US20140296968A1 - Implantable vascular stent - Google Patents

Implantable vascular stent Download PDF

Info

Publication number
US20140296968A1
US20140296968A1 US14/131,664 US201214131664A US2014296968A1 US 20140296968 A1 US20140296968 A1 US 20140296968A1 US 201214131664 A US201214131664 A US 201214131664A US 2014296968 A1 US2014296968 A1 US 2014296968A1
Authority
US
United States
Prior art keywords
stent
binding agent
coating
vessel
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/131,664
Other languages
English (en)
Inventor
Christian Bader
Boris Behnisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Translumina GmbH
Original Assignee
Translumina GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Translumina GmbH filed Critical Translumina GmbH
Assigned to TRANSLUMINA GMBH reassignment TRANSLUMINA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BADER, CHRISTIAN, BEHNISCH, BORIS
Publication of US20140296968A1 publication Critical patent/US20140296968A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus

Definitions

  • the present invention concerns a radially expandable stent for implantation in a vessel, which stent has at least one metal surface and, when expanded in the vessel, lies against the inner surface of the vessel, said stent being provided with a mixture of a bioresorbable lactic/glycolic-acid-based binding agent and an active substance, said mixture applied to its surface.
  • Stents within the meaning of the present invention are intravascular implants, which vessel supports are also referred to as stents.
  • Such stents are radially expandable endoprostheses that are implanted transluminally in vessels such as blood vessels, the esophagus, trachea, and intestinal tract and the like, and then radially expanded so that they lie against the inner wall of the vessel.
  • stents are used in the vascular system to reinforce blood vessels and/or prevent restenosis following previous angioplasty. They can be self-expanding or be actively expanded by a radial force exerted from inside, e.g. when mounted on a balloon.
  • radially expanding stent used in the present invention is therefore understood to include both self-expanding and actively expandable stents.
  • the stents show a hollow cylindrical body having a wall composed of interconnected struts and branches that form a radially permeable and flexible structure.
  • the hollow cylindrical body comprises ring-shaped segments composed of self-closed branches running in a zigzag pattern that form loops lying circumferentially adjacent to one another and having proximal and distal ends, so that each segment has an undulating meander-like structure along its circumference.
  • the individual segments are connected to one another by short struts. On expansion, the distance between the proximal and distal ends of each segment becomes somewhat shorter, but the zigzag structure remains intact.
  • the external diameter of said body corresponds roughly to the internal diameter of the vessel to be supported, the stent lying against the wall of said vessel by the radial force exerted by its flexible and elastic structure.
  • the body of the stent is open in order to allow the passage of media or substances to be transported in the supported vessel.
  • these stents are placed in the body using so-called introduction systems and released at the target site, for which purpose they are loaded onto a catheter—i.e., crimped onto its balloons—which is advanced through the relevant vessels according to the so-called Seldinger technique using guide wires running through the inner lumen of the catheter.
  • the stent When the delivery site in the relevant vessel has been reached, the stent is expanded, and thus lies with its surface against the vessel wall.
  • the surface is coated abluminally with active substances, more specifically drugs, or drug reservoirs are provided within the structure of the stent and/or microporous struts and branches are used for temporary storage of the drug.
  • active substances more specifically drugs, or drug reservoirs are provided within the structure of the stent and/or microporous struts and branches are used for temporary storage of the drug.
  • the drug is then locally delivered to the wall of the vessel, e.g. in order to prevent restenosis due to proliferation of the surrounding tissue.
  • stents that are coated in this manner or provided with a reservoir allow the targeted on-site delivery, as it were, of active substances to the surrounding tissue.
  • the coating of stents, i.e. vascular prostheses, with active substances is also advantageous because this improves the biocompatibility of the implant, which e.g. makes it possible to prevent the occurrence of thrombosis with surfaces that come into contact with the blood.
  • bare-metal stents BMS
  • restenosis rate approximately 30%. This is attributable to vessel damage triggered by implantation that results in the proliferation of smooth muscle cells.
  • stents are always coated with cystostatic or cytotoxic drugs such as rapamycin or paclitaxel.
  • cystostatic or cytotoxic drugs such as rapamycin or paclitaxel.
  • stents are referred to as drug-eluting stents (DES).
  • the drugs are attached to the surface of the stent using a binding agent, usually a polymeric binding agent, or incorporated into a polymer matrix on the surface of the stent.
  • a binding agent usually a polymeric binding agent
  • the drug is delivered to the vessel wall via diffusion from the polymer.
  • the polymer permanently remains on the surface of the stent.
  • the residual polymer may lead to inflammations and sensitization reactions, with the result that in-grow of the stent is not as favorable as in a comparable BMS.
  • in-grow of the stent is not as favorable as in a comparable BMS.
  • not grown-in stent struts result in late stent thrombosis. Accordingly, the lower restenosis rate compared to BMS must be weighed against the subsequent increased incidence of late stent thrombosis.
  • stents comprising such biodegradable polymers are converted into BMS due to degradation of the polymer components and thus combine the favorable safety properties of BMS with the favorable antirestenotic properties of a DES.
  • the polymers mainly used are various lactic and/or glycolic-acid-based polyesters that degrade inside the body without leaving any residue.
  • a known technique is the use of PLA, PLLA, and PLGA with various monomer ratios. These polymers sometimes differ markedly from one another in their mechanical and chemical properties.
  • a stent having a bioresorbable PLGA-based binding agent is described in the publication of Falotico et al., “NEVOTM: a new generation of sirolimus-eluting coronary stent,” in EuroIntervention Supplement (2009), Vol. 5 (Supplement 5), F88-F93.
  • the known stent is provided with reservoirs evenly distributed over its structure and composed of through openings in the stent material. These openings are closed with a floor of PLGA either toward the interior or the exterior, with the monomer ratio of lactic to glycolic acid in this case being 75:25, so that the polymer degrades according to this publication within 4 to 5 months.
  • the blind hole formed in this manner is filled with a mixture of PLGA and the drug sirolimus in a 1.2:1 ratio.
  • the delayed release of the drug either outward or inward takes place both by diffusion of the drug from the polymer matrix and by degradation of the polymer matrix in the reservoir.
  • filling of the reservoir is technically complex and time-consuming, as for abluminal delivery of the drug, it is first necessary to place the PLGA floor in each individual opening and then fill the resulting blind holes with the mixture of the polymer and the drug. If luminal delivery is also required, a portion of the reservoir must be first be filled with the mixture and then capped with a PLGA. For two time, two production steps are therefore required.
  • the monomer ratio of 75:25 by no means ensures that the PLGA floor or cover will be completely degraded after three months, with the result that the polymer is still being released into the tissue several weeks after complete delivery of the drug, which can lead to problems with inflammation and sensitization.
  • the stent known from aforementioned EP 2 189 169 A1 is composed of a magnesium alloy and is therefore completely biodegradable by itself.
  • the binding agent contains the polymer polylactide co-glycolide and is intended primarily to delay degradation of the magnesium; it can also serve as a matrix for delivering the active substance.
  • US 2010/0042206 A1 also describes a completely biodegradable stent composed of a magnesium alloy that may be provided with a coating of various lactic/glycolic acid-based polymers, with said polymers serving as the matrix for delivering active substances. Delivery of the active substance and degradation of the matrix are to take place in parallel over a period of 1 to 12 months.
  • WO 2004/087214 A1 also describes a stent that may be provided with a coating of lactic/glycolic-acid-based polymers that can serve as a matrix for the delivery of active substances.
  • This known stent has a similar structure to the stent known from the aforementioned publication of Falotico et al. It shows pores in which the active substance is held in place by PLGA until it is delivered.
  • US 2008/0169582 describes the production of stents composed entirely of biodegradable long-chain polymers.
  • the active substance is either incorporated into the stent material or embedded in a matrix composed of an additional polymer layer.
  • the polymers may be based on lactic and glycolic acid.
  • the object underlying the present invention is to provide a stent of the kind mentioned at the outset in which the drawbacks known from prior art are avoided. Specifically, production of the stent is to be simplified, and the delivery kinetics of the active substance and degradation of the binding agent are to be improved.
  • the bioresorbable binding agent is an oligomer based on lactic and glycolic acid and having a chain length that is sufficiently short to allow the oligomer to be biologically degraded within about 6 weeks while implanted.
  • the mixture of oligomeric binding agent and active substance is applied to the surface as a coating, no additional binding agent areas such as the covers or floors with known stents are required in order to keep the mixture intact over long periods.
  • the oligomeric binding agent can therefore be configured in such a way that it degrades at roughly the same rate as that at which the active substance is released.
  • the invention uses as a binding agent an oligomer, i.e. a substance having a degree of polymerization that is below 100 according to the conventional definition. Oligomers used within the scope of the invention show a degree of polymerization that is approximately lower than 50.
  • washing or dissolving the drug from the binding agent matrix and degradation of this matrix itself can take place in parallel, so that after complete delivery of the drug, there is no residual binding agent remaining on the stent.
  • the feature of allowing, according to the invention, to adjust a corresponding degradation rate makes it possible to reduce the time the binding agent is present on the stent to the shortest period possible, thus largely avoiding the drawbacks described above of inflammation and sensitization reactions.
  • the surface coating according to the invention which preferably lies in closed form on the surface, provides uniform abluminal release of the drug, a characteristic that, despite a possibly large number of reservoirs, is not guaranteed by the stent known from the publication of Falotico et al.
  • the new stent thus not only provides excellent drug delivery kinetics and rapid degradation of the oligomeric binding agent, but also allows drug delivery that is uniformly distributed over the surface.
  • the bioresorbable binding agent is an Oligo(D,L-lactate-co-glycolate) having a chain length sufficiently short to allow the agent to be degraded within approximately 6 weeks while implanted, and the oligomer should preferably have a molecular weight (M ⁇ ) of between 1,000 to 4,000 Daltons, and preferably of approximately 3,000 Daltons, and preferably a molecular ratio of lactic to glycolic acid in the oligomer of approximately 1:1.
  • M ⁇ molecular weight
  • This coating has been found to be particularly effective in experiments conducted by the inventors to date.
  • oligomers based on lactic and glycolic acid nor of Oligo(D,L-lactate-co-glycolate) as a binding agent has been proposed in the prior art.
  • binding agent have either unspecifically been suggested long-chain polymeric PLGA, i.e. poly(lactic acid-co-glycolic acid), namely a polymer produced by polycondensation of the two acids, or specifically poly(lactide-co-glycolide), i.e. a polymer of different crystallinity that is produced by ring-opening polymerization of the two diesters.
  • binding agents composed of short-chain oligomers particularly those produced from the salts of lactic and glycolic acid, are particularly well-suited as a matrix for active substances, because they degrade under physiological conditions within 6 weeks. This period corresponds to the period within which the active substance is to be delivered.
  • the degradation times are said to be 1-2 weeks, 3-4 weeks, or 1-2 months, depending on viscosity. There is no mention of the conditions under which these degradation times were determined. Measurements conducted by the inventors of the present invention show distinctly longer degradation times than those given in the publication of Falotico et al.
  • the known stent uses a monomer ratio of 75 25, with the degradation time said to be approximately 4-5 months. In the known stent, this polymer is used in such a manner that it does not come into mechanical contact with the vessel wall during implantation.
  • binding agent of said stent is used among other purposes to define and limit, respectively, the direction of drug delivery, such that the binding agent shall not fully degrade until 100% of the active substance has been delivered.
  • oligomers based on lactic and glycolic acid particularly Oligo(D,L-lactate-co-glycolate)
  • Oligo(D,L-lactate-co-glycolate) are particularly well-suited for use in applying a preferably closed coating to the surface of a stent, and that by incorporation of an active substance into the binding agent matrix, it becomes possible by the oligomers used according to the invention to select delivery kinetics in such a manner that the binding agent has already been degraded after complete delivery of the active substance, with only a BMS remaining.
  • this coating with the oligomers used according to the invention nevertheless provides sufficient mechanical stability, such that the stent after application of the coating can be crimped onto a balloon and dilated after being inserted into the vessel without causing the coating to unravel, chip off, or agglutinate.
  • the oligomer provides good cohesion within the coating and good adhesion between the coating and the surface of the stent.
  • Oligomers having the degradation times provided according to the invention are not shown in the publication by Falotico et al.
  • the oligomer when the oligomer is mixed with rapamycin or a rapamycin derivative, preferably in a weight ratio of between 3:1 to 1:3, and more preferably of approximately 1:1, this provides a stable coating that degrades completely and without residue within approximately 6 weeks.
  • the new coating is advantageous in that after complete dissolution and/or washing out of the rapamycin components, no binding agent residue, which could adversely affect safety properties, is found on the stent surface.
  • This release takes place not only due to diffusion or washing out of the active substance, but also due to biodegrading of the binding agent.
  • oligomers and rapamycin in a weight ratio of 1:1 is advantageous in certain applications, but other weight ratios may also be used within the scope of the present invention.
  • the coating is preferably applied to a stent with a microporous or rough surface, with the metal of the stent preferably being a stainless steel.
  • the stent may be composed completely of the metal, preferably the stainless steel, or have a metal surface, with said surface being directed both toward the inner wall of the vessel and, if applicable, the lumen of the vessel.
  • the remaining surface is a pure and microporous metal surface that shows the favorable grow-in properties of a BMS. Nevertheless, the new stent also shows the antirestenotic performance of a DES.
  • oligomeric binding agent thus makes it possible for the first time to achieve rapid and complete grow-in of a DES, which is generally associated with a high degree of safety, e.g. in coronary stents.
  • Stents having a microporous surface are known from the prior art; see for example DE 102 00 387 A1.
  • the surface of the known stent is provided with pores in which drugs and polymers are kept in reserve.
  • the present invention makes it possible to produce stable coatings on expandable stents, which are particularly stable if the stent has a microporous or rough surface.
  • the surface is provided with a closed coating composed of the bioresorbable binding agent and the active substance.
  • a “closed coating” is understood to refer to a coating that covers at least the entire abluminal surface of the stent and shows no chipping off over larger areas, even during crimping and subsequent dilation of the stent.
  • FIG. 1 shows a schematic, sectional side view of a stent having the coating according to the invention, after insertion into a vessel and before dilation;
  • FIG. 2 shows a photograph of a stent surface coated according to the invention and not yet crimped
  • FIG. 3 a photograph as in FIG. 2 , but after crimping
  • FIG. 4 a presentation as in FIG. 3 , but in enlarged view and after dilation;
  • FIG. 5 a presentation as in FIG. 4 , but after 2 weeks of contact with an isotonic saline solution at 37° C.;
  • FIG. 6 a presentation as in FIG. 4 , but after 6 weeks of contact with the isotonic saline solution.
  • FIG. 1 shows a schematic side view of a stent 10 that is crimped onto a balloon 11 .
  • the balloon 11 has been advanced by means of a guide wire 12 into a vessel 14 , and it comes into contact with the wall 15 of the vessel after expansion of said balloon 11 .
  • the stent 10 shows a surface 16 to which a coating schematically indicated by 17 has been applied, with said coating containing a binding agent and rapamycin as an active substance in a ratio by weight of 1:1.
  • the surface 16 is microporous, i.e. it shows pores in the diameter range of 1 to 5 ⁇ m.
  • the stent 10 corresponds e.g. to the stent known from DE 102 00 387 A1. However, it may also have a roughened surface 16 .
  • the binding agent is an oligoester containing the monomers lactic acid and glycolic acid in a ratio of 1:1.
  • the oligomer (B2) has a molecular weight determined based on limit viscosity of approximately 3,000 (B2) Daltons and a degree of polymerization of approximately 45. It is commercially available from the company Evonik under the brand name Resomer® Condensate 50:50 M n 2300.
  • a polymer (B1) having a degree of polymerization of approximately 142 and a molecular weight of approximately 10,000 Daltons was studied.
  • PLGA B1 is sold by Evonik as Resomer® RG 502 H.
  • This coating degrades during contact with tissue after 2 weeks by 20% (B1) and 80% (B2), respectively, and after 6 weeks by 90% (B1) and >99% (B2), respectively.
  • both coatings are suitable for use on stents, as they show favorable mechanical stability.
  • FIGS. 2 and 3 show the stent coated with B2 immediately after coating and after crimping.
  • FIGS. 4 through 6 show a magnified electron microscopic photograph of the stent of FIG. 2 after crimping and subsequent dilation, immediately after coating ( FIG. 4 ), and after storage for 2 weeks ( FIG. 5 ) and 6 weeks ( FIG. 6 ) in isotonic saline solution at 37° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
US14/131,664 2011-07-12 2012-07-05 Implantable vascular stent Abandoned US20140296968A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011107109A DE102011107109A1 (de) 2011-07-12 2011-07-12 Implantierbare Gefäßstütze
DE102011107109.5 2011-07-12
PCT/EP2012/063108 WO2013007589A1 (de) 2011-07-12 2012-07-05 IMPLANTIERBARE GEFÄßSTÜTZE

Publications (1)

Publication Number Publication Date
US20140296968A1 true US20140296968A1 (en) 2014-10-02

Family

ID=46456614

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/131,664 Abandoned US20140296968A1 (en) 2011-07-12 2012-07-05 Implantable vascular stent

Country Status (8)

Country Link
US (1) US20140296968A1 (ru)
EP (1) EP2701757B1 (ru)
CN (1) CN103687633B (ru)
BR (1) BR112014000511B1 (ru)
DE (1) DE102011107109A1 (ru)
ES (1) ES2524123T3 (ru)
RU (1) RU2571685C2 (ru)
WO (1) WO2013007589A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096808B2 (en) * 2017-12-07 2021-08-24 Ooo “Ik Sovremennye Tekhnologii” Biodegradable intravascular shape memory stent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013108870A1 (de) 2013-08-16 2015-02-19 Aimecs Gmbh Mittel zur Reinigung und zum Schutz von technischen Oberflächen
CN110522485B (zh) * 2019-08-27 2020-12-11 浙江大学 一种可降解的肠道完全转流支架
RU2737505C1 (ru) * 2019-12-19 2020-12-01 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Медицинское изделие стент с полимерными покрытиями

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076595A1 (en) * 2007-09-14 2009-03-19 Boston Scientific Scimed, Inc. Medical devices having bioerodable layers for the release of therapeutic agents

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776796B2 (en) * 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
DE10200387B4 (de) 2002-01-08 2009-11-26 Translumina Gmbh Stent
DE10254215B4 (de) * 2002-11-20 2014-10-09 Johnson & Johnson Medical Gmbh Chirurgisches Implantat
WO2004087214A1 (en) 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device with beneficial agent concentration gradient
CN101091806A (zh) * 2006-06-20 2007-12-26 天津市凯迪亚医疗器械有限公司 冠脉支架可降解药物缓释涂层
US20080169582A1 (en) * 2006-10-23 2008-07-17 Vipul Bhupendra Dave Method and apparatus for making polymeric drug delivery devices having differing morphological structures
US20080243241A1 (en) * 2007-03-28 2008-10-02 Zhao Jonathon Z Short term sustained drug-delivery system for implantable medical devices and method of making the same
CN100566764C (zh) * 2007-10-26 2009-12-09 哈尔滨医科大学 一种用于药物涂层血管支架的药物涂层载体及药物涂层血管支架的制备方法
US20100042206A1 (en) * 2008-03-04 2010-02-18 Icon Medical Corp. Bioabsorbable coatings for medical devices
US9283304B2 (en) * 2008-11-25 2016-03-15 CARDINAL HEALTH SWITZERLAND 515 GmbH Absorbable stent having a coating for controlling degradation of the stent and maintaining pH neutrality
CA2756388C (en) * 2009-03-23 2015-10-27 Micell Technologies, Inc. Biodegradable polymers with low acidic impurity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076595A1 (en) * 2007-09-14 2009-03-19 Boston Scientific Scimed, Inc. Medical devices having bioerodable layers for the release of therapeutic agents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096808B2 (en) * 2017-12-07 2021-08-24 Ooo “Ik Sovremennye Tekhnologii” Biodegradable intravascular shape memory stent

Also Published As

Publication number Publication date
EP2701757A1 (de) 2014-03-05
BR112014000511A2 (pt) 2017-02-21
RU2571685C2 (ru) 2015-12-20
RU2014104678A (ru) 2015-08-20
BR112014000511B1 (pt) 2019-10-22
CN103687633B (zh) 2016-02-24
EP2701757B1 (de) 2014-09-03
ES2524123T3 (es) 2014-12-04
CN103687633A (zh) 2014-03-26
DE102011107109A1 (de) 2013-01-17
WO2013007589A1 (de) 2013-01-17

Similar Documents

Publication Publication Date Title
US10980917B2 (en) Adhesive stent coating for anti-migration
CA2640750C (en) Polymeric, degradable drug-eluting stents and coatings comprising copolymers or homopolymers of 4-hydroxybutyrate
US8414814B2 (en) Temporal intraluminal stent, methods of making and using
US20050055078A1 (en) Stent with outer slough coating
KR102410365B1 (ko) 기능성 내피 세포 층의 복구를 가능하게 하는 약물 용출 스텐트 및 이의 사용 방법
WO2012011269A1 (ja) ステント用カバー部材及びステント装置
US8961591B2 (en) Polymeric, degradable drug-eluting stents and coatings
US9907886B2 (en) Drug-eluting medical implants
WO2005011796A1 (ja) 生体留置用ステント
US20070142898A1 (en) Intravascular delivery of mizoribine
JP6667758B2 (ja) 生体吸収性ステント
US20140296968A1 (en) Implantable vascular stent
WO2007119423A1 (ja) 生体内留置物
Nguyen et al. Biomaterials and stent technology
US10098765B2 (en) Implant and method for producing the same
JP7170647B2 (ja) 薬物送達面積が増大したインプラント型装置
AU2011265474B2 (en) Temporal intraluminal stent, methods of making and using
Timmons Kytai T. Nguyen, Shih-Horng Su, Meital Zilberman, Pedram Bohluli, Peter Frenkel, Liping Tang, and Robert Eberhart University of Texas Southwestern Medical Center at Dallas Dallas, Texas, USA

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRANSLUMINA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BADER, CHRISTIAN;BEHNISCH, BORIS;REEL/FRAME:032404/0800

Effective date: 20140303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION