US20140191145A1 - Actuation and Valve Mechanism - Google Patents
Actuation and Valve Mechanism Download PDFInfo
- Publication number
- US20140191145A1 US20140191145A1 US14/009,331 US201214009331A US2014191145A1 US 20140191145 A1 US20140191145 A1 US 20140191145A1 US 201214009331 A US201214009331 A US 201214009331A US 2014191145 A1 US2014191145 A1 US 2014191145A1
- Authority
- US
- United States
- Prior art keywords
- cable
- barrier
- cable drum
- linear drive
- fluid control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007246 mechanism Effects 0.000 title description 11
- 230000004888 barrier function Effects 0.000 claims description 153
- 239000012530 fluid Substances 0.000 claims description 108
- 238000007789 sealing Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000002262 irrigation Effects 0.000 description 9
- 238000003973 irrigation Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/50—Mechanical actuating means with screw-spindle or internally threaded actuating means
- F16K31/506—Mechanical actuating means with screw-spindle or internally threaded actuating means with plural sets of thread, e.g. with different pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/50—Mechanical actuating means with screw-spindle or internally threaded actuating means
- F16K31/502—Mechanical actuating means with screw-spindle or internally threaded actuating means actuating pivotable valve members
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B13/00—Irrigation ditches, i.e. gravity flow, open channel water distribution systems
- E02B13/02—Closures for irrigation conduits
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/20—Movable barrages; Lock or dry-dock gates
- E02B7/40—Swinging or turning gates
- E02B7/42—Gates of segmental or sector-like shape with horizontal axis
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/20—Movable barrages; Lock or dry-dock gates
- E02B7/54—Sealings for gates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
- F16H19/06—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
- F16H19/06—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member
- F16H19/0622—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member for converting reciprocating movement into oscillating movement and vice versa, the reciprocating movement is perpendicular to the axis of oscillation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/20—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
- F16K1/2007—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member specially adapted operating means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/16—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
- F16K1/18—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
- F16K1/20—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
- F16K1/2021—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member with a plurality of valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/46—Mechanical actuating means for remote operation
- F16K31/465—Mechanical actuating means for remote operation by flexible transmission means, e.g. cable, chain, bowden wire
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/50—Mechanical actuating means with screw-spindle or internally threaded actuating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/10—Means for stopping flow in pipes or hoses
- F16L55/1018—Pivoting closing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H19/00—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
- F16H19/02—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
- F16H19/06—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member
- F16H2019/0668—Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising flexible members, e.g. an endless flexible member with open loop, e.g. with the free ends of the flexible member fixed to the casing, e.g. when the drive means are arranged on the carriage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/46—Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions
- F16H21/50—Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions for interconverting rotary motion and reciprocating motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18568—Reciprocating or oscillating to or from alternating rotary
- Y10T74/18832—Reciprocating or oscillating to or from alternating rotary including flexible drive connector [e.g., belt, chain, strand, etc.]
Definitions
- the present invention relates to fluid control barriers and actuation mechanisms, which can be incorporated into such barriers, but not limited to irrigation environments.
- the present invention in one embodiment provides a fluid control barrier adapted to be fitted to an end of a pipe or inside said pipe through which fluid is contained or inside a pipe through which fluid flows, a bi-foldable barrier member controls movement of said fluid, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, at least one pair of struts pivotally mounted to said plates at one end and pivotally attached to a fixed position shaft or cross member at the other end thereof, said struts mounted to said plates along or near to the centroidal axes of said plates to minimize the force required to open or close said bi-foldable barrier member.
- an actuation member is attached to said hinge to provide a push and pull movement of said hinge to allow said bi-foldable barrier member to be opened and closed.
- the invention also provides in a further embodiment a cable drive device including a linear drive member, a cable drum attached to a support bracket adapted to be affixed to a surface, said cable drum having an axle supported by said support bracket to allow rotation of said cable drum, said cable drum having a cable affixed at either end of said linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said linear drive member to, in use, allow said linear drive member to be guided through said bracket to move said linear drive member longitudinally when said axle is rotated.
- a cable drive device including an arcuate segment drive member, a cable drum having an axle to allow rotation of said cable drum, said cable drum having a cable affixed at either end of the arcuate section of said arcuate segment drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said arcuate section of said arcuate segment drive member to, in use, allow said arcuate segment drive member to be moved when said axle is rotated.
- a further embodiment provides a control gate adapted to be installed across a flow channel for liquids, said control gate having a barrier member that is pivotally mounted at or adjacent the base of said flow channel and at least one drive means to raise and lower said barrier member, said at least one drive means comprising a cable drive device as disclosed herein, wherein one of said ends of said linear drive member is pivotally attached to said barrier member.
- the invention may also provide a fluid control barrier adapted to be fitted to an end of a pipe through which fluid is contained, a frame member is mounted on said end of said pipe, a barrier member is pivotally mounted one a first edge to said frame member to allow for opening and closing of said fluid control barrier and at least one cable drive device as disclosed herein is fixed to said frame member and said barrier member to allow said barrier member to be opened and closed.
- Another embodiment provides a fluid control barrier adapted to be fitted to an end of a pipe through which fluid is contained, a frame member is mounted on said end of said pipe, a bi-foldable barrier member closes said end of said pipe, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, said hinge pinned to said frame member or said pipe and a pair of lifting means attached to each of said plates to allow said bi-foldable barrier member to be opened and closed.
- a fluid control barrier adapted to be fitted inside a pipe through which a fluid flows
- a bi-foldable barrier member is provided to control fluid flow through said pipe
- said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, said hinge pinned to said pipe and a pair of lifting means attached to each of said plates to allow said bi-foldable barrier member to be opened and closed.
- FIG. 1 is a perspective view of a first embodiment of a cable drive device made in accordance with the invention
- FIG. 2 is an enlarged perspective view of the cable drum of FIG. 1 showing the position of the cable co-operating with the cable drum;
- FIG. 3 is a side view of the cable drive device shown in FIG. 1 ;
- FIG. 4 is a front view of the cable drive device shown in FIG. 1 ;
- FIG. 5 is a cross-sectional view along and in the direction of arrows 5 - 5 shown in FIG. 4 ;
- FIG. 6 is a similar view to that of FIG. 5 showing a second embodiment of a cable drive device made in accordance with the invention
- FIG. 7 is a perspective view of an irrigation channel showing the use of the cable drive device of FIG. 1 attached to an overshot control gate to control the flow of water in the irrigation channel;
- FIG. 8 is a similar view to that of FIG. 7 showing the use of a pair of cable drive devices of the type shown in FIG. 1 ;
- FIG. 9 is a side view of FIG. 7 showing the control gate closed
- FIG. 10 is a similar view to that of FIG. 9 showing the control gate in a partially open position
- FIG. 11 is a similar view to that of FIG. 10 showing the control gate in a fully open position
- FIG. 12 is a perspective view of a further irrigation channel showing the use of the cable drive device of FIG. 1 attached to a control gate to control the flow of water in the irrigation channel;
- FIG. 13 is a similar view to that of FIG. 12 showing the use of a pair of cable drive devices of the type shown in FIG. 1 ;
- FIG. 14 is a side view of FIG. 12 showing the control gate closed
- FIG. 15 is a similar view to that of FIG. 14 showing the control gate in a partially open position
- FIG. 16 is a similar view to that of FIG. 15 showing the control gate in a fully open position
- FIG. 17 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position;
- FIG. 18 is a front view of FIG. 17 ;
- FIG. 19 is a side view of FIG. 17 ;
- FIG. 20 is a similar view to that of FIG. 17 with the fluid control barrier shown in the open position;
- FIG. 21 is a front view of FIG. 20 ;
- FIG. 22 is a side view of FIG. 20 ;
- FIG. 23 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position using the cable drive devices as shown in FIG. 1 ;
- FIG. 24 is a front view of FIG. 23 ;
- FIG. 25 is a side view of FIG. 23 ;
- FIG. 26 is a similar view to that of FIG. 23 with the fluid control barrier shown in the open position;
- FIG. 27 is a front view of FIG. 26 ;
- FIG. 28 is a side view of FIG. 26 ;
- FIGS. 29 to 58 have been intentionally omitted
- FIG. 59 is a perspective view of a fluid control barrier made in accordance with the invention and fitted inside a pipe with the fluid control barrier shown in the open position which uses a cable drive device as shown in FIG. 1 ;
- FIG. 60 is a side view of FIG. 59 with a cutaway to show the operation of the fluid control barrier
- FIG. 61 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position;
- FIG. 62 is a front view of FIG. 61 ;
- FIG. 63 is a side view of FIG. 61 ;
- FIG. 64 is a similar view to that of FIG. 61 with the fluid control barrier shown in the open position;
- FIG. 65 is a front view of FIG. 64 ;
- FIG. 66 is a side view of FIG. 64 ;
- FIG. 67 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position;
- FIG. 68 is a front view of FIG. 67 ;
- FIG. 69 is a side view of FIG. 67 ;
- FIG. 70 is a similar view to that of FIG. 67 with the fluid control barrier shown in the open position;
- FIG. 71 is a front view of FIG. 70 ;
- FIG. 72 is a side view of FIG. 70 ;
- FIG. 73 is a perspective view of a circular drive device made in accordance with a preferred embodiment of the invention.
- FIG. 74 is a front view of the circular drive device shown in FIG. 73 in a rotated position
- FIG. 75 is a perspective cutaway view of a fluid control barrier made in accordance with the invention and fitted inside a pipe with the fluid control barrier shown in the closed position;
- FIG. 76 is a similar view to that of FIG. 75 with the fluid control barrier shown in the open position;
- FIG. 77 is a plan view of a fluid control barrier shown in FIG. 75 ;
- FIG. 78 is a plan view of a fluid control barrier shown in FIG. 76 ;
- FIG. 79 is a perspective cutaway view of a fluid control barrier made in accordance with the invention and fitted inside a pipe with the fluid control barrier shown in the closed position;
- FIG. 80 is a similar view to that of FIG. 79 with the fluid control barrier shown in the open position;
- FIG. 81 is a plan view of a fluid control barrier shown in FIG. 79 ;
- FIG. 82 is a plan view of a fluid control barrier shown in FIG. 80 ;
- FIG. 83 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position;
- FIG. 84 is a cross-sectional view along and in the direction of the arrows shown in FIG. 85 ;
- FIG. 85 is a front view of the fluid control barrier shown in FIG. 83 ;
- FIG. 86 is a side view of FIG. 85 ;
- FIG. 87 is similar view to that of FIG. 83 showing the fluid control barrier starting to open;
- FIG. 88 is a cross-sectional view along and in the direction of the arrows shown in FIG. 89 ;
- FIG. 89 is a front view of the fluid control barrier shown in FIG. 87 ;
- FIG. 90 is a side view of FIG. 89 ;
- FIG. 91 is similar view to that of FIG. 83 showing the fluid control barrier completely open;
- FIG. 92 is a cross-sectional view along and in the direction of the arrows shown in FIG. 93 ;
- FIG. 93 is a front view of the fluid control barrier shown in FIG. 91 ;
- FIG. 94 is a side view of FIG. 91 ;
- FIG. 95 is a plan view of a preferred bi-foldable barrier member shown in the closed position
- FIG. 96 is an end view of the barrier member shown in FIG. 95 ;
- FIG. 97 is a side view of the barrier member shown in FIG. 95 ;
- FIG. 98 is a cross-sectional view along and in the direction of the arrows shown in FIG. 97 ;
- FIG. 99 is a perspective view of the barrier member shown in FIG. 95 ;
- FIG. 100 is a plan view of the barrier member shown in FIG. 95 in the half-closed position
- FIG. 101 is an end view of the barrier member shown in FIG. 100 ;
- FIG. 102 is a side view of the barrier member shown in FIG. 100 ;
- FIG. 103 is a cross-sectional view along and in the direction of the arrows shown in FIG. 102 ;
- FIG. 104 is a perspective view of the barrier member shown in FIG. 100 ;
- FIG. 105 is a plan view of the barrier member shown in FIG. 95 in the fully open position
- FIG. 106 is an end view of the barrier member shown in FIG. 105 ;
- FIG. 107 is a side view of the barrier member shown in FIG. 105 ;
- FIG. 108 is a cross-sectional view along and in the direction of the arrows shown in FIG. 107 ;
- FIG. 110 is a perspective view of the barrier member shown in FIG. 105 .
- FIGS. 1 to 5 shows a cable drive device 10 having a linear drive member 12 and cable drum 14 .
- Linear drive member 12 has a longitudinal base member 16 with a pair of arms 18 , 20 .
- a pair of pivot pins 22 , 24 are provided at each end for attachment to a respective member as described in subsequent embodiments.
- Cable drum 14 has a central axle 26 rotatably held by a journal or bearings 28 in a support member 29 .
- Arms 18 , 20 may, if required, be substituted by a longitudinal bar or plate.
- a pair of faceplates 30 , 32 support journal or bearings 28 at the opposite end thereof by pins 34 , 36 .
- Pins 34 , 36 will, in use, slide along base member 16 with the cable drum 14 being on one side of the linear drive member 12 and pins 34 , 36 on the other side. Pins 34 , 36 will prevent cable drum 14 from leaving the face of linear drive member 12 .
- Rollers can replace pins 34 , 36 , for reducing frictional resistance.
- the pair of pins 34 , 36 can be substituted by a single pin or roller, which would be preferably centrally located between the positions of pins 34 , 36 .
- Cable drum 14 has spiraled grooves 38 in its outer circumferential face 40 to allow a cable 42 to be wound out or wound out from cable drum 14 .
- Cable 42 is held taut and is coupled to pivot pins 22 , 24 at opposite ends of linear drive member 12 .
- Cable 42 is threaded through a hole 44 in cable drum 14 passing diagonally there through from opposing outer edges of outer circumferential face 40 .
- Cable 42 is pre-tensioned above the maximum design load of cable drive device 10 . As only a single cable 42 is provided with multiple wraps around cable drum 14 , cable 42 is not subject to slip.
- Cable drive device 10 can provide movement of a member by attaching either pivot pins 22 , 24 to a member to be moved and anchoring support member 29 to a stationary support. Rotation of central axle 26 will result to longitudinal movement of linear drive member 12 through support member 29 by the roll on or roll off movement of cable 42 around cable drum 14 . Cable drive device 10 can generally replace devices used for a rack and pinion type of movement.
- FIGS. 73 and 74 illustrate a similar cable drive device shown in FIGS. 1 to 5 where an arcuate or circular drive member 206 replaces linear drive member 12 .
- Cable 42 is similarly attached to pivot pins 22 , 24 and is held taut in groove 208 of arcuate or circular drive member 206 .
- Cable drum 14 sits inside of groove 208 and can be supported by a bracket (not shown) and/or by axle 26 .
- the arcuate or circular drive member 206 is shown as extending for angle X° where X can be any angle up to about 360°.
- the arcuate or circular drive member 206 will rotate about a central axis 210 .
- Cable drum 14 will be configured in a similar manner to that described with reference to FIGS. 1 to 5 .
- This embodiment will simulate a pinion gear (cable drum 14 ) driving a larger circular gear (arcuate or circular drive member 206 ).
- the radial base 216 can be attached to a movable member, for example, the top of a flap valve and the flap valve can pivot about central axis 210 .
- Axle 26 can be supported by a frame member and axle 26 can be rotated to allow radial base 216 to be move about central axis 210 as shown in FIG. 74 . This movement will lift the flap valve to open the valve.
- FIG. 6 illustrates an enhancement of the cable drive device 10 shown in FIGS. 1 to 5 .
- a pair of linear drive members 12 , 12 A on opposite sides of cable drum 14 are provided. Separate spiraled grooves (not shown) are formed in the circumferential face of cable drum 14 to allow cables 42 , 42 A to co-operate with cable drum 14 .
- the operation of linear drive member 12 A is identical to that of linear drive member 12 discussed with reference to FIGS. 1 to 5 . Because the linear drive members 12 , 12 A are on opposite sides of cable drum 14 and have opposing displacements, the movement of linear drive member 12 in one direction will cause movement of linear drive member 12 A in the opposite direction on rotation of axle 26 . This movement will allow greater linear movement between pivot pins 22 , 24 A.
- FIG. 7 shows the use of the cable drive device 10 shown in FIGS. 1 to 5 in an irrigation system.
- a barrier member 46 is hinged at the bed or base 48 of a channel 50 through which water passes.
- Barrier member 46 includes a base member 52 and side members 54 , 56 .
- Barrier member 46 may be of a rigid construction, of the type shown in International Patent Application No. PCT/AU01/01036, or may be flexible, of the type known as Padman Bay outlets, or a combination thereof.
- the free end 58 of barrier member 46 is pivotally attached to pivot pin 24 of linear drive member 12 of cable drive device 10 of FIGS. 1 to 5 .
- Support member 29 is secured to a frame member 60 across channel 50 .
- An electric motor 62 is coupled to axle 26 to allow rotation of cable drum 14 .
- FIG. 8 shows a variation of FIG. 7 where a pair of cable drive devices 10 are used.
- electric motor 62 has an extended shaft 64 to allow rotation of the axles of both cable drive devices 10 . If required, separate electric motors could be used.
- the embodiment is not limited to two cable drive devices 10 as any numbers may be used to suit the width of the channel 50 .
- FIGS. 7 and 8 show use of a rigid construction of barrier member 46 .
- FIGS. 9 to 11 show the operation of barrier member 46 using the cable drive device or devices 10 .
- FIGS. 9 to 11 show barrier member 46 having a rigid base member 52 and flexible side members 54 , 56 .
- FIG. 9 has barrier member 46 in the closed position with linear drive member 12 fully extended in the upward direction.
- Full flow of water is obtained when linear drive member 12 is fully extended in the downward direction ( FIG. 11 ).
- Linear drive member 12 will be partially immersed in the water, which can be a harsh environment for such devices.
- gear mechanisms which do not suit being immersed or being exposed to water. Gears can jam and the gear teeth can wear resulting in drive backlash.
- the cable drive devices 10 do not suffer these disadvantages and allow a more accurate positioning of barrier member 46 to assist in superior measurement.
- FIGS. 12 to 16 are very similar in construction and operation to the embodiment shown in FIGS. 7 to 11 .
- a dam wall 66 extends across the channel and barrier member 46 is pivotally attached to the bottom of dam opening 68 rather than at the bed or base 48 of channel 50 .
- cable drive device 10 of FIGS. 1 to 5 has been shown with reference to its use in the irrigation field in FIGS. 7 to 16 its use is not limited to that environment. Cable drive device 10 can be used where any mechanical movement is required.
- FIGS. 17 to 22 illustrate an embodiment of a fluid control barrier 70 , which is attached to the end 72 of a pipe 74 .
- Pipe 74 is shown vertically disposed but could be readily disposed horizontally, or at any other desired angle.
- the fluid control barrier 70 can also be adapted to be located within pipe 74 and the embodiment described is not limited to the position or orientation shown in FIGS. 17 to 22 .
- a flange 76 at the end of pipe 74 provides attachment to a flange 78 of fluid control barrier 70 .
- a sealing lip 80 on flange 78 allows the sealing thereto of a pair of semi-circular plates 82 , 84 forming a barrier member.
- the plates 82 , 84 are joined along their diametric sides by hinge 86 to open and close fluid control barrier 70 and form a bi-foldable barrier member. Hinge 86 is fixed and constrained by frame elements 88 , 90 of frame 92 . A pair of cross-members 94 , 96 complete frame 92 . Plates 82 , 84 fold in the direction of flow towards the centreline when opening and into the flow away from the centreline when closing.
- a pair of struts 98 , 100 downstream of pipe 74 are pivotally attached to plates 82 , 84 at one end and are pivotally attached at the other end to a threaded journal 102 at the other end to form a thrust point.
- Journal 102 is coupled to a threaded member 104 supported by bearings 106 , 108 in respective cross-members 94 , 96 . Rotation of the end 110 of threaded member 104 will result in opening and closing of fluid control barrier 70 as indicated by arrows 112 .
- FIGS. 17 to 19 show plates 82 , 84 pressed onto sealing lip 80 to prevent escape of water from pipe 74 .
- Turning end 110 of threaded member 104 will cause threaded journal 102 to move up threaded member 104 , as threaded journal 102 is constrained from rotating.
- the upward movement of threaded journal 102 will lift struts 98 , 100 , and plates 82 , 84 will thus lift away from pipe 74 to open fluid control barrier 70 , as shown in FIGS. 20 to 22 .
- the fluid control barrier 70 can be used for flood irrigation where water flows out pipe 74 and onto the ground.
- End 110 can be turned by hand or coupled to a rotation means e.g. motor or axle (not shown) controlled by irrigation automation (not shown). By turning end 110 in the opposite direction the plates 82 , 84 will pivot towards sealing lip 80 to stop water flow.
- FIGS. 23 to 28 disclose various embodiments to move plates 82 , 84 .
- FIGS. 23 to 28 have struts 98 , 100 replaced by cable drive devices 114 , 116 , described with reference to FIGS. 1 to 5 .
- Threaded member 104 has been replaced by a rotatable shaft 118 coupled to the axles of cable drive devices 114 , 116 and supported by frame elements 88 , 90 . The operation is very similar to that shown in the embodiment of FIGS.
- the fluid control barrier 70 can also be adapted to be located within pipe 74 and the embodiment described is not limited to the position or orientation shown in FIGS. 23 to 28 .
- FIGS. 61 to 66 The embodiment shown in FIGS. 61 to 66 is very similar to the embodiment shown in FIGS. 17 to 22 .
- a cable drive device 120 described with reference to FIGS. 1 to 5 , replaces threaded member 104 .
- Threaded journal 102 is not required as struts 98 , 100 can be directly mounted to pivot pin 24 of cable drive device 120 .
- the support member 29 of cable drive device 120 is mounted to cross-member 94 .
- a drive shaft (not shown) is coupled to central axle 26 for rotation of cable drum 14 resulting in opening and closing of plates 82 , 84 .
- the fluid control barrier 70 can also be adapted to be located within pipe 74 and the embodiment described is not limited to the position or orientation shown in FIGS. 61 to 66 .
- FIGS. 67 to 72 has a completely different actuation mechanism when compared with the embodiments of FIGS. 17 to 28 and FIGS. 61 to 66 .
- a threaded screw member 122 is supported in journals 124 , 126 in frame elements 88 , 90 .
- Threaded screw member 122 has opposing threads 128 , 130 separated by an unthreaded section 132 .
- a pair of rotatable journals 134 , 136 are mounted on respective plates 82 , 84 and equispaced from hinge 86 .
- a pair of threaded journals 138 , 140 are threadably attached to respective threads 128 , 130 on threaded screw member 122 and equispaced from unthreaded section 132 .
- a first pair of equal length struts 142 , 144 are pivotally mounted to rotatable journal 134 at one end and to threaded journal 136 at the other end.
- a second pair of equal length struts 146 , 148 are pivotally mounted to rotatable journal 134 at one end and to threaded journal 136 at the other end.
- the points of attachment to each plate 82 , 84 are along the radial axis that bisects the semicircle.
