US20140308354A1 - Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction - Google Patents

Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction Download PDF

Info

Publication number
US20140308354A1
US20140308354A1 US14/248,898 US201414248898A US2014308354A1 US 20140308354 A1 US20140308354 A1 US 20140308354A1 US 201414248898 A US201414248898 A US 201414248898A US 2014308354 A1 US2014308354 A1 US 2014308354A1
Authority
US
United States
Prior art keywords
bimatoprost
composition
fat
sustained release
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/248,898
Other languages
English (en)
Inventor
Scott Whitcup
David Woodward
Patrick Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Inc filed Critical Allergan Inc
Priority to US14/248,898 priority Critical patent/US20140308354A1/en
Assigned to ALLERGAN, INC. reassignment ALLERGAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUGHES, PATRICK, WOODWARD, DAVID, WHITCUP, SCOTT
Publication of US20140308354A1 publication Critical patent/US20140308354A1/en
Priority to US15/134,792 priority patent/US10682361B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/5575Eicosanoids, e.g. leukotrienes or prostaglandins having a cyclopentane, e.g. prostaglandin E2, prostaglandin F2-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/559Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing hetero atoms other than oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions

Definitions

  • the present invention is directed to compositions and methods for the sustained release of bimatoprost, bimatoprost analogs, bimatoprost prodrugs, prostamides, prostaglandins, prostaglandin analogs and prostaglandin derivatives from injectable and implantable depots for the purpose of fat reduction including localized fat reduction.
  • Topical bimatoprost has been shown to effectively prevent apidocyte formation and maturation and to atrophy adipocytes in animal models after topical administration. Furthermore, clinical evidence of fat reduction after topical administration of bimatoprost has been reported.
  • the present invention is directed to sustained release methods and formulations of bimatoprost, bimatoprost analogs, bimatoprost prodrugs, prostamides, prostaglandins, prostaglandin analogs and derivatives and prostaglandin analogs such as latanoprost and travoprost for localized fat reduction.
  • FIG. 1 shows in vitro release profiles of brimatoprost with injectable PLGA implants
  • FIG. 2 shows in vitro release profiles of brimatoprost with injectable SynBiosys implants
  • FIGS. 3A and 3B show 100 day ReGel 100 or ReGel B release data
  • FIGS. 4A-4C show a comparison of latanoprost release data of ReGel 100 or ReGel B delivery systems
  • FIG. 5 shows a 2-D MR image 40 minutes post-injection oriented longitudinal through the gastrocnemius muscle to show the MGL and MGM muscle groups in each leg.
  • the right leg was injected with HA/Albumin-Gadolinium, the left leg with Albumin-Gadolinium alone;
  • FIG. 6A shows the release rate of bimatoprost in a formulation of 20% Bimatoprost, 45% R203s, 20% RG752s 10% R202H, 5% PEG-3350;
  • FIG. 6B shows the release rate of bimatoprost in a formulation shown at the bottom of FIG. 6B ;
  • FIG. 6C shows the release rate of Compound #1 of the formulations of Table I
  • FIG. 7A shows bimatoprost microspheres which can be used for sustained release of bimatoprost for localized fat reduction
  • FIG. 7B shows the release rate of bimatoprost from the latanoprost microspheres
  • FIGS. 8A and 8B show shows 10% bimatoprost in diethyl glycol dibenzoate (gel).
  • FIG. 8C shows an example of bimatoprost release from a 10% Bimatoprost in Diethyl Glycol Dibenzoate depot (gel).
  • a method of fat reduction comprising injecting a sustained release formulation of a compound selected from the group consisting of bimatoprost, bimatoprost analogs, bimatoprost prodrugs, prostamides, prostaglandins, prostaglandin analogs, latanoprost and travoprost and prostaglandin derivatives and mixtures thereof into a fat deposit.
  • the sustained release formulation is selected from the group consisting of injectable depots, gel suspensions, a ReGel delivery system, a hyaluronic acid release platform, implants, microspheres, macrospheres and injectable solvents.
  • compositions for use in localized fat reduction wherein the composition is a sustained release composition selected from the group consisting of injectable depots, gel suspensions, a ReGel delivery system, a hyaluronic acid based platform, implants, microspheres, macrospheres and injectable solvents.
  • composition of paragraph 12 wherein the composition further comprises a compound selected from the group consisting of bimatoprost, bimatoprost analogs, bimatoprost prodrugs, prostamides, prostaglandins, prostaglandin analogs, latanoprost and travoprost and prostaglandin derivatives.
  • composition of paragraph 12 or 13 wherein the sustained release formulation is an implant comprised of about 20% bimatoprost, about 45% R203s, about 20% RG752s, about 10% R202H and about 5% PEG-3350.
  • composition of paragraph 18 wherein the composition is injected into at least one selected from the group consisting of abdominal fat deposits, visceral fat deposits, epicardial fat deposits, subcutaneous fat deposits and ectopic fat deposits.
  • the sustained release formulation is an implant comprised of at least one polymer selected from the group consisting of poly(d,l-lactide-co-glycolide), poly (d,l-lactide), poly(caprolactone), poly(dioxanone), poly(ethylene glycol), poly(ortho-ester), polyesters, poly(phosphazine), poly (phosphate ester), polycaprolactone, silicone, natural polymers such as latex, gelatin or collagen, or polymeric blends and the compound is selected from the group consisting of bimatoprost, latanoprost, travoprost and mixtures thereof.
  • composition of paragraph 12 or 13 wherein the sustained release formulation is a gel suspension comprised of at least one compound selected from the group consisting of sodium hyaluronate, crosslinked hyaluronic acid, chondroitin sulfate, cellulosics, gelatin, collagen, glycosaminoclycans, or other synthetic or naturally occurring polysaccharides and the compound is selected from the group consisting bimatoprost, latanoprost, travoprost and mixtures thereof.
  • the sustained release formulation is a gel suspension comprised of at least one compound selected from the group consisting of sodium hyaluronate, crosslinked hyaluronic acid, chondroitin sulfate, cellulosics, gelatin, collagen, glycosaminoclycans, or other synthetic or naturally occurring polysaccharides and the compound is selected from the group consisting bimatoprost, latanoprost, travoprost and mixtures thereof.
  • composition of paragraph 22 wherein the thermal gelling system is comprised of solutions of A-B-A or B-A-B triblock copolymers or B-A block copolymers.
  • composition of paragraph 12 or 13 wherein the sustained release formulation is an injectable depot with biocompatible solvents selected from the group consisting of DMSO, NMP and DMAC or mixtures thereof.
  • Bimatoprost and other compounds can be dissolved or dispersed in a gel, in a biodegradable solid implant, or biocompatible solvents containing solvated polymers, which can form solid depots upon injection. Additionally, thermal gelling delivery systems of bimatoprost may also be utilized. Solid implants for sustained release may be comprised of poly(d,l-lactide-co-glycolide), poly (d,l-lactide), poly(caprolactone), poly(dioxanone), poly(ethylene glycol), poly(ortho-ester), polyesters, poly(phosphazine), poly(phosphate ester), polycaprolactone, silicone, natural polymers such as latex, gelatin or collagen, or polymeric blends.
  • Gel suspensions could contain sodium hyaluronate, crosslinked hyaluronic acid, chondroitin sulfate, cellulosics, gelatin, collagen, glycosaminoclycans, or other synthetic or naturally occurring polysaccharides.
  • Biocompatible solvents for injection of in situ forming depots include DMSO (dimethyl sulfoxide), NMP (N-methylpyrrolidone), DMAC (dimethylacetamide), or other non-aqueous solvents for injection.
  • Bimatoprost delivery systems and delivery systems for other compounds can be administered for reduction of adipose tissue through the injection or implantation of implants or injectable depots.
  • Such delivery systems may be used for reduction of local adipose tissue, e.g subcutaneous fat, and/or as a method for sustained systemic delivery to achieve reduction of visceral fat and other fat pad depositions that are not easily reached by local administration of the implant or injection such as pericardial fat depositions.
  • Bimatoprost is a low melting compound and the ability to sustain its release from multiple delivery platforms is surprising.
  • Specific delivery platforms include but are not limited to injectable bimatoprost delivery depots, in situ forming bimatoprost depots, hyaluronic acid depots, solid form bimatoprost implants, bimatoprost microspheres and injectable solvent depots.
  • the delivery systems of the present invention can be injected or implanted at a location to achieve reduction of subcutaneous fat deposits and adipose tissue such as abdominal fat, visceral fat, epicardial fat, submental fat, periorbital fat and ectopic fat pads.
  • PLGA and multiblock polymers have been shown to release bimatoprost upon depot formation.
  • the polymers and drug are dissolved in a biocompatible solvent for both, such as N-methypyrrolidinone, di-methyl acetamide or DMSO.
  • the formulation is sterile filtered, autoclaved, or irradiated for sterility.
  • the solution is filled into a sterile vial or a unit dose syringe.
  • the biocompatible solvent diffuses away from the depot, leaving behind a firm prostamide or prostaglandin loaded implant.
  • the depot releases bimatoprost, prostamide or prostaglandin for days, weeks, or months, as the polymer bioerodes.
  • Drug loading in solution could range from 0.1% to 50%.
  • Polymer loading in solution could range from 15% to 50%.
  • Excipients could include poly(ethylene glycol), short chain fatty acids, waxes, cholesterol, aliphatic alcohols, co-solvents, or other compounds which would adjust the hydrophobicity of the depot.
  • Polymer systems that undergo phase transitions in response to various stimuli can also be used. This phase transition results in a significant volume and or viscosity change in the system.
  • the system can respond to pH, ionic environment, temperature, biologic triggers as well as other chemical and physical triggers.
  • the system comprises one or more polymers capable of interacting to cause a phase-transition resulting in the volume or viscosity increases. Examples of polymers include polyacrylic acid and polyethylene oxide copolymers. Other components of the system include excipients known to those experienced in the art.
  • the system has the further advantage of offering controlled and sustained release of therapeutically active agents to local tissues.
  • the drug may be physically entrapped or chemically bound via covalent linkages, hydrogen binding, ionic interactions, van der Waals forces or hydrophobic interactions. Release of the drug can be controlled by physical entrapment of the active compound in the transitioned gel.
  • Compounds can also be physically or chemically bound to the polymers comprising the phase transition gel. The phase transition of the gel serves to create a depot for drug delivery.
  • PLGA/PLA polylactide-co-glycolide
  • PEO polyethylene oxide
  • latanoprost latanoprost.
  • latanoprost was loaded at 3% loading into ReGel 100 or ReGel B i.e. 3 mg drug in 100 ul gel.
  • the system displayed sustained release after thermal gelation with no burst of latanoprost. This is very surprising given the relative low melting point and solubility of latanoprost. i.e., slow release, no burst.
  • the gel remained for longer than 100 days as shown in FIGS. 3A and 3B . Additional modifications can be made by adding other polymers to the system, e.g., CMC, agarose and starch.
  • Crosslinked hyaluronic acid has been shown to localize upon injection providing a potential sustained release platform.
  • Drug can either be incorporated into the crosslinked hyaluronic acid or conjugated to the vehicle for sustained release. In the case of the former, release and erosion of the platform can be controlled by porosity of the gel, length of the crosslinkers and crosslinking density. Alternatively, in the latter case, bimatoprost or a prostamide analog can be covalently or ionically bonded to the hyaluronic backbone through one of several linkers known to the art. Finally, drug may be incorporated into another sustained release modality, such as microspheres, then incorporated into the hyaluronic acid (crosslinked or non-crosslinked) and injected as a delivery platform.
  • sustained release modality such as microspheres
  • FIG. 5 shows a 2-D MR image 40 minutes post-injection oriented longitudinal through the gastrocnemius muscle to show the MGL (tripennate gastrocnemius lateralis) and MGM (unipennate gastrocnemius medialis) muscle groups in each leg.
  • the right leg was injected with HA/Albumin-Gadolinium, the left leg with Albumin-Gadolinium alone.
  • the left leg shows diffuse spread of the Albumin-Gadolinium (blue color) throughout the MGL muscle and crossover to the adjacent MGM muscle.
  • This data shows that cross-linked HA depots can be localized and provide a platform for the local sustained release of a prostaglandin or prostamide for fat reduction.
  • Bimatoprost has been formulated into implants that can be injected or implanted subcutaneously, into visceral fat or in direct apposition to an organ.
  • An example is the following formulation : 20% Bimatoprost, 45% R203s, 20% RG752s 10% R202H, 5% PEG-3350 and FIG. 6A shows the release rate of bimatoprost from this formulation (R203S is an ester end-capped PLA, R202H is an acid end group PLA, RG752S is a 75:25 PLGA with an ester end group and PEG — 3350 is polyethylene glycol with a molecular weight of 3350).
  • Other implant formulations and their release rates are shown in FIG. 6B .
  • Compound #1 Another compound which may be useful for fat reduction is disclosed below:
  • Implant formulations with Compound #1 and their properties are in Table I below:
  • Bimatoprost and latanoprost can also be sustained through the use of PLGA microspheres and macrospheres as shown in FIGS. 7A-7B for latanoprost.
  • Latanoprost microspheres were manufactured from the PLA and PLGA polymers as shown in the table below. The microspheres were manufactured by dissolving 20 mg of latanoprost and 100 mg polymer in 0.8 ml ethyl acetate. A minimum amount of dichloromethane may be added to complete dissolution of the polymer. This solution is added to 40 mL 1% polyvinyl alcohol aqueous solution via a micro-pipette while mixing at high sheer, 3000 rpm, for 5 minutes with a homogenizer.
  • FIGS. 8A-8B shows 10% bimatoprost in Diethyl Glycol Dibenzoate (gel) and FIG. 8C shows an example of bimatoprost release from 10% Bimatoprost in Diethyl Glycol Dibenzoate (gel).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Medical Uses (AREA)
US14/248,898 2013-04-12 2014-04-09 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction Abandoned US20140308354A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/248,898 US20140308354A1 (en) 2013-04-12 2014-04-09 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction
US15/134,792 US10682361B2 (en) 2013-04-12 2016-04-21 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361811682P 2013-04-12 2013-04-12
US14/248,898 US20140308354A1 (en) 2013-04-12 2014-04-09 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/134,792 Continuation US10682361B2 (en) 2013-04-12 2016-04-21 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction

Publications (1)

Publication Number Publication Date
US20140308354A1 true US20140308354A1 (en) 2014-10-16

Family

ID=51686960

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/248,898 Abandoned US20140308354A1 (en) 2013-04-12 2014-04-09 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction
US15/134,792 Active 2034-04-10 US10682361B2 (en) 2013-04-12 2016-04-21 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/134,792 Active 2034-04-10 US10682361B2 (en) 2013-04-12 2016-04-21 Sustained release bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction

Country Status (19)

Country Link
US (2) US20140308354A1 (zh)
EP (2) EP2983663B1 (zh)
JP (1) JP2016520561A (zh)
KR (1) KR20150141972A (zh)
CN (2) CN105101962A (zh)
AU (2) AU2014250937A1 (zh)
BR (1) BR112015025915A8 (zh)
CA (1) CA2908731A1 (zh)
CL (1) CL2015003023A1 (zh)
DK (1) DK2983663T3 (zh)
ES (1) ES2785382T3 (zh)
HK (1) HK1221406A1 (zh)
IL (1) IL242006B (zh)
MX (1) MX2015014320A (zh)
MY (1) MY187802A (zh)
RU (1) RU2015143859A (zh)
SG (2) SG10201701938PA (zh)
WO (1) WO2014169075A1 (zh)
ZA (1) ZA201507217B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795615B2 (en) * 2015-04-30 2017-10-24 Allergan, Inc. Methods for fat reduction
WO2022020347A1 (en) * 2020-07-21 2022-01-27 Allergan, Inc. Intraocular implant with high loading of a prostamide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452703B2 (en) 2020-05-21 2022-09-27 Peregrine Ophthalmic PTE LTD. Methods and compositions for reducing adipocyte numbers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666912B2 (en) * 2006-03-23 2010-02-23 Massachusetts Eye And Ear Infirmary Compositions and methods for reducing body fat

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218424A (en) * 1931-05-07 1940-10-15 Teleregister Corp Transmitter and code translator
US4525359A (en) * 1982-12-10 1985-06-25 Greenway Frank L Iii Treatment for selective weight control
US6124344A (en) * 1993-12-28 2000-09-26 Allergan Sales, Inc. Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
WO1996036599A1 (en) * 1995-05-18 1996-11-21 Allergan Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents for the treatment of ocular hypertension
WO2004037268A1 (en) 2002-10-23 2004-05-06 Sucampo Ag Prostaglandin compounds for the treatment of obesity
WO2004050060A1 (ja) * 2002-12-04 2004-06-17 Santen Pharmaceutical Co., Ltd. 結膜下デポによるドラッグデリバリーシステム
WO2005063205A2 (en) * 2003-12-22 2005-07-14 Aventis Pharmaceuticals Inc. Injectable phosphatidylcholine preparations
US20080038316A1 (en) 2004-10-01 2008-02-14 Wong Vernon G Conveniently implantable sustained release drug compositions
EP2077830B1 (en) * 2006-10-17 2012-11-07 Lithera, Inc. Methods, compositions, and formulations for the treatment of thyroid eye disease
US8969415B2 (en) * 2006-12-01 2015-03-03 Allergan, Inc. Intraocular drug delivery systems
US9095506B2 (en) * 2008-11-17 2015-08-04 Allergan, Inc. Biodegradable alpha-2 agonist polymeric implants and therapeutic uses thereof
US20100247606A1 (en) * 2009-03-25 2010-09-30 Allergan, Inc. Intraocular sustained release drug delivery systems and methods for treating ocular conditions
WO2011109384A2 (en) * 2010-03-02 2011-09-09 Allergan, Inc. Biodegradable polymers for lowering intraocular pressure
EP2595604B1 (en) 2010-07-21 2016-03-30 Allergan, Inc. Method of controlling initial drug release of sirna from sustained-release implants
TWI631961B (zh) * 2013-03-15 2018-08-11 美商歐樂根公司 含有前列醯胺之眼內植入物
AU2016254208B2 (en) 2015-04-30 2021-07-15 Allergan, Inc. Cosmetic method and therapeutic use for fat reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666912B2 (en) * 2006-03-23 2010-02-23 Massachusetts Eye And Ear Infirmary Compositions and methods for reducing body fat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Choi et al (In vitro Study of Antiadipogenic Profile of Latanoprost, Travoprost, Bimatoprost, and Tafluprost in Human Orbital Preadipocytes; Journal of Ocular Pharmacology and Therapeutics, volume 28, Number 2, 2012, pages 146-152). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795615B2 (en) * 2015-04-30 2017-10-24 Allergan, Inc. Methods for fat reduction
EP3721885A1 (en) 2015-04-30 2020-10-14 Allergan, Inc. Cosmetic method and therapeutic use for fat reduction
WO2022020347A1 (en) * 2020-07-21 2022-01-27 Allergan, Inc. Intraocular implant with high loading of a prostamide

Also Published As

Publication number Publication date
ES2785382T3 (es) 2020-10-06
HK1221406A1 (zh) 2017-06-02
KR20150141972A (ko) 2015-12-21
EP2983663A1 (en) 2016-02-17
BR112015025915A8 (pt) 2020-01-14
WO2014169075A1 (en) 2014-10-16
RU2015143859A3 (zh) 2018-03-05
DK2983663T3 (da) 2020-04-20
ZA201507217B (en) 2017-09-27
AU2019203214B2 (en) 2020-10-29
SG10201701938PA (en) 2017-04-27
CL2015003023A1 (es) 2016-06-10
AU2014250937A1 (en) 2015-10-22
US10682361B2 (en) 2020-06-16
EP2983663B1 (en) 2020-01-22
EP3656375A1 (en) 2020-05-27
US20160339039A1 (en) 2016-11-24
CN110840899A (zh) 2020-02-28
SG10202109919PA (en) 2021-10-28
BR112015025915A2 (pt) 2017-07-25
IL242006B (en) 2020-04-30
MY187802A (en) 2021-10-26
AU2019203214A1 (en) 2019-05-30
CA2908731A1 (en) 2014-10-16
NZ712804A (en) 2021-02-26
JP2016520561A (ja) 2016-07-14
CN105101962A (zh) 2015-11-25
MX2015014320A (es) 2015-12-08
RU2015143859A (ru) 2017-05-16

Similar Documents

Publication Publication Date Title
Kempe et al. In situ forming implants—an attractive formulation principle for parenteral depot formulations
Hatefi et al. Biodegradable injectable in situ forming drug delivery systems
US11944717B2 (en) Devices for in situ formed nerve caps and/or nerve wraps
US20040109893A1 (en) Sustained release dosage forms of anesthetics for pain management
AU2019203214B2 (en) Sustained release of bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction
EP2067468A1 (en) Sustained release dosage forms of anesthetics for pain management
JP2005538107A5 (ja) 注入可能な多モードポリマーのデポ組成物及びその使用
US20210361292A1 (en) Methods for in situ formed nerve cap with rapid release
US20220409902A1 (en) Methods and devices for nerve regeneration
CA3163429A1 (en) Methods and devices for in situ formed nerve cap with rapid release
JP2016522169A (ja) 生理活性薬剤の制御された送達のための組成物
JP2016520561A5 (zh)
NZ712804B2 (en) Sustained release of bimatoprost, bimatoprost analogs, prostamides and prostaglandins for fat reduction
EP3986491B1 (en) Crosslinkable hydrogel compositions
JP7235392B2 (ja) ポリ(1,3-トリメチレンカーボネート)を含む再吸収性の生分解性医療用及び化粧品組成物
KR20230022737A (ko) 주사용 사전-제형 및 이를 이용한 도네페질 초기방출 억제형 키트
TW202126321A (zh) 用於延長遞送以肽類為活性醫藥成分之液體聚合物組合物及系統
US20210100762A1 (en) Compositions and methods including reverse thermal gels and pH adjustors

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHITCUP, SCOTT;WOODWARD, DAVID;HUGHES, PATRICK;SIGNING DATES FROM 20130925 TO 20131004;REEL/FRAME:032637/0147

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION