYJZXYVLPKDLM-UHFFFAOYSA-N 0.000 description 1
- AGADEVQOWQDDFX-UHFFFAOYSA-N methyl 3-oxopropanoate Chemical compound COC(=O)CC=O AGADEVQOWQDDFX-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000021290 n-3 DPA Nutrition 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical class NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- JGTNAGYHADQMCM-UHFFFAOYSA-N perfluorobutanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000010491 poppyseed oil Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-N propynoic acid Chemical compound OC(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- JIWBIWFOSCKQMA-UHFFFAOYSA-N stearidonic acid Natural products CCC=CCC=CCC=CCC=CCCCCC(O)=O JIWBIWFOSCKQMA-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- SRWOQYHYUYGUCS-UHFFFAOYSA-N tert-butyl-dihydroxy-phenylsilane Chemical compound CC(C)(C)[Si](O)(O)C1=CC=CC=C1 SRWOQYHYUYGUCS-UHFFFAOYSA-N 0.000 description 1
- HAQMPJFWQWLQDO-UHFFFAOYSA-N tert-butyl-ethyl-hydroxy-phenylsilane Chemical compound CC[Si](O)(C(C)(C)C)C1=CC=CC=C1 HAQMPJFWQWLQDO-UHFFFAOYSA-N 0.000 description 1
- UNAYGNMKNYRIHL-UHFFFAOYSA-N tert-butyl-hydroxy-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](O)(C(C)(C)C)C1=CC=CC=C1 UNAYGNMKNYRIHL-UHFFFAOYSA-N 0.000 description 1
- VLKDZHUARIPFFA-UHFFFAOYSA-N tert-butyl-hydroxy-methyl-phenylsilane Chemical compound CC(C)(C)[Si](C)(O)C1=CC=CC=C1 VLKDZHUARIPFFA-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XQGWAPPLBJZCEV-UHFFFAOYSA-N triethoxy(propyl)silane;urea Chemical compound NC(N)=O.CCC[Si](OCC)(OCC)OCC XQGWAPPLBJZCEV-UHFFFAOYSA-N 0.000 description 1
- FCVNATXRSJMIDT-UHFFFAOYSA-N trihydroxy(phenyl)silane Chemical compound O[Si](O)(O)C1=CC=CC=C1 FCVNATXRSJMIDT-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0755—Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/0226—Quinonediazides characterised by the non-macromolecular additives
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
- G03F7/0236—Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
Definitions
- the present invention relates to a photosensitive resin composition, a method for manufacturing a patterned cured film, and an electronic component.
- a photosensitive resin composition containing an alkali-soluble resin having a phenolic hydroxyl group is developed (see, for example, Patent Literature 1).
- Such a photosensitive resin composition has an advantage of being capable of being thermally cured at a low temperature in a step of heating and curing a patterned resin film formed through light exposure and development.
- Patent Literature 1 Japanese Patent Application Laid-Open No. 2003-215802
- Patent Literature 2 Japanese Patent Application Laid-Open No. 2010-256508
- the present invention relates to a photosensitive resin composition containing (A) an alkali-soluble resin, (B) a compound which generates an acid when exposed to light, (C) a thermal crosslinking agent, and (D) a nitrogen-containing aromatic compound represented by the following formula (1).
- R 1 represents a hydrogen atom or a hydrocarbon group
- R 2 represents a hydrogen atom, an amino group or a phenyl group
- a and B each independently represent a nitrogen atom, or a carbon atom and a hydrogen atom bonded thereto (C—H).
- the photosensitive resin composition according to the present invention is capable of forming a patterned cured film having excellent crack resistance and having good adherence with various types of substrates.
- the photosensitive resin composition is further developable with an alkali aqueous solution.
- the (D) component may be a nitrogen-containing aromatic compound represented by the following formula (2).
- R 2 in the formula (2) is the same as R 2 in the formula (1).
- the (A) component may be a phenol resin.
- the (A) component may contain a phenol resin (A1) having no unsaturated hydrocarbon group and a modified phenol resin (A2) having an unsaturated hydrocarbon group.
- the (A2) component may be a modified phenol resin further modified by a reaction of a phenolic hydroxyl group with a polybasic acid anhydride.
- the (B) component may be an o-quinone diazide compound.
- the photosensitive resin composition according to the present invention may further contain (E) a silane compound represented by the following formula (3).
- R 3 represents a divalent organic group
- R 4 represents a monovalent organic group, and a plurality of R 4 in the same molecule may be identical or different.
- the photosensitive resin composition according to the present invention may further contain (F) an acryl resin.
- the present invention relates also to a method for manufacturing a patterned cured film, the method comprising a step of applying and drying the photosensitive resin composition on a substrate to thereby form a photosensitive resin film, a step of exposing the photosensitive resin film, a step of developing the photosensitive resin film after the exposure with an alkali aqueous solution to thereby form a patterned resin film, and a step of heating the patterned resin film.
- the present invention relates further to an electronic component having a patterned cured film obtained by the manufacturing method as a surface protecting layer, an interlayer insulating layer, a cover coat layer, a core, a collar or an underfill.
- the present invention can provide a photosensitive resin composition which is capable of forming a patterned cured film having excellent crack resistance and having good adherence with substrates regardless of types thereof, and which is developable with an alkali aqueous solution.
- the patterned cured film composed of the photosensitive resin composition according to the present invention has good photosensitive properties (sensitivity and resolution), and has sufficient mechanical properties (elongation at break and elastic modulus).
- the photosensitive resin composition according to the present invention since being capable of being cured at a low temperature, can prevent damage due to heat to electronic components and can then provide highly reliable electronic components in a high yield.
- FIG. 1 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of a semiconductor apparatus.
- FIG. 2 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus.
- FIG. 3 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus.
- FIG. 4 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus.
- FIG. 5 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus.
- FIG. 6 is a schematic cross-sectional diagram showing one embodiment of an electronic component (semiconductor apparatus).
- FIG. 7 is a schematic cross-sectional diagram showing one embodiment of an electronic component (semiconductor apparatus).
- a “(meth)acrylate” refers to an “acrylate” and a “methacrylate” corresponding thereto.
- a “(meth)acryl” similarly refers to an “acryl” and a “methacryl” corresponding thereto.
- the photosensitive resin composition according to the present invention contains (A) an alkali-soluble resin, (B) a compound which generates an acid when exposed to light, (C) a thermal crosslinking agent and (D) a nitrogen-containing aromatic compound represented by the following formula (1).
- R 1 represents a hydrogen atom or a hydrocarbon group
- R 2 represents a hydrogen atom, an amino group or a phenyl group
- a and B each independently represent a nitrogen atom, or a carbon atom and a hydrogen atom bonded thereto.
- An alkali-soluble resin as an (A) component is soluble to an alkali aqueous solution.
- An (A) component is soluble to an alkali aqueous solution.
- a solution obtained from the (A) component singly and any solvent, or a solution obtained from the (A) component, a (B) component, a (C) component and a (D) component, and any solvent is rotationally applied on a substrate such as a silicon wafer to thereby form a resin film of about 5 ⁇ m in thickness.
- the resin film is immersed in any one of a tetramethylammonium hydroxide aqueous solution, a metal hydroxide aqueous solution and an organic amine aqueous solution at 20 to 25° C.
- a tetramethylammonium hydroxide aqueous solution a metal hydroxide aqueous solution and an organic amine aqueous solution at 20 to 25° C.
- the (A) component specifically includes hydroxystyrene-based resins such as polyhydroxystyrenes and copolymers containing hydroxystyrene as a monomer unit, phenol resins, polybenzoxazol precursors such as poly(hydroxyamides), poly(hydroxyphenylene) ethers, and polynaphthols.
- hydroxystyrene-based resins such as polyhydroxystyrenes and copolymers containing hydroxystyrene as a monomer unit
- phenol resins polybenzoxazol precursors such as poly(hydroxyamides), poly(hydroxyphenylene) ethers, and polynaphthols.
- phenol resins are preferable, and novolac-type phenol resins are more preferable, because these are of a low cost and exhibit only a small volume shrinkage in curing.
- Phenol resins are polycondensation products of phenol or derivatives thereof with aldehydes. The polycondensation is carried out in the presence of a catalyst such as an acid or a base. Phenols resins obtained in the case of using an acid catalyst are called novolac-type phenol resins. Specific examples of novolac-type phenol resins include phenol/formaldehyde novolac resins, cresol/formaldehyde novolac resins, xylylenol/formaldehyde novolac resins, resorcinol/formaldehyde novolac resins, and phenol-naphthol/formaldehyde novolac resins.
- phenol derivatives used for obtaining phenol resins include: alkylphenols such as phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol; alkoxyphenols such as methoxyphenol and 2-methoxy-4-methylphenol; alkenylphenols such as vinylphenol and allylphenol; aralkylphenols such as benzylphenol; alkoxycarbonylphenols such as methoxycarbonylphenol; arylcarbonylphenols such as benzoyloxyphenol
- Phenol resins further may be products obtained by polycondensing the above-mentioned phenol or phenol derivatives together with compounds other than phenol such as m-xylene, with aldehydes. In this case, it is preferable that the molar ratio of the compounds used for polycondensation other than phenol to the phenol derivatives is lower than 0.5.
- the above-mentioned phenol derivatives and the compounds other than phenol are each used singly or in a combination of two or more.
- Aldehydes used for obtaining phenol resins are selected, for example, from formaldehyde, acetaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, methoxybenzaldehyde, hydroxyphenylacetaldehyde, methoxyphenylacetaldehyde, crotonaldehyde, chloroacetaldehyde, chlorophenylacetaldehyde, glyceraldehyde, glyoxylic acid, methyl glyoxylate, phenyl glyoxylate, hydroxyphenyl glyoxylate, formylacetic acid, methyl formylacetate, 2-formylpropionic acid, methyl 2-formylpropionate, and the like.
- paraformaldehydes precursors of formaldehyde such as trioxane, and ketones such as acetone, pyruvic acid, lepulinic acid, 4-acetylbutyric acid, acetonedicarboxylic acid and 3,3′-4,4′-benzophenonetetracarboxylic acid may be used for the reaction. These are used singly or in a combination of two or more.
- Poly(hydroxystyrene)-based resins are obtained, for example, by polymerizing (vinyl polymerizing)ethylenic unsaturated double bonds of hydroxystyrene having a protecting group incorporated therein in the presence of a catalyst (radical initiator), and further deprotecting the protecting group.
- a commercially available branch-type poly(hydroxystyrene) such as PHS-B (trade name, made by Du Pont) may also be used.
- the weight-average molecular weight of an (A) component is 500 to 150000; 500 to 100000 is more preferable; and 1000 to 50000 is still more preferable.
- the weight-average molecular weight is a value obtained by the measurement using gel permeation chromatography, and the conversion using a standard polystyrene calibration curve.
- the (A) component contains a phenol resin (A1) having no unsaturated hydrocarbon group and a modified phenol resin (A2) having an unsaturated hydrocarbon group. It is more preferable that the (A2) component is a modified phenol resin further modified by a reaction of a phenolic hydroxyl group with a polybasic acid anhydride.
- the (A2) component is generally: a polycondensation product of aldehydes with a reaction product (hereinafter referred to as “unsaturated hydrocarbon group-modified phenol derivative”) of a phenol or a derivative thereof with a compound having an unsaturated hydrocarbon group (preferably a compound having 4 to 100 carbon atoms; hereinafter simply referred to as “unsaturated hydrocarbon group-containing compound” in some cases); or a reaction product of a phenol resin with an unsaturated hydrocarbon group-containing compound.
- a reaction product hereinafter referred to as “unsaturated hydrocarbon group-modified phenol derivative”
- unsaturated hydrocarbon group-containing compound preferably a compound having 4 to 100 carbon atoms
- reaction product of a phenol resin with an unsaturated hydrocarbon group-containing compound preferably a compound having 4 to 100 carbon atoms
- a reaction product of a phenol resin with an unsaturated hydrocarbon group-containing compound preferably a compound having 4 to 100 carbon atom
- the unsaturated hydrocarbon group-containing compound contains two or more unsaturated bonds, and it is preferable from the viewpoint of the storage stability of the resin composition that the number of the unsaturated bonds is 30 or less. From the viewpoint of the compatibility when the resin composition is made, and the flexibility of the cured film, it is preferable that the number of carbon atoms of the unsaturated hydrocarbon group-containing compound is 8 to 80; and 10 to 60 is more preferable.
- Examples of the unsaturated hydrocarbon group-containing compound are unsaturated hydrocarbons having 4 to 100 carbon atoms, polybutadienes having carboxyl groups, epoxidated polybutadienes, linoleyl alcohol, oleyl alcohol, unsaturated fatty acids, and unsaturated fatty acid esters.
- Suitable unsaturated fatty acids include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, erucic acid, nervonic acid, linolic acid, ⁇ -linoleic acid, eleostearic acid, stearidonic acid, arachidonic acid, eicosapentaenoic acid, clupanodonic acid, and docosahexaenoic acid.
- vegetable oils being unsaturated fatty acid esters are especially preferable.
- the vegetable oils are generally esters of glycerol with unsaturated fatty acids, and include nondrying oils having an iodine value of 100 or lower, semidrying oils having that of higher than 100 and lower than 130, and drying oils having that of 130 or higher.
- nondrying oils include olive oil, morning glory seed oil, cashew nut oil, sasanqua oil, camellia oil, castor oil, and peanut oil.
- semidrying oil include corn oil, cotton seed oil, and sesame oil.
- Examples of the drying oil include tung oil, linseed oil, soybean oil, walnut oil, safflower oil, sunflower oil, perilla oil, and poppy seed oil. Processed vegetable oils obtained by processing these vegetable oils may be used.
- drying oils it is preferable from the viewpoint of the improvement in the adherence, the mechanical properties and the thermal shock resistance of a patterned cured film that drying oils are used.
- drying oils tung oil, linseed oil, soybeen oil, walnut oil and safflower oil are more preferable, and tung oil and linseed oil are still more preferable, because these oils can effectively and surely exhibit the advantageous effects of the present invention.
- These vegetable oils are used singly or in a combination of two or more.
- an (A2) component In the preparation of an (A2) component, first, the phenol derivative and the unsaturated hydrocarbon group-containing compound are allowed to react to thereby prepare an unsaturated hydrocarbon group-modified phenol derivative. It is preferable that the reaction is usually carried out at 50 to 130° C. It is preferable that the blend proportion of the phenol derivative and the unsaturated hydrocarbon group-containing compound is 1 to 100 parts by mass of the unsaturated hydrocarbon group-containing compound to 100 parts by mass of the phenol derivative; and 5 to 50 parts by mass is more preferable, because the flexibility of a patterned cured film can be improved.
- the reaction may use, as required, as a catalyst p-toluenesulfonic acid, trifluoromethanesulfonic acid or the like.
- an (A2) component can also be obtained by combining a compound other than a phenol such as m-xylene with a compound obtained by reacting the above-mentioned phenol derivative with an unsaturated hydrocarbon group-containing compound, and polycondensing this with aldehydes.
- the presence of the unsaturated hydrocarbon group in the (A2) component at the ortho positions or the para positions to the phenolic hydroxyl group of the phenol resin is preferable, and the presence thereof at the para positions is more preferable.
- An (A2) component can be obtained also by allowing the above-mentioned phenol resin and the unsaturated hydrocarbon group-containing compound to react. It is preferable that the reaction of the phenol resin with the unsaturated hydrocarbon group-containing compound is usually carried out at 50 to 130° C. It is preferable that the blend proportion of the phenol derivative and the unsaturated hydrocarbon group-containing compound is 1 to 100 parts by mass of the unsaturated hydrocarbon group-containing compound to 100 parts by mass of the phenol resin; and 5 to 50 parts by mass is more preferable, because the flexibility of a patterned cured film can be improved.
- p-toluenesulfonic acid trifluoromethanesulfonic acid or the like may be used as a catalyst.
- the reaction can use a solvent such as toluene, xylene, methanol or tetrahydrofurn.
- a phenol resin acid-modified by allowing the phenolic hydroxyl group present in the (A2) component to further react with a polybasic acid anhydride can also be used as an (A2) component.
- Acid-modification with a polybasic acid anhydride allows the introduction of a carboxyl group, and the further improvement in the solubility of the (A2) component to an alkali aqueous solution (developing solution).
- the polybasic acid anhydride is not especially limited as long as having an acid anhydride group formed by dehydrating-condensing carboxyl groups of a polybasic acid having a plurality of the carboxyl groups.
- the polybasic acid anhydride include dibasic acid anhydrides such as phthalic anhydride, succinic anhydride, octenylsuccinic anhydride, pentadodecenylsuccinic anhydride, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, nadic anhydride, 3,6-endomethylene tetrahydrophthalic anhydride, methylendomethylene tetrahydrophthalic anhydride, tetrabromophthalic anhydride and trimellitic anhydride, and aromatic tetra
- the polybasic acid anhydride is a dibasic acid anhydride; and it is more preferable that the polybasic acid anhydride is one or more selected from the group consisting of tetrahydrophthalic anhydride, succinic anhydride and hexahydrophthalic anhydride. This case has an advantage of being capable of forming a patterned cured film having a further good shape.
- the reaction of the phenolic hydroxyl group with the polybasic acid anhydride can be carried out at 50 to 130° C. In the reaction, it is preferable that 0.1 to 0.8 mol of the polybasic acid anhydride is allowed to react with 1 mol of the phenolic hydroxyl group; 0.15 to 0.6 mol of the polybasic acid anhydride is more preferable; and 0.2 to 0.4 mol of the polybasic acid anhydride is still more preferable. If the polybasic acid anhydride is less than 0.1 mol, the developability is likely to decrease; and if that exceeds 0.8 mol, the alkali resistance of unexposed portions is likely to decrease.
- the reaction may be carried out in the presence of a catalyst from the viewpoint of rapidly carrying out the reaction.
- the catalyst includes tertiary amines such as triethylamine, quarternary ammonium salts such as triethylbenzylammonium chloride, imidazole compounds such as 2-ethyl-4-methylimidazole, and phosphorus compounds such as triphenylphosphine.
- the acid value of a phenol resin further modified with a polybasic acid anhydride is 30 to 200 mgKOH/g; 40 to 170 mgKOH/g is more preferable; and 50 to 150 mgKOH/g is still more preferable. If the acid value is lower than 30 mgKOH/g, the alkali development is likely to require a long time as compared with the case of the acid value in the above-mentioned range; and If exceeding 200 mgKOH/g, the developing solution resistance of unexposed portions is likely to decrease as compared with the case of the acid value in the above-mentioned range.
- the weight-average molecular weight of the (A2) component is 1000 to 500000; 2000 to 200000 is more preferable; and 2000 to 100000 is still more preferable.
- the weight-average molecular weight is a value obtained by the measurement using gel permeation chromatography, and the conversion using a standard polystyrene calibration curve.
- ⁇ (B) Component A Compound which Generates an Acid when Exposed to Light>
- a compound which generates an acid when exposed to light as a (B) component is used as a photosensitizer.
- the (B) component generates an acid when exposed to light irradiation, and has a function of increasing the solubility of light-irradiated portions to an alkali aqueous solution.
- a compound generally called a photoacid generating agent can be used.
- Specific examples of the (B) component include o-quinone diazide compounds, aryldiazonium salts, diaryliodonium salts and triarylsulfonium salts. Among these, o-quinone diazide compounds are preferable because being highly sensitive.
- o-Quinone diazide compounds are obtained, for example, by a method in which o-quinone diazidesulfonyl chloride and a hydroxyl compound and/or an amino compound, and the like are allowed to condensation-react in the presence of a dehydrochlorinating agent.
- o-quinone diazidesulfonyl chloride used in the reaction include benzoquinone-1,2-diazide-4-sulfonyl chloride, naphthoquinone-1,2-diazide-5-sulfonyl chloride, and naphthoquinone-1,2-diazide-4-sulfonyl chloride.
- hydroxyl compound used in the reaction examples include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, 2,3,4,2′,3′-pentahydroxybenzophenone, 2,3,4,3′,4′,5′-hexahydroxybenzophenone, bis(2,3,4-trihydroxyphenyl)methane, bis(2,3,4-trihydroxyphenyl)propane, 4b,5,9b, 10-tetrahydro-1,3,6,8-tetrahydroxy-5,10-dimethylindeno[2,1-a]indene, tris(4-hydroxyphenyl)methane, tris(4-hydroxyphenyl)ethane, 1,
- amino compound used in the reaction examples include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfide, o-aminophenol, m-aminophenol, p-aminophenol, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis(3-amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl) sulfone, bis(4-amino-3-hydroxyphenyl) sulfone, bis(3-amino-4-hydroxyphen
- preferable are a substance obtained by allowing 1,1-bis(4-hydroxyphenyl)-1-[4- ⁇ 1-(4-hydroxyphenyl)-1-methylethyl ⁇ phenyl]ethane and 1-naphthoquinone-2-diazide-5-sulfonyl chloride to condensation-react, and a substance obtained by allowing tris(4-hydroxyphenyl)methane or tris(4-hydroxyphenyl)ethane and 1-naphthoquinone-2-diazide-5-sulfonyl chloride to condensation-react.
- the dehydrochlorinating agent used in the reaction includes sodium carbonate, sodium hydroxide, sodium hydrogenecarbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine, and pyridine.
- As the reaction solvent dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether, N-methylpyrrolidone, and the like are used.
- o-quinone diazidesulfonyl chloride and a hydroxyl compound and/or an amino compound are blended so that the total of the numbers of moles of a hydroxyl group and an amino group is 0.5 to 1 with respect to 1 mol of o-quinone diazidesulfonyl chloride.
- the preferable blend proportion of the dehydrochlorinating agent to o-quinone diazidesulfonyl chloride is in the range of 0.95/1 mol equivalent to 1/0.95 mol equivalent.
- the preferable reaction temperature for the above-mentioned reaction is 0 to 40° C., and the preferable reaction time is 1 to 10 hours.
- the content of a (B) component is 3 to 100 parts by mass with respect to 100 parts by mass of an (A) component; 5 to 50 parts by mass is more preferable; and 5 to 30 parts by mass is still more preferable, because the dissolving speed difference between exposed portions and unexposed potions becomes large, making the sensitivity better.
- a thermal crosslinking agent is a compound having a structure capable of reacting with an (A) component and forming a crosslinked structure when a photosensitive resin film after pattern formation is heated and cured. This can prevent the brittleness of a film and the melt of the film.
- Thermal crosslinking agents are preferable which are selected, for example, from compounds having a phenolic hydroxyl group, compounds having a hydroxymethylamino group and compounds having an epoxy group.
- the compounds having a phenolic hydroxyl group used as the thermal crosslinking agent are different from the (A) component, and the specific structure thereof includes ones described later.
- Such a compound having a phenolic hydroxyl group is preferable not only because being used as a thermal crosslinking agent, but also because being capable of increasing the dissolution speed of exposed portions when being developed with an alkali aqueous solution, and thereby improving the sensitivity.
- the molecular weight of such a compound having a phenolic hydroxyl group is preferably 2000 or lower.
- the number-average molecular weight is 94 to 2000; 108 to 2000 thereof is more preferable; and 108 to 1500 thereof is still more preferable.
- a compound represented by the following formula (4) is especially preferable because of being excellent in the balance between the effect of promoting the dissolution of exposed portions and the effect of preventing the melt of a photosensitive resin film in curing.
- X represents a single bond or a divalent organic group
- R 5 , R 6 , R 7 and R 8 each independently represent a hydrogen atom or a monovalent organic group
- s and t each independently represent an integer of 1 to 3
- u and v each independently represent an integer of 0 to 4.
- compounds in which X is a single bond are biphenol (dihydroxybiphenyl) derivatives.
- Divalent organic groups represented by X include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group and a propylene group, alkylidene groups having 2 to 10 carbon atoms such as an ethylidene group, arylene groups having 6 to 30 carbon atoms such as a phenylene group, groups in which a part or the whole of a hydrogen atom of these hydrocarbon groups is substituted with a halogen atom such as a fluorine atom, a sulfonyl group, a carbonyl group, an ether bond, a thioether bond, and an amide bond.
- a halogen atom such as a fluorine atom, a sulfonyl group, a carbonyl group, an ether bond, a thioether bond, and an amide bond.
- Compounds having a hydroxymethylamino group include nitrogen-containing compounds in which the whole or a part of an active methylol group of (poly)(N-hydroxymethyl)melamine, (poly)(N-hydroxymethyl)glycoluril, (poly)(N-hydroxymethyl)benzoguanamine, (poly)(N-hydroxymethyl) urea or the like is alkyl-etherified.
- alkyl groups in the alkyl ethers include a methyl group, an ethyl group, a butyl group and a mixture thereof, and oligomer components partially self-condensed may be contained.
- the compounds specifically include hexakis(methoxymethyl)melamine, hexakis(butoxymethyl)melamine, tetrakis(methoxymethyl)glycoluril, tetrakis(butoxymethyl)glycoluril, and tetrakis(methoxymethyl)urea.
- the compound having an epoxy group conventionally well-known ones can be used. Specific examples thereof include bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, alicyclic epoxy resins, glycidylamines, heterocyclic epoxy resins, and polyalkylene glycol diglycidyl ethers.
- aromatic compounds having a hydroxymethyl group such as bis[3,4-bis(hydroxymethyl)phenyl]ether and 1,3,5-tris(1-hydroxy-1-methylethyl)benzene
- compounds having a maleimide group such as bis(4-maleimidephenyl)methane and 2,2-bis[(4-(4′-maleimidephenoxy)phenyl)]propane
- compounds having a norbornene skeleton 1,2-bis[(4-(4′-maleimidephenoxy)phenyl)]propane
- polyfunctional acrylate compounds compounds having an oxetanyl group, compounds having a vinyl group, and blocked isocyanate compounds.
- compounds having a phenolic hydroxyl group and compounds having a hydroxymethylamino group are preferable from the viewpoint of being capable of more improving the sensitivity and the heat resistance; and from the viewpoint of being capable of more improving the resolution and the elongation of a coated film as well, compounds having a hydroxymethylamino group are more preferable; compounds having an alkoxymethylamino group in which the whole or a part of hydroxymethylamino groups is alkyl-etherified are especially preferable; and compounds having an alkoxymethylamino group in which the whole of hydroxymethylamino groups is alkyl-etherified are most preferable.
- compounds having an alkoxymethylamino group in which the whole of hydroxymethylamino groups is alkyl-etherified particularly a compound represented by the following formula (5) is preferable.
- R 31 to R 36 each independently represent an alkyl group having 1 to 10 carbon atoms.
- the blend amount of a (C) component is 1 to 50 parts by mass with respect to 100 parts by mass of an (A) component; 2 to 30 parts by mass is more preferable; and 3 to 25 parts by mass is still more preferable.
- the above-mentioned thermal crosslinking agents are used singly or in a combination of two or more.
- a photosensitive resin composition according to the present embodiment contains a nitrogen-containing aromatic compound having a structure represented by the following formula (1).
- R 1 represents a hydrogen atom or a hydrocarbon group
- R 2 represents a hydrogen atom, an amino group or a phenyl group
- a and B each independently represent a nitrogen atom, or a carbon atom and a hydrogen atom bonded thereto (C—H).
- incorporation of a (D) component can provide a photosensitive resin composition providing a patterned cured film which can be improved in the crack resistance after the thermal shock cycle test and is good in the adherence with substrates regardless of types of the substrates.
- the (D) component is a nitrogen-containing aromatic compound represented by the following formula (2).
- R 2 represents a hydrogen atom, a hydrocarbon group, an amino group or a phenyl group.
- Such a (D) component includes 1H-tetrazole, 5-aminotetrazole, 5-phenyltetrazole and 5-methyltetrazole, and among these, 1H-tetrazole and 5-aminotetrazole are preferable from the viewpoint of imparting better adherence with substrates.
- the blend amount of a nitrogen-containing aromatic compound represented by the above formula (1) as the (D) component is 0.01 to 20 parts by mass with respect to 100 parts by mass of an (A) component; 0.015 to 10 parts by mass is more preferable; and 0.02 to 7 parts by mass is still more preferable.
- a photosensitive resin composition according to the present embodiment may contain as an (E) component a silane compound having an epoxy group represented by the formula (3) from the viewpoint of improving the adherence with substrates.
- R 3 represents a divalent organic group; and the R 4 group represents a monovalent organic group.
- a plurality of R 4 in the same molecule may be identical or different.
- R 3 is a straight-chain alkyl group represented by —(CH 2 ) n — (n is an integer of 1 to 6).
- R 4 is an alkoxy group or an alkoxyalkyl group.
- R 4 is an alkoxy group such as a methoxy group or an ethoxy group.
- Such a compound includes 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.
- a photosensitive resin composition according to the present embodiment may further contain, other than a silane compound as the (E) component represented by the formula (3), a silane compound different therefrom.
- a silane compound include Ureidopropyltriethoxysilane, vinyltriethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, urea propyltriethoxysilane, methylphenylsilanediol, ethylphenylsilanediol, n-propylphenylsilanediol, isopropylphenylsilanediol, n-butyldiphenylsilanediol, isobutylphenylsilanediol, tert-butylphenylsilanediol, diphenylsilanediol, eth
- a photosensitive resin composition according to the present embodiment is further improved in the adherence with various types of substrates by concurrently using a nitrogen-containing aromatic compound represented by the formula (2) and a silane compound having an epoxy group represented by the formula (3) or the above-mentioned silane compound.
- the total amount of the (E) component and a silane compound other than the (E) component is 0.1 to 20 parts by mass with respect to 100 parts by mass of an (A) component; 0.5 to 10 parts by mass is more preferable; and 1 to 5 parts by mass is still more preferable.
- a photosensitive resin composition according to the present embodiment may contain an acryl resin as an (F) component. It is preferable that the acryl resin has a structural unit represented by the following formula (6) or (7). The incorporation of an acryl resin having a structural unit represented by the formula (6) or (7), while maintaining good photosensitive properties, can improve the thermal shock resistance.
- the (F) component may be composed of only one type of the acryl resin, or may contain two or more types thereof
- R 9 represents an alkyl group having 4 to 20 carbon atoms
- R 10 represents a hydrogen atom or a methyl group.
- R 9 is an alkyl group having 4 to 16 carbon atoms; and an alkyl group having 4 carbon atoms, particularly n-butyl group, is more preferable.
- a polymerizable monomer imparting a structural unit represented by the formula (6) includes alkyl(meth)acrylates.
- An example of the alkyl(meth)acrylates include a compound represented by the following formula (8).
- R 11 represents a hydrogen atom or a methyl group
- R 12 represents an alkyl group having 4 to 20 carbon atoms.
- Examples of the alkyl group having 1 to 20 carbon atoms represented by R 12 include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, and constitutional isomers thereof.
- Examples of a polymerizable monomer represented by the above formula (8) include butyl(meth)acrylate, pentyl(meth)acrylate, hexyl(meth)acrylate, heptyl(meth)acrylate, octyl(meth)acrylate, nonyl(meth)acrylate, decyl(meth)acrylate, undecyl(meth)acrylate, dodecyl(meth)acrylate, tridecyl(meth)acrylate, tetradecyl(meth)acrylate, pentadecyl(meth)acrylate, hexadecyl(meth)acrylate, heptadecyl(meth)acrylate, octadecyl(meth)acrylate, nonadecyl(meth)acrylate, and eicosyl(meth)acrylate. These polymerizable monomers are used singly or in a combination of two or more.
- a polymerizable monomer imparting a structural unit represented by the formula (7) includes acrylic acid and methacrylic acid.
- the compositional ratio of a structural unit represented by the above formula (6) is 50 to 95 mol % with respect to the total amount of an (F) component; 60 to 90 mol % is more preferable; and 70 to 85 mol % is especially preferable. That the compositional ratio of a structural unit represented by the above formula (6) is 50 to 95 mol % can more improve the thermal shock resistance of a cured film of the photosensitive resin composition.
- the compositional ratio of a structural unit represented by the above formula (7) is 5 to 35 mol % with respect to the total amount of an (F) component; 10 to 30 mol % is more preferable; and 15 to 25 mol % is still more preferable. That the compositional ratio of a structural unit represented by the above formula (7) is 5 to 35 mol % can more improve the compatibility with an (A) component and the developability of the photosensitive resin composition.
- an (F) component contains an acryl resin having a structural unit represented by the above formula (6), a structural unit represented by the above formula (7), and a structural unit represented by the following formula (9). That the (F) component is the acryl resin makes good the interaction between the (F) component and an alkali-soluble resin having a phenolic hydroxyl group, and more improves the compatibility.
- R represents a hydrogen atom or a methyl group
- R 13 represents a monovalent organic group having a primary, secondary or tertiary amino group.
- Examples of a polymerizable monomer imparting a structural unit represented by the formula (9) include aminoethyl(meta)acrylate, N-methylaminoethyl(meta)acrylate, N,N-dimethylaminoethyl(meta)acrylate, N-ethylaminoethyl(meta)acrylate, N,N-diethylaminoethyl(meta)acrylate, aminopropyl(meta)acrylate, N-methylaminopropyl(meta)acrylate, N,N-dimethylaminopropyl(meta)acrylate, N-ethylaminopropyl(meta)acrylate, N,N-diethylaminopropyl(meta)acrylate, aminoethyl(meta)acrylamide, N-methylaminoethyl(meta)acrylamide, N,N-dimethylaminoethyl(meta)acrylamide, N-ethyla
- R 13 in the formula (9) is a monovalent organic group represented by the following formula (10).
- X represents an alkylene group having 1 to 5 carbon atoms
- R 14 to R 18 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
- m is an integer of 0 to 10.
- Examples of a polymerizable monomer imparting a structural unit of the formula (9) whose R 13 is a monovalent organic group represented by the above formula (10) include piperidin-4-yl(meta)acrylate, 1-methylpiperidin-4-yl(meta)acrylate, 2,2,6,6-tetramethylpiperidin-4-yl(meta)acrylate, 1,2,2,6,6-pentamethylpiperidin-4-yl(meta)acrylate, (piperidin-4-yl)methyl(meta)acrylate, 2-(piperidin-4-yl)ethyl(meta)acrylate.
- 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate and 2,2,6,6-tetramethylpiperidin-4-yl methacrylate are commercially available as FA-711MM and FA-712HM (both are made by Hitachi Chemical Co., Ltd.), respectively.
- the compositional ratio of a structural unit represented by the above formula (9) is 0.3 to 10 mol % with respect to the total amount of the (F) component; 0.4 to 8 mol % is more preferable; and 0.5 to 7 mol % is still more preferable.
- the (F) component contains an acryl resin having a structural unit represented by the above formula (6), a structural unit represented by the above formula (7), and a structural unit represented by the following formula (11).
- an acryl resin may further have a structural unit represented by the above formula (9).
- R represents a hydrogen atom or a methyl group
- Y represents an alkylene group having 1 to 5 carbon atoms
- R 19 to R 23 each independently represent an alkyl group having 1 to 6 carbon atoms
- p is an integer of 1 to 100.
- An example of a polymerizable monomer imparting a structural unit represented by the formula (11) includes methacryl-modified silicone oil, and is commercially available as X-22-174DX, X-22-2426 and X-22-2475 (any is made by Shin-Etsu Chemical Co., Ltd.).
- the compositional ratio of a structural unit represented by the above formula (11) is 1 to 10 mol % with respect to the total amount of the (F) component; 2 to 5 mol % is more preferable; and 3 to 5 mol % is still more preferable.
- the polymerizable monomer used for the synthesis of an acryl resin constituting an (F) component may further contain a polymerizable monomer other than the polymerizable monomers imparting the respective structural units represented by the formulae (6), (7), (9), (10) and (11).
- Examples of such a polymerizable monomer include styrene, ⁇ -methylstyrene, benzyl(meth)acrylate, 4-methylbenzyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, 3-hydroxypropyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, acrylonitrile, esters of vinyl alcohol such as vinyl n-butyl ether, tetrahydrofurfuryl(meth)acrylate, glycidyl(meth)acrylate, 2,2,2-trifluoroethyl(meth)acrylate, 2,2,3,3-tetrafluoropropyl(meth)acrylate, (meth)acrylic acid, ⁇ -bromo(meth)acrylic acid, ⁇ -chloro(meth)acrylic acid, ⁇ -furyl(meth)acrylic acid, ⁇ -styryl(meth)
- the weight-average molecular weight of an (F) component is 2000 to 100000; 3000 to 60000 is more preferable; and 4000 to 50000 is still more preferable. If the weight-average molecular weight is lower than 2000, the thermal shock resistance of a cured film is likely to decrease; and if that exceeds 100000, the compatibility with the (A) component and the developability are likely to decrease.
- the content of the (F) component is 1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the (A) component; 3 to 30 parts by mass is more preferable; and 5 to 20 parts by mass is especially preferable.
- a photosensitive resin composition according to the present embodiment can contain, as required, other components such as a thermoacid generating agent, an elastomer, a solvent, a dissolution promoter, a dissolution inhibitor, a surfactant and a leveling agent.
- other components such as a thermoacid generating agent, an elastomer, a solvent, a dissolution promoter, a dissolution inhibitor, a surfactant and a leveling agent.
- a photosensitive resin composition may contain (G) a thermoacid generating agent.
- the thermoacid generating agent is a compound which generates an acid when heated, and can more suppress the melt of a pattern. This is because since an acid is allowed to be generated when a photosensitive resin film after development is heated to thereby initiate the reaction between the (A) component and the (C) component, that is, the thermal crosslinking reaction from a lower temperature, the melt of the pattern is more suppressed. Further since many of thermoacid generating agents can generate an acid also when exposed to light irradiation, if such an agent is used, the solubility of exposed portions to an alkali aqueous solution can be increased. Therefore, the difference in the solubility to an alkali aqueous solution between unexposed portions and exposed portions becomes large, thereby improving the resolution.
- a thermoacid generating agent used here is a compound different from the (B) component.
- such a compound which generates an acid when heated is one which generates an acid when heated to a temperature of, for example, 50 to 200° C.
- Specific examples of compounds which generate an acid when heated are compounds different from compounds of the (B) component which generates an acid when exposed to light, and include salts formed of a strong acid and a base, such as onium salts, and imide-sulfonates, which have the function of generating an acid when heated.
- Examples of such an onium salt include aryldiazonium salts; diaryliodonium salts such as diphenyliodonium salts; di(alkylaryl)iodonium salts such as diaryliodonium salts and di(t-butylphenyl)iodonium salts; trialkylsulfonium salts such as trimethylsulfonium salts; dialkylmonoarylsulfonium salts such as dimethylphenylsulfonium salts; diarylmonoalkyliodonium salts such as diphenylmethylsulfonium salts; and triarylsulfonium salts.
- preferable onium salts include a di(t-butylphenyl)iodonium salt of para-toluenesulfonic acid, a di(t-butylphenyl)iodonium salt of trifluoromethanesulfonic acid, a trimethylsulfonium salt of trifluoromethanesulfonic acid, a dimethylphenylsulfonium salt of trifluoromethanesulfonic acid, a diphenylmethylsulfonium salt of trifluoromethanesulfonic acid, a di(t-butylphenyl)iodonium salt of nonafluorobutanesulfonic acid, a diphenyliodonium salt of camphorsulfonic acid, a diphenyliodonium salt of ethanesulfonic acid, a dimethylphenylsulfonium salt of benzenesulfonic acid, and a diphenylmethyl
- sulfonium salts represented by the following formula (12) are preferable; and trialkylsoufonium salts of methanesulfonic acid are more preferable; and a trimethylsulfonium salt thereof is especially preferable.
- R 24 , R 25 and R 26 each independently represent an alkyl group or an aryl group; and R 27 represents hydrogen or fluorine.
- R 27 represents hydrogen or fluorine.
- aryl group a phenyl group or a phenyl group having a substituent is preferable.
- imide-sulfonates examples include naphthoylimide sulfonate and phthalimide sulfonate.
- thermoacid generating agent a thermoacid generating agent
- the content of the thermoacid generating agent is 0.1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the (A) component and the (B) component; 0.2 to 20 parts by mass is more preferable; and 0.3 to 10 parts by mass is still more preferable.
- a photosensitive resin composition may further contain (H) an elastomer.
- H an elastomer.
- the elastomer conventionally well-known ones can be used, but it is preferable that the glass transition temperature (Tg) of a polymer constituting an elastomer is 20° C. or lower.
- Examples of such an elastomer include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, and silicone-based elastomers.
- the elastomer may be microparticulate elastomers. These elastomers can be used singly or in a combination of two or more.
- a photosensitive resin composition may contain (I) a solvent from the viewpoint of the applicability on substrates and of being capable of forming a uniform-thickness resin film.
- the solvent include ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butylacetate, ethoxyethylpropionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphorylamide, tetramethylenesulfone, diethylketone, diisobutylketone, methylamylketone, cyclohexanone, propyleneglycolmonomethyl ether, propyleneglycolmonopropyl ether, propyleneglycolmonobutyl ether and dipropyleneglycolmonomethyl
- the content of the (I) component is not especially limited, but it is preferable that the content is so regulated that the proportion of the solvent in the photosensitive resin composition becomes 20 to 90 mass %.
- a photosensitive resin composition may contain (J) a dissolution promoter.
- the incorporation of (J) a dissolution promoter increases the dissolution speed of exposed portions when a patterned resin film is developed with an alkali aqueous solution, and can improve the sensitivity and the resolution.
- the dissolution promoter conventionally well-known ones can be used. Specific examples thereof include compounds having a carboxyl group, sulfonic acid or a sulfoneamide group.
- the content of the dissolution promoter can be determined by the dissolution speed of a patterned resin film to an alkali aqueous solution, but it is preferable that the content is made to be 0.01 to 30 parts by mass with respect to 100 parts by mass of the (A) component.
- a photosensitive resin composition may contain (K) a dissolution inhibitor.
- K) a dissolution inhibitor is a compound to inhibit the solubility of an (A) component to an alkali aqueous solution, and is used in order to control the remaining film thickness, the development time and the contrast.
- Specific examples are diphenyliodonium nitrate, bis(p-tert-butylphenyl)iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride, and diphenyliodonium iodide.
- the content of the dissolution inhibitor is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the (A) component; 0.01 to 15 parts by mass is more preferable; and 0.05 to 10 parts by mass is still more preferable.
- a photosensitive resin composition may contain (L) a surfactant or a leveling agent.
- a surfactant or a leveling agent examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene coley′ ether, polyoxyethylene octylphenol ether.
- the content of the (L) component is 0.001 to 5 parts by mass with respect to 100 parts by mass of the (A) component; and 0.01 to 3 parts by mass is more preferable.
- a photosensitive resin composition is capable of being developed using an alkali aqueous solution of tetramethylammonium hydroxide (TMAH) or the like. Further the use of the photosensitive resin composition enables the formation of a patterned cured film having the good adherence and the crack resistance in the thermal shock cycle.
- TMAH tetramethylammonium hydroxide
- a patterned cured film composed of the photosensitive resin composition according to the present invention has good photosensitive properties (sensitivity and resolution), and has sufficient mechanical properties (elongation at break and elastic modulus).
- a method for manufacturing a patterned cured film from the photosensitive resin composition comprises, for example, a step (film formation step) of applying and drying the photosensitive resin composition on a substrate to thereby form a photosensitive resin film, a step (exposure step) of exposing the photosensitive resin film, a step (development step) of developing the photosensitive resin film after the exposure by using an alkali aqueous solution to thereby form a patterned resin film, and a step (heating step) of heating the patterned resin film.
- the above-mentioned photosensitive resin composition is rotationally applied on a support substrate such as a glass substrate, a semiconductor, a metal oxide insulator (for example, TiO 2 , SiO 2 ) or silicon nitride, by using a spinner or the like.
- the applied photosensitive resin composition is heated using a hot plate, an oven or the like to be thereby dried.
- a film (photosensitive resin film) of the photosensitive resin composition is thereby formed on the substrate.
- the photosensitive resin film formed on the substrate is irradiated with active light rays such as ultraviolet rays, visible light rays and radiation through a mask. Since the (A) component is high in transparency to i-line, the irradiation of i-line can suitably be used.
- post-exposure baking PEB
- the temperature of the post-exposure baking is 70° C. to 140° C., and that the time of the post-exposure baking is 1 min to 5 min.
- a developing solution to thereby pattern the photosensitive resin film.
- an alkali aqueous solution for example, of sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine or tetramethylammonium hydroxide (TMAH), is suitably used. It is preferable that the concentration of a base of the aqueous solution is 0.1 to 10 mass %. Alcohols and/or a surfactant may further be added to the developing solution and used.
- each thereof can be blended in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the developing solution; and the range of 0.1 to 5 parts by mass thereof is more preferable.
- the patterned photosensitive resin film is called a patterned resin film.
- the patterned resin film is heated to thereby cure the photosensitive resin composition.
- a film obtained by curing the patterned resin film is called a patterned cured film.
- the heating temperature is 250° C. or lower; 225° C. or lower is more preferable; and 140 to 200° C. is still more preferable.
- the heat treatment can be carried out, for example, using an oven such as a quartz tube oven, a hot plate, a rapid thermal annealer, a vertical diffusion oven, an infrared curing oven, an electron-beam curing oven or a microwave curing oven.
- the atmosphere for the heat treatment can be selected from either of the air and an inert atmosphere such as nitrogen, it is desirable that the heat treatment is carried out in nitrogen, because of being able to prevent the oxidation of the pattern. Since the above-mentioned desirable range of the heating temperature is lower than conventional heating temperatures, the damage to support substrates and electronic devices can be suppressed small. Therefore, by using the manufacturing method of a resist pattern according to the present embodiment, electronic devices can be manufactured in a high yield. The heating temperature leads to the energy saving of the process.
- the use of the photosensitive resin composition according to the present embodiment since the volume shrinkage (curing shrinkage) in the heat treatment step, as would be seen in the use of photosensitive polyimide resins and the like, is low, can further prevent the decrease in the dimensional accuracy.
- the heating time in the heating step suffices if being a time enough to cure the photosensitive resin composition, but about 5 hours or shorter is preferable in the balance with the working efficiency.
- the heating can also be carried out by using, in addition to the above-mentioned ovens, a microwave curing apparatus or a frequency-variable microwave curing apparatus.
- a microwave curing apparatus or a frequency-variable microwave curing apparatus.
- the use of these apparatuses allows effective heating of a photosensitive resin film alone with the temperature of substrates and electronic devices being held, for example, at 200° C. or lower.
- the microwave is pulsatingly irradiated while the frequency is being varied, the standing wave can be prevented, and a substrate surface can be uniformly heated, which is therefore preferable.
- substrates contain metal wiring as seen in electronic devices described later, if the microwave is pulsatingly irradiated while the frequency is being varied, the generation of discharge and the like from the metal can be prevented, and the electronic devices are protected from breakage, which is therefore preferable.
- the heating using the frequency-variable microwave is carried out, physical properties of a cured film do not decrease even if the curing temperature is decreased, as compared with the case using an oven, which is therefore preferable (see J. Photopolym. Sci. Technol., 18, 327-332(2005)).
- the frequency of the frequency-variable microwave is generally in the range of 0.5 to 20 GHz, but the range of 1 to 10 GHz is practically preferable; and the range of 2 to 9 GHz is practically more preferable. It is desirable that the frequency of the irradiated microwave is continuously varied, but actually, the frequency is stepwise varied for the irradiation. At this time, since the irradiation of a single-frequency microwave in as short a time as possible hardly generates the standing wave, the discharge from the metal, and the like, the irradiation time in 1 millisecond or shorter is preferable; and 100 microseconds or shorter is especially preferable.
- the output of the microwave to be irradiated is in the range of about 10 to 2000 W; and practically, 100 to 1000 W is more preferable; 100 to 700 W is still more preferable; and 100 to 500 W is most preferable.
- the output of 10 W or lower the object to be heated is hardly heated in a short time; and with that exceeding 2000 W, a rapid temperature rise is liable to occur.
- the microwave is irradiated by being pulsatingly turned on/off.
- the pulsating irradiation of the microwave can hold a set heating temperature, and can avoid damage to a cured film and a substrate, which is therefore preferable.
- the time in which the pulsating microwave is irradiated at one time depends on the condition, but about 10 second or shorter is preferable.
- the above-mentioned method for manufacturing a patterned cured film can provide a photosensitive resin composition having good photosensitive properties, and can provide the patterned cured film having a good pattern shape.
- the use of the photosensitive resin composition according to the present embodiment allows the curing even at a low temperature of 200° C. or lower in the heating step, which conventionally needs 300° C. or higher.
- a patterned cured film formed from the photosensitive resin composition according to the present invention has a high glass transition temperature. Therefore, a patterned cured film excellent in heat resistance is made. As a result, electronic devices such as semiconductor apparatuses excellent in the reliability can be provided in a high yield.
- FIGS. 1 to 5 are schematic cross-sectional diagrams showing one embodiment of a manufacturing process of a semiconductor apparatus having a multilayer wiring structure.
- the structural body 100 shown in FIG. 1 comprises a semiconductor substrate 1 such as a Si substrate having circuit elements, a protecting film 2 such as a silicon oxide film having a predetermined pattern where the circuit elements are exposed and covering the semiconductor substrate 1 , a first conductor layer 3 formed on the exposed circuit elements, and an interlayer insulating layer 4 formed as a film on the protecting layer 2 and the first conductor layer 3 by a spin coat method or the like and composed of a polyimide resin or the like.
- a semiconductor substrate 1 such as a Si substrate having circuit elements
- a protecting film 2 such as a silicon oxide film having a predetermined pattern where the circuit elements are exposed and covering the semiconductor substrate 1
- a first conductor layer 3 formed on the exposed circuit elements
- an interlayer insulating layer 4 formed as a film on the protecting layer 2 and the first conductor layer 3 by a spin coat method or the like and composed of a polyimide resin or the like.
- a photosensitive resin layer 5 having window parts 6 A is formed on the interlayer insulating layer 4 to thereby obtain a structural body 200 shown in FIG. 2 .
- the photosensitive resin layer 5 is formed by applying a photosensitive resin such as a chlorinated rubber-based, a phenol novolac-based, a polyhydroxystyrene-based or a polyacrylate ester-based one, by a spin coat method.
- the window parts 6 A are formed by a well-known photo-lithographic technology so that predetermined portions of the interlayer insulating layer 4 are exposed.
- the interlayer insulating layer 4 is etched to thereby form window parts 6 B, and thereafter, the photosensitive resin layer 5 is removed to thereby obtain a structural body 300 shown in FIG. 3 .
- the etching of the interlayer insulating layer 4 can use dry etching means using a gas such as oxygen or carbon tetrafluoride. By this etching, portions of the interlayer insulating layer 4 corresponding to the window parts 6 A are selectively removed to thereby obtain the interlayer insulating layer 4 provided with the window parts 6 B so that the first conductor layer 3 is exposed. Then, the photosensitive resin layer 5 is removed using an etching solution which does not corrode the first conductor layer 3 exposed from the window parts 6 B, but corrodes the photosensitive resin layer 5 only.
- a second conductor layer 7 is further formed on portions corresponding to the window parts 6 B to thereby obtain a structural body 400 shown in FIG. 4 .
- the formation of the second conductor layer 7 can use a well-known photo-lithographic technology.
- the second conductor layer 7 and the first conductor layer 3 are thereby electrically connected.
- a surface protecting layer 8 is formed on the interlayer insulating layer 4 and the second conductor layer 7 to thereby obtain a semiconductor apparatus 500 shown in FIG. 5 .
- the surface protecting layer 8 is formed as follows. First, the photosensitive resin composition according to the above-mentioned embodiment is applied on the interlayer insulating layer 4 and the second conductor layer 7 by a spin coat method, and dried to thereby form a photosensitive resin film. Then, light irradiation is carried out through a mask on whose predetermined portions a pattern corresponding to window parts 6 C is drawn, and thereafter, the photosensitive resin film is developed with an alkali aqueous solution to thereby pattern the photosensitive resin film.
- the photosensitive resin film is heated to be cured to thereby form a film as the surface protecting layer 8 .
- the surface protecting layer 8 protects the first conductor layer 3 and the second conductor layer 7 from stresses from the outside, a rays and the like; and the obtained semiconductor apparatus 500 is excellent in the reliability.
- a manufacturing method of a semiconductor apparatus having a two-layer wiring structure was described, but in the case of forming a multilayer wiring structure of two or more layers, the each layer can be formed by repeatedly carrying out the above-mentioned steps. That is, a multilayer pattern is allowed to be formed by repeating the each step of forming the interlayer insulating layer 4 and the each step of forming the surface protecting layer 8 .
- a multilayer pattern is allowed to be formed by repeating the each step of forming the interlayer insulating layer 4 and the each step of forming the surface protecting layer 8 .
- the surface protecting layer 8 not only the surface protecting layer 8 but also the interlayer insulating layer 4 are allowed to be formed using the photosensitive resin composition according to the present embodiment.
- An electronic component according to the present embodiment has a patterned cured film formed by the above-mentioned manufacturing method as an interlayer insulating layer or a surface protecting layer.
- the patterned cured film can be used specifically as a surface protecting layer and/or an interlayer insulating layer of semiconductor apparatuses, an interlayer insulating layer of multilayer wiring boards, and the like.
- the electronic component according to the present invention is not especially limited, except for having a surface protecting layer and/or an interlayer insulating layer formed using the above-mentioned photosensitive resin composition, and can take various types of structures.
- the above-mentioned photosensitive resin composition since being excellent also in the stress relaxation, the adhesion and the like, can be used as various types of structural materials in packages of various types of structures developed in recent years.
- Cross-sectional structures of an example of such semiconductor apparatuses are shown in FIG. 6 and FIG. 7 .
- FIG. 6 is a schematic cross-sectional diagram showing a wiring structure as one embodiment of a semiconductor apparatus.
- the semiconductor apparatus 600 shown in FIG. 6 comprises a silicon chip 23 , an interlayer insulating layer 11 provided on one surface side of the silicon chip 23 , an A1 wiring layer 12 formed on the interlayer insulating layer 11 and having a pattern containing a pad portion 15 , an insulating layer 13 (for example, P-SiN layer) and a surface protecting layer 14 successively stacked on the interlayer insulating layer 11 and the A1 wiring layer 12 while an opening is formed on the pad portion 15 , an island-shaped core 18 disposed in the vicinity of the opening on the surface protecting layer 14 , and a rewiring layer 16 extending on the surface protecting layer 14 so as to contact with the pad portion 15 in the opening of the insulating layer 13 and the surface protecting layer 14 and to contact with a surface of the core 18 on the opposite side thereof to the surface protecting layer 14 .
- the semiconductor apparatus 600 further comprises a cover coat layer 19 formed covering the surface protecting layer 14 , the core 18 and the rewiring layer 16 and having an opening formed on a portion of the rewiring layer 16 on the core 18 , a conductive ball 17 connected with the rewiring layer 16 through a barrier metal 20 interposed therebetween in the opening of the cover coat layer 19 , a collar 21 holding the conductive ball, and an underfill 22 provided on the cover coat layer 19 around the conductive ball 17 .
- the conductive ball 17 is used as an external connection terminal, and is formed of a solder, gold or the like.
- the underfill 22 is provided in order to relax the stress when the semiconductor apparatus 600 is mounted.
- FIG. 7 is a schematic cross-sectional diagram showing a wiring structure as one embodiment of a semiconductor apparatus.
- an A1 wiring layer (not shown in figure) and a pad portion 15 of the A1 wiring layer are formed on a silicon chip 23 ; an insulating layer 13 is formed on the upper part thereof; and a surface protecting layer 14 for elements is further formed.
- a rewiring layer 16 is formed on the pad portion 15 ; and the rewiring layer 16 extends up to the upper part of a connection part 24 with a conductive ball 17 .
- a cover coat layer 19 is further formed on the surface protecting layer 14 .
- the rewiring layer 16 is connected with the conductive ball 17 through a barrier metal 20 .
- the above-mentioned photosensitive resin composition can be used as a material not only for forming the interlayer insulating layer 11 and the surface protecting layer 14 , but also for forming the cover coat layer 19 , the core 18 , the collar 21 , the underfill 22 , and the like.
- a cured body using the above-mentioned photosensitive resin composition is excellent in the adhesion with a metal layer (for example, Cu, Au, Ni, Ti or the like) such as the A1 wiring layer 12 , the rewiring layer 16 , a sealant and the like, and high also in the stress relaxation effect, a semiconductor apparatus using the cured body for the surface protecting layer 14 , the cover coat layer 19 , the core 18 , the collar 21 of a solder or the like, the underfill 12 used in flip chips, and the like becomes remarkably excellent in the reliability.
- a metal layer for example, Cu, Au, Ni, Ti or the like
- the photosensitive resin composition according to the present embodiment is used for the surface protecting layer 14 and/or the cover coat layer 19 of the semiconductor apparatuses having the rewiring layer 16 in FIG. 6 and FIG. 7 .
- the film thickness of the surface protecting layer or the cover coat layer is 3 to 20 ⁇ m; and 5 to 15 ⁇ m is more preferable.
- the use of the above-mentioned photosensitive resin composition allows the curing using a low-temperature heating of 200° C. or lower in the above heat treatment step, which conventionally needs 300° C. or higher.
- the heating temperature is 100° C. to 200° C.; and 150° C. to 200° C. is more preferable.
- the photosensitive resin composition according to the present embodiment since the volume shrinkage (curing shrinkage) in the heat treatment step, as would be seen in the use of photosensitive polyimide and the like, is low, can further prevent the decrease in the dimensional accuracy.
- a patterned cured film formed from the photosensitive resin composition according to the present embodiment has a high glass transition temperature. Therefore, a surface protecting layer and an interlayer insulating layer excellent in the heat resistance are made. As a result, electronic components such as semiconductor apparatuses excellent in the reliability can be provided in a high yield.
- A2 a modified phenol resin prepared by a method described in the following Synthesis Example 1.
- reaction solution was cooled to room temperature to thereby obtain as a reaction product a phenol resin (hereinafter, referred to as A2)(acid value: 120 mgKOH/g) modified with a compound having an unsaturated hydrocarbon group and having 4 to 100 carbon atoms.
- A2 a phenol resin
- the weight-average molecular weight of the modified phenol resin A2 as determined in terms of standard polystyrenes by GPC method was about 25000.
- B1 a 1-naphthoquinone-2-diazide-5-sulfonate ester of 1,1-bis(4-hydroxyphenyl)-1-[4- ⁇ 1-(4-hydroxyphenyl)-1-methylethyl ⁇ phenyl]ethane (esterification rate: about 90%, made by AZ Electronic Materials SA, trade name: “TPPA528”).
- thermal crosslinking agents C1 to C3 were prepared.
- C1 hexakis(methoxymethyl)melamine (made by Sanwa Chemical Co., Ltd., trade name: “Nikalac MW-30HM”).
- C2 1,1-bis[(3,5-bis(methoxymethyl)-4-hydroxyphenyl)]methane (made by Honshu Chemical Industry Co., Ltd., trade name: “TMOM-pp-BPF”).
- C3 N,N′,N′′,N′′′-tetrakis(methoxymethyl)glycoluril (made by Sanwa Chemical Co., Ltd., trade name: “Nikalac MX-270”).
- D1 tetrazole (made by Toyobo Co., Ltd., trade name: “1HT”).
- D2 5-aminotetrazole (made by Toyobo Co., Ltd., trade name: “HAT”).
- D3 5-phenyltetrazole (made by Toyobo Co., Ltd., trade name: “P5T”).
- silane compounds of the following E1 and E2 were prepared.
- E1 3-glycidoxypropyltrimethoxysilane (made by Shin-Etsu Silicone Co., Ltd., trade name: “KBM-403”).
- E2 ureidopropyltriethoxysilane (made by Dow Chemical Toray Co., Ltd, trade name: “AY-43-031”).
- acryl resins of F1 and F2 were prepared by the methods of following Synthesis Examples 2 and 3.
- Dissolved oxygen was removed by making nitrogen gas flow at a flow volume of 400 ml/min for 30 min under stirring at a stirring rotation frequency of about 270 rpm at room temperature. Thereafter, the inflow of the nitrogen gas was stopped; and the flask was sealed, and heated to 65° C. over about 25 min in a constant-temperature water bath. The temperature was held for 14 hours to carry out the polymerization reaction to thereby obtain an acryl resin F1. The polymerization rate was 98%.
- the weight-average molecular weight (MW) of the acryl resin F1 as determined in terms of standard polystyrenes by GPC method is shown in Table 1.
- An acryl resin F2 was synthesized as in Synthesis Example 1, except for using polymerizable monomers shown in Table 1.
- the weight-average molecular weight of the synthesized acryl resin F2 is shown in Table 1.
- FA-712HM 2,2,6,6-tetramethylpiperidin-4-yl methacrylate (made by Hitachi Chemical Co., Ltd.)
- BA n-butyl acrylate
- DDA lauryl acrylate
- X-22-2475 a methacryl-modified silicone oil (functional group equivalent: 420 g/mol, made by Shin-Etsu Chemical Co., Ltd.)
- the (A) to (I) components were blended in predetermined proportions shown in Table 2.
- the obtained solutions were subjected to a pressure filtration using a Teflon (R) filter of 3 ⁇ m in pore to thereby prepare solutions of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2.
- the solutions of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2 were each spin coated on various types of substrates described below, and heated at 120° C. for 3 min to thereby form a resin film of about 11 to 12 ⁇ m in thickness.
- the resin film was heat treated (cured) in nitrogen at a temperature of 180° C. (temperature-rise time: 1.5 hours) for 2 hours by using a vertical diffusion oven (made by Koyo Thermo System Co., Ltd., trade name: “ ⁇ -TF”) to thereby obtain a cured film of about 10 ⁇ m in thickness.
- the cured film was scored in a 10 ⁇ 10 grid by a razor by using a crosscut guide (made by Cotec Co., Ltd.) to thereby divide the cured film into 100 small pieces.
- a pressure-sensitive adhesive tape (made by Nichiban Co., Ltd.) was pasted thereon, and thereafter peeled off. The adherence was evaluated as follows by using the number of the small pieces peeled off the substrate when the pressure-sensitive adhesive tape was peeled off. The results are shown in Table 2.
- the substrates used for the evaluation of the adherence were as follows.
- Ti substrate a substrate in which a Ti film was sputter-formed on a silicon substrate.
- Au substrate a substrate in which a TiN film was sputter-formed on a silicon substrate, and thereafter an Au film was further sputter-formed on the TiN film.
- Cu substrate a substrate in which a TiN film was sputter-formed on a silicon substrate, and thereafter a copper film was sputter-formed on the TiN film, and copper plating was carried out on the copper film as a seed layer.
- Si substrate a silicon substrate in which a Ti film was sputter-formed on a silicon substrate.
- the solutions of the photosensitive resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were each spin coated on the silicon substrate, and heated at 120° C. for 3 min to thereby form a resin film of about 8 to 9 ⁇ m in thickness. Then, the resin film was subjected to a reduction projection exposure using the i-line (365 nm) through a mask by using an i-line stepper (made by Canon Inc., trade name: “FPA-3000i”). After the exposure, the resin film was subjected to a development using a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) so that the remaining film thickness became about 80 to 95% of the initial film thickness.
- TMAH tetramethylammonium hydroxide
- the remaining film was rinsed with water; and the minimum exposure amount necessary for the pattern formation, and the size of the opened minimum square hole pattern were determined.
- the evaluation was carried out using the minimum exposure amount as the sensitivity and the size of the opened minimum square hole pattern as the resolution.
- the solutions of the photosensitive resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were each spin coated on the silicon substrate, and heated at 120° C. for 3 min to thereby form a resin film of about 12 to 14 ⁇ m in thickness. Then, the resin film was subjected to an exposure using the entire wavelength through a mask by using a proximity aligner (made by Canon Inc., trade name: “PLA-600FA”). After the exposure, the resin film was subjected to a development using a 2.38% aqueous solution of TMAH to thereby obtain a patterned resin film having a rectangular cross-section of 10 mm in width. Thereafter, the patterned resin film was heat treated (cured) in nitrogen at a temperature of 175° C.
- a copper foil of a base material (trade name: E-679, made by Hitachi Chemical Co., Ltd.) for printed wiring boards in which the copper foil of 12 ⁇ m in thickness was laminated on a glass epoxy base material was etched to thereby obtain a test piece for the thermal shock resistance evaluation having an interdigital electrode in which the line width/the space width were 20 ⁇ m/20 ⁇ m; and mutual lines made no contact with each other and faced each other and were on the same surface.
- the solutions of the photosensitive resin compositions of Examples 1 to 14 and Comparative Examples 1 and 2 were each applied using a spin coater to thereby obtain a resin film.
- the resin film was heat treated (cured) in nitrogen at a temperature of 175° C.
- test piece having this cured film was subjected to heat cycles of 1000 times each in which the test piece was exposed in the air at ⁇ 55° C. for 15 min, thereafter heated at a temperature-rise rate of 180° C./min, then, exposed in the air at 125° C. for 15 min, and thereafter cooled at a temperature-fall rate of 180° C./min.
- the photosensitive resin compositions of Examples 1 to 8 could provide patterned cured films exhibiting the good crack resistance and having the good adherence with any one of the substrates. In the cases of using the photosensitive resin compositions of Examples 1 to 8, the photosensitive properties and the mechanical properties were good as well. By contrast, in either case of Comparative Example 1 and Comparative Example 2 in which no nitrogen-containing aromatic compound is used, the adherence with the substrate decreased and the crack resistance was poor.
- the present invention can provide a photosensitive resin composition which is capable of forming a patterned cured film having excellent crack resistance and having good adherence with any substrate regardless of the type of the substrate, and which is developable with an alkali aqueous solution.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Materials For Photolithography (AREA)
Abstract
Description
- The present invention relates to a photosensitive resin composition, a method for manufacturing a patterned cured film, and an electronic component.
- It is demanded accompanying high integration, miniaturization and micronization of semiconductor elements that photosensitive resin compositions used for formation of surface protecting layers, interlayer insulating layers and rewiring layers of the semiconductor elements simultaneously have better sensitivity and resolution, and are capable of forming more fine and precise patterned cured films. As a material simultaneously having such properties, a photosensitive resin composition containing an alkali-soluble resin having a phenolic hydroxyl group is developed (see, for example, Patent Literature 1). Such a photosensitive resin composition has an advantage of being capable of being thermally cured at a low temperature in a step of heating and curing a patterned resin film formed through light exposure and development.
- Patent Literature 1: Japanese Patent Application Laid-Open No. 2003-215802
- Patent Literature 2: Japanese Patent Application Laid-Open No. 2010-256508
- Further in recent years, accompanying high integration and miniaturization of semiconductor elements, the surface area of wiring composed of gold, copper, Ni or the like to the surface area of the semiconductor element has increased. Therefore, photosensitive resin compositions used for formation of surface protecting layers, interlayer insulating layers and rewiring layers of semiconductor elements need to have excellent adherence with such wiring. However, conventional photosensitive resin compositions do not always have sufficient adherence with wiring. Then, a method of using two types of resins having a phenolic hydroxyl group, and other methods are proposed (see, for example, Patent Literature 2).
- However, photosensitive resin compositions developed so far, though being excellent in mechanical properties, are demanded to be further improved in terms of the crack resistance after a thermal shock cycle test. Further, it is difficult to achieve the good adherence with substrates regardless of types of the substrates such as gold (Au), copper (Cu), titanium (Ti) and silicon (Si).
- Then, it is an object of the present invention to provide a photosensitive resin composition which is capable of forming a patterned cured film having excellent crack resistance and having good adherence with various types of substrates, and which is developable with an alkali aqueous solution.
- The present invention relates to a photosensitive resin composition containing (A) an alkali-soluble resin, (B) a compound which generates an acid when exposed to light, (C) a thermal crosslinking agent, and (D) a nitrogen-containing aromatic compound represented by the following formula (1).
- In the formula, R1 represents a hydrogen atom or a hydrocarbon group; R2 represents a hydrogen atom, an amino group or a phenyl group; and A and B each independently represent a nitrogen atom, or a carbon atom and a hydrogen atom bonded thereto (C—H).
- The photosensitive resin composition according to the present invention is capable of forming a patterned cured film having excellent crack resistance and having good adherence with various types of substrates. The photosensitive resin composition is further developable with an alkali aqueous solution.
- The (D) component may be a nitrogen-containing aromatic compound represented by the following formula (2). Thereby, the advantageous effects of the present invention can be achieved particularly remarkably. R2 in the formula (2) is the same as R2 in the formula (1).
- The (A) component may be a phenol resin. The (A) component may contain a phenol resin (A1) having no unsaturated hydrocarbon group and a modified phenol resin (A2) having an unsaturated hydrocarbon group. The (A2) component may be a modified phenol resin further modified by a reaction of a phenolic hydroxyl group with a polybasic acid anhydride.
- The (B) component may be an o-quinone diazide compound.
- The photosensitive resin composition according to the present invention may further contain (E) a silane compound represented by the following formula (3).
- In the formula (3), R3 represents a divalent organic group; and R4 represents a monovalent organic group, and a plurality of R4 in the same molecule may be identical or different.
- The photosensitive resin composition according to the present invention may further contain (F) an acryl resin.
- The present invention relates also to a method for manufacturing a patterned cured film, the method comprising a step of applying and drying the photosensitive resin composition on a substrate to thereby form a photosensitive resin film, a step of exposing the photosensitive resin film, a step of developing the photosensitive resin film after the exposure with an alkali aqueous solution to thereby form a patterned resin film, and a step of heating the patterned resin film.
- The present invention relates further to an electronic component having a patterned cured film obtained by the manufacturing method as a surface protecting layer, an interlayer insulating layer, a cover coat layer, a core, a collar or an underfill.
- The present invention can provide a photosensitive resin composition which is capable of forming a patterned cured film having excellent crack resistance and having good adherence with substrates regardless of types thereof, and which is developable with an alkali aqueous solution. The patterned cured film composed of the photosensitive resin composition according to the present invention has good photosensitive properties (sensitivity and resolution), and has sufficient mechanical properties (elongation at break and elastic modulus). The photosensitive resin composition according to the present invention, since being capable of being cured at a low temperature, can prevent damage due to heat to electronic components and can then provide highly reliable electronic components in a high yield.
-
FIG. 1 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of a semiconductor apparatus. -
FIG. 2 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus. -
FIG. 3 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus. -
FIG. 4 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus. -
FIG. 5 is a schematic cross-sectional diagram illustrating one embodiment of a manufacturing process of the semiconductor apparatus. -
FIG. 6 is a schematic cross-sectional diagram showing one embodiment of an electronic component (semiconductor apparatus). -
FIG. 7 is a schematic cross-sectional diagram showing one embodiment of an electronic component (semiconductor apparatus). - Hereinafter, preferred embodiments according to the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the present description, a “(meth)acrylate” refers to an “acrylate” and a “methacrylate” corresponding thereto. A “(meth)acryl” similarly refers to an “acryl” and a “methacryl” corresponding thereto.
- [Photosensitive Resin Composition]
- The photosensitive resin composition according to the present invention contains (A) an alkali-soluble resin, (B) a compound which generates an acid when exposed to light, (C) a thermal crosslinking agent and (D) a nitrogen-containing aromatic compound represented by the following formula (1).
- R1 represents a hydrogen atom or a hydrocarbon group; R2 represents a hydrogen atom, an amino group or a phenyl group; and A and B each independently represent a nitrogen atom, or a carbon atom and a hydrogen atom bonded thereto.
- <(A) Component: An Alkali-Soluble Resin>
- An alkali-soluble resin as an (A) component is soluble to an alkali aqueous solution. One criterion that an (A) component is soluble to an alkali aqueous solution will be described as follows. A solution obtained from the (A) component singly and any solvent, or a solution obtained from the (A) component, a (B) component, a (C) component and a (D) component, and any solvent is rotationally applied on a substrate such as a silicon wafer to thereby form a resin film of about 5 μm in thickness. The resin film is immersed in any one of a tetramethylammonium hydroxide aqueous solution, a metal hydroxide aqueous solution and an organic amine aqueous solution at 20 to 25° C. As a result, the case where the resin is dissolved to thereby form a homogeneous solution gives such a judgment that the (A) component is soluble to the alkali aqueous solution.
- The (A) component specifically includes hydroxystyrene-based resins such as polyhydroxystyrenes and copolymers containing hydroxystyrene as a monomer unit, phenol resins, polybenzoxazol precursors such as poly(hydroxyamides), poly(hydroxyphenylene) ethers, and polynaphthols. Among these, phenol resins are preferable, and novolac-type phenol resins are more preferable, because these are of a low cost and exhibit only a small volume shrinkage in curing.
- Phenol resins are polycondensation products of phenol or derivatives thereof with aldehydes. The polycondensation is carried out in the presence of a catalyst such as an acid or a base. Phenols resins obtained in the case of using an acid catalyst are called novolac-type phenol resins. Specific examples of novolac-type phenol resins include phenol/formaldehyde novolac resins, cresol/formaldehyde novolac resins, xylylenol/formaldehyde novolac resins, resorcinol/formaldehyde novolac resins, and phenol-naphthol/formaldehyde novolac resins.
- Examples of phenol derivatives used for obtaining phenol resins include: alkylphenols such as phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol; alkoxyphenols such as methoxyphenol and 2-methoxy-4-methylphenol; alkenylphenols such as vinylphenol and allylphenol; aralkylphenols such as benzylphenol; alkoxycarbonylphenols such as methoxycarbonylphenol; arylcarbonylphenols such as benzoyloxyphenol; halogenated phenols such as chlorophenol; polyhydroxybenzenes such as catechol, resorcinol and pyrogallol; bisphenols such as bisphenol A and bisphenol F; naphthol derivatives such as α- or β-naphthol; hydroxyalkylphenols such as p-hydroxyphenyl-2-ethanol, p-hydroxyphenyl-3-propanol and p-hydroxyphenyl-4-butanol; hydroxyalkylcresols such as hydroxyethylcresol; monoethylene oxide adducts of bisphenols; alcoholic hydroxyl group-containing phenol derivatives such as monopropylene oxide adducts of bisphenols; and carboxyl group-containing phenol derivatives such as p-hydroxyphenylacetic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylbutanoic acid, p-hydroxycinnamic acid, hydroxybenzoic acid, hydroxyphenylbenzoic acid, hydroxyphenoxybenzoic acid and diphenols. Methylolated substances of the phenol derivatives such as bishydroxymethyl-p-cresol may be used as phenol derivatives.
- Phenol resins further may be products obtained by polycondensing the above-mentioned phenol or phenol derivatives together with compounds other than phenol such as m-xylene, with aldehydes. In this case, it is preferable that the molar ratio of the compounds used for polycondensation other than phenol to the phenol derivatives is lower than 0.5. The above-mentioned phenol derivatives and the compounds other than phenol are each used singly or in a combination of two or more.
- Aldehydes used for obtaining phenol resins are selected, for example, from formaldehyde, acetaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, methoxybenzaldehyde, hydroxyphenylacetaldehyde, methoxyphenylacetaldehyde, crotonaldehyde, chloroacetaldehyde, chlorophenylacetaldehyde, glyceraldehyde, glyoxylic acid, methyl glyoxylate, phenyl glyoxylate, hydroxyphenyl glyoxylate, formylacetic acid, methyl formylacetate, 2-formylpropionic acid, methyl 2-formylpropionate, and the like. Additionally, paraformaldehydes, precursors of formaldehyde such as trioxane, and ketones such as acetone, pyruvic acid, lepulinic acid, 4-acetylbutyric acid, acetonedicarboxylic acid and 3,3′-4,4′-benzophenonetetracarboxylic acid may be used for the reaction. These are used singly or in a combination of two or more.
- Poly(hydroxystyrene)-based resins are obtained, for example, by polymerizing (vinyl polymerizing)ethylenic unsaturated double bonds of hydroxystyrene having a protecting group incorporated therein in the presence of a catalyst (radical initiator), and further deprotecting the protecting group. A commercially available branch-type poly(hydroxystyrene) such as PHS-B (trade name, made by Du Pont) may also be used.
- In consideration of the balance among the solubility to an alkali aqueous solution, photosensitive properties and mechanical properties, it is preferable that the weight-average molecular weight of an (A) component is 500 to 150000; 500 to 100000 is more preferable; and 1000 to 50000 is still more preferable. Here, the weight-average molecular weight is a value obtained by the measurement using gel permeation chromatography, and the conversion using a standard polystyrene calibration curve.
- It is preferable that the (A) component contains a phenol resin (A1) having no unsaturated hydrocarbon group and a modified phenol resin (A2) having an unsaturated hydrocarbon group. It is more preferable that the (A2) component is a modified phenol resin further modified by a reaction of a phenolic hydroxyl group with a polybasic acid anhydride.
- The (A2) component is generally: a polycondensation product of aldehydes with a reaction product (hereinafter referred to as “unsaturated hydrocarbon group-modified phenol derivative”) of a phenol or a derivative thereof with a compound having an unsaturated hydrocarbon group (preferably a compound having 4 to 100 carbon atoms; hereinafter simply referred to as “unsaturated hydrocarbon group-containing compound” in some cases); or a reaction product of a phenol resin with an unsaturated hydrocarbon group-containing compound. For the phenol derivatives used for obtaining the (A2) component, the same phenol derivatives and aldehydes as used for obtaining phenol resins can be used.
- It is preferable from the viewpoint of the adherence and the thermal shock resistance of a patterned cured film that the unsaturated hydrocarbon group-containing compound contains two or more unsaturated bonds, and it is preferable from the viewpoint of the storage stability of the resin composition that the number of the unsaturated bonds is 30 or less. From the viewpoint of the compatibility when the resin composition is made, and the flexibility of the cured film, it is preferable that the number of carbon atoms of the unsaturated hydrocarbon group-containing compound is 8 to 80; and 10 to 60 is more preferable.
- Examples of the unsaturated hydrocarbon group-containing compound are unsaturated hydrocarbons having 4 to 100 carbon atoms, polybutadienes having carboxyl groups, epoxidated polybutadienes, linoleyl alcohol, oleyl alcohol, unsaturated fatty acids, and unsaturated fatty acid esters. Suitable unsaturated fatty acids include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, erucic acid, nervonic acid, linolic acid, α-linoleic acid, eleostearic acid, stearidonic acid, arachidonic acid, eicosapentaenoic acid, clupanodonic acid, and docosahexaenoic acid. Among these, vegetable oils being unsaturated fatty acid esters are especially preferable.
- The vegetable oils are generally esters of glycerol with unsaturated fatty acids, and include nondrying oils having an iodine value of 100 or lower, semidrying oils having that of higher than 100 and lower than 130, and drying oils having that of 130 or higher. Examples of the nondrying oil include olive oil, morning glory seed oil, cashew nut oil, sasanqua oil, camellia oil, castor oil, and peanut oil. Examples of the semidrying oil include corn oil, cotton seed oil, and sesame oil. Examples of the drying oil include tung oil, linseed oil, soybean oil, walnut oil, safflower oil, sunflower oil, perilla oil, and poppy seed oil. Processed vegetable oils obtained by processing these vegetable oils may be used.
- Among these vegetable oils, it is preferable from the viewpoint of the improvement in the adherence, the mechanical properties and the thermal shock resistance of a patterned cured film that drying oils are used. Among the drying oils, tung oil, linseed oil, soybeen oil, walnut oil and safflower oil are more preferable, and tung oil and linseed oil are still more preferable, because these oils can effectively and surely exhibit the advantageous effects of the present invention. These vegetable oils are used singly or in a combination of two or more.
- In the preparation of an (A2) component, first, the phenol derivative and the unsaturated hydrocarbon group-containing compound are allowed to react to thereby prepare an unsaturated hydrocarbon group-modified phenol derivative. It is preferable that the reaction is usually carried out at 50 to 130° C. It is preferable that the blend proportion of the phenol derivative and the unsaturated hydrocarbon group-containing compound is 1 to 100 parts by mass of the unsaturated hydrocarbon group-containing compound to 100 parts by mass of the phenol derivative; and 5 to 50 parts by mass is more preferable, because the flexibility of a patterned cured film can be improved. The reaction may use, as required, as a catalyst p-toluenesulfonic acid, trifluoromethanesulfonic acid or the like.
- Then, the unsaturated hydrocarbon group-modified phenol derivative and aldehydes are allowed to react to thereby prepare a modified phenol resin having an unsaturated hydrocarbon group being an (A2) component. The reaction of the aldehydes with the unsaturated hydrocarbon group-modified phenol derivative is a polycondensation reaction, and can use the conventionally well-known synthesis condition of phenol resins. Additionally, an (A2) component can also be obtained by combining a compound other than a phenol such as m-xylene with a compound obtained by reacting the above-mentioned phenol derivative with an unsaturated hydrocarbon group-containing compound, and polycondensing this with aldehydes. The presence of the unsaturated hydrocarbon group in the (A2) component at the ortho positions or the para positions to the phenolic hydroxyl group of the phenol resin is preferable, and the presence thereof at the para positions is more preferable.
- An (A2) component can be obtained also by allowing the above-mentioned phenol resin and the unsaturated hydrocarbon group-containing compound to react. It is preferable that the reaction of the phenol resin with the unsaturated hydrocarbon group-containing compound is usually carried out at 50 to 130° C. It is preferable that the blend proportion of the phenol derivative and the unsaturated hydrocarbon group-containing compound is 1 to 100 parts by mass of the unsaturated hydrocarbon group-containing compound to 100 parts by mass of the phenol resin; and 5 to 50 parts by mass is more preferable, because the flexibility of a patterned cured film can be improved. At this time, as required, p-toluenesulfonic acid, trifluoromethanesulfonic acid or the like may be used as a catalyst. The reaction can use a solvent such as toluene, xylene, methanol or tetrahydrofurn.
- A phenol resin acid-modified by allowing the phenolic hydroxyl group present in the (A2) component to further react with a polybasic acid anhydride can also be used as an (A2) component. Acid-modification with a polybasic acid anhydride allows the introduction of a carboxyl group, and the further improvement in the solubility of the (A2) component to an alkali aqueous solution (developing solution).
- The polybasic acid anhydride is not especially limited as long as having an acid anhydride group formed by dehydrating-condensing carboxyl groups of a polybasic acid having a plurality of the carboxyl groups. Examples of the polybasic acid anhydride include dibasic acid anhydrides such as phthalic anhydride, succinic anhydride, octenylsuccinic anhydride, pentadodecenylsuccinic anhydride, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, nadic anhydride, 3,6-endomethylene tetrahydrophthalic anhydride, methylendomethylene tetrahydrophthalic anhydride, tetrabromophthalic anhydride and trimellitic anhydride, and aromatic tetrabasic acid dianhydrides such as biphenyltetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, diphenyl ether tetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride and benzophenonetetracarboxylic dianhydride. These may be used singly or in a combination of two or more. Among these, it is preferable that the polybasic acid anhydride is a dibasic acid anhydride; and it is more preferable that the polybasic acid anhydride is one or more selected from the group consisting of tetrahydrophthalic anhydride, succinic anhydride and hexahydrophthalic anhydride. This case has an advantage of being capable of forming a patterned cured film having a further good shape.
- The reaction of the phenolic hydroxyl group with the polybasic acid anhydride can be carried out at 50 to 130° C. In the reaction, it is preferable that 0.1 to 0.8 mol of the polybasic acid anhydride is allowed to react with 1 mol of the phenolic hydroxyl group; 0.15 to 0.6 mol of the polybasic acid anhydride is more preferable; and 0.2 to 0.4 mol of the polybasic acid anhydride is still more preferable. If the polybasic acid anhydride is less than 0.1 mol, the developability is likely to decrease; and if that exceeds 0.8 mol, the alkali resistance of unexposed portions is likely to decrease.
- The reaction, as required, may be carried out in the presence of a catalyst from the viewpoint of rapidly carrying out the reaction. The catalyst includes tertiary amines such as triethylamine, quarternary ammonium salts such as triethylbenzylammonium chloride, imidazole compounds such as 2-ethyl-4-methylimidazole, and phosphorus compounds such as triphenylphosphine.
- It is preferable that the acid value of a phenol resin further modified with a polybasic acid anhydride is 30 to 200 mgKOH/g; 40 to 170 mgKOH/g is more preferable; and 50 to 150 mgKOH/g is still more preferable. If the acid value is lower than 30 mgKOH/g, the alkali development is likely to require a long time as compared with the case of the acid value in the above-mentioned range; and If exceeding 200 mgKOH/g, the developing solution resistance of unexposed portions is likely to decrease as compared with the case of the acid value in the above-mentioned range.
- In consideration of the balance among the solubility to an alkali aqueous solution, photosensitive properties and physical properties of a cured film, it is preferable that the weight-average molecular weight of the (A2) component is 1000 to 500000; 2000 to 200000 is more preferable; and 2000 to 100000 is still more preferable. Here, the weight-average molecular weight is a value obtained by the measurement using gel permeation chromatography, and the conversion using a standard polystyrene calibration curve.
- In the case of using a photosensitive resin composition by mixing a modified phenol resin (A2) having an unsaturated hydrocarbon group as an (A) component, from the viewpoint of the sensitivity and the resolution when a patterned resin film is formed, and the adherence, the mechanical properties and the thermal shock resistance of a patterned cured film after being cured, it is preferable that the mass ratio of a phenol resin (A1) having no unsaturated hydrocarbon group and the modified phenol resin (A2) having an unsaturated hydrocarbon group contained in the (A) component is, with the total amount of the both being taken to be 100, the former:the latter=5:95 to 95:5; the mass ratio thereof of 10:90 to 90:10 is more preferable; and the mass ratio thereof of 15:85 to 85:15 is most preferable.
- <(B) Component: A Compound which Generates an Acid when Exposed to Light>
- A compound which generates an acid when exposed to light as a (B) component is used as a photosensitizer. The (B) component generates an acid when exposed to light irradiation, and has a function of increasing the solubility of light-irradiated portions to an alkali aqueous solution. As the (B) component, a compound generally called a photoacid generating agent can be used. Specific examples of the (B) component include o-quinone diazide compounds, aryldiazonium salts, diaryliodonium salts and triarylsulfonium salts. Among these, o-quinone diazide compounds are preferable because being highly sensitive.
- o-Quinone diazide compounds are obtained, for example, by a method in which o-quinone diazidesulfonyl chloride and a hydroxyl compound and/or an amino compound, and the like are allowed to condensation-react in the presence of a dehydrochlorinating agent.
- Examples of o-quinone diazidesulfonyl chloride used in the reaction include benzoquinone-1,2-diazide-4-sulfonyl chloride, naphthoquinone-1,2-diazide-5-sulfonyl chloride, and naphthoquinone-1,2-diazide-4-sulfonyl chloride.
- Examples of the hydroxyl compound used in the reaction include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, 2,3,4,2′,3′-pentahydroxybenzophenone, 2,3,4,3′,4′,5′-hexahydroxybenzophenone, bis(2,3,4-trihydroxyphenyl)methane, bis(2,3,4-trihydroxyphenyl)propane, 4b,5,9b, 10-tetrahydro-1,3,6,8-tetrahydroxy-5,10-dimethylindeno[2,1-a]indene, tris(4-hydroxyphenyl)methane, tris(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-[4-{1-(4-hydroxyphenyl)-1-methylethyl}phenyl]ethane.
- Examples of the amino compound used in the reaction include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfide, o-aminophenol, m-aminophenol, p-aminophenol, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis(3-amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl) sulfone, bis(4-amino-3-hydroxyphenyl) sulfone, bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(4-amino-3-hydroxyphenyl)hexafluoropropane.
- Among these, from the viewpoint of the absorption wavelength range and the reactivity, preferable are a substance obtained by allowing 1,1-bis(4-hydroxyphenyl)-1-[4-{1-(4-hydroxyphenyl)-1-methylethyl}phenyl]ethane and 1-naphthoquinone-2-diazide-5-sulfonyl chloride to condensation-react, and a substance obtained by allowing tris(4-hydroxyphenyl)methane or tris(4-hydroxyphenyl)ethane and 1-naphthoquinone-2-diazide-5-sulfonyl chloride to condensation-react.
- The dehydrochlorinating agent used in the reaction includes sodium carbonate, sodium hydroxide, sodium hydrogenecarbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine, and pyridine. As the reaction solvent, dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether, N-methylpyrrolidone, and the like are used.
- It is preferable that o-quinone diazidesulfonyl chloride and a hydroxyl compound and/or an amino compound are blended so that the total of the numbers of moles of a hydroxyl group and an amino group is 0.5 to 1 with respect to 1 mol of o-quinone diazidesulfonyl chloride. The preferable blend proportion of the dehydrochlorinating agent to o-quinone diazidesulfonyl chloride is in the range of 0.95/1 mol equivalent to 1/0.95 mol equivalent.
- The preferable reaction temperature for the above-mentioned reaction is 0 to 40° C., and the preferable reaction time is 1 to 10 hours.
- It is preferable that the content of a (B) component is 3 to 100 parts by mass with respect to 100 parts by mass of an (A) component; 5 to 50 parts by mass is more preferable; and 5 to 30 parts by mass is still more preferable, because the dissolving speed difference between exposed portions and unexposed potions becomes large, making the sensitivity better.
- <(C) Component: A Thermal Crosslinking Agent>
- A thermal crosslinking agent is a compound having a structure capable of reacting with an (A) component and forming a crosslinked structure when a photosensitive resin film after pattern formation is heated and cured. This can prevent the brittleness of a film and the melt of the film. Thermal crosslinking agents are preferable which are selected, for example, from compounds having a phenolic hydroxyl group, compounds having a hydroxymethylamino group and compounds having an epoxy group.
- The compounds having a phenolic hydroxyl group used as the thermal crosslinking agent are different from the (A) component, and the specific structure thereof includes ones described later. Such a compound having a phenolic hydroxyl group is preferable not only because being used as a thermal crosslinking agent, but also because being capable of increasing the dissolution speed of exposed portions when being developed with an alkali aqueous solution, and thereby improving the sensitivity. The molecular weight of such a compound having a phenolic hydroxyl group is preferably 2000 or lower. In consideration of the balance among the solubility to an alkali aqueous solution, the photosensitive properties and the physical properties of a cured film, it is preferable that the number-average molecular weight is 94 to 2000; 108 to 2000 thereof is more preferable; and 108 to 1500 thereof is still more preferable.
- As the compound having a phenolic hydroxyl group, conventionally well-known ones can be used, but a compound represented by the following formula (4) is especially preferable because of being excellent in the balance between the effect of promoting the dissolution of exposed portions and the effect of preventing the melt of a photosensitive resin film in curing.
- In the formula (4), X represents a single bond or a divalent organic group; R5, R6, R7 and R8 each independently represent a hydrogen atom or a monovalent organic group; and s and t each independently represent an integer of 1 to 3, and u and v each independently represent an integer of 0 to 4.
- In the formula (4), compounds in which X is a single bond are biphenol (dihydroxybiphenyl) derivatives. Divalent organic groups represented by X include alkylene groups having 1 to 10 carbon atoms such as a methylene group, an ethylene group and a propylene group, alkylidene groups having 2 to 10 carbon atoms such as an ethylidene group, arylene groups having 6 to 30 carbon atoms such as a phenylene group, groups in which a part or the whole of a hydrogen atom of these hydrocarbon groups is substituted with a halogen atom such as a fluorine atom, a sulfonyl group, a carbonyl group, an ether bond, a thioether bond, and an amide bond.
- Compounds having a hydroxymethylamino group include nitrogen-containing compounds in which the whole or a part of an active methylol group of (poly)(N-hydroxymethyl)melamine, (poly)(N-hydroxymethyl)glycoluril, (poly)(N-hydroxymethyl)benzoguanamine, (poly)(N-hydroxymethyl) urea or the like is alkyl-etherified. Here, alkyl groups in the alkyl ethers include a methyl group, an ethyl group, a butyl group and a mixture thereof, and oligomer components partially self-condensed may be contained. The compounds specifically include hexakis(methoxymethyl)melamine, hexakis(butoxymethyl)melamine, tetrakis(methoxymethyl)glycoluril, tetrakis(butoxymethyl)glycoluril, and tetrakis(methoxymethyl)urea.
- As the compound having an epoxy group, conventionally well-known ones can be used. Specific examples thereof include bisphenol A epoxy resins, bisphenol F epoxy resins, phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, alicyclic epoxy resins, glycidylamines, heterocyclic epoxy resins, and polyalkylene glycol diglycidyl ethers.
- As the (C) component, other than the above-mentioned substances, there can be used aromatic compounds having a hydroxymethyl group such as bis[3,4-bis(hydroxymethyl)phenyl]ether and 1,3,5-tris(1-hydroxy-1-methylethyl)benzene, compounds having a maleimide group such as bis(4-maleimidephenyl)methane and 2,2-bis[(4-(4′-maleimidephenoxy)phenyl)]propane, compounds having a norbornene skeleton, polyfunctional acrylate compounds, compounds having an oxetanyl group, compounds having a vinyl group, and blocked isocyanate compounds.
- Among the above-mentioned (C) components, compounds having a phenolic hydroxyl group and compounds having a hydroxymethylamino group are preferable from the viewpoint of being capable of more improving the sensitivity and the heat resistance; and from the viewpoint of being capable of more improving the resolution and the elongation of a coated film as well, compounds having a hydroxymethylamino group are more preferable; compounds having an alkoxymethylamino group in which the whole or a part of hydroxymethylamino groups is alkyl-etherified are especially preferable; and compounds having an alkoxymethylamino group in which the whole of hydroxymethylamino groups is alkyl-etherified are most preferable. Among the compounds having an alkoxymethylamino group in which the whole of hydroxymethylamino groups is alkyl-etherified, particularly a compound represented by the following formula (5) is preferable.
- In the formula (5), R31 to R36 each independently represent an alkyl group having 1 to 10 carbon atoms.
- From the viewpoint that the dissolution speed difference between exposed portions and unexposed portions becomes large and the sensitivity becomes good, and from the viewpoint of properties of a cured film, it is preferable that the blend amount of a (C) component is 1 to 50 parts by mass with respect to 100 parts by mass of an (A) component; 2 to 30 parts by mass is more preferable; and 3 to 25 parts by mass is still more preferable. The above-mentioned thermal crosslinking agents are used singly or in a combination of two or more.
- <(D) Component: A Nitrogen-Containing Aromatic Compound Represented by the Formula (1)>
- A photosensitive resin composition according to the present embodiment contains a nitrogen-containing aromatic compound having a structure represented by the following formula (1).
- R1 represents a hydrogen atom or a hydrocarbon group; R2 represents a hydrogen atom, an amino group or a phenyl group; and A and B each independently represent a nitrogen atom, or a carbon atom and a hydrogen atom bonded thereto (C—H).
- The incorporation of a (D) component can provide a photosensitive resin composition providing a patterned cured film which can be improved in the crack resistance after the thermal shock cycle test and is good in the adherence with substrates regardless of types of the substrates.
- It is preferable from the viewpoint of more improving the adherence with substrates that the (D) component is a nitrogen-containing aromatic compound represented by the following formula (2).
- R2 represents a hydrogen atom, a hydrocarbon group, an amino group or a phenyl group.
- Such a (D) component includes 1H-tetrazole, 5-aminotetrazole, 5-phenyltetrazole and 5-methyltetrazole, and among these, 1H-tetrazole and 5-aminotetrazole are preferable from the viewpoint of imparting better adherence with substrates.
- From the viewpoint of imparting the good adherence with substrates and the sensitivity, it is preferable that the blend amount of a nitrogen-containing aromatic compound represented by the above formula (1) as the (D) component is 0.01 to 20 parts by mass with respect to 100 parts by mass of an (A) component; 0.015 to 10 parts by mass is more preferable; and 0.02 to 7 parts by mass is still more preferable.
- <(E) Component: A Silane Compound>
- A photosensitive resin composition according to the present embodiment may contain as an (E) component a silane compound having an epoxy group represented by the formula (3) from the viewpoint of improving the adherence with substrates.
- In the formula (3), R3 represents a divalent organic group; and the R4 group represents a monovalent organic group. A plurality of R4 in the same molecule may be identical or different.
- In the formula (3), it is preferable from the viewpoint of the improvement of the sensitivity and the resolution that R3 is a straight-chain alkyl group represented by —(CH2)n— (n is an integer of 1 to 6). It is preferable from the viewpoint of the improvement of the sensitivity and the resolution that R4 is an alkoxy group or an alkoxyalkyl group. Among these, it is especially preferable from the viewpoint of the inexpensive availability and the improvement of the adhesion with substrates that R4 is an alkoxy group such as a methoxy group or an ethoxy group. Such a compound includes 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.
- A photosensitive resin composition according to the present embodiment may further contain, other than a silane compound as the (E) component represented by the formula (3), a silane compound different therefrom. Examples of such a silane compound include Ureidopropyltriethoxysilane, vinyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, urea propyltriethoxysilane, methylphenylsilanediol, ethylphenylsilanediol, n-propylphenylsilanediol, isopropylphenylsilanediol, n-butyldiphenylsilanediol, isobutylphenylsilanediol, tert-butylphenylsilanediol, diphenylsilanediol, ethylmethylphenylsilanol, n-propylmethylphenylsilanol, isopropylmethylphenylsilanol, n-butylmethylphenylsilanol, isobutylmethylphenylsilanol, tert-butylmethylphenylsilanol, ethyl n-propylphenylsilanol, ethylisopropylphenylsilanol, n-butylethylphenylsilanol, isobutylethylphenylsilanol, tert-butylethylphenylsilanol, methyldiphenylsilanol, ethyldiphenylsilanol, n-propyldiphenylsilanol, isopropyldiphenylsilanol, n-butyldiphenylsilanol, isobutyldiphenylsilanol, tert-butyldiphenylsilanol, phenylsilanetriol, 1,4-bis(trihydroxysilyObenzene, 1,4-bis(methyldihydroxysilyl)benzene, 1,4-bis(ethyldihydroxysilyl)benzene, 1,4-bis(propyldihydroxysilyObenzene, 1,4-bis(butyldihydroxysilyObenzene, 1,4-bis(dimethylhydroxysilyl)benzene, 1,4-bis(diethylhydroxysilyl)benzene, 1,4-bis(dipropylhydroxysilyl)benzene, 1,4-bis(dibutylhydroxysilyl)benzene. These silane compounds are used singly or in a combination of two or more. A photosensitive resin composition according to the present embodiment is further improved in the adherence with various types of substrates by concurrently using a nitrogen-containing aromatic compound represented by the formula (2) and a silane compound having an epoxy group represented by the formula (3) or the above-mentioned silane compound.
- From the viewpoint of the adhesion with wiring and the storage stability of the photosensitive resin composition, it is preferable that the total amount of the (E) component and a silane compound other than the (E) component is 0.1 to 20 parts by mass with respect to 100 parts by mass of an (A) component; 0.5 to 10 parts by mass is more preferable; and 1 to 5 parts by mass is still more preferable.
- <(F) Component>
- A photosensitive resin composition according to the present embodiment may contain an acryl resin as an (F) component. It is preferable that the acryl resin has a structural unit represented by the following formula (6) or (7). The incorporation of an acryl resin having a structural unit represented by the formula (6) or (7), while maintaining good photosensitive properties, can improve the thermal shock resistance. The (F) component may be composed of only one type of the acryl resin, or may contain two or more types thereof
- In the formulae (6) and (7), R9 represents an alkyl group having 4 to 20 carbon atoms, and R10 represents a hydrogen atom or a methyl group.
- In the formula (6), from the viewpoint of being capable of improving the sensitivity, the resolution and the thermal shock resistance, it is preferable that R9 is an alkyl group having 4 to 16 carbon atoms; and an alkyl group having 4 carbon atoms, particularly n-butyl group, is more preferable.
- A polymerizable monomer imparting a structural unit represented by the formula (6) includes alkyl(meth)acrylates. An example of the alkyl(meth)acrylates include a compound represented by the following formula (8).
-
CH2═C(R11)—COOR12 (8) - In the formula (8), R11 represents a hydrogen atom or a methyl group; and R12 represents an alkyl group having 4 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms represented by R12 include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, and constitutional isomers thereof. Examples of a polymerizable monomer represented by the above formula (8) include butyl(meth)acrylate, pentyl(meth)acrylate, hexyl(meth)acrylate, heptyl(meth)acrylate, octyl(meth)acrylate, nonyl(meth)acrylate, decyl(meth)acrylate, undecyl(meth)acrylate, dodecyl(meth)acrylate, tridecyl(meth)acrylate, tetradecyl(meth)acrylate, pentadecyl(meth)acrylate, hexadecyl(meth)acrylate, heptadecyl(meth)acrylate, octadecyl(meth)acrylate, nonadecyl(meth)acrylate, and eicosyl(meth)acrylate. These polymerizable monomers are used singly or in a combination of two or more.
- A polymerizable monomer imparting a structural unit represented by the formula (7) includes acrylic acid and methacrylic acid.
- In the (F) component, it is preferable that the compositional ratio of a structural unit represented by the above formula (6) is 50 to 95 mol % with respect to the total amount of an (F) component; 60 to 90 mol % is more preferable; and 70 to 85 mol % is especially preferable. That the compositional ratio of a structural unit represented by the above formula (6) is 50 to 95 mol % can more improve the thermal shock resistance of a cured film of the photosensitive resin composition.
- In an acryl resin as the (F) component, it is preferable that the compositional ratio of a structural unit represented by the above formula (7) is 5 to 35 mol % with respect to the total amount of an (F) component; 10 to 30 mol % is more preferable; and 15 to 25 mol % is still more preferable. That the compositional ratio of a structural unit represented by the above formula (7) is 5 to 35 mol % can more improve the compatibility with an (A) component and the developability of the photosensitive resin composition.
- From the viewpoint of being capable of improving the compatibility with an (A) component, and the adherence with substrates, the mechanical properties and thermal shock resistance of a patterned cured film, it is more preferable that an (F) component contains an acryl resin having a structural unit represented by the above formula (6), a structural unit represented by the above formula (7), and a structural unit represented by the following formula (9). That the (F) component is the acryl resin makes good the interaction between the (F) component and an alkali-soluble resin having a phenolic hydroxyl group, and more improves the compatibility.
- In the formula (9), R represents a hydrogen atom or a methyl group; and R13 represents a monovalent organic group having a primary, secondary or tertiary amino group.
- Examples of a polymerizable monomer imparting a structural unit represented by the formula (9) include aminoethyl(meta)acrylate, N-methylaminoethyl(meta)acrylate, N,N-dimethylaminoethyl(meta)acrylate, N-ethylaminoethyl(meta)acrylate, N,N-diethylaminoethyl(meta)acrylate, aminopropyl(meta)acrylate, N-methylaminopropyl(meta)acrylate, N,N-dimethylaminopropyl(meta)acrylate, N-ethylaminopropyl(meta)acrylate, N,N-diethylaminopropyl(meta)acrylate, aminoethyl(meta)acrylamide, N-methylaminoethyl(meta)acrylamide, N,N-dimethylaminoethyl(meta)acrylamide, N-ethylaminoethyl(meta)acrylamide, N,N-diethylaminoethyl(meta)acrylamide, aminopropyl(meta)acrylamide, N-methylaminopropyl(meta)acrylamide, N,N-dimethylaminopropyl(meta)acrylamide, N-ethylaminopropyl(meta)acrylamide, N,N-diethylaminopropyl(meta)acrylamide, piperidin-4-yl(meta)acrylate, 1-methylpiperidin-4-yl(meta)acrylate, 2,2,6,6-tetramethylpiperidin-4-yl(meta)acrylate, 1,2,2,6,6-pentamethylpiperidin-4-yl(meta)acrylate, (piperidin-4-yl)methyl(meta)acrylate, 2-(piperidin-4-yl)ethyl(meta)acrylate. These polymerizable monomer are used singly or in a combination of two or more. Among these, from the viewpoint of being capable of improving the adherence with substrates, the mechanical properties and the thermal shock resistance of a resist pattern, it is especially preferable that R13 in the formula (9) is a monovalent organic group represented by the following formula (10).
- In the formula (10), X represents an alkylene group having 1 to 5 carbon atoms; R14 to R18 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms; and m is an integer of 0 to 10.
- Examples of a polymerizable monomer imparting a structural unit of the formula (9) whose R13 is a monovalent organic group represented by the above formula (10) include piperidin-4-yl(meta)acrylate, 1-methylpiperidin-4-yl(meta)acrylate, 2,2,6,6-tetramethylpiperidin-4-yl(meta)acrylate, 1,2,2,6,6-pentamethylpiperidin-4-yl(meta)acrylate, (piperidin-4-yl)methyl(meta)acrylate, 2-(piperidin-4-yl)ethyl(meta)acrylate. Among these, 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate and 2,2,6,6-tetramethylpiperidin-4-yl methacrylate are commercially available as FA-711MM and FA-712HM (both are made by Hitachi Chemical Co., Ltd.), respectively.
- In an acryl resin as the (F) component, it is preferable that the compositional ratio of a structural unit represented by the above formula (9) is 0.3 to 10 mol % with respect to the total amount of the (F) component; 0.4 to 8 mol % is more preferable; and 0.5 to 7 mol % is still more preferable.
- It is preferable from the viewpoint of being capable of more improving the sensitivity that the (F) component contains an acryl resin having a structural unit represented by the above formula (6), a structural unit represented by the above formula (7), and a structural unit represented by the following formula (11). Such an acryl resin may further have a structural unit represented by the above formula (9).
- In the formula (11), R represents a hydrogen atom or a methyl group; Y represents an alkylene group having 1 to 5 carbon atoms; R19 to R23 each independently represent an alkyl group having 1 to 6 carbon atoms; and p is an integer of 1 to 100.
- An example of a polymerizable monomer imparting a structural unit represented by the formula (11) includes methacryl-modified silicone oil, and is commercially available as X-22-174DX, X-22-2426 and X-22-2475 (any is made by Shin-Etsu Chemical Co., Ltd.).
- In an acryl resin as the (F) component, it is preferable that the compositional ratio of a structural unit represented by the above formula (11) is 1 to 10 mol % with respect to the total amount of the (F) component; 2 to 5 mol % is more preferable; and 3 to 5 mol % is still more preferable.
- The polymerizable monomer used for the synthesis of an acryl resin constituting an (F) component may further contain a polymerizable monomer other than the polymerizable monomers imparting the respective structural units represented by the formulae (6), (7), (9), (10) and (11). Examples of such a polymerizable monomer include styrene, α-methylstyrene, benzyl(meth)acrylate, 4-methylbenzyl(meth)acrylate, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, 3-hydroxypropyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, acrylonitrile, esters of vinyl alcohol such as vinyl n-butyl ether, tetrahydrofurfuryl(meth)acrylate, glycidyl(meth)acrylate, 2,2,2-trifluoroethyl(meth)acrylate, 2,2,3,3-tetrafluoropropyl(meth)acrylate, (meth)acrylic acid, α-bromo(meth)acrylic acid, α-chloro(meth)acrylic acid, β-furyl(meth)acrylic acid, β-styryl(meth)acrylic acid, maleic acid, maleic anhydride, maleic acid monoesters such as monomethyl maleate, monoethyl maleate and monoisopropyl maleate, fumaric acid, cinnamic acid, α-cyanocinnamic acid, itaconic acid, crotonic acid, and propiolic acid. These polymerizable monomers are used singly or in a combination of two or more.
- It is preferable that the weight-average molecular weight of an (F) component is 2000 to 100000; 3000 to 60000 is more preferable; and 4000 to 50000 is still more preferable. If the weight-average molecular weight is lower than 2000, the thermal shock resistance of a cured film is likely to decrease; and if that exceeds 100000, the compatibility with the (A) component and the developability are likely to decrease.
- In the case where an (F) component is contained, from the viewpoint of the adherence, the mechanical properties, the thermal shock resistance, and the photosensitive properties, it is preferable that the content of the (F) component is 1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the (A) component; 3 to 30 parts by mass is more preferable; and 5 to 20 parts by mass is especially preferable.
- <Other Components>
- A photosensitive resin composition according to the present embodiment can contain, as required, other components such as a thermoacid generating agent, an elastomer, a solvent, a dissolution promoter, a dissolution inhibitor, a surfactant and a leveling agent.
- <Another Component (G): A Thermoacid Generating Agent>
- A photosensitive resin composition may contain (G) a thermoacid generating agent. (G) the thermoacid generating agent is a compound which generates an acid when heated, and can more suppress the melt of a pattern. This is because since an acid is allowed to be generated when a photosensitive resin film after development is heated to thereby initiate the reaction between the (A) component and the (C) component, that is, the thermal crosslinking reaction from a lower temperature, the melt of the pattern is more suppressed. Further since many of thermoacid generating agents can generate an acid also when exposed to light irradiation, if such an agent is used, the solubility of exposed portions to an alkali aqueous solution can be increased. Therefore, the difference in the solubility to an alkali aqueous solution between unexposed portions and exposed portions becomes large, thereby improving the resolution. However, a thermoacid generating agent used here is a compound different from the (B) component.
- It is preferable that such a compound which generates an acid when heated is one which generates an acid when heated to a temperature of, for example, 50 to 200° C. Specific examples of compounds which generate an acid when heated are compounds different from compounds of the (B) component which generates an acid when exposed to light, and include salts formed of a strong acid and a base, such as onium salts, and imide-sulfonates, which have the function of generating an acid when heated.
- Examples of such an onium salt include aryldiazonium salts; diaryliodonium salts such as diphenyliodonium salts; di(alkylaryl)iodonium salts such as diaryliodonium salts and di(t-butylphenyl)iodonium salts; trialkylsulfonium salts such as trimethylsulfonium salts; dialkylmonoarylsulfonium salts such as dimethylphenylsulfonium salts; diarylmonoalkyliodonium salts such as diphenylmethylsulfonium salts; and triarylsulfonium salts. Among these, preferable onium salts include a di(t-butylphenyl)iodonium salt of para-toluenesulfonic acid, a di(t-butylphenyl)iodonium salt of trifluoromethanesulfonic acid, a trimethylsulfonium salt of trifluoromethanesulfonic acid, a dimethylphenylsulfonium salt of trifluoromethanesulfonic acid, a diphenylmethylsulfonium salt of trifluoromethanesulfonic acid, a di(t-butylphenyl)iodonium salt of nonafluorobutanesulfonic acid, a diphenyliodonium salt of camphorsulfonic acid, a diphenyliodonium salt of ethanesulfonic acid, a dimethylphenylsulfonium salt of benzenesulfonic acid, and a diphenylmethylsulfonium salt of toluenesulfonic acid.
- Among these, sulfonium salts represented by the following formula (12) are preferable; and trialkylsoufonium salts of methanesulfonic acid are more preferable; and a trimethylsulfonium salt thereof is especially preferable.
- In the formula (12), R24, R25 and R26 each independently represent an alkyl group or an aryl group; and R27 represents hydrogen or fluorine. As the aryl group, a phenyl group or a phenyl group having a substituent is preferable.
- Examples of the imide-sulfonates include naphthoylimide sulfonate and phthalimide sulfonate.
- In the case where (G) a thermoacid generating agent is contained, it is preferable that the content of the thermoacid generating agent is 0.1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the (A) component and the (B) component; 0.2 to 20 parts by mass is more preferable; and 0.3 to 10 parts by mass is still more preferable.
- <Another Component (H): An Elastomer>
- A photosensitive resin composition may further contain (H) an elastomer. This makes better the flexibility of an obtained patterned cured film, and can more improve the mechanical properties and the thermal shock resistance of the patterned cured film. As the elastomer, conventionally well-known ones can be used, but it is preferable that the glass transition temperature (Tg) of a polymer constituting an elastomer is 20° C. or lower.
- Examples of such an elastomer include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, and silicone-based elastomers. The elastomer may be microparticulate elastomers. These elastomers can be used singly or in a combination of two or more.
- <Another Component (I): A Solvent>
- A photosensitive resin composition may contain (I) a solvent from the viewpoint of the applicability on substrates and of being capable of forming a uniform-thickness resin film. Specific examples of the solvent include γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butylacetate, ethoxyethylpropionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphorylamide, tetramethylenesulfone, diethylketone, diisobutylketone, methylamylketone, cyclohexanone, propyleneglycolmonomethyl ether, propyleneglycolmonopropyl ether, propyleneglycolmonobutyl ether and dipropyleneglycolmonomethyl ether. These solvents can be used singly or in a combination of two or more. In the case where an (I) component is contained, the content of the (I) component is not especially limited, but it is preferable that the content is so regulated that the proportion of the solvent in the photosensitive resin composition becomes 20 to 90 mass %.
- <Another Component (J): A Dissolution Promoter>
- A photosensitive resin composition may contain (J) a dissolution promoter. The incorporation of (J) a dissolution promoter increases the dissolution speed of exposed portions when a patterned resin film is developed with an alkali aqueous solution, and can improve the sensitivity and the resolution. As the dissolution promoter, conventionally well-known ones can be used. Specific examples thereof include compounds having a carboxyl group, sulfonic acid or a sulfoneamide group. In the case where such a dissolution promoter is contained, the content of the dissolution promoter can be determined by the dissolution speed of a patterned resin film to an alkali aqueous solution, but it is preferable that the content is made to be 0.01 to 30 parts by mass with respect to 100 parts by mass of the (A) component.
- <Another Component (K): A Dissolution Inhibitor>
- A photosensitive resin composition may contain (K) a dissolution inhibitor. (K) a dissolution inhibitor is a compound to inhibit the solubility of an (A) component to an alkali aqueous solution, and is used in order to control the remaining film thickness, the development time and the contrast. Specific examples are diphenyliodonium nitrate, bis(p-tert-butylphenyl)iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride, and diphenyliodonium iodide. In the case where a dissolution inhibitor is contained, from the viewpoint of the sensitivity and the allowable width of the development time, it is preferable that the content of the dissolution inhibitor is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the (A) component; 0.01 to 15 parts by mass is more preferable; and 0.05 to 10 parts by mass is still more preferable.
- <Another Component (L): A Surfactant or a Leveling Agent>
- A photosensitive resin composition may contain (L) a surfactant or a leveling agent. The incorporation of an (L) component in a photosensitive resin composition can improve the applicability, for example, prevention of striation (unevenness of the film thickness), and the developability. Examples of such a surfactant or leveling agent include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene coley′ ether, polyoxyethylene octylphenol ether. Commercially available products include Megaface F171, F173, R-08 (trade name, made by Dainippon Ink and Chemicals, Inc.), Fluorad FC430, FC431 (trade name, made by Sumitomo 3M Ltd.), and Organosiloxane Polymer KP341, KBM303, KBM803 (trade name, made by Shin-Etsu Chemical Co., Ltd.).
- In the case where an (L) component is contained, it is preferable that the content of the (L) component is 0.001 to 5 parts by mass with respect to 100 parts by mass of the (A) component; and 0.01 to 3 parts by mass is more preferable.
- A photosensitive resin composition is capable of being developed using an alkali aqueous solution of tetramethylammonium hydroxide (TMAH) or the like. Further the use of the photosensitive resin composition enables the formation of a patterned cured film having the good adherence and the crack resistance in the thermal shock cycle. A patterned cured film composed of the photosensitive resin composition according to the present invention has good photosensitive properties (sensitivity and resolution), and has sufficient mechanical properties (elongation at break and elastic modulus).
- [Method for Manufacturing a Patterned Cured Film]
- A method for manufacturing a patterned cured film from the photosensitive resin composition according to the above-mentioned embodiment comprises, for example, a step (film formation step) of applying and drying the photosensitive resin composition on a substrate to thereby form a photosensitive resin film, a step (exposure step) of exposing the photosensitive resin film, a step (development step) of developing the photosensitive resin film after the exposure by using an alkali aqueous solution to thereby form a patterned resin film, and a step (heating step) of heating the patterned resin film.
- <Film Formation Step>
- In the film formation step, the above-mentioned photosensitive resin composition is rotationally applied on a support substrate such as a glass substrate, a semiconductor, a metal oxide insulator (for example, TiO2, SiO2) or silicon nitride, by using a spinner or the like. The applied photosensitive resin composition is heated using a hot plate, an oven or the like to be thereby dried. A film (photosensitive resin film) of the photosensitive resin composition is thereby formed on the substrate.
- <Exposure Step>
- In the exposure step, the photosensitive resin film formed on the substrate is irradiated with active light rays such as ultraviolet rays, visible light rays and radiation through a mask. Since the (A) component is high in transparency to i-line, the irradiation of i-line can suitably be used. After the exposure, as required, post-exposure baking (PEB) may be carried out. It is preferable that the temperature of the post-exposure baking is 70° C. to 140° C., and that the time of the post-exposure baking is 1 min to 5 min.
- <Development Step>
- In the development step, exposed portions of the photosensitive resin film after the exposure step are removed by a developing solution to thereby pattern the photosensitive resin film. As the developing solution, an alkali aqueous solution, for example, of sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine or tetramethylammonium hydroxide (TMAH), is suitably used. It is preferable that the concentration of a base of the aqueous solution is 0.1 to 10 mass %. Alcohols and/or a surfactant may further be added to the developing solution and used. It is preferable that each thereof can be blended in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the developing solution; and the range of 0.1 to 5 parts by mass thereof is more preferable. The patterned photosensitive resin film is called a patterned resin film.
- <Heating Step>
- In the heat treatment step, the patterned resin film is heated to thereby cure the photosensitive resin composition. A film obtained by curing the patterned resin film is called a patterned cured film. In order to sufficiently prevent damage due to heat to electronic devices, it is preferable that the heating temperature is 250° C. or lower; 225° C. or lower is more preferable; and 140 to 200° C. is still more preferable. The heat treatment can be carried out, for example, using an oven such as a quartz tube oven, a hot plate, a rapid thermal annealer, a vertical diffusion oven, an infrared curing oven, an electron-beam curing oven or a microwave curing oven. Although the atmosphere for the heat treatment can be selected from either of the air and an inert atmosphere such as nitrogen, it is desirable that the heat treatment is carried out in nitrogen, because of being able to prevent the oxidation of the pattern. Since the above-mentioned desirable range of the heating temperature is lower than conventional heating temperatures, the damage to support substrates and electronic devices can be suppressed small. Therefore, by using the manufacturing method of a resist pattern according to the present embodiment, electronic devices can be manufactured in a high yield. The heating temperature leads to the energy saving of the process. The use of the photosensitive resin composition according to the present embodiment, since the volume shrinkage (curing shrinkage) in the heat treatment step, as would be seen in the use of photosensitive polyimide resins and the like, is low, can further prevent the decrease in the dimensional accuracy.
- The heating time in the heating step suffices if being a time enough to cure the photosensitive resin composition, but about 5 hours or shorter is preferable in the balance with the working efficiency. The heating can also be carried out by using, in addition to the above-mentioned ovens, a microwave curing apparatus or a frequency-variable microwave curing apparatus. The use of these apparatuses allows effective heating of a photosensitive resin film alone with the temperature of substrates and electronic devices being held, for example, at 200° C. or lower.
- In the frequency-variable microwave curing apparatus, since the microwave is pulsatingly irradiated while the frequency is being varied, the standing wave can be prevented, and a substrate surface can be uniformly heated, which is therefore preferable. In the case where substrates contain metal wiring as seen in electronic devices described later, if the microwave is pulsatingly irradiated while the frequency is being varied, the generation of discharge and the like from the metal can be prevented, and the electronic devices are protected from breakage, which is therefore preferable. Further if the heating using the frequency-variable microwave is carried out, physical properties of a cured film do not decrease even if the curing temperature is decreased, as compared with the case using an oven, which is therefore preferable (see J. Photopolym. Sci. Technol., 18, 327-332(2005)).
- The frequency of the frequency-variable microwave is generally in the range of 0.5 to 20 GHz, but the range of 1 to 10 GHz is practically preferable; and the range of 2 to 9 GHz is practically more preferable. It is desirable that the frequency of the irradiated microwave is continuously varied, but actually, the frequency is stepwise varied for the irradiation. At this time, since the irradiation of a single-frequency microwave in as short a time as possible hardly generates the standing wave, the discharge from the metal, and the like, the irradiation time in 1 millisecond or shorter is preferable; and 100 microseconds or shorter is especially preferable.
- The output of the microwave to be irradiated, depending on the size of the apparatus or the amount of an object to be heated, is in the range of about 10 to 2000 W; and practically, 100 to 1000 W is more preferable; 100 to 700 W is still more preferable; and 100 to 500 W is most preferable. With the output of 10 W or lower, the object to be heated is hardly heated in a short time; and with that exceeding 2000 W, a rapid temperature rise is liable to occur.
- It is preferable that the microwave is irradiated by being pulsatingly turned on/off. The pulsating irradiation of the microwave can hold a set heating temperature, and can avoid damage to a cured film and a substrate, which is therefore preferable. The time in which the pulsating microwave is irradiated at one time depends on the condition, but about 10 second or shorter is preferable.
- The above-mentioned method for manufacturing a patterned cured film can provide a photosensitive resin composition having good photosensitive properties, and can provide the patterned cured film having a good pattern shape. The use of the photosensitive resin composition according to the present embodiment allows the curing even at a low temperature of 200° C. or lower in the heating step, which conventionally needs 300° C. or higher. Additionally, a patterned cured film formed from the photosensitive resin composition according to the present invention has a high glass transition temperature. Therefore, a patterned cured film excellent in heat resistance is made. As a result, electronic devices such as semiconductor apparatuses excellent in the reliability can be provided in a high yield.
- [Manufacturing Process of a Semiconductor Apparatus]
- Then, as an example of the method for manufacturing a patterned cured film according to the present invention, a manufacturing process of a semiconductor apparatus will be described based on the drawings.
FIGS. 1 to 5 are schematic cross-sectional diagrams showing one embodiment of a manufacturing process of a semiconductor apparatus having a multilayer wiring structure. - First, a
structural body 100 shown inFIG. 1 is prepared. Thestructural body 100 comprises asemiconductor substrate 1 such as a Si substrate having circuit elements, a protecting film 2 such as a silicon oxide film having a predetermined pattern where the circuit elements are exposed and covering thesemiconductor substrate 1, a first conductor layer 3 formed on the exposed circuit elements, and an interlayer insulating layer 4 formed as a film on the protecting layer 2 and the first conductor layer 3 by a spin coat method or the like and composed of a polyimide resin or the like. - Then, a photosensitive resin layer 5 having
window parts 6A is formed on the interlayer insulating layer 4 to thereby obtain astructural body 200 shown inFIG. 2 . The photosensitive resin layer 5 is formed by applying a photosensitive resin such as a chlorinated rubber-based, a phenol novolac-based, a polyhydroxystyrene-based or a polyacrylate ester-based one, by a spin coat method. Thewindow parts 6A are formed by a well-known photo-lithographic technology so that predetermined portions of the interlayer insulating layer 4 are exposed. - The interlayer insulating layer 4 is etched to thereby form
window parts 6B, and thereafter, the photosensitive resin layer 5 is removed to thereby obtain astructural body 300 shown inFIG. 3 . The etching of the interlayer insulating layer 4 can use dry etching means using a gas such as oxygen or carbon tetrafluoride. By this etching, portions of the interlayer insulating layer 4 corresponding to thewindow parts 6A are selectively removed to thereby obtain the interlayer insulating layer 4 provided with thewindow parts 6B so that the first conductor layer 3 is exposed. Then, the photosensitive resin layer 5 is removed using an etching solution which does not corrode the first conductor layer 3 exposed from thewindow parts 6B, but corrodes the photosensitive resin layer 5 only. - A
second conductor layer 7 is further formed on portions corresponding to thewindow parts 6B to thereby obtain astructural body 400 shown inFIG. 4 . The formation of thesecond conductor layer 7 can use a well-known photo-lithographic technology. Thesecond conductor layer 7 and the first conductor layer 3 are thereby electrically connected. - Finally, a surface protecting layer 8 is formed on the interlayer insulating layer 4 and the
second conductor layer 7 to thereby obtain asemiconductor apparatus 500 shown inFIG. 5 . In the present embodiment, the surface protecting layer 8 is formed as follows. First, the photosensitive resin composition according to the above-mentioned embodiment is applied on the interlayer insulating layer 4 and thesecond conductor layer 7 by a spin coat method, and dried to thereby form a photosensitive resin film. Then, light irradiation is carried out through a mask on whose predetermined portions a pattern corresponding towindow parts 6C is drawn, and thereafter, the photosensitive resin film is developed with an alkali aqueous solution to thereby pattern the photosensitive resin film. Thereafter, the photosensitive resin film is heated to be cured to thereby form a film as the surface protecting layer 8. The surface protecting layer 8 protects the first conductor layer 3 and thesecond conductor layer 7 from stresses from the outside, a rays and the like; and the obtainedsemiconductor apparatus 500 is excellent in the reliability. - In the above-mentioned embodiment, a manufacturing method of a semiconductor apparatus having a two-layer wiring structure was described, but in the case of forming a multilayer wiring structure of two or more layers, the each layer can be formed by repeatedly carrying out the above-mentioned steps. That is, a multilayer pattern is allowed to be formed by repeating the each step of forming the interlayer insulating layer 4 and the each step of forming the surface protecting layer 8. Here, in the above example, not only the surface protecting layer 8 but also the interlayer insulating layer 4 are allowed to be formed using the photosensitive resin composition according to the present embodiment.
- [Electronic Component]
- An electronic component according to the present embodiment has a patterned cured film formed by the above-mentioned manufacturing method as an interlayer insulating layer or a surface protecting layer. The patterned cured film can be used specifically as a surface protecting layer and/or an interlayer insulating layer of semiconductor apparatuses, an interlayer insulating layer of multilayer wiring boards, and the like. The electronic component according to the present invention is not especially limited, except for having a surface protecting layer and/or an interlayer insulating layer formed using the above-mentioned photosensitive resin composition, and can take various types of structures.
- The above-mentioned photosensitive resin composition, since being excellent also in the stress relaxation, the adhesion and the like, can be used as various types of structural materials in packages of various types of structures developed in recent years. Cross-sectional structures of an example of such semiconductor apparatuses are shown in
FIG. 6 andFIG. 7 . -
FIG. 6 is a schematic cross-sectional diagram showing a wiring structure as one embodiment of a semiconductor apparatus. Thesemiconductor apparatus 600 shown inFIG. 6 comprises asilicon chip 23, aninterlayer insulating layer 11 provided on one surface side of thesilicon chip 23, anA1 wiring layer 12 formed on theinterlayer insulating layer 11 and having a pattern containing apad portion 15, an insulating layer 13 (for example, P-SiN layer) and asurface protecting layer 14 successively stacked on theinterlayer insulating layer 11 and theA1 wiring layer 12 while an opening is formed on thepad portion 15, an island-shapedcore 18 disposed in the vicinity of the opening on thesurface protecting layer 14, and arewiring layer 16 extending on thesurface protecting layer 14 so as to contact with thepad portion 15 in the opening of the insulatinglayer 13 and thesurface protecting layer 14 and to contact with a surface of the core 18 on the opposite side thereof to thesurface protecting layer 14. Thesemiconductor apparatus 600 further comprises acover coat layer 19 formed covering thesurface protecting layer 14, thecore 18 and therewiring layer 16 and having an opening formed on a portion of therewiring layer 16 on thecore 18, aconductive ball 17 connected with therewiring layer 16 through abarrier metal 20 interposed therebetween in the opening of thecover coat layer 19, acollar 21 holding the conductive ball, and anunderfill 22 provided on thecover coat layer 19 around theconductive ball 17. Theconductive ball 17 is used as an external connection terminal, and is formed of a solder, gold or the like. Theunderfill 22 is provided in order to relax the stress when thesemiconductor apparatus 600 is mounted. -
FIG. 7 is a schematic cross-sectional diagram showing a wiring structure as one embodiment of a semiconductor apparatus. In thesemiconductor apparatus 700 ofFIG. 7 , an A1 wiring layer (not shown in figure) and apad portion 15 of the A1 wiring layer are formed on asilicon chip 23; an insulatinglayer 13 is formed on the upper part thereof; and asurface protecting layer 14 for elements is further formed. Arewiring layer 16 is formed on thepad portion 15; and therewiring layer 16 extends up to the upper part of a connection part 24 with aconductive ball 17. Acover coat layer 19 is further formed on thesurface protecting layer 14. Therewiring layer 16 is connected with theconductive ball 17 through abarrier metal 20. - In the semiconductor apparatuses of
FIG. 6 andFIG. 7 , the above-mentioned photosensitive resin composition can be used as a material not only for forming the interlayer insulatinglayer 11 and thesurface protecting layer 14, but also for forming thecover coat layer 19, thecore 18, thecollar 21, theunderfill 22, and the like. Since a cured body using the above-mentioned photosensitive resin composition is excellent in the adhesion with a metal layer (for example, Cu, Au, Ni, Ti or the like) such as theA1 wiring layer 12, therewiring layer 16, a sealant and the like, and high also in the stress relaxation effect, a semiconductor apparatus using the cured body for thesurface protecting layer 14, thecover coat layer 19, thecore 18, thecollar 21 of a solder or the like, theunderfill 12 used in flip chips, and the like becomes remarkably excellent in the reliability. - It is especially suitable that the photosensitive resin composition according to the present embodiment is used for the
surface protecting layer 14 and/or thecover coat layer 19 of the semiconductor apparatuses having therewiring layer 16 inFIG. 6 andFIG. 7 . - It is preferable that the film thickness of the surface protecting layer or the cover coat layer is 3 to 20 μm; and 5 to 15 μm is more preferable.
- As described hitherto, the use of the above-mentioned photosensitive resin composition allows the curing using a low-temperature heating of 200° C. or lower in the above heat treatment step, which conventionally needs 300° C. or higher. In the heat treatment step, it is preferable that the heating temperature is 100° C. to 200° C.; and 150° C. to 200° C. is more preferable. The photosensitive resin composition according to the present embodiment, since the volume shrinkage (curing shrinkage) in the heat treatment step, as would be seen in the use of photosensitive polyimide and the like, is low, can further prevent the decrease in the dimensional accuracy. A patterned cured film formed from the photosensitive resin composition according to the present embodiment has a high glass transition temperature. Therefore, a surface protecting layer and an interlayer insulating layer excellent in the heat resistance are made. As a result, electronic components such as semiconductor apparatuses excellent in the reliability can be provided in a high yield.
- Hereinafter, the present invention will be described in more detail by way of Examples. However, the present invention is not limited to these Examples.
- <Preparation of a Photosensitive Resin Composition>
- As (A) components, the following A1 and A2 were prepared.
- A1: a cresol novolac resin (cresol/formaldehyde novolac resin, m-cresol/p-cresol (molecular ratio)=60/40, weight-average molecular weight in terms of polystyrene=13000, made by Asahi Organic Chemical Industry Co., Ltd., trade name: “EP4020G”).
A2: a modified phenol resin prepared by a method described in the following Synthesis Example 1. - 100 parts by mass of phenol, 43 parts by mass of linseed oil and 0.1 part by mass of trifluoromethanesulfonic acid were mixed, and stirred at 120° C. for 2 hours to thereby obtain a vegetable oil-modified phenol derivative (a). Then, 130 g of the vegetable oil-modified phenol derivative (a), 16.3 g of paraformaldehyde and 1.0 g of oxalic acid were mixed, and stirred at 90° C. for 3 hours. The mixture was heated to 120° C., and stirred under reduced pressure for 3 hours; and thereafter, 29 g of succinic anhydride and 0.3 g of triethylamine were added to the reaction solution, and stirred under the atmospheric pressure at 100° C. for 1 hour. The reaction solution was cooled to room temperature to thereby obtain as a reaction product a phenol resin (hereinafter, referred to as A2)(acid value: 120 mgKOH/g) modified with a compound having an unsaturated hydrocarbon group and having 4 to 100 carbon atoms. The weight-average molecular weight of the modified phenol resin A2 as determined in terms of standard polystyrenes by GPC method was about 25000.
- As a (B) component, the following B1 was prepared.
- B1: a 1-naphthoquinone-2-diazide-5-sulfonate ester of 1,1-bis(4-hydroxyphenyl)-1-[4-{1-(4-hydroxyphenyl)-1-methylethyl}phenyl]ethane (esterification rate: about 90%, made by AZ Electronic Materials SA, trade name: “TPPA528”).
- As (C) components, the following thermal crosslinking agents C1 to C3 were prepared.
- C1: hexakis(methoxymethyl)melamine (made by Sanwa Chemical Co., Ltd., trade name: “Nikalac MW-30HM”).
C2: 1,1-bis[(3,5-bis(methoxymethyl)-4-hydroxyphenyl)]methane (made by Honshu Chemical Industry Co., Ltd., trade name: “TMOM-pp-BPF”).
C3: N,N′,N″,N′″-tetrakis(methoxymethyl)glycoluril (made by Sanwa Chemical Co., Ltd., trade name: “Nikalac MX-270”). - As (D) components, nitrogen-containing aromatic compounds of the following D1 to D3 were prepared.
- D1: tetrazole (made by Toyobo Co., Ltd., trade name: “1HT”).
D2: 5-aminotetrazole (made by Toyobo Co., Ltd., trade name: “HAT”).
D3: 5-phenyltetrazole (made by Toyobo Co., Ltd., trade name: “P5T”). - As (E) components, silane compounds of the following E1 and E2 were prepared.
- E1: 3-glycidoxypropyltrimethoxysilane (made by Shin-Etsu Silicone Co., Ltd., trade name: “KBM-403”).
E2: ureidopropyltriethoxysilane (made by Dow Chemical Toray Co., Ltd, trade name: “AY-43-031”). - As (F) components, acryl resins of F1 and F2 were prepared by the methods of following Synthesis Examples 2 and 3.
- 75 g of toluene and 75 g of isopropanol (IPA) were weighed in a 500-ml three-necked flask equipped with a stirrer, a nitrogen introducing tube and a thermometer; and separately weighed polymerizable monomers of 85 g of butyl acrylate (BA), 24 g of lauryl acrylate (DDA), 14 g of acrylic acid (AA) and 7.9 g of 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate (trade name: FA-711MM, made by Hitachi Chemical Co., Ltd.), and 0.13 g of azobisisobutyronitrile (AIBN) were added thereto. Dissolved oxygen was removed by making nitrogen gas flow at a flow volume of 400 ml/min for 30 min under stirring at a stirring rotation frequency of about 270 rpm at room temperature. Thereafter, the inflow of the nitrogen gas was stopped; and the flask was sealed, and heated to 65° C. over about 25 min in a constant-temperature water bath. The temperature was held for 14 hours to carry out the polymerization reaction to thereby obtain an acryl resin F1. The polymerization rate was 98%. The weight-average molecular weight (MW) of the acryl resin F1 as determined in terms of standard polystyrenes by GPC method is shown in Table 1.
- An acryl resin F2 was synthesized as in Synthesis Example 1, except for using polymerizable monomers shown in Table 1. The weight-average molecular weight of the synthesized acryl resin F2 is shown in Table 1.
-
TABLE 1 (F) Acryl Resin F1 F2 FA-711MM 7.9 g (35 mmol) 0.56 g (2.5 mmol) FA-712HM — 0.74 g (3.5 mmol) BA 85 g (670 mmol) 86 g (680 mmol) DDA 24 g (100 mmol) — AA 14 g (200 mmol) 14 g (200 mmol) X-22-2475 — 15 g (36 mmol) Weight-Average 36000 20000 Molecular Weight - FA-711MM: 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate (made by Hitachi Chemical Co., Ltd.)
- FA-712HM: 2,2,6,6-tetramethylpiperidin-4-yl methacrylate (made by Hitachi Chemical Co., Ltd.)
BA: n-butyl acrylate
DDA: lauryl acrylate
X-22-2475: a methacryl-modified silicone oil (functional group equivalent: 420 g/mol, made by Shin-Etsu Chemical Co., Ltd.) - As an (I) component, ethyl lactate of I1 was prepared.
- The (A) to (I) components were blended in predetermined proportions shown in Table 2. The obtained solutions were subjected to a pressure filtration using a Teflon (R) filter of 3 μm in pore to thereby prepare solutions of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2.
- <Evaluation of the Adherence>
- The solutions of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 and 2 were each spin coated on various types of substrates described below, and heated at 120° C. for 3 min to thereby form a resin film of about 11 to 12 μm in thickness. The resin film was heat treated (cured) in nitrogen at a temperature of 180° C. (temperature-rise time: 1.5 hours) for 2 hours by using a vertical diffusion oven (made by Koyo Thermo System Co., Ltd., trade name: “μ-TF”) to thereby obtain a cured film of about 10 μm in thickness. The cured film was scored in a 10×10 grid by a razor by using a crosscut guide (made by Cotec Co., Ltd.) to thereby divide the cured film into 100 small pieces. A pressure-sensitive adhesive tape (made by Nichiban Co., Ltd.) was pasted thereon, and thereafter peeled off. The adherence was evaluated as follows by using the number of the small pieces peeled off the substrate when the pressure-sensitive adhesive tape was peeled off. The results are shown in Table 2.
- A: no peeled-off small pieces
B: 1 to 25 peeled-off ones
C: 26 to 50 peeled-off ones
D: 51 to 75 peeled-off ones
C: 76 to 100 peeled-off ones - The substrates used for the evaluation of the adherence were as follows.
- Ti substrate: a substrate in which a Ti film was sputter-formed on a silicon substrate.
Au substrate: a substrate in which a TiN film was sputter-formed on a silicon substrate, and thereafter an Au film was further sputter-formed on the TiN film.
Cu substrate: a substrate in which a TiN film was sputter-formed on a silicon substrate, and thereafter a copper film was sputter-formed on the TiN film, and copper plating was carried out on the copper film as a seed layer.
Si substrate: a silicon substrate - <Evaluation of Photosensitive Properties (Sensitivity and Resolution)>
- The solutions of the photosensitive resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were each spin coated on the silicon substrate, and heated at 120° C. for 3 min to thereby form a resin film of about 8 to 9 μm in thickness. Then, the resin film was subjected to a reduction projection exposure using the i-line (365 nm) through a mask by using an i-line stepper (made by Canon Inc., trade name: “FPA-3000i”). After the exposure, the resin film was subjected to a development using a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH) so that the remaining film thickness became about 80 to 95% of the initial film thickness. Thereafter, the remaining film was rinsed with water; and the minimum exposure amount necessary for the pattern formation, and the size of the opened minimum square hole pattern were determined. The evaluation was carried out using the minimum exposure amount as the sensitivity and the size of the opened minimum square hole pattern as the resolution.
- <Evaluation of Cured Film Properties (Elongation at Break and Elastic Modulus)>
- The solutions of the photosensitive resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 and 2 were each spin coated on the silicon substrate, and heated at 120° C. for 3 min to thereby form a resin film of about 12 to 14 μm in thickness. Then, the resin film was subjected to an exposure using the entire wavelength through a mask by using a proximity aligner (made by Canon Inc., trade name: “PLA-600FA”). After the exposure, the resin film was subjected to a development using a 2.38% aqueous solution of TMAH to thereby obtain a patterned resin film having a rectangular cross-section of 10 mm in width. Thereafter, the patterned resin film was heat treated (cured) in nitrogen at a temperature of 175° C. (temperature-rise time: 1.5 hours) for 2 hours by using a vertical diffusion oven (made by Koyo Thermo System Co., Ltd., trade name: “μ-TF”) to thereby obtain a patterned cured film of about 10 μm in thickness. The cured film was peeled off the silicon substrate; and the peeled-off cured film was used as a sample, and measured for the elongation at break and the elastic modulus by “Autograph AGS-H100N” made by Shimadzu Corp. The width of the sample was 10 mm; the film thickness was about 10 μm; and the distance between chucks was made to be 20 mm. The tension rate was set at 5 mm/min; and the measurement temperature was made nearly at room temperature (20° C. to 25° C.). Averages of measurement values of 5 or more test pieces obtained from the cured film obtained in the same condition were taken as the elongation at break and the elastic modulus. The results are shown in Table 2.
- <Evaluation of the Crack Resistance in a Thermal Shock Cycle Test>
- A copper foil of a base material (trade name: E-679, made by Hitachi Chemical Co., Ltd.) for printed wiring boards in which the copper foil of 12 μm in thickness was laminated on a glass epoxy base material was etched to thereby obtain a test piece for the thermal shock resistance evaluation having an interdigital electrode in which the line width/the space width were 20 μm/20 μm; and mutual lines made no contact with each other and faced each other and were on the same surface. On the interdigital electrode of the test piece, the solutions of the photosensitive resin compositions of Examples 1 to 14 and Comparative Examples 1 and 2 were each applied using a spin coater to thereby obtain a resin film. The resin film was heat treated (cured) in nitrogen at a temperature of 175° C. (temperature-rise time: 1.5 hours) for 2 hours by using a vertical diffusion oven (made by Koyo Thermo System Co., Ltd., trade name: “μ-TF”) to thereby obtain a cured film of about 10 μm in thickness. The test piece having this cured film was subjected to heat cycles of 1000 times each in which the test piece was exposed in the air at −55° C. for 15 min, thereafter heated at a temperature-rise rate of 180° C./min, then, exposed in the air at 125° C. for 15 min, and thereafter cooled at a temperature-fall rate of 180° C./min. Cracks and peeling of the cured film in the test piece after the exposure to the thermal shock cycle test were observed by a metallographical microscope at a magnification of 100×, and evaluated according to the following criterion. That is, the cured film having no crack nor peeling was designated as “A”; and the cured film exhibiting any crack or peeling was designated as “B”. The results are shown in Table 2.
-
TABLE 2 Examples Comparative Examples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 (A) A1 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 A2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 (B) B1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 (C) C1 10 10 10 — — — — — 10 10 10 10 10 10 10 10 C2 — — — 10 10 10 10 — — — — — — — C3 — — — — — — — 10 — — — — — — (D) D1 3 — — 3 — — 3 3 0.2 — 1.2 4 4 — — D2 — 3 — — 3 — — — — 0.2 1.2 0.2 1.2 — — D3 — — 3 — — 3 — — — — — — — — (E) E1 3 3 3 — — — — — 3 — 3 3 3 3 E2 — — — 3 3 3 3 3 — — — — — — (F) F1 10 10 10 10 — — — — 10 10 10 10 10 10 10 — F2 — — — — 10 10 10 10 — — — — — — 10 (I) I1 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 Adherence Au A A A A A A A A A A A A A A B B Cu B A B B A A A A A A A A A A E E Ti A A A A B B B B A B B B A A C C Si A A A A A A A A A B B B A A A A Sensitivity (mJ/cm2) 180 400 400 420 400 410 400 400 400 400 400 400 400 400 400 500 Resolution (μm) 7 7 7 30 30 30 30 30 7 10 10 10 10 10 10 40 Elongation at Break (%) 15 22 23 20 17 25 25 23 20 23 25 23 24 24 24 25 Elastic Modulus (GPa) 2.8 2.4 2.4 2.4 2.8 2.4 2.4 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 Crack Resistance A A A A A A A A A A A A A A B B - The photosensitive resin compositions of Examples 1 to 8 could provide patterned cured films exhibiting the good crack resistance and having the good adherence with any one of the substrates. In the cases of using the photosensitive resin compositions of Examples 1 to 8, the photosensitive properties and the mechanical properties were good as well. By contrast, in either case of Comparative Example 1 and Comparative Example 2 in which no nitrogen-containing aromatic compound is used, the adherence with the substrate decreased and the crack resistance was poor.
- The present invention can provide a photosensitive resin composition which is capable of forming a patterned cured film having excellent crack resistance and having good adherence with any substrate regardless of the type of the substrate, and which is developable with an alkali aqueous solution.
- 1 . . . SEMICONDUCTOR SUBSTRATE, 2 . . . PROTECTING FILM, 3 . . . FIRST CONDUCTOR LAYER, 4 . . . INTERLAYER INSULATING LAYER, 5 . . . PHOTOSENSITIVE RESIN LAYER, 6A, 6B, 6C . . . WINDOW PART, 7 . . . SECOND CONDUCTOR LAYER, 8 . . . SURFACE PROTECTING LAYER, 11 . . . INTERLAYER INSULATING FILM, 12 . . . WIRING LAYER, 12 . . . UNDERFILL, 13 . . . INSULATING LAYER, 14 . . . SURFACE PROTECTING LAYER, 15 . . . PAD PART, 16 . . . REWIRING LAYER, 17 . . . CONDUCTIVE BALL, 18 . . . CORE, 19 . . . COVER COAT LAYER, 20 . . . BARRIER METAL, 21 . . . COLLAR, 22 . . . UNDERFILL, 23 . . . SILICON CHIP, 24 . . . CONNECTION PART, 100, 200, 300, 400 . . . STRUCTURAL BODY, 500 . . . SEMICONDUCTOR APPARATUS, 600 . . . SEMICONDUCTOR APPARATUS, and 700 . . . SEMICONDUCTOR APPARATUS
Claims (11)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011272307 | 2011-12-13 | ||
JPP2011-272307 | 2011-12-13 | ||
PCT/JP2012/078176 WO2013088852A1 (en) | 2011-12-13 | 2012-10-31 | Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140322635A1 true US20140322635A1 (en) | 2014-10-30 |
US9395626B2 US9395626B2 (en) | 2016-07-19 |
Family
ID=48612309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/364,498 Expired - Fee Related US9395626B2 (en) | 2011-12-13 | 2012-10-31 | Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component |
Country Status (6)
Country | Link |
---|---|
US (1) | US9395626B2 (en) |
EP (1) | EP2793082B1 (en) |
JP (1) | JP5904211B2 (en) |
SG (1) | SG11201401963QA (en) |
TW (1) | TWI472875B (en) |
WO (1) | WO2013088852A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6108869B2 (en) * | 2013-02-22 | 2017-04-05 | 旭化成株式会社 | Photosensitive resin composition, method for producing cured relief pattern, semiconductor device and display device |
JP6208959B2 (en) * | 2013-03-14 | 2017-10-04 | 旭化成株式会社 | Photosensitive resin composition, method for producing cured relief pattern, semiconductor device and display device |
JP6093437B2 (en) * | 2013-03-15 | 2017-03-08 | 富士フイルム株式会社 | Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device |
EP3413132B1 (en) | 2016-02-05 | 2020-12-16 | HD Microsystems, Ltd. | Positive-type photosensitive resin composition |
JP6489289B2 (en) * | 2016-11-11 | 2019-03-27 | 住友ベークライト株式会社 | Photosensitive resin composition for resist formation, resin film, cured film, and semiconductor device |
TWI803315B (en) * | 2017-08-01 | 2023-05-21 | 日商旭化成股份有限公司 | Semiconductor device and manufacturing method thereof |
CN108003271B (en) * | 2017-12-25 | 2020-06-16 | 广东三求光固材料股份有限公司 | Alkali-soluble electroplating-resistant photosensitive resin and preparation method and application thereof |
US11822242B2 (en) | 2019-11-14 | 2023-11-21 | Merck Patent Gmbh | DNQ-type photoresist composition including alkali-soluble acrylic resins |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010096927A (en) * | 2008-10-15 | 2010-04-30 | Hitachi Chemical Dupont Microsystems Ltd | Photosensitive resin composition, method for producing patterned curing film using the same, and electronic component |
US20110254178A1 (en) * | 2008-12-26 | 2011-10-20 | Hiroshi Matsutani | Positive-type photosensitive resin composition, method for producing resist pattern, semiconductor device, and electronic device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3960055B2 (en) | 2002-01-23 | 2007-08-15 | Jsr株式会社 | Photosensitive insulating resin composition and cured product thereof |
JP2008241798A (en) | 2007-03-26 | 2008-10-09 | Nippon Zeon Co Ltd | Method for forming resist pattern using new positive photosensitive resin composition |
JP5447384B2 (en) * | 2008-09-04 | 2014-03-19 | 日立化成株式会社 | Positive photosensitive resin composition, method for producing resist pattern, and electronic component |
JP5444813B2 (en) | 2009-04-23 | 2014-03-19 | Jsr株式会社 | Photosensitive insulating resin composition and insulating film |
JP2011075610A (en) | 2009-09-29 | 2011-04-14 | Nippon Zeon Co Ltd | Radiation sensitive resin composition and laminated body |
JP5657882B2 (en) | 2009-12-16 | 2015-01-21 | 旭化成イーマテリアルズ株式会社 | Photosensitive resin composition |
-
2012
- 2012-10-31 SG SG11201401963QA patent/SG11201401963QA/en unknown
- 2012-10-31 EP EP12857412.6A patent/EP2793082B1/en active Active
- 2012-10-31 WO PCT/JP2012/078176 patent/WO2013088852A1/en active Application Filing
- 2012-10-31 US US14/364,498 patent/US9395626B2/en not_active Expired - Fee Related
- 2012-10-31 JP JP2013549157A patent/JP5904211B2/en active Active
- 2012-12-12 TW TW101146782A patent/TWI472875B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010096927A (en) * | 2008-10-15 | 2010-04-30 | Hitachi Chemical Dupont Microsystems Ltd | Photosensitive resin composition, method for producing patterned curing film using the same, and electronic component |
US20110254178A1 (en) * | 2008-12-26 | 2011-10-20 | Hiroshi Matsutani | Positive-type photosensitive resin composition, method for producing resist pattern, semiconductor device, and electronic device |
Non-Patent Citations (4)
Title |
---|
Computer-generated transaltion of JP 2010-096927 (4/2010). * |
Computer-generated transaltion of JP 2011-075610 (4/2011). * |
Computer-generated transaltion of JP 2011-128276 (6/2011). * |
Partial translation of JP 2010-096927 (4/2010). * |
Also Published As
Publication number | Publication date |
---|---|
TWI472875B (en) | 2015-02-11 |
EP2793082A4 (en) | 2015-10-28 |
JP5904211B2 (en) | 2016-04-13 |
EP2793082B1 (en) | 2019-12-18 |
SG11201401963QA (en) | 2014-09-26 |
WO2013088852A1 (en) | 2013-06-20 |
US9395626B2 (en) | 2016-07-19 |
JPWO2013088852A1 (en) | 2015-04-27 |
EP2793082A1 (en) | 2014-10-22 |
TW201329623A (en) | 2013-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8461699B2 (en) | Positive-type photosensitive resin composition, method for producing resist pattern, semiconductor device, and electronic device | |
US10175577B2 (en) | Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component | |
US9395626B2 (en) | Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component | |
US8836089B2 (en) | Positive photosensitive resin composition, method of creating resist pattern, and electronic component | |
JP2012226044A (en) | Positive photosensitive resin composition, method for producing resist pattern, semiconductor device and electronic device | |
JP2013134346A (en) | Photosensitive resin composition, manufacturing method of patterned cured film, semiconductor device, and electronic component | |
JP2014080541A (en) | Resin composition and method of manufacturing organic layer using the same, organic layer, and semiconductor element having organic layer | |
JP2013152353A (en) | Photosensitive resin composition, method for manufacturing patterned cured film, semiconductor device and electronic device | |
JP2009237125A (en) | Positive photosensitive resin composition, resist pattern manufacturing method, and electronic component | |
JP2013167693A (en) | Photosensitive resin composition, patterned cured film manufacturing method, and semiconductor device including patterned cured film | |
JP6513596B2 (en) | PHOTOSENSITIVE RESIN COMPOSITION, METHOD FOR MANUFACTURING PATTERN CURED FILM, SEMICONDUCTOR DEVICE AND ELECTRONIC COMPONENT | |
JP2014010156A (en) | Photosensitive resin composition, method for producing pattern cured film using the same and electronic component | |
JP2018028690A (en) | Photosensitive resin composition, method for producing patterned cured film, semiconductor device and electronic component | |
JP2014103253A (en) | Primer, manufacturing method for pattern hardened film, pattern hardened film, and semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HITACHI CHEMICAL COMPANY, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIMOTO, AKITOSHI;NOBE, SHIGERU;KASUYA, KEI;AND OTHERS;SIGNING DATES FROM 20140506 TO 20140509;REEL/FRAME:033078/0415 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SHOWA DENKO MATERIALS CO., LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:HITACHI CHEMICAL COMPANY, LTD.;REEL/FRAME:062917/0865 Effective date: 20201001 |
|
AS | Assignment |
Owner name: RESONAC CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:SHOWA DENKO MATERIALS CO., LTD.;REEL/FRAME:062946/0125 Effective date: 20230101 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240719 |