- the location of the position of rotatable journals 134 , 136 can vary and may be determined on the basis of the specific force loading of the actuation mechanism and what is optimal for the actuation mechanism. From the closed position of plates 82 , 84 shown in FIGS.
- the shaft end 150 of threaded screw member 122 can be rotated.
- the threaded journals 138 , 140 will move outwardly along respective threads 128 , 130 , as evident from FIGS. 70 to 72 .
- Struts 142 to 148 will pivot and cause plates 82 , 84 to be lifted and open the fluid control barrier.
- Turning the shaft end 150 in the opposite direction will reverse the movement and plates 82 , 84 will be moved towards the closed position.
- the fluid control barrier 70 can also be adapted to be located within pipe 74 and the embodiment described is not limited to the position or orientation shown in FIGS. 67 to 72 .
- the cable drive device depicted in FIG. 6 could replace the outward and inward movement of threaded journals 138 , 140 along threaded screw member 122 .
- FIGS. 59 to 60 is very similar to the embodiment shown in FIGS. 61 to 66 .
- the major difference is that instead of having plates 82 , 84 mounted at the end of pipe 74 , plates 82 , 84 are mounted inside pipe 74 .
- the other difference is that the cable drive 120 of the type described in FIGS. 1 to 5 is located inside pipe 74 rather than being externally mounted.
- An annular ring 152 on the inner circumference of pipe 74 replaces sealing lip 80 .
- Annular ring 152 has a pair of protuberances 154 to receive the central pin of hinge 86 to fix the position of plates 82 , 84 .
- Plates 82 , 84 are moved by the longitudinal movement of linear drive member 12 which is pivotally attached to struts 98 , 100 .
- Cable drum 14 has an axle 156 extending through pipe 74 and supported in bearings or journals 158 , 160 in, or on, pipe 74 .
- Rotation of the end 162 in the direction of arrow 164 will open the valve by lifting plates 82 , 84 from its sealed position on annular ring 152 and allow flow of water through pipe 74 in the direction of arrow 166 .
- FIGS. 23 to 28 may be used.
- FIGS. 75 to 78 differs from the embodiments shown in FIGS. 17 to 28 and FIGS. 59 to 72 , in that fixed hinge 86 is replaced by a floating hinge 168 .
- the hinge 168 is free to move in the direction of the pipe 74 centreline axis and remain perpendicular to the axis.
- the valve device can be used at pipe inlets and pipe outlets as well as internal to the pipe 74 as shown in this embodiment.
- a threaded screw member 170 is supported in journals 172 , 174 in pipe 74 . Threaded screw member 170 has opposing threads 176 , 178 separated by an unthreaded section 180 .
- a first pair of equal length struts 190 , 192 are pivotally mounted to an unthreaded section 194 of threaded screw member 170 at one end and to respective plates 82 , 84 at the other end.
- a second pair of equal length struts 196 , 198 are pivotally mounted to an unthreaded section 200 of threaded screw member 170 at one end and to respective plates 82 , 84 at the other end.
- the pivotal attachment of struts 190 , 192 , 196 and 198 to respective plates 82 , 84 is along, or near to, the centroidal axis of the semi-circular plates 82 , 84 . It is also possible to have only one set of struts, which could be pivotally attached to the central unthreaded section 180 .
- the fluid pressure load associated with the semi-circular plates 82 , 84 is transferred to the threaded screw member 170 through the struts 190 , 192 , 196 and 198 .
- a key aspect of this embodiment is the location of pivotal load supporting struts 190 , 192 , 196 and 198 at or near the centroidal axis. Supporting the plates 82 , 84 at the centroidal axis means the net fluid pressure forces are equal either side of the centroidal axis of each semi-circular plate 82 , 84 .
- the resultant effect is that the net force in opening or closing the plates 82 , 84 is minimal and largely those associated with the frictional force in moving the hinge 168 . This will substantially reduce the power requirements of a motor (not shown) to open and close the fluid control barrier.
- a small solar powered motor could be used.
- hinge 168 in this embodiment uses a pair of threaded journals 182 , 184 that are threadably attached to respective threads 176 , 178 on threaded screw member 170 and equispaced from unthreaded section 180 .
- a first strut 186 is pivotally mounted to hinge 168 at one end and to threaded journal 182 at the other end.
- a second strut 188 is pivotally mounted to hinge 168 at one end and to threaded journal 184 at the other end.
- FIGS. 75 and 77 show the closed position whilst FIGS. 76 and 78 show the open position of the fluid control barrier.
- the threaded screw member 170 is rotated which results in threaded journals 182 , 184 moving towards the centre of pipe 74 and pulling struts 186 , 188 towards each other.
- This movement pushes hinge 168 away from threaded screw member 170 to release plates 82 , 84 in a folding action from seal 202 to open the fluid control barrier.
- the net force in opening or closing the plates 82 , 84 is minimal and largely those associated with the frictional force in moving the hinge 168 by struts 186 , 188 .
- Struts 190 and 192 and struts 196 and 198 will be drawn towards one another as shown in FIGS. 76 and 78 .
- the positioning of the struts 190 , 192 , 196 and 198 on plates 82 , 84 with a slight location bias either side of the centroidal axis can result in a resultant force with a bias towards either self closing or self opening depending on what side of the axis is the location of the pivotal connection of the struts 190 , 192 , 196 and 198 .
- a similar result can be obtained by offsetting the mounting point of the struts 190 , 192 , 196 and 198 above the surface of said plates 82 , 84 and slightly away from the centroidal axis.
- threaded screw member 170 could be replaced by an unthreaded member and threaded journals 182 , 184 replaced by annular drive rings which could be controlled by individual actuator members or by a cable drive device as shown in FIG. 6 .
- Centroid is defined as the geometric centre or centre of mass of an object. For the purposes of this application the surface area either side of the centroidal line are equal and therefore the net pressure forces either side of the centroidal line of a semi-circular plate are equal.
- the Centroidal axis is parallel to the straight edge of a semi-circular shaped plate and at a distance of y from the straight edge and where;
- FIGS. 79 to 94 show different actuator devices to move floating hinge 168 as described in FIGS. 75 to 78 .
- FIGS. 79 to 82 show a similar fluid control barrier to that shown in FIGS. 75 to 78 .
- movement of hinge 168 is by a pair of cable drive devices 10 as described with reference with FIGS. 1 to 5 .
- a non-threaded shaft 204 passes through pipe 74 to replace the threaded screw member 170 .
- Struts 186 , 188 are not required to move against hinge 168 .
- Cable drive devices 10 from the closed position, pull hinge 168 .
- the embodiment shows a pair of cable drive devices 10 at opposing ends of hinge 168 but a single centrally located cable drive device 10 could also be used.
- FIGS. 79 and 81 show the closed position of the fluid barrier whilst FIGS. 80 and 78 show the open position of the fluid control barrier. From the position shown in FIGS. 79 and 81 the axles 156 are rotated causing the linear drive members 12 to pull hinge 168 axially away and pull struts 186 , 188 towards each other. This movement pulls hinge 168 to release plates 82 , 84 in a folding action from seal 202 to open the fluid control barrier. Struts 190 and 192 and struts 196 and 198 will be pulled towards one another as shown in FIGS. 80 and 82 . Again the net force in opening or closing the plates 82 , 84 by cable drive devices 10 is minimal.
- FIGS. 83 to 94 show an embodiment that is very similar to the embodiment shown in FIGS. 79 to 82 except that the fluid control barrier is located at the end of pipe 74 rather than being located inside pipe 74 .
- the pair of cable drive devices 10 shown in FIGS. 79 to 82 has been reduced to a single device 10 , which is external to pipe 74 .
- the non-threaded shaft 204 is constrained by journals in frame elements 88 , 90 of frame 92 and is drivingly coupled to cable drum 14 .
- a pair of hinge struts 212 are pivotally coupled at one end to linear drive member 12 and to the other end to hinge 168 .
- FIGS. 91 to 94 show the fluid control barrier completely open with plates 82 , 84 having an acute angle between them and collapsing around struts 190 , 192 , 196 and 198 .
- the supporting of plates 82 , 84 at the centroidal axis means the net fluid pressure forces are equal either side of the centroidal axis of each semi-circular plate 82 , 84 .
- the resultant effect is that the net force in opening or closing the plates 82 , 84 is minimal and largely those associated with the frictional force in moving the hinge 168 .
- the fluid control barriers described hereinbefore using a pair of semi-circular plates barriers 82 , 84 pivoting at hinge 86 or 168 and positioned across the diameter of pipe 74 will bisect the flow moving through pipe 74 .
- the advantage of this type of fluid control barrier is that there is a symmetrical flow profile generated perpendicular to the hinge 86 or 168 .
- a symmetrical flow profile will suit the location of a flow meter using ultrasonic transit time flow measurement techniques discussed in Wikipedia and in International Patent Application No. PCT/AU2010/001052, the contents of which are incorporated herein.
- the invention allows a flow meter to be located immediately upstream of fluid control barrier and is unique as it is often necessary to locate flow meters some distance upstream of a fluid control barrier or valve (typically up to five pipe diameters in order that a symmetrical velocity profile is developed.
- Traditional valve mechanisms such as a butterfly valve or a gate valve do not generate a symmetrical velocity profile immediately upstream of the valve.
- a further embodiment to the bi-folding plates 82 , 84 is to streamline the shape of the barrier surface (upstream) to lessen the drag and therefore the energy loss of the fluid as it traverses the valve.
- the cross-sectional profile would approximate a streamlined ‘tear drop’ shape.
- FIGS. 95 to 110 illustrates the tear drop shape formed by the bi-folding plates 82 , 84 .
- Plates 82 , 84 provide a clam shell type configuration each having a bulge 220 at the hinged end and tapering towards the shaft end 222 .
- a basic tear drop profile will be formed by the exterior surfaces of plates 82 , 84 .
- Plates 82 , 84 wilt form a clam shell which will substantially enclose struts 190 , 192 , 196 and 198 to reduce frictional drag of the water.
- Pipe 74 could be square or any other closed profile with plates 82 , 84 being configured to match the pipe profile.
- the hinges 86 , 168 can be located midpoint to provide symmetrical or non-symmetrical plates 82 , 84 .
- centroidal axes can be readily determined to maintain the reduced force to move hinge 168 .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Transmission Devices (AREA)
- Flexible Shafts (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Mechanically-Actuated Valves (AREA)
- Lift Valve (AREA)
- Centrifugal Separators (AREA)
- Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)
- Joints With Pressure Members (AREA)
- Pipe Accessories (AREA)
- Joints Allowing Movement (AREA)
- Earth Drilling (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Power-Operated Mechanisms For Wings (AREA)
- Electric Cable Arrangement Between Relatively Moving Parts (AREA)
Abstract
The invention provides a cable drive device (10) including a linear drive member (12), and a cable drum (14) attached to a support bracket (30, 32) adapted to be affixed to a surface. The cable drum (14) has an axle (26) supported by the support bracket (30, 32) to allow rotation of the cable drum (14). The cable drum (14) has a cable (42) affixed at either end of said linear drive member (12) and tautly wrapped around the cable drum (14). The cable drum (14) is located between the ends of the linear drive member (12) to, in use, allow the linear drive member (12) to be guided through the bracket (30, 32) to move the linear drive member (12) longitudinally when the axle (26) is rotated.
Description
- The present invention relates to fluid control barriers and actuation mechanisms, which can be incorporated into such barriers, but not limited to irrigation environments.
- The present invention in one embodiment provides a fluid control barrier adapted to be fitted to an end of a pipe or inside said pipe through which fluid is contained or inside a pipe through which fluid flows, a bi-foldable barrier member controls movement of said fluid, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, at least one pair of struts pivotally mounted to said plates at one end and pivotally attached to a fixed position shaft or cross member at the other end thereof, said struts mounted to said plates along or near to the centroidal axes of said plates to minimize the force required to open or close said bi-foldable barrier member.
- Preferably an actuation member is attached to said hinge to provide a push and pull movement of said hinge to allow said bi-foldable barrier member to be opened and closed.
- The invention also provides in a further embodiment a cable drive device including a linear drive member, a cable drum attached to a support bracket adapted to be affixed to a surface, said cable drum having an axle supported by said support bracket to allow rotation of said cable drum, said cable drum having a cable affixed at either end of said linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said linear drive member to, in use, allow said linear drive member to be guided through said bracket to move said linear drive member longitudinally when said axle is rotated.
- In yet a further embodiment there is provided a cable drive device including an arcuate segment drive member, a cable drum having an axle to allow rotation of said cable drum, said cable drum having a cable affixed at either end of the arcuate section of said arcuate segment drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said arcuate section of said arcuate segment drive member to, in use, allow said arcuate segment drive member to be moved when said axle is rotated.
- A further embodiment provides a control gate adapted to be installed across a flow channel for liquids, said control gate having a barrier member that is pivotally mounted at or adjacent the base of said flow channel and at least one drive means to raise and lower said barrier member, said at least one drive means comprising a cable drive device as disclosed herein, wherein one of said ends of said linear drive member is pivotally attached to said barrier member.
- The invention may also provide a fluid control barrier adapted to be fitted to an end of a pipe through which fluid is contained, a frame member is mounted on said end of said pipe, a barrier member is pivotally mounted one a first edge to said frame member to allow for opening and closing of said fluid control barrier and at least one cable drive device as disclosed herein is fixed to said frame member and said barrier member to allow said barrier member to be opened and closed.
- Another embodiment provides a fluid control barrier adapted to be fitted to an end of a pipe through which fluid is contained, a frame member is mounted on said end of said pipe, a bi-foldable barrier member closes said end of said pipe, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, said hinge pinned to said frame member or said pipe and a pair of lifting means attached to each of said plates to allow said bi-foldable barrier member to be opened and closed.
- In a practical embodiment there is provided a fluid control barrier adapted to be fitted inside a pipe through which a fluid flows, a bi-foldable barrier member is provided to control fluid flow through said pipe, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, said hinge pinned to said pipe and a pair of lifting means attached to each of said plates to allow said bi-foldable barrier member to be opened and closed.
- The structure and functional features of preferred embodiments of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:—
-
FIG. 1 is a perspective view of a first embodiment of a cable drive device made in accordance with the invention; -
FIG. 2 is an enlarged perspective view of the cable drum ofFIG. 1 showing the position of the cable co-operating with the cable drum; -
FIG. 3 is a side view of the cable drive device shown inFIG. 1 ; -
FIG. 4 is a front view of the cable drive device shown inFIG. 1 ; -
FIG. 5 is a cross-sectional view along and in the direction of arrows 5-5 shown inFIG. 4 ; -
FIG. 6 is a similar view to that ofFIG. 5 showing a second embodiment of a cable drive device made in accordance with the invention; -
FIG. 7 is a perspective view of an irrigation channel showing the use of the cable drive device ofFIG. 1 attached to an overshot control gate to control the flow of water in the irrigation channel; -
FIG. 8 is a similar view to that ofFIG. 7 showing the use of a pair of cable drive devices of the type shown inFIG. 1 ; -
FIG. 9 is a side view ofFIG. 7 showing the control gate closed; -
FIG. 10 is a similar view to that ofFIG. 9 showing the control gate in a partially open position; -
FIG. 11 is a similar view to that ofFIG. 10 showing the control gate in a fully open position; -
FIG. 12 is a perspective view of a further irrigation channel showing the use of the cable drive device ofFIG. 1 attached to a control gate to control the flow of water in the irrigation channel; -
FIG. 13 is a similar view to that ofFIG. 12 showing the use of a pair of cable drive devices of the type shown inFIG. 1 ; -
FIG. 14 is a side view ofFIG. 12 showing the control gate closed; -
FIG. 15 is a similar view to that ofFIG. 14 showing the control gate in a partially open position; -
FIG. 16 is a similar view to that ofFIG. 15 showing the control gate in a fully open position; -
FIG. 17 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position; -
FIG. 18 is a front view ofFIG. 17 ; -
FIG. 19 is a side view ofFIG. 17 ; -
FIG. 20 is a similar view to that ofFIG. 17 with the fluid control barrier shown in the open position; -
FIG. 21 is a front view ofFIG. 20 ; -
FIG. 22 is a side view ofFIG. 20 ; -
FIG. 23 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position using the cable drive devices as shown inFIG. 1 ; -
FIG. 24 is a front view ofFIG. 23 ; -
FIG. 25 is a side view ofFIG. 23 ; -
FIG. 26 is a similar view to that ofFIG. 23 with the fluid control barrier shown in the open position; -
FIG. 27 is a front view ofFIG. 26 ; -
FIG. 28 is a side view ofFIG. 26 ; -
FIGS. 29 to 58 have been intentionally omitted; -
FIG. 59 is a perspective view of a fluid control barrier made in accordance with the invention and fitted inside a pipe with the fluid control barrier shown in the open position which uses a cable drive device as shown inFIG. 1 ; -
FIG. 60 is a side view ofFIG. 59 with a cutaway to show the operation of the fluid control barrier; -
FIG. 61 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position; -
FIG. 62 is a front view ofFIG. 61 ; -
FIG. 63 is a side view ofFIG. 61 ; -
FIG. 64 is a similar view to that ofFIG. 61 with the fluid control barrier shown in the open position; -
FIG. 65 is a front view ofFIG. 64 ; -
FIG. 66 is a side view ofFIG. 64 ; -
FIG. 67 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position; -
FIG. 68 is a front view ofFIG. 67 ; -
FIG. 69 is a side view ofFIG. 67 ; -
FIG. 70 is a similar view to that ofFIG. 67 with the fluid control barrier shown in the open position; -
FIG. 71 is a front view ofFIG. 70 ; -
FIG. 72 is a side view ofFIG. 70 ; -
FIG. 73 is a perspective view of a circular drive device made in accordance with a preferred embodiment of the invention; -
FIG. 74 is a front view of the circular drive device shown inFIG. 73 in a rotated position; -
FIG. 75 is a perspective cutaway view of a fluid control barrier made in accordance with the invention and fitted inside a pipe with the fluid control barrier shown in the closed position; -
FIG. 76 is a similar view to that ofFIG. 75 with the fluid control barrier shown in the open position; -
FIG. 77 is a plan view of a fluid control barrier shown inFIG. 75 ; -
FIG. 78 is a plan view of a fluid control barrier shown inFIG. 76 ; -
FIG. 79 is a perspective cutaway view of a fluid control barrier made in accordance with the invention and fitted inside a pipe with the fluid control barrier shown in the closed position; -
FIG. 80 is a similar view to that ofFIG. 79 with the fluid control barrier shown in the open position; -
FIG. 81 is a plan view of a fluid control barrier shown inFIG. 79 ; and -
FIG. 82 is a plan view of a fluid control barrier shown inFIG. 80 ; -
FIG. 83 is a perspective view of a fluid control barrier made in accordance with the invention and fitted to the end of a pipe with the fluid control barrier shown in the closed position; -
FIG. 84 is a cross-sectional view along and in the direction of the arrows shown inFIG. 85 ; -
FIG. 85 is a front view of the fluid control barrier shown inFIG. 83 ; -
FIG. 86 is a side view ofFIG. 85 ; -
FIG. 87 is similar view to that ofFIG. 83 showing the fluid control barrier starting to open; -
FIG. 88 is a cross-sectional view along and in the direction of the arrows shown inFIG. 89 ; -
FIG. 89 is a front view of the fluid control barrier shown inFIG. 87 ; -
FIG. 90 is a side view ofFIG. 89 ; -
FIG. 91 is similar view to that ofFIG. 83 showing the fluid control barrier completely open; -
FIG. 92 is a cross-sectional view along and in the direction of the arrows shown inFIG. 93 ; -
FIG. 93 is a front view of the fluid control barrier shown inFIG. 91 ; -
FIG. 94 is a side view ofFIG. 91 ; -
FIG. 95 is a plan view of a preferred bi-foldable barrier member shown in the closed position; -
FIG. 96 is an end view of the barrier member shown inFIG. 95 ; -
FIG. 97 is a side view of the barrier member shown inFIG. 95 ; -
FIG. 98 is a cross-sectional view along and in the direction of the arrows shown inFIG. 97 ; -
FIG. 99 is a perspective view of the barrier member shown inFIG. 95 ; -
FIG. 100 is a plan view of the barrier member shown inFIG. 95 in the half-closed position; -
FIG. 101 is an end view of the barrier member shown inFIG. 100 ; -
FIG. 102 is a side view of the barrier member shown inFIG. 100 ; -
FIG. 103 is a cross-sectional view along and in the direction of the arrows shown inFIG. 102 ; -
FIG. 104 is a perspective view of the barrier member shown inFIG. 100 ; -
FIG. 105 is a plan view of the barrier member shown inFIG. 95 in the fully open position; -
FIG. 106 is an end view of the barrier member shown inFIG. 105 ; -
FIG. 107 is a side view of the barrier member shown inFIG. 105 ; -
FIG. 108 is a cross-sectional view along and in the direction of the arrows shown inFIG. 107 ; and -
FIG. 110 is a perspective view of the barrier member shown inFIG. 105 . - In order to avoid duplication of description, identical reference numerals will be shown, where applicable, throughout the illustrated embodiments to indicate similar integers.
- In the drawings a first embodiment is shown in
FIGS. 1 to 5 , which shows acable drive device 10 having alinear drive member 12 andcable drum 14.Linear drive member 12 has alongitudinal base member 16 with a pair of 18, 20. A pair of pivot pins 22, 24 are provided at each end for attachment to a respective member as described in subsequent embodiments.arms Cable drum 14 has acentral axle 26 rotatably held by a journal orbearings 28 in asupport member 29. 18, 20 may, if required, be substituted by a longitudinal bar or plate.Arms - A pair of
30, 32 support journal orfaceplates bearings 28 at the opposite end thereof by 34, 36.pins 34, 36 will, in use, slide alongPins base member 16 with thecable drum 14 being on one side of thelinear drive member 12 and pins 34, 36 on the other side. 34, 36 will preventPins cable drum 14 from leaving the face oflinear drive member 12. Rollers can replace 34, 36, for reducing frictional resistance. The pair ofpins 34, 36 can be substituted by a single pin or roller, which would be preferably centrally located between the positions ofpins 34, 36.pins Cable drum 14 has spiraledgrooves 38 in its outercircumferential face 40 to allow acable 42 to be wound out or wound out fromcable drum 14.Cable 42 is held taut and is coupled to pivot 22, 24 at opposite ends ofpins linear drive member 12.Cable 42 is threaded through ahole 44 incable drum 14 passing diagonally there through from opposing outer edges of outercircumferential face 40.Cable 42 is pre-tensioned above the maximum design load ofcable drive device 10. As only asingle cable 42 is provided with multiple wraps aroundcable drum 14,cable 42 is not subject to slip. -
Cable drive device 10 can provide movement of a member by attaching either pivot pins 22, 24 to a member to be moved and anchoringsupport member 29 to a stationary support. Rotation ofcentral axle 26 will result to longitudinal movement oflinear drive member 12 throughsupport member 29 by the roll on or roll off movement ofcable 42 aroundcable drum 14.Cable drive device 10 can generally replace devices used for a rack and pinion type of movement. -
FIGS. 73 and 74 illustrate a similar cable drive device shown inFIGS. 1 to 5 where an arcuate orcircular drive member 206 replaceslinear drive member 12.Cable 42 is similarly attached to pivot 22, 24 and is held taut inpins groove 208 of arcuate orcircular drive member 206.Cable drum 14 sits inside ofgroove 208 and can be supported by a bracket (not shown) and/or byaxle 26. The arcuate orcircular drive member 206 is shown as extending for angle X° where X can be any angle up to about 360°. The arcuate orcircular drive member 206 will rotate about acentral axis 210.Cable drum 14 will be configured in a similar manner to that described with reference toFIGS. 1 to 5 . This embodiment will simulate a pinion gear (cable drum 14) driving a larger circular gear (arcuate or circular drive member 206). In use, theradial base 216 can be attached to a movable member, for example, the top of a flap valve and the flap valve can pivot aboutcentral axis 210.Axle 26 can be supported by a frame member andaxle 26 can be rotated to allowradial base 216 to be move aboutcentral axis 210 as shown inFIG. 74 . This movement will lift the flap valve to open the valve. -
FIG. 6 illustrates an enhancement of thecable drive device 10 shown inFIGS. 1 to 5 . In this embodiment a pair of 12, 12A on opposite sides oflinear drive members cable drum 14 are provided. Separate spiraled grooves (not shown) are formed in the circumferential face ofcable drum 14 to allow 42, 42A to co-operate withcables cable drum 14. The operation oflinear drive member 12A is identical to that oflinear drive member 12 discussed with reference toFIGS. 1 to 5 . Because the 12, 12A are on opposite sides oflinear drive members cable drum 14 and have opposing displacements, the movement oflinear drive member 12 in one direction will cause movement oflinear drive member 12A in the opposite direction on rotation ofaxle 26. This movement will allow greater linear movement between pivot pins 22, 24A. -
FIG. 7 shows the use of thecable drive device 10 shown inFIGS. 1 to 5 in an irrigation system. Abarrier member 46 is hinged at the bed orbase 48 of achannel 50 through which water passes.Barrier member 46 includes abase member 52 and 54, 56.side members Barrier member 46 may be of a rigid construction, of the type shown in International Patent Application No. PCT/AU01/01036, or may be flexible, of the type known as Padman Bay outlets, or a combination thereof. Thefree end 58 ofbarrier member 46 is pivotally attached to pivotpin 24 oflinear drive member 12 ofcable drive device 10 ofFIGS. 1 to 5 .Support member 29 is secured to aframe member 60 acrosschannel 50. Anelectric motor 62 is coupled toaxle 26 to allow rotation ofcable drum 14. -
FIG. 8 shows a variation ofFIG. 7 where a pair ofcable drive devices 10 are used. In this embodiment,electric motor 62 has an extendedshaft 64 to allow rotation of the axles of bothcable drive devices 10. If required, separate electric motors could be used. The embodiment is not limited to twocable drive devices 10 as any numbers may be used to suit the width of thechannel 50.FIGS. 7 and 8 show use of a rigid construction ofbarrier member 46. -
FIGS. 9 to 11 show the operation ofbarrier member 46 using the cable drive device ordevices 10.FIGS. 9 to 11 show barrier member 46 having arigid base member 52 and 54, 56.flexible side members FIG. 9 hasbarrier member 46 in the closed position withlinear drive member 12 fully extended in the upward direction. Asbarrier member 46 is lowered, water flows over thefree end 58 ofbase member 52 in a controlled manner (FIG. 10 ). Full flow of water is obtained whenlinear drive member 12 is fully extended in the downward direction (FIG. 11 ).Linear drive member 12 will be partially immersed in the water, which can be a harsh environment for such devices. In prior art devices it is commonplace to use gear mechanisms, which do not suit being immersed or being exposed to water. Gears can jam and the gear teeth can wear resulting in drive backlash. Thecable drive devices 10 do not suffer these disadvantages and allow a more accurate positioning ofbarrier member 46 to assist in superior measurement. -
FIGS. 12 to 16 are very similar in construction and operation to the embodiment shown inFIGS. 7 to 11 . In this embodiment adam wall 66 extends across the channel andbarrier member 46 is pivotally attached to the bottom of dam opening 68 rather than at the bed orbase 48 ofchannel 50. - Although the
cable drive device 10 ofFIGS. 1 to 5 has been shown with reference to its use in the irrigation field inFIGS. 7 to 16 its use is not limited to that environment.Cable drive device 10 can be used where any mechanical movement is required. -
FIGS. 17 to 22 illustrate an embodiment of afluid control barrier 70, which is attached to theend 72 of apipe 74.Pipe 74 is shown vertically disposed but could be readily disposed horizontally, or at any other desired angle. Thefluid control barrier 70 can also be adapted to be located withinpipe 74 and the embodiment described is not limited to the position or orientation shown inFIGS. 17 to 22 . Aflange 76 at the end ofpipe 74 provides attachment to aflange 78 offluid control barrier 70. A sealinglip 80 onflange 78 allows the sealing thereto of a pair of 82, 84 forming a barrier member. Thesemi-circular plates 82, 84 are joined along their diametric sides byplates hinge 86 to open and closefluid control barrier 70 and form a bi-foldable barrier member.Hinge 86 is fixed and constrained by 88, 90 offrame elements frame 92. A pair of 94, 96cross-members complete frame 92. 82, 84 fold in the direction of flow towards the centreline when opening and into the flow away from the centreline when closing.Plates - In order to open and
close plates 82, 84 a pair of 98, 100 downstream ofstruts pipe 74 are pivotally attached to 82, 84 at one end and are pivotally attached at the other end to a threadedplates journal 102 at the other end to form a thrust point.Journal 102 is coupled to a threadedmember 104 supported by 106, 108 inbearings 94, 96. Rotation of therespective cross-members end 110 of threadedmember 104 will result in opening and closing offluid control barrier 70 as indicated byarrows 112. -
FIGS. 17 to 19 82, 84 pressed onto sealingshow plates lip 80 to prevent escape of water frompipe 74. Turningend 110 of threadedmember 104 will cause threadedjournal 102 to move up threadedmember 104, as threadedjournal 102 is constrained from rotating. The upward movement of threadedjournal 102 will lift 98, 100, andstruts 82, 84 will thus lift away fromplates pipe 74 to openfluid control barrier 70, as shown inFIGS. 20 to 22 . In this configuration thefluid control barrier 70 can be used for flood irrigation where water flows outpipe 74 and onto the ground.End 110 can be turned by hand or coupled to a rotation means e.g. motor or axle (not shown) controlled by irrigation automation (not shown). By turningend 110 in the opposite direction the 82, 84 will pivot towards sealingplates lip 80 to stop water flow. - It is evident that other forms of movement of the
82, 84 can be utilised and the invention is not limited to the embodiment shown inplates FIGS. 17 to 22 .FIGS. 23 to 28 ,FIGS. 61 to 66 andFIGS. 67 to 72 disclose various embodiments to move 82, 84.plates FIGS. 23 to 28 have 98, 100 replaced bystruts 114, 116, described with reference tocable drive devices FIGS. 1 to 5 . Threadedmember 104 has been replaced by arotatable shaft 118 coupled to the axles of 114, 116 and supported bycable drive devices 88, 90. The operation is very similar to that shown in the embodiment offrame elements FIGS. 17 to 22 where rotation ofshaft 118 will result in the opening or closing of 82, 84. Theplates fluid control barrier 70 can also be adapted to be located withinpipe 74 and the embodiment described is not limited to the position or orientation shown inFIGS. 23 to 28 . - The embodiment shown in
FIGS. 61 to 66 is very similar to the embodiment shown inFIGS. 17 to 22 . In this embodiment acable drive device 120, described with reference toFIGS. 1 to 5 , replaces threadedmember 104. Threadedjournal 102 is not required as 98, 100 can be directly mounted to pivotstruts pin 24 ofcable drive device 120. Thesupport member 29 ofcable drive device 120 is mounted tocross-member 94. A drive shaft (not shown) is coupled tocentral axle 26 for rotation ofcable drum 14 resulting in opening and closing of 82, 84. Theplates fluid control barrier 70 can also be adapted to be located withinpipe 74 and the embodiment described is not limited to the position or orientation shown inFIGS. 61 to 66 . - The embodiment shown in
FIGS. 67 to 72 has a completely different actuation mechanism when compared with the embodiments ofFIGS. 17 to 28 andFIGS. 61 to 66 . In this embodiment a threadedscrew member 122 is supported in 124, 126 injournals 88, 90. Threadedframe elements screw member 122 has opposing 128, 130 separated by an unthreadedthreads section 132. A pair of 134, 136 are mounted onrotatable journals 82, 84 and equispaced fromrespective plates hinge 86. A pair of threaded 138, 140 are threadably attached tojournals 128, 130 on threadedrespective threads screw member 122 and equispaced fromunthreaded section 132. A first pair of equal length struts 142, 144 are pivotally mounted torotatable journal 134 at one end and to threadedjournal 136 at the other end. A second pair of equal length struts 146, 148 are pivotally mounted torotatable journal 134 at one end and to threadedjournal 136 at the other end. The points of attachment to each 82, 84 are along the radial axis that bisects the semicircle. The location of the position ofplate 134, 136 can vary and may be determined on the basis of the specific force loading of the actuation mechanism and what is optimal for the actuation mechanism. From the closed position ofrotatable journals 82, 84 shown inplates FIGS. 67 to 69 , theshaft end 150 of threadedscrew member 122 can be rotated. As the threaded 138, 140 are constrained from rotating, the threadedjournals 138, 140 will move outwardly alongscrew journals 128, 130, as evident fromrespective threads FIGS. 70 to 72 .Struts 142 to 148 will pivot and cause 82, 84 to be lifted and open the fluid control barrier. Turning theplates shaft end 150 in the opposite direction will reverse the movement and 82, 84 will be moved towards the closed position. Theplates fluid control barrier 70 can also be adapted to be located withinpipe 74 and the embodiment described is not limited to the position or orientation shown inFIGS. 67 to 72 . The cable drive device depicted inFIG. 6 could replace the outward and inward movement of threaded 138, 140 along threadedjournals screw member 122. - The embodiment shown in
FIGS. 59 to 60 is very similar to the embodiment shown inFIGS. 61 to 66 . The major difference is that instead of having 82, 84 mounted at the end ofplates pipe 74, 82, 84 are mounted insideplates pipe 74. The other difference is that thecable drive 120 of the type described inFIGS. 1 to 5 is located insidepipe 74 rather than being externally mounted. Anannular ring 152 on the inner circumference ofpipe 74 replaces sealinglip 80.Annular ring 152 has a pair ofprotuberances 154 to receive the central pin ofhinge 86 to fix the position of 82, 84.plates 82, 84 are moved by the longitudinal movement ofPlates linear drive member 12 which is pivotally attached to struts 98, 100.Cable drum 14 has anaxle 156 extending throughpipe 74 and supported in bearings or 158, 160 in, or on,journals pipe 74. Rotation of theend 162 in the direction ofarrow 164 will open the valve by lifting 82, 84 from its sealed position onplates annular ring 152 and allow flow of water throughpipe 74 in the direction ofarrow 166. It is evident that other actuation mechanisms can be utilised in relation to the mounting of 82, 84 insideplates pipe 74. For example, the embodiment shown inFIGS. 23 to 28 may be used. - The embodiment shown in
FIGS. 75 to 78 differs from the embodiments shown inFIGS. 17 to 28 andFIGS. 59 to 72 , in that fixedhinge 86 is replaced by a floatinghinge 168. In this embodiment thehinge 168 is free to move in the direction of thepipe 74 centreline axis and remain perpendicular to the axis. The valve device can be used at pipe inlets and pipe outlets as well as internal to thepipe 74 as shown in this embodiment. A threadedscrew member 170 is supported in 172, 174 injournals pipe 74. Threadedscrew member 170 has opposing 176, 178 separated by an unthreadedthreads section 180. A first pair of equal length struts 190, 192 are pivotally mounted to an unthreadedsection 194 of threadedscrew member 170 at one end and to 82, 84 at the other end. A second pair of equal length struts 196, 198 are pivotally mounted to an unthreadedrespective plates section 200 of threadedscrew member 170 at one end and to 82, 84 at the other end. The pivotal attachment ofrespective plates 190, 192, 196 and 198 tostruts 82, 84 is along, or near to, the centroidal axis of therespective plates 82, 84. It is also possible to have only one set of struts, which could be pivotally attached to thesemi-circular plates central unthreaded section 180. - In this embodiment the fluid pressure load associated with the
82,84 is transferred to the threadedsemi-circular plates screw member 170 through the 190, 192, 196 and 198. A key aspect of this embodiment is the location of pivotalstruts 190, 192, 196 and 198 at or near the centroidal axis. Supporting theload supporting struts 82, 84 at the centroidal axis means the net fluid pressure forces are equal either side of the centroidal axis of eachplates 82, 84. The resultant effect is that the net force in opening or closing thesemi-circular plate 82, 84 is minimal and largely those associated with the frictional force in moving theplates hinge 168. This will substantially reduce the power requirements of a motor (not shown) to open and close the fluid control barrier. A small solar powered motor could be used. - The movement of
hinge 168 in this embodiment uses a pair of threaded 182, 184 that are threadably attached tojournals 176, 178 on threadedrespective threads screw member 170 and equispaced fromunthreaded section 180. Afirst strut 186 is pivotally mounted to hinge 168 at one end and to threadedjournal 182 at the other end. Asecond strut 188 is pivotally mounted to hinge 168 at one end and to threadedjournal 184 at the other end. -
FIGS. 75 and 77 show the closed position whilstFIGS. 76 and 78 show the open position of the fluid control barrier. From the position shown inFIGS. 75 and 77 the threadedscrew member 170 is rotated which results in threaded 182, 184 moving towards the centre ofjournals pipe 74 and pulling 186, 188 towards each other. This movement pushesstruts hinge 168 away from threadedscrew member 170 to release 82, 84 in a folding action fromplates seal 202 to open the fluid control barrier. As previously discussed the net force in opening or closing the 82, 84 is minimal and largely those associated with the frictional force in moving theplates hinge 168 by 186, 188.struts 190 and 192 and struts 196 and 198 will be drawn towards one another as shown inStruts FIGS. 76 and 78 . - In addition, the positioning of the
190, 192, 196 and 198 onstruts 82, 84 with a slight location bias either side of the centroidal axis can result in a resultant force with a bias towards either self closing or self opening depending on what side of the axis is the location of the pivotal connection of theplates 190, 192, 196 and 198. A similar result can be obtained by offsetting the mounting point of thestruts 190, 192, 196 and 198 above the surface of saidstruts 82, 84 and slightly away from the centroidal axis.plates - In a further embodiment threaded
screw member 170 could be replaced by an unthreaded member and threaded 182, 184 replaced by annular drive rings which could be controlled by individual actuator members or by a cable drive device as shown injournals FIG. 6 . - The definition of Centroid and Centroidal Axis: The Centroid is defined as the geometric centre or centre of mass of an object. For the purposes of this application the surface area either side of the centroidal line are equal and therefore the net pressure forces either side of the centroidal line of a semi-circular plate are equal.
- The Centroidal axis is parallel to the straight edge of a semi-circular shaped plate and at a distance of y from the straight edge and where;
-
y=4R/3π -
- Where R is the radius of the semicircle.
- The embodiments shown in
FIGS. 79 to 94 show different actuator devices to move floatinghinge 168 as described inFIGS. 75 to 78 . -
FIGS. 79 to 82 show a similar fluid control barrier to that shown inFIGS. 75 to 78 . In this embodiment movement ofhinge 168 is by a pair ofcable drive devices 10 as described with reference withFIGS. 1 to 5 . Anon-threaded shaft 204 passes throughpipe 74 to replace the threadedscrew member 170. 186, 188 are not required to move againstStruts hinge 168. Cable drivedevices 10, from the closed position, pullhinge 168. The embodiment shows a pair ofcable drive devices 10 at opposing ends ofhinge 168 but a single centrally locatedcable drive device 10 could also be used. The pivotal attachment of 190, 192, 196 and 198 tostruts 82, 84 is along, or near to, the centroidal axis of therespective plates 82, 84 as described with reference tosemi-circular plates FIGS. 75 to 78 .FIGS. 79 and 81 show the closed position of the fluid barrier whilstFIGS. 80 and 78 show the open position of the fluid control barrier. From the position shown inFIGS. 79 and 81 theaxles 156 are rotated causing thelinear drive members 12 to pullhinge 168 axially away and pull 186, 188 towards each other. This movement pullsstruts hinge 168 to release 82, 84 in a folding action fromplates seal 202 to open the fluid control barrier. 190 and 192 and struts 196 and 198 will be pulled towards one another as shown inStruts FIGS. 80 and 82 . Again the net force in opening or closing the 82, 84 byplates cable drive devices 10 is minimal. -
FIGS. 83 to 94 show an embodiment that is very similar to the embodiment shown inFIGS. 79 to 82 except that the fluid control barrier is located at the end ofpipe 74 rather than being located insidepipe 74. The pair ofcable drive devices 10 shown inFIGS. 79 to 82 has been reduced to asingle device 10, which is external topipe 74. Thenon-threaded shaft 204 is constrained by journals in 88, 90 offrame elements frame 92 and is drivingly coupled tocable drum 14. A pair of hinge struts 212 are pivotally coupled at one end tolinear drive member 12 and to the other end to hinge 168. The pivotal attachment of 190, 192, 196 and 198 tostruts 82, 84 is along, or near to, the centroidal axis of therespective plates 82, 84 as described with reference tosemi-circular plates FIGS. 75 to 78 . In the closed position shown inFIGS. 83 to 86 the 82, 84 will be pressed againstplates seal 202 to prevent escape of water. The rotation ofshaft 204 will result in rotation ofcable drum 14 which will movelinear drive member 12 downwardly. This downward force will push hinge 168 downwardly to the position shown inFIGS. 87 to 90 to open the fluid control barrier. 82, 84 will pivot away fromPlates seal 202 in view of their pivotal connection to hinge 168. 190 and 192 and struts 196 and 198 will be pulled towards one another to pushStruts 82, 84 intoplates pipe 74.FIGS. 91 to 94 show the fluid control barrier completely open with 82, 84 having an acute angle between them and collapsing around struts 190, 192, 196 and 198. As discussed previously the supporting ofplates 82, 84 at the centroidal axis means the net fluid pressure forces are equal either side of the centroidal axis of eachplates 82, 84. The resultant effect is that the net force in opening or closing thesemi-circular plate 82, 84 is minimal and largely those associated with the frictional force in moving theplates hinge 168. - Additional and/or alternate mechanisms to those described could be used to actuate the
82, 84 by providing force onplates hinge 168. The man skilled in the art could readily select such mechanisms and the invention is not limited to the mechanisms shown for the fluid control barrier. - The fluid control barriers described hereinbefore using a pair of
82, 84 pivoting atsemi-circular plates barriers 86 or 168 and positioned across the diameter ofhinge pipe 74 will bisect the flow moving throughpipe 74. The advantage of this type of fluid control barrier is that there is a symmetrical flow profile generated perpendicular to the 86 or 168. A symmetrical flow profile will suit the location of a flow meter using ultrasonic transit time flow measurement techniques discussed in Wikipedia and in International Patent Application No. PCT/AU2010/001052, the contents of which are incorporated herein. The invention allows a flow meter to be located immediately upstream of fluid control barrier and is unique as it is often necessary to locate flow meters some distance upstream of a fluid control barrier or valve (typically up to five pipe diameters in order that a symmetrical velocity profile is developed. Traditional valve mechanisms such as a butterfly valve or a gate valve do not generate a symmetrical velocity profile immediately upstream of the valve.hinge - A further embodiment to the
82, 84 is to streamline the shape of the barrier surface (upstream) to lessen the drag and therefore the energy loss of the fluid as it traverses the valve. When the valve is fully open and the two barriers are adjacent and near in line with the pipe centreline, the cross-sectional profile would approximate a streamlined ‘tear drop’ shape. The embodiment shown inbi-folding plates FIGS. 95 to 110 illustrates the tear drop shape formed by the 82, 84.bi-folding plates 82, 84 provide a clam shell type configuration each having aPlates bulge 220 at the hinged end and tapering towards theshaft end 222. When 82, 84 are in the fully open position as shown inplates FIGS. 105 to 110 a basic tear drop profile will be formed by the exterior surfaces of 82, 84.plates 82, 84 wilt form a clam shell which will substantially enclosePlates 190, 192, 196 and 198 to reduce frictional drag of the water.struts - In the embodiments shown with
pipe 74 and 82, 84 the invention is not limited to a complementary circular construction.semi-circular plates Pipe 74 could be square or any other closed profile with 82, 84 being configured to match the pipe profile. In non-circular profiles theplates 86, 168 can be located midpoint to provide symmetrical orhinges 82, 84.non-symmetrical plates - The centroidal axes can be readily determined to maintain the reduced force to move
hinge 168. - The invention will be understood to embrace many further modifications as will be readily apparent to persons skilled in the art and which will be deemed to reside within the broad scope and ambit of the invention, there having been set forth herein only the broad nature of the invention and certain specific embodiments by way of example.
Claims (29)
1. A fluid control barrier adapted to be fitted to an end of a pipe through which fluid is contained, a frame member is mounted on said end of said pipe, a bi-foldable barrier member closes said end of said pipe, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, said hinge pinned to said frame member or said pipe and a pair of lifting means attached to each of said plates to allow said bi-foldable barrier member to be opened and closed.
2. The fluid control barrier of claim 1 , wherein said pair of lifting means include respective struts pivotally mounted at one end to a respective plate, and pivotally mounted at the other end to a movable member.
3. The fluid control barrier of claim 2 , wherein said movable member includes a screw attached to said frame member and a journal threadably attached thereto with said struts pivotally attached to said journal.
4. The fluid control barrier of claim 2 , wherein said struts comprise a cable drive device, said cable device including a linear drive member, a cable drum attached to a support bracket adapted to be affixed to a surface, said cable drum having an axle supported by said support bracket to allow rotation of said cable drum, said cable drum having a cable affixed at either end of said linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said linear drive member to, in use, allow said linear drive member to be guided through said bracket to move said linear drive member longitudinally when said axle is rotated; and
said movable member comprising a drive means to rotate said axle.
5. The fluid control barrier of claim 2 , wherein said movable member comprises a cable drive device, said cable device including a linear drive member, a cable drum attached to a support bracket adapted to be affixed to a surface, said cable drum having an axle supported by said support bracket to allow rotation of said cable drum, said cable drum having a cable affixed at either end of said linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said linear drive member to, in use, allow said linear drive member to be guided through said bracket to move said linear drive member longitudinally when said axle is rotated, said support bracket being secured to said frame member and the other ends of said struts are pivotally mounted to one end of said linear drive member.
6. The fluid control barrier of claim 2 , wherein said movable member comprises a shaft fitted to said frame member and divided into a pair of opposing threads, a pair of threaded journals respectively mounted on each opposing thread which will move along said threads when said shaft is rotated, respective pivotable journals attached to each plate and each pivotable journal having a pair of struts pivotally coupled thereto with each strut coupled to a respective threaded journal to allow longitudinal movement of said threaded journals to open and close said plates.
7. A fluid control barrier adapted to be fitted inside a pipe through which a fluid flows, a bi-foldable barrier member is provided to control fluid flow through said pipe, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, said hinge pinned to said pipe and a pair of lifting means attached to each of said plates to allow said bi-foldable barrier member to be opened and closed.
8. The fluid control barrier of claim 7 , wherein said pipe has an inner lip to provide sealing with said plates.
9. The fluid control barrier of claim 7 , wherein said pair of lifting means include respective struts pivotally mounted at one end to a respective plate, and pivotally mounted at the other end to a movable member.
10. The fluid control barrier of claim 9 , wherein said movable member comprises a cable drive device, said cable device including a linear drive member, a cable drum attached to a support bracket adapted to be affixed to a surface, said cable drum having an axle supported by said support bracket to allow rotation of said cable drum, said cable drum having a cable affixed at either end of said linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said linear drive member to, in use, allow said linear drive member to be guided through said bracket to move said linear drive member longitudinally when said axle is rotated, said axle passing through said pipe and for coupling to a rotation member and the other ends of said struts are pivotally mounted to one end of said linear drive member.
11. A fluid control barrier adapted to be fitted to an end of a pipe or inside said pipe through which fluid is contained or inside a pipe through which fluid flows, a bi-foldable barrier member controls movement of said fluid, said bi-foldable barrier member having a pair of plates with a hinge along their straight edges to allow for opening and closing of said fluid control barrier, at least one pair of struts pivotally mounted to said plates at one end and pivotally attached to a fixed position shaft or cross member at the other end thereof, said struts mounted to said plates along or near to the centroidal axes of said plates to minimize the force required to open or close said bi-foldable barrier member.
12. The fluid control barrier of claim 11 , wherein an actuation member is attached to said hinge to provide a push and pull movement of said hinge to allow said bi-foldable barrier member to be opened and closed.
13. The fluid control barrier of claim 1 , wherein said plates are semi-circular.
14. The fluid control barrier of claim 1 , wherein, in use, a symmetrical flow profile is generated perpendicular to said hinge.
15. The fluid control barrier of claim 14 , further including a flow meter located immediately upstream of said bi-foldable barrier member.
16. The fluid control barrier of claim 15 , wherein said flow meter uses ultrasonic transit time flow measurement techniques.
17. A cable drive device including a linear drive member, a cable drum attached to a support bracket adapted to be affixed to a surface, said cable drum having an axle supported by said support bracket to allow rotation of said cable drum, said cable drum having a cable affixed at either end of said linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said linear drive member to, in use, allow said linear drive member to be guided through said bracket to move said linear drive member longitudinally when said axle is rotated.
18. The cable drive device of claim 6 , wherein one of said ends of said linear drive member is pivotally attached to an opening member.
19. A cable drive device including an arcuate segment drive member, a cable drum having an axle to allow rotation of said cable drum, said cable drum having a cable affixed at either end of an arcuate section of said arcuate segment drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said arcuate section of said arcuate segment drive member to, in use, allow said arcuate segment drive member to be moved when said axle is rotated.
20. The cable drive device of claim 19 , wherein said cable is located in a groove in said arcuate section and a part of said cable drum extends into said groove.
21. The cable drive device of claim 19 , wherein a support bracket supports said axle.
22. The cable drive device of claim 17 , wherein said cable drum is provided with a hole through which said cable passes.
23. The cable drive device of claim 17 , further including a second linear drive member located diametrically opposed to said linear drive member, said cable drum having a second cable affixed at either end of said further linear drive member and tautly wrapped around said cable drum, said cable drum located between said ends of said second linear drive member to, in use, allow said second linear drive member to be guided through a second bracket to move said linear drive member and said second linear drive member longitudinally in opposing directions when said axle is rotated.
24. A control gate adapted to be installed across a flow channel for liquids, said control gate having a barrier member that is pivotally mounted at or adjacent a base of said flow channel and at least one drive means to raise and lower said barrier member, said at least one drive means comprising a cable drive device as claimed in claim 1 , wherein one of said ends of said linear drive member is pivotally attached to said barrier member.
25. The control gate of claim 24 , wherein a pair of side members are provided on opposing sides of said barrier member and said side members are flexible or rigid.
26. The control gate of claim 24 , wherein a plurality of said at least one drive means is provided.
27. The control gate of claim 24 , further including a frame member adapted to be secured to said flow channel to which each support bracket is attached.
28. A fluid control barrier adapted to be fitted to an end of a pipe through which fluid is contained, said fluid control barrier having a frame member mounted on said end of said pipe, a barrier member is pivotally mounted on a first edge to said frame member to allow for opening and closing of said fluid control barrier and at least one cable drive device as claimed in claim 17 is fixed to said frame member and said barrier member to allow said barrier member to be opened and closed.
29. The fluid control barrier of claim 28 , wherein a plurality of said at least one cable drive devices is provided.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2011901214 | 2011-04-01 | ||
| AU2011901214A AU2011901214A0 (en) | 2011-04-01 | Actuation and valve mechanism | |
| PCT/AU2012/000328 WO2012129609A1 (en) | 2011-04-01 | 2012-03-30 | Actuation and valve mechanism |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2012/000328 A-371-Of-International WO2012129609A1 (en) | 2011-04-01 | 2012-03-30 | Actuation and valve mechanism |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/630,268 Continuation US10337642B2 (en) | 2011-04-01 | 2017-06-22 | Actuation and valve mechanism |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140191145A1 true US20140191145A1 (en) | 2014-07-10 |
Family
ID=46929221
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/009,331 Abandoned US20140191145A1 (en) | 2011-04-01 | 2012-03-30 | Actuation and Valve Mechanism |
| US15/630,268 Active 2032-09-20 US10337642B2 (en) | 2011-04-01 | 2017-06-22 | Actuation and valve mechanism |
| US16/389,569 Active 2032-04-30 US11155974B2 (en) | 2011-04-01 | 2019-04-19 | Actuation and valve mechanism |
| US17/403,217 Active US11859359B2 (en) | 2011-04-01 | 2021-08-16 | Actuation and valve mechanism |
| US18/468,991 Abandoned US20240003109A1 (en) | 2011-04-01 | 2023-09-18 | Actuation and valve mechanism |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/630,268 Active 2032-09-20 US10337642B2 (en) | 2011-04-01 | 2017-06-22 | Actuation and valve mechanism |
| US16/389,569 Active 2032-04-30 US11155974B2 (en) | 2011-04-01 | 2019-04-19 | Actuation and valve mechanism |
| US17/403,217 Active US11859359B2 (en) | 2011-04-01 | 2021-08-16 | Actuation and valve mechanism |
| US18/468,991 Abandoned US20240003109A1 (en) | 2011-04-01 | 2023-09-18 | Actuation and valve mechanism |
Country Status (12)
| Country | Link |
|---|---|
| US (5) | US20140191145A1 (en) |
| EP (3) | EP2694853A4 (en) |
| CN (2) | CN105952958B (en) |
| AU (5) | AU2012234917B9 (en) |
| BR (2) | BR122020002371B1 (en) |
| CA (3) | CA2831797C (en) |
| CL (2) | CL2013002813A1 (en) |
| ES (1) | ES2784443T3 (en) |
| MA (1) | MA35065B1 (en) |
| MX (2) | MX355786B (en) |
| PE (2) | PE20180362A1 (en) |
| WO (1) | WO2012129609A1 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160048135A1 (en) * | 2014-08-15 | 2016-02-18 | Thomas S. Hill | Automated flood irrigation system and method of using the same |
| US20180187792A1 (en) * | 2015-08-31 | 2018-07-05 | Continental Automotive Gmbh | Valve |
| US11112011B1 (en) * | 2018-08-09 | 2021-09-07 | Patrick M. Murphy | Controllably opening water supply line doors |
| US11149980B2 (en) | 2018-06-12 | 2021-10-19 | Ademco Inc. | Retrofit damper with pivoting connection between deployment and operational configurations |
| US11300319B2 (en) | 2018-06-12 | 2022-04-12 | Ademco Inc. | Retrofit damper assembly |
| US11306941B2 (en) | 2018-06-12 | 2022-04-19 | Ademco Inc. | Retrofit damper optimized for universal installation |
| US20220220684A1 (en) * | 2021-01-08 | 2022-07-14 | Robert L. Horner | Water flow control device |
| US11422015B2 (en) * | 2017-01-17 | 2022-08-23 | Rubicon Research Pty Ltd | Acoustic transducer arrangement including respective transducer set for each edge of a notational regular polygon |
| JP2025507465A (en) * | 2023-02-14 | 2025-03-21 | エーエーシー アコースティック テクノロジーズ (シャンハイ) カンパニー リミテッド | Force Feedback Device |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2694853A4 (en) * | 2011-04-01 | 2014-11-19 | Rubicon Res Pty Ltd | Actuation and valve mechanism |
| CN102633216A (en) * | 2012-04-25 | 2012-08-15 | 浙江鼎力机械股份有限公司 | Bracket for aerial work |
| US9376779B2 (en) | 2012-07-13 | 2016-06-28 | Rubicon Research Pty Ltd | Control gates and valves |
| US9451730B2 (en) * | 2013-03-06 | 2016-09-20 | Amazon Technologies, Inc. | Managing airflow supplied through soft ducts |
| AU2013205195B2 (en) | 2013-04-14 | 2015-07-09 | Rubicon Research Pty Ltd | Valve |
| BR112016004819B1 (en) | 2013-09-04 | 2021-11-30 | Rubicon Research Pty Ltd | METHOD AND SYSTEM OF DEMAND MANAGEMENT AND CONTROL OF A PIPE NETWORK |
| CN105603947B (en) * | 2015-12-24 | 2017-12-15 | 中国灌溉排水发展中心 | Lower shaft Rotary Water flow control weir |
| CN108916425A (en) * | 2018-08-02 | 2018-11-30 | 北京艾米生科技有限公司 | A kind of high pressure hermetic seal RTO rotary valve |
| CN109653167B (en) * | 2019-01-31 | 2023-10-10 | 黄芳 | Gate structure of air shield dam |
| EP3741678A1 (en) * | 2019-05-21 | 2020-11-25 | Airbus SAS | Regulating valve for a heat exchanger system of an aircraft propulsion system |
| WO2021016654A1 (en) * | 2019-07-26 | 2021-02-04 | Rubicon Research Pty Ltd | Multi pulley control gate |
| AU2020365413A1 (en) * | 2019-10-15 | 2022-05-19 | Rubicon Research Pty Ltd | Overshot and undershot control gate |
| CN111236178A (en) * | 2020-03-17 | 2020-06-05 | 中国电建集团贵阳勘测设计研究院有限公司 | An improved method and structure for fixing a hoist frame |
| US12178167B2 (en) * | 2021-09-23 | 2024-12-31 | Cjc Holdings, Llc | Surge irrigation system and method of use |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1659880A (en) * | 1926-09-22 | 1928-02-21 | Kauffman Samuel | Air inlet |
| US2837991A (en) * | 1954-03-30 | 1958-06-10 | Hart & Cooley Mfg Co | Damper construction for air outlets |
| US3592240A (en) * | 1968-10-30 | 1971-07-13 | Allied Thermal Corp | Damper unit for controlling air flow |
| FR2583130A1 (en) * | 1985-06-07 | 1986-12-12 | Poelman Sofiltra | ISOLATION AND GAS FLOW ADJUSTMENT REGISTER |
| US5076316A (en) * | 1990-01-31 | 1991-12-31 | Brown Daniel P | Flow control valve |
| US6447393B1 (en) * | 1999-08-23 | 2002-09-10 | Mccabe Francis J. | Electric power modulated lead screw actuated butterfly blade damper and method of controlling air flow and pressure and pneumatic two position operator |
| US20110088483A1 (en) * | 2008-04-21 | 2011-04-21 | Mib Gmbh Messtechnik Und Industrieberatung | Ultrasonic measuring arrangement |
Family Cites Families (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US229136A (en) * | 1880-06-22 | Device for storing water for irrigating purposes | ||
| US1460359A (en) * | 1922-10-06 | 1923-06-26 | Frank R Ashley | Awning control means |
| US1659860A (en) | 1926-03-22 | 1928-02-21 | Denholm Thomas Douglas | Pump |
| US1954100A (en) * | 1930-07-23 | 1934-04-10 | Universal Oil Prod Co | Means for initially opening a remotely positioned valve |
| US3108481A (en) * | 1960-06-13 | 1963-10-29 | George A Westmont | Forward and reverse belt drive |
| US3153330A (en) * | 1961-02-15 | 1964-10-20 | Otto Melin | Traveling dam |
| US3559679A (en) * | 1968-11-26 | 1971-02-02 | Trw Inc | Hinge valve |
| US3918264A (en) * | 1974-02-06 | 1975-11-11 | Tucker Grant C | Irrigation system |
| US3998426A (en) * | 1975-07-10 | 1976-12-21 | Thomas John Isbester | Clamshell-type hydraulic flow control gate |
| US4073147A (en) | 1975-09-18 | 1978-02-14 | Takeshi Nomura | Water gate control system |
| US3998326A (en) * | 1976-01-29 | 1976-12-21 | Ppg Industries, Inc. | Packaging forming packages of strand material |
| US4351197A (en) * | 1981-08-19 | 1982-09-28 | Carson Donald G | Precision positioning apparatus having a rotating driving element and a rotating driven element |
| US4726709A (en) | 1986-09-23 | 1988-02-23 | Camille Labelle | Sealing assemblies |
| CN2147264Y (en) * | 1992-12-30 | 1993-11-24 | 彭渐华 | Automatic controlling gate |
| US5516230A (en) | 1994-05-05 | 1996-05-14 | Bargeron; Richard J. | Gate for controlling upstream water level |
| US5518446A (en) * | 1994-07-28 | 1996-05-21 | Landis & Gyr Powers, Inc. | Fume hood exhaust terminal |
| US6071188A (en) * | 1997-04-30 | 2000-06-06 | Bristol-Myers Squibb Company | Damper and exhaust system that maintains constant air discharge velocity |
| GB9810192D0 (en) * | 1998-05-14 | 1998-07-08 | Timms Cyril A | Self-regulating weirs and fishways |
| CA2781640C (en) * | 2000-08-21 | 2015-06-16 | Rubicon Research Pty Ltd | Control gates |
| US20020175307A1 (en) * | 2001-05-25 | 2002-11-28 | Mccabe Francis J. | Drive for a butterfly damper with double acting over center lock |
| US6644337B2 (en) * | 2001-06-26 | 2003-11-11 | Greenheck Fan Corporation | Damper assembly having improved strength characteristics |
| JP2004011681A (en) * | 2002-06-04 | 2004-01-15 | Smc Corp | Actuator |
| JP3655893B2 (en) * | 2002-06-13 | 2005-06-02 | Necアクセステクニカ株式会社 | Document reader |
| CA2493746C (en) * | 2002-08-14 | 2009-06-02 | Nord-Micro Ag & Co. Ohg | Butterfly valve for controlling a gas pressure |
| US6969044B2 (en) * | 2003-12-05 | 2005-11-29 | Delzer Wayne M | Apparatus for controlling a fluid discharge |
| KR101316270B1 (en) * | 2007-12-14 | 2013-10-08 | 현대자동차주식회사 | Hinge type thermostat |
| IT1394621B1 (en) * | 2009-01-23 | 2012-07-05 | Fond Istituto Italiano Di Tecnologia | LINEAR ACTUATOR AND REHABILITATION DEVICE INCORPORATING SUCH ACTUATOR. |
| WO2010088731A1 (en) * | 2009-02-05 | 2010-08-12 | Rubicon Research Pty Ltd | Undershot sluice gate |
| CN201459682U (en) * | 2009-04-03 | 2010-05-12 | 宋学海 | Unpowered liquid level automatic control checkgate |
| MX344270B (en) * | 2009-08-18 | 2016-12-09 | Rubicon Res Pty Ltd | Flow meter assembly, gate assemblies and methods of flow measurement. |
| EP2694853A4 (en) * | 2011-04-01 | 2014-11-19 | Rubicon Res Pty Ltd | Actuation and valve mechanism |
-
2012
- 2012-03-30 EP EP12764942.4A patent/EP2694853A4/en not_active Withdrawn
- 2012-03-30 MA MA36366A patent/MA35065B1/en unknown
- 2012-03-30 ES ES17168709T patent/ES2784443T3/en active Active
- 2012-03-30 BR BR122020002371-6A patent/BR122020002371B1/en active IP Right Grant
- 2012-03-30 PE PE2018000119A patent/PE20180362A1/en unknown
- 2012-03-30 MX MX2013011420A patent/MX355786B/en active IP Right Grant
- 2012-03-30 US US14/009,331 patent/US20140191145A1/en not_active Abandoned
- 2012-03-30 CA CA2831797A patent/CA2831797C/en active Active
- 2012-03-30 CN CN201610397635.9A patent/CN105952958B/en active Active
- 2012-03-30 EP EP19218527.0A patent/EP3663620A1/en active Pending
- 2012-03-30 CA CA3052881A patent/CA3052881C/en active Active
- 2012-03-30 CA CA3153748A patent/CA3153748A1/en active Pending
- 2012-03-30 CN CN201280026707.9A patent/CN103562608B/en active Active
- 2012-03-30 PE PE2013002169A patent/PE20141770A1/en active IP Right Grant
- 2012-03-30 BR BR112013025369-0A patent/BR112013025369B1/en not_active IP Right Cessation
- 2012-03-30 AU AU2012234917A patent/AU2012234917B9/en active Active
- 2012-03-30 EP EP17168709.8A patent/EP3236124B1/en active Active
- 2012-03-30 WO PCT/AU2012/000328 patent/WO2012129609A1/en active Application Filing
-
2013
- 2013-09-30 CL CL2013002813A patent/CL2013002813A1/en unknown
- 2013-10-01 MX MX2022009730A patent/MX2022009730A/en unknown
-
2017
- 2017-05-23 AU AU2017203455A patent/AU2017203455B2/en not_active Ceased
- 2017-06-13 AU AU2017203985A patent/AU2017203985B2/en active Active
- 2017-06-22 US US15/630,268 patent/US10337642B2/en active Active
-
2018
- 2018-01-03 CL CL2018000013A patent/CL2018000013A1/en unknown
- 2018-07-17 AU AU2018206727A patent/AU2018206727B9/en active Active
-
2019
- 2019-04-19 US US16/389,569 patent/US11155974B2/en active Active
-
2020
- 2020-02-06 AU AU2020200839A patent/AU2020200839B2/en active Active
-
2021
- 2021-08-16 US US17/403,217 patent/US11859359B2/en active Active
-
2023
- 2023-09-18 US US18/468,991 patent/US20240003109A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1659880A (en) * | 1926-09-22 | 1928-02-21 | Kauffman Samuel | Air inlet |
| US2837991A (en) * | 1954-03-30 | 1958-06-10 | Hart & Cooley Mfg Co | Damper construction for air outlets |
| US3592240A (en) * | 1968-10-30 | 1971-07-13 | Allied Thermal Corp | Damper unit for controlling air flow |
| FR2583130A1 (en) * | 1985-06-07 | 1986-12-12 | Poelman Sofiltra | ISOLATION AND GAS FLOW ADJUSTMENT REGISTER |
| US5076316A (en) * | 1990-01-31 | 1991-12-31 | Brown Daniel P | Flow control valve |
| US6447393B1 (en) * | 1999-08-23 | 2002-09-10 | Mccabe Francis J. | Electric power modulated lead screw actuated butterfly blade damper and method of controlling air flow and pressure and pneumatic two position operator |
| US20110088483A1 (en) * | 2008-04-21 | 2011-04-21 | Mib Gmbh Messtechnik Und Industrieberatung | Ultrasonic measuring arrangement |
Non-Patent Citations (1)
| Title |
|---|
| Machine Translation of FR2583130, retrieved 1/24/2017 * |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160048135A1 (en) * | 2014-08-15 | 2016-02-18 | Thomas S. Hill | Automated flood irrigation system and method of using the same |
| US10254728B2 (en) * | 2014-08-15 | 2019-04-09 | Thomas S. Hill | Automated flood irrigation system and method of using the same |
| US20190235456A1 (en) * | 2014-08-15 | 2019-08-01 | Thomas S. Hill | Automated flood irrigation system and method of using the same |
| US20180187792A1 (en) * | 2015-08-31 | 2018-07-05 | Continental Automotive Gmbh | Valve |
| US10883621B2 (en) * | 2015-08-31 | 2021-01-05 | Continental Automotive Gmbh | Valve |
| US11422015B2 (en) * | 2017-01-17 | 2022-08-23 | Rubicon Research Pty Ltd | Acoustic transducer arrangement including respective transducer set for each edge of a notational regular polygon |
| US11149980B2 (en) | 2018-06-12 | 2021-10-19 | Ademco Inc. | Retrofit damper with pivoting connection between deployment and operational configurations |
| US11300319B2 (en) | 2018-06-12 | 2022-04-12 | Ademco Inc. | Retrofit damper assembly |
| US11306941B2 (en) | 2018-06-12 | 2022-04-19 | Ademco Inc. | Retrofit damper optimized for universal installation |
| US12044430B2 (en) | 2018-06-12 | 2024-07-23 | Ademco Inc. | Retrofit damper assembly |
| US11112011B1 (en) * | 2018-08-09 | 2021-09-07 | Patrick M. Murphy | Controllably opening water supply line doors |
| US20220220684A1 (en) * | 2021-01-08 | 2022-07-14 | Robert L. Horner | Water flow control device |
| US11697913B2 (en) * | 2021-01-08 | 2023-07-11 | Robert L. Horner | Water flow control device |
| JP2025507465A (en) * | 2023-02-14 | 2025-03-21 | エーエーシー アコースティック テクノロジーズ (シャンハイ) カンパニー リミテッド | Force Feedback Device |
| JP7706551B2 (en) | 2023-02-14 | 2025-07-11 | エーエーシー アコースティック テクノロジーズ (シャンハイ) カンパニー リミテッド | Force Feedback Device |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11859359B2 (en) | Actuation and valve mechanism | |
| AU2013289862B2 (en) | Control gates and valves | |
| AU2013205195B2 (en) | Valve | |
| NZ732178B2 (en) | Actuation and valve mechanism | |
| NZ616411B2 (en) | Actuation and valve mechanism | |
| NZ716023B2 (en) | Actuation and valve mechanism | |
| JP2003049956A (en) | Flow control valve | |
| ITPI20100096A1 (en) | SUPPORT STRUCTURE FOR SHUTTERS, SHUTTERS AND SIMILAR CLOSING ELEMENTS OF A LIGHT |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RUBICON RESEARCH PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUGHTON, DAVID JOHN;REEL/FRAME:031569/0431 Effective date: 20131101 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |