US20140174363A1 - Film forming apparatus - Google Patents

Film forming apparatus Download PDF

Info

Publication number
US20140174363A1
US20140174363A1 US14/170,694 US201414170694A US2014174363A1 US 20140174363 A1 US20140174363 A1 US 20140174363A1 US 201414170694 A US201414170694 A US 201414170694A US 2014174363 A1 US2014174363 A1 US 2014174363A1
Authority
US
United States
Prior art keywords
gas
film
raw material
zrb
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/170,694
Inventor
Takayuki Komiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to US14/170,694 priority Critical patent/US20140174363A1/en
Publication of US20140174363A1 publication Critical patent/US20140174363A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • C23C16/466Cooling of the substrate using thermal contact gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers

Definitions

  • the present disclosure relates to a film forming method and apparatus for use in manufacturing a semiconductor device, and a method for manufacturing a semiconductor device.
  • Zr compound films such as ZrN films, ZrB 2 films and the like have been used for barrier films against diffusion of high melting point metal compounds used to form films in a process of manufacturing a semiconductor device.
  • a Zr compound is promising for a conductive barrier film because of its low bulk resistivity of 10 ⁇ cm.
  • a technique for forming a film using a CVD or an atomic layer deposition (ALD) by using Zr(BH 4 ) 4 as a raw material and introducing H 2 gas or NH 3 gas excited by plasma into a processing container.
  • a method for forming a film including: placing an object to be processed into a processing container; and generating M(BH 4 ) 4 gas by feeding H 2 gas as carrier gas into a raw material container in which solid raw material M(BH 4 ) 4 (where M is Zr or Hf) is accommodated to introduce a mixture gas of H 2 gas and M(BH 4 ) 4 gas having a volume ratio of flow rates (H 2 /M(BH 4 ) 4 ) of 2 or more into the processing container, and deposit a MB x film (where M is Zr or Hf and x is 1.8 to 2.5) on the object using a thermal CVD.
  • an apparatus for forming a film including: a processing container which can be made vacuous; a loading table which is placed in the processing container and loads an object to be processed; a heater which heats the object loaded on the loading table to a predetermined temperature; an exhauster which exhausts the interior of the processing container in a pressure reducing manner; a raw material container which holds solid raw material M(BH 4 ) 4 (where M is Zr or Hf); a temperature regulator which cools or heat-insulates the solid raw material in the raw material container; a H 2 gas feeder which feeds H 2 gas into the raw material container; and a gas feeding pipe through which a mixture gas of H 2 gas and M(BH 4 ) 4 gas is fed from the raw material container into the processing container; wherein the mixture of H 2 gas and M(BH 4 ) 4 gas is introduced while controlling a flow rate of the M(BH 4 ) 4 gas evaporated by the feeding of the H 2 gas and a volume ratio of flow rates (H 2 ).
  • a method for manufacturing a semiconductor device including: depositing a MB x film (where M is Zr or Hf and x is 1.8 to 2.5), as a barrier film, on an insulating film of an object to be processed using the above-described film forming method; and depositing a metal film on the MB x film.
  • FIG. 1 is a sectional view showing a general configuration of a film forming apparatus for use with a film forming method according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a control system of the film forming apparatus of FIG. 1 .
  • FIG. 3 is a flow chart showing an example film forming process according to an embodiment of the present disclosure.
  • FIG. 4 is a sectional view showing a main portion of a wafer surface with a patterned insulating film formed thereon, which is used to explain a film forming process, according to an embodiment of the present disclosure.
  • FIG. 5 is a continuation of FIG. 4 , which is a sectional view showing a main portion of a wafer surface with a ZrB x film formed thereon.
  • FIG. 6 is a graph showing a relationship between film formation time and thickness of a ZrB x film at a processing temperature of 160° C.
  • FIG. 7 is a graph showing a relationship between film formation time and thickness of a ZrB x film at a processing temperature of 200° C.
  • FIG. 8 is a graph showing a relationship between film formation time and thickness of a ZrB x film at a processing temperature of 250° C.
  • FIG. 9 is a graph showing a relationship between film formation time and thickness of a ZrB x film at a processing temperature of 300° C.
  • FIG. 10 is a graph showing a relationship between film formation time and thickness of a ZrB x film at a processing temperature of 180° C.
  • FIG. 11 is another graph showing a relationship between film formation time and thickness of a ZrB x film at a processing temperature of 180° C.
  • FIG. 12 is a graph showing a relationship between film formulation time and thickness of a ZrB x film at a processing temperature of 200° C. in an experiment with a changed process pressure and a changed flow rate of Zr(BH 4 ) 4 .
  • FIG. 13 is a graph showing a relationship between a type of a base film and a film formation speed at a processing temperature of 200° C. in an experiment with a changed process pressure and a changed flow rate of Zr(BH 4 ) 4 .
  • FIG. 14 is a chart showing a result of XPS analysis on a ZrB x film.
  • FIG. 15 is a graph showing a result of analysis on a B/Zr ratio and an O/Zr ratio of a ZrB x film formed under different conditions.
  • FIG. 16 is a graph showing a result of measurement of step coverage for a hole having an aspect ratio of 1.5 to 4.
  • FIG. 17 is a graph showing a result of measurement of step coverage for a trench having an aspect ratio of 1.5 to 4.
  • FIG. 18 is a sectional view showing a wafer surface, which is used to explain a film forming process applied to a damascene process, according to an embodiment of the present disclosure.
  • FIG. 19 is a continuation of FIG. 18 , which is a sectional view showing a main portion of a wafer surface with a ZrB x film formed thereon.
  • FIG. 20 is a continuation of FIG. 19 , which is a sectional view showing a main portion of a wafer surface with a Cu film burred therein.
  • FIG. 1 shows a general configuration of a film forming apparatus 100 for use with a film forming method according to an embodiment of the present disclosure.
  • the film forming apparatus 100 is implemented by a thermal CVD apparatus.
  • the film forming apparatus 100 may perform a film forming process of forming an MB x film (where M represents Zr or Hf and x represents a number of 1.8 to 2.5) on an insulating film such as a low-permittivity film or the like.
  • M represents Zr or Hf
  • x represents a number of 1.8 to 2.5
  • This embodiment will be illustrated with a film including Zr as M, i.e., a ZrB x film (which may be indicated by a ZrB 2 film based on a stoichiometric ratio).
  • the film forming apparatus 100 has an airtight cylindrical processing container 1 .
  • the processing container 1 is made of material such as aluminum subjected to alumite treatment (i.e., anode oxidation).
  • a stage 3 which is a loading table horizontally supporting a semiconductor wafer W to be processed (hereinafter abbreviated as a “wafer”), is arranged in the processing container 1 .
  • the stage 3 is supported by a cylindrical support member 5 .
  • a heater 6 as a heating means for heating the wafer W is buried in the stage 3 .
  • the heater 6 is a resistive heater to heat the wafer W to a predetermined temperature by feeding power from a heater power source 7 .
  • thermocouple (TC) 9 and a thermometer 8 which constitute a temperature measuring means, are connected to the stage 3 , whereby a temperature of the stage 3 is measured in real time and is fed back to the heater power source 7 .
  • a heating temperature or a processing temperature of the wafer W refers to a temperature of a wafer W being processed, which is actually measured by a wafer with a thermocouple and is estimated based on the measurement.
  • a heating means for heating the wafer may include, but is not limited to, a resistive heater and a lamp heater.
  • the stage 3 has a plurality of lift pins which support and lift up/down the wafer W and project from a substrate loading surface S of the stage 3 .
  • the plurality of lift pins are configured to be vertically dislocated by any lifting mechanism and to transfer the wafer W between the plurality of lift pins and a carrying device (not shown) at an ascending position.
  • a shower head 11 is placed on a ceiling plate 1 a of the processing container 1 .
  • the shower head 11 has a gas diffusion space 12 defined therein.
  • a plurality of gas discharge holes 13 is formed in the lower portion of the shower head 11 .
  • the gas diffusion space 12 communicates with the gas discharge holes 13 .
  • Gas feeding pipes 15 b 1 and 15 c 1 communicating with the gas diffusion space 12 are connected to the central portion of the shower head 11 .
  • a gas source 19 feeds hydrogen (H 2 ) gas.
  • the H 2 gas is used as carrier gas to evaporate Zr(BH 4 ) 4 , which is a solid raw material, and carry the evaporated material into the processing container 1 .
  • the H 2 gas is also used to condition the interior of the processing container 1 before performing a film forming process.
  • the film forming apparatus 100 may include a cleaning gas source used to clean the interior of the processing container 1 , a purge gas source used to purge the interior of the processing container 1 , etc.
  • a gas feeding pipe 15 is connected to the gas source 19 .
  • the gas feeding pipe 15 branches into gas feeding pipes 15 a and 15 b on the way to the processing container 1 .
  • a mass flow controller (MFC) 17 a to regulate a flow rate and a valve 18 a placed between the gas source 19 and the MFC 17 a are arranged on the gas feeding pipe 15 a.
  • a mass flow controller (MFC) 17 b to regulate a flow rate and a valve 18 b placed between the gas source 19 and the MFC 17 b are arranged on the gas feeding pipe 15 b.
  • a raw material container 21 is provided with a gas inlet 21 a, a gas bypass pipe 21 b, a gas outlet 21 c, and valves 18 c, 18 d and 18 e arranged in association therewith.
  • the gas feeding pipe 15 a is inserted and connected to the raw material container 21 accommodating the solid raw material Zr(BH 4 ) 4 through the valve 18 c, so that H 2 gas can be fed into the raw material container 21 .
  • the raw material container 21 is a pressure-resistant container and its internal pressure can be adjusted with a manometer 16 and a pressure regulation valve 18 f via the outlet valve 18 e of the container.
  • the raw material container 21 has a temperature regulator (a cooler or a thermostat) 23 such as, for example, a jacket heat exchanger, and is configured to cool and maintain Zr(BH 4 ) 4 accommodated therein to, for example, a temperature range of ⁇ 15° C. to 5° C. Since Zr(BH 4 ) 4 , has a melting point of 28.7° C., it remains solidified in the cool-reserved raw material container 21 . If H 2 gas is maintained or circulated in the raw material container, Zr(BH 4 ) 4 may also be kept at 10 to 45° C. If Zr(BH 4 ) 4 is kept at 30° C. or more, it remains liquefied.
  • a temperature regulator a cooler or a thermostat
  • the gas feeding pipe 15 b connected to the mass flow controller (MFC) 17 b branches into two pipes, that is, a gas feeding pipe 15 b 1 connected to the shower head 11 via a valve 18 h and a gas feeding pipe 15 b 2 joining with the gas feeding pipe 15 c 2 via a valve 18 j and connected to the exhauster 35 .
  • MFC mass flow controller
  • H 2 gas is fed from the gas source 19 into the raw material container 21 via the gas feeding pipe 15 a and contacts the cooled or cool-reserved Zr(BH 4 ) 4 , thereby evaporating (or sublimating) Zr(BH 4 ) 4 from solid or liquid state.
  • H 2 gas serving as carrier gas is fed into the gas diffusion space 12 of the shower head 11 via the gas feeding pipes 15 c and 15 c 1 and may be discharged from the gas discharge holes 13 to the wafer W placed on the stage 3 in the processing container 1 .
  • H 2 gas acts as carrier gas as well as a part of film forming gas (i.e., mixture gas of H 2 gas and Zr(BH 4 ) 4 gas).
  • H 2 gas can also be fed from the gas source 19 into the gas diffusion space 12 of the shower head 11 via the gas feeding pipes 15 b and 15 b 1 and into the processing container 1 through the gas discharge holes 13 .
  • an opening 25 through which the wafer W is carried in/out of the processing container 1 and provided a gate valve 26 for opening/closing the opening 25 .
  • a main exhaustion hole 31 and an exhaustion hole 32 are formed in a side of the bottom wall 1 c of the processing container 1 .
  • the exhauster 35 is connected to the main exhaustion hole 31 via a main exhaustion valve 33 and to the exhaustion hole 32 via a pressure regulation valve 34 which can be controlled by a manometer 34 a disposed around the processing container 1 .
  • the exhauster 35 includes a vacuum pump, an exhaustion detoxification device (both of which are not shown) and so on and is configured to make the processing container 1 vacuous by exhausting the interior of the processing container 1 .
  • FIG. 1 shows an annular O-ring 41 disposed at a junction between the ceiling plate la and the side wall 1 b.
  • O-rings may be disposed at other portions, they will not be shown and described herein for the purpose of brevity.
  • FIG. 2 shows an exemplary control system of the film forming apparatus 100 .
  • the control unit 70 includes a controller 71 , which is a computer having a CPU, a user interface 72 connected to the controller 71 , and a storage 73 .
  • the user interface 72 may include a keyboard and/or a touch panel for command input by an operator who manages the film forming apparatus 100 , a display for visually displaying operation situations of the film forming apparatus 100 , etc.
  • the storage 73 stores a control program (software) to implement various kinds of processes performed by the film forming apparatus 100 under the control of the controller 71 , recipes with processing condition data and so on. As needed, by reading a control program and a recipe from the storage 73 according to a command from the user interface 72 and causing the controller 71 to execute the read control program and recipe, a desired process is performed in the processing container 1 of the film forming apparatus 100 under the control of the controller 71 .
  • a control program software
  • the control program and the recipes with processing condition data may be used by installing those stored in a computer-readable recording medium 74 into the storage 73 .
  • Examples of the computer-readable recording medium 74 may include, but is not limited to, a CD-ROM, a hard disk, a flexible disk, a flash memory, a DVD and the like.
  • the recipes may be downloaded on-line from other devices via a dedicated line, for example.
  • the above-configured film forming apparatus 100 performs a process of forming a ZrB x film using a CVD under the control of the control unit 70 .
  • a wafer W is first carried into the processing container 1 through the opening 25 with the gate valve 26 opened, and is then transferred to lift pins (not shown) of the stage 3 . Then, the lift pins are descended to load the wafer W on the stage 3 . Subsequently, the gate valve 26 is closed and the exhauster 35 is actuated to make the processing container 1 vacuous.
  • the wafer W is heated to a predetermined temperature by the heater 6 .
  • film forming gas is fed to the wafer W through the gas discharge holes 13 of the shower head 11 .
  • the ZrB x film can be formed on the surface of the wafer W.
  • FIG. 3 is a flow chart showing an exemplary film forming method.
  • FIG. 4 and FIG. 5 are views showing a main process of the film forming method according to this embodiment.
  • the film forming method includes, for example, placing a wafer W having a patterned insulating film in the processing container 1 of the film forming apparatus 100 (STEP 1 ), feeding H 2 gas into the processing container 1 to condition the processing container 1 (STEP 2 ), and feeding a mixture gas of H 2 gas and Zr(BH 4 ) 4 gas into the processing container 1 to deposit a ZrB x film on a surface of an insulating film using a CVD (STEP 3 ).
  • the wafer W to be processed which is provided with an insulating film, is placed in the processing container 1 of the film forming apparatus 100 .
  • the wafer W is carried into the processing container 1 through the opening 25 of the film forming apparatus 100 , and is then transferred to the lift pins (not shown) of the stage 3 .
  • the lift pins are descended to load the wafer W on the stage 3 .
  • FIG. 4 on the wafer W are formed a base film 80 and an insulating film 81 stacked thereon.
  • the insulating film 81 is formed with a predetermined pattern of unevenness and has an opening 83 (for example, a concave portion such as a trench, or a through hole). Although a single opening 83 is shown in FIG. 4 , the number of openings may be two or more.
  • the insulating film 81 is an interlayer insulating film having, for example, a multilayered wiring structure and the opening 83 is a portion to be a wiring groove or a via hole in a later process.
  • An example of the insulating film 81 may include a low-permittivity film made of material such as SiO 2 , SiN, SiCOH, SiOF, CFy (y is a positive number), BSG, HSQ, porous silica, SiOC, MSQ, porous MSQ, porous SiCOH or the like.
  • H 2 gas is fed into the processing container 1 to condition the processing container 1 .
  • the conditioning may be performed by introducing H 2 gas from the gas source 19 into the processing container 1 through the gas feeding pipes 15 b and 15 b 1 and the gas diffusion space 12 and gas discharge holes 13 of the shower head 11 .
  • a flow rate of H 2 gas is substantially proportional to an area of the wafer W (there is a need to adjust the flow rate of H 2 gas depending on the volume of the processing container 1 or capability of the exhauster 35 ), which is similar to a subsequent film forming step.
  • the flow rate of H 2 gas may be set to fall within a range of 12 sccm (mL//min) to 64 sccm (mL/min). Since the conditioning can stabilize the internal temperature, pressure and atmosphere of the processing container 1 , a desired ZrB x film can be formed in a subsequent film forming step. In addition, the conditioning can decrease a deviation of process between wafers.
  • the conditioning step of STEP 2 is optional but is preferably performed since it can stabilize conditions of the film forming process and maintain uniformity of process between wafers.
  • a ZrB x film 87 is formed on the surface of the insulating film 81 using a CVD, as shown in FIG. 5 . That is, this step is a step of feeding a mixture gas of H 2 gas and Zr(BH 4 ) 4 gas into the processing container 1 and depositing the ZrB x film 87 on the surface of the insulating film 81 .
  • the H 2 gas is fed from the gas source 19 into the raw material container 21 via the gas feeding pipe 15 a while controlling its flow rate by means of the mass flow controller 17 a.
  • film forming gas that is, a mixture gas of H 2 gas and Zr(BH 4 ) 4 gas
  • film forming gas that is, a mixture gas of H 2 gas and Zr(BH 4 ) 4 gas
  • a mixture gas of H 2 gas and Zr(BH 4 ) 4 gas is used as a film forming gas.
  • a flow rate of H 2 gas is not particularly limited but may be properly changed depending on the volume of the processing container 1 or a size of the wafer W. For example, if a wafer W having a diameter of 100 mm is processed, the flow rate of H 2 gas may be preferably set to fall within a range of 12 sccm (mL//min) to 64 sccm (mL/min), more preferably a range of 20 sccm (mL//min) to 40 sccm (mL/min).
  • a flow rate of Zr(BH 4 ) 4 gas is not particularly limited but may be properly changed depending on the volume of the processing container 1 or a size of the wafer W.
  • the flow rate of Zr(BH 4 ) 4 gas may be preferably set to fall within a range of 3 sccm (mL//min) to 16 sccm (mL/min), more preferably a range of 5 sccm (mL//min) to 8 sccm (mL/min).
  • a volume ratio of flow rates of the H 2 gas and Zr(BH 4 ) 4 gas may be 2 or more, preferably 2.5 to 10, more preferably 3.3 to 7.7. If the H 2 /M(BH 4 ) 4 ratio is less than 2, x in the ZrB x film increases (that is, B becomes excessive) and accordingly the film is greatly deviated from a proper stoichiometric ratio, which results in a low quality barrier film. On the contrary, if the H 2 /M(BH 4 ) 4 ratio exceeds 10, x in the ZrB x film approaches a stoichiometric ratio of 2 but a film forming rate becomes low providing low practicability.
  • the film forming apparatus 100 by evaporating solid raw material Zr(BH 4 ) 4 using the H 2 gas under a stable temperature environment in the raw material container 21 having the temperature regulator 23 , the Zr(BH 4 ) 4 gas can be fed into the processing container 1 with little decomposition side reaction while easily adjusting the H 2 /Zr(BH 4 ) 4 ratio to 2 or more.
  • a flow rate F 2 of the evaporated Zr(BH 4 ) 4 gas may be expressed by the following chemical formula (i).
  • the flow rate F 2 of the Zr(BH 4 ) 4 gas can be determined by adjusting the flow rate F 1 of the H 2 gas and the total pressure P 1 in the raw material container 21 , and accordingly the H 2 /Zr(BH 4 ) 4 ratio can be easily controlled.
  • a processing pressure in the ZrB x film forming process is set to, for example, 10 Pa to 300 Pa, preferably 25 Pa to 100 Pa, more preferably 30 Pa to 70 Pa.
  • a film forming speed tends to increase as the processing pressure increases, and the film forming speed tends to decrease as the processing pressure decreases. Therefore, if the processing pressure is lower than 10 Pa, the film forming speed may not be sufficient. On the contrary, if the processing pressure exceeds 300 Pa, the film forming speed may be too high, which may result in a B/Zr ratio exceeding 2.5 and hence peeling out of the ZrB x film.
  • a processing temperature (wafer W heating temperature) in the ZrB x film forming process is set to, for example, 160° C. to 300° C., preferably 180° C. to 250° C.
  • the film forming speed tends to increase as the processing temperature increases, and the film forming speed tends to decrease as the processing temperature decreases. Therefore, if the wafer W heating temperature is lower than 160° C., the film forming speed may not be sufficient, which may result in low throughput. On the contrary, if the wafer W heating temperature exceeds 300° C., the film forming speed may be too high, which may result in a B/Zr ratio exceeding 2.5 and hence peeling out of the ZrB x film.
  • the ZrB x film can be formed on a Cu film at a speed of 3 nm/min to 80 nm/min, or on SiO 2 film at a speed of 1 nm/min to 25 nm/min, for example.
  • the film formation conditions may be stored as recipes in the storage 73 of the control unit 70 .
  • the controller 71 may read the recipes and send control signals to end devices of the film forming apparatus 100 , so that the film forming process can be performed under desired conditions in the film forming apparatus 100 .
  • the ZrB x film 87 formed through the above-described steps STEP 1 to STEP 3 can act as a barrier film to prevent Cu from being diffused into the insulating film 81 after the opening 83 is filled with a Cu wiring or a Cu plug.
  • the thickness of the ZrB x film 87 is, for example, 0.5 to 7 nm, preferably 1 to 3 nm since it can maintain barrier capability and suppress an increase in a RC product.
  • the film forming method according to this embodiment provides good step coverage.
  • T T is a thickness of the ZrB x film 87 formed on portions other than the opening 83 of the insulating film 81 in FIG. 5 (top film thickness)
  • T S is a thickness of the ZrB x film 87 formed on a side of the opening 83 (side film thickness)
  • T B is a thickness of the ZrB x film 87 formed on the bottom of the opening 83 (bottom film thickness
  • the film may be formed to establish a relationship of 0.8 ⁇ T T ⁇ T S and a relationship of 0.8 ⁇ T T ⁇ T B .
  • the ZrB x film 87 formed by the film forming method of this embodiment has good adhesion with the insulating film 81 .
  • the ZrB x film 87 has a relatively higher resistance if it is deposited on an insulating film and relatively lower resistance if it is deposited on a conductive film. For example, if a metal film (not shown) of a lower layer wiring such as a Cu film is exposed to the bottom of the opening 83 , the metal film can be electrically conducted with a wiring buried in the opening 83 even with the ZrB x film 87 interposed therebetween.
  • the film forming method of this embodiment may include any other steps such as, for example, a step of modifying the surface of the insulating film 81 , a sputtering step by Ar plasma, etc.
  • ZrB x films were formed on different base films while changing a processing temperature.
  • the processing temperature was set to 160° C., 200° C., 250° C. or 300° C.
  • a flow rate of film forming gas was set to 20 mL/min (sccm) for H 2 gas and 6 mL/min (sccm) for Zr(BH 4 ) 4 gas.
  • a H 2 /Zr(BH 4 ) 4 ratio was 3.3.
  • a processing pressure was set to 50 Pa.
  • the base films used were a Ta film, a Cu film, a low-k film (CORAL (trade mark) available from Novellus Company) and a SiO 2 film.
  • CORAL trade mark
  • FIGS. 6 to 9 are graphs showing the results at processing temperatures of 160° C., 200° C., 250° C. and 300° C., respectively.
  • the flow rate of the Zr(BH 4 ) 4 gas was set to 2.6 mL/min (sccm) only for the processing temperature of 300° C.
  • the horizontal axis represents film formation time [min]
  • film thickness [nm] on the vertical axis was plotted for each base film.
  • the film thickness was measured by a scanning electron microscope (SEM) if it was relatively large (about 15 nm or more) and was measured by fluorescent X-ray analysis (XRF) if it was relatively small (below about 15 nm).
  • a film forming speed for any base film is too low for the processing temperature of 160° C. and conversely is too high for 300° C. (where the flow rate of Zr(BH 4 ) 4 gas is half of those for other processing temperatures), which is inappropriate to form the ZrB x film at a thickness of 0.5 to 9 nm to be used as a barrier film.
  • the processing temperature of 200° C. to 250° C. is appropriate to form the ZrB x film at a thickness of several to several tens nm
  • a processing temperature slightly lower than 200° C. is also preferable to form the ZrB x film at a thickness of 1 to 3 nm targeted for a barrier film.
  • ZrB x films were formed on different base films with a processing temperature fixed at 180° C.
  • the base films used were a Cu film, an Ru film, a low-k film (CORAL (trade mark) available from Novellus Company), a TiN film, a SiN film, a SiC film and a SiO 2 film.
  • a flow rate of film forming gas was set to 20 mL/min (sccm) for H 2 gas and 6 mL/min (sccm) for Zr(BH 4 ) 4 gas.
  • a H 2 /Zr(BH 4 ) 4 ratio was 3.3.
  • a processing pressure was set to 50 Pa.
  • FIG. 10 shows the results of measurement of film thickness by a scanning electron microscope (SEM) and FIG. 11 shows the results of measurement of film thickness by fluorescent X-ray analysis (XRF).
  • SEM scanning electron microscope
  • XRF fluorescent X-ray analysis
  • ZrB x films were formed using a Ta film and a SiO 2 film as base films while changing a processing pressure to 25 Pa, 50 Pa or 100 Pa.
  • a flow rate of film forming gas was set to 20 mL/min (sccm) for H 2 gas and 6 mL/min (sccm) for Zr(BH 4 ) 4 gas.
  • a H 2 /Zr(BH 4 ) 4 ratio was 3.3.
  • a processing temperature was set to 250° C. and film forming time was set to 5 minutes.
  • a processing pressure is preferably 100 Pa or less which does not significantly increase the film forming speed in view of the controllability of the thickness of the ZrB x film. Accordingly, from the result of this experiment, although the processing pressure preferably falls within a range of 25 Pa to 100 Pa in forming the ZrB x film, it is considered that the processing pressure most preferably falls within a range of 30 Pa to 70 Pa.
  • ZrB x films were formed using Ta, Cu and SiO 2 films as base films with a flow rate of H 2 gas fixed at 20 mL/min (sccm) and a flow rate of Zr(BH 4 ) 4 gas set to 2.6 mL/min (sccm) [H 2 /Zr(BH 4 ) 4 ratio: 7.7], 6 mL/min (sccm) [H 2 /Zr(BH 4 ) 4 ratio: 3.3] or 15.5 mL/min (sccm) [H 2 /Zr(BH 4 ) 4 ratio: 1.3]. All processing pressures were set to 50 Pa. A processing temperature was set to 250° C. and film forming time was set to 5 minutes. As a result, metallic-lustering ZrB x films could be formed on the base films at any flow rate of raw material gas.
  • ZrB x films were formed on different base films while changing a flow rate and pressure of film forming gas (H 2 gas and Zr(BH 4 ) 4 gas). Ta, Cu and SiO 2 films were used as the base films.
  • a processing temperature was set to 200° C.
  • the flow rate of film forming gas was fixed at 20 mL/min (sccm) for H 2 gas and set to 2.6 mL/min (sccm) or 6 mL/min (sccm) for Zr(BH 4 ) 4 gas.
  • An processing pressure was set to 25 Pa or 50 Pa.
  • film formation conditions were set as follows.
  • Standard conditions Combination of a flow rate of 6 mL/min (sccm) for Zr(BH 4 ) 4 gas and a processing pressure of 50 Pa.
  • LP Low pressure conditions
  • the horizontal axis represents film formation time [min] and film thickness [nm] on the vertical axis was plotted for each base film.
  • the horizontal axis represents a type of base film and the vertical axis represents a film forming speed. From FIG. 12 , it can be seen that the thickness of the ZrB x film tends to increase with an extension of film forming time and shows a big difference depending on the type of base film.
  • a film forming speed is higher in the low pressure conditions (LP) than in the low raw material conditions (LS) for any base film and the standard conditions (Std) provides the highest film forming speed.
  • the film forming speed can be adjusted depending on the processing pressure and the flow rate of Zr(BH 4 ) 4 gas.
  • the standard conditions where the flow rate of Zr(BH 4 ) 4 gas is 6 mL/min (sccm) and the processing pressure is 50 Pa are most preferable in view of the film forming speed.
  • XPS X-ray photoelectron spectroscopy
  • the ZrB x films were formed at a processing temperature of 200° C. for 15 minutes, a processing temperature of 250° C. for 5 minutes, or a processing temperature of 300° C. for 2 minutes.
  • a flow rate of H 2 gas, a flow rate of Zr(BH 4 ) 4 gas and a processing pressure were set to 20 mL/min (sccm), 6 mL/min (sccm) and 50 Pa, respectively.
  • an analysis of samples with their surface layers removed by Ar sputtering to remove natural oxide films formed thereon was made.
  • FIG. 14 is a chart showing a result of XPS analysis on a ZrB x film formed on a SiO 2 film at a processing temperature of 250° C. for 5 minutes. From FIG. 14 , it can be seen from the sample subjected to Ar sputtering that the interior of the ZrB x film is nearly formed by ZrB x although the outermost surface of the ZrB x film (a surface not subjected to Ar sputtering) has a peak of ZrO 2 or Zr(OH) x and is oxidized. In addition, FIG. 15 shows a B/Zr ratio and an O/Zr ratio of a ZrB x film formed under the conditions of different temperatures and types of base films (SiO 2 and Ta films).
  • the B/Zr ratio of the ZrB x film falls within a range of 2.1 to 2.5, which is close to a proper stoichiometric ratio, within a processing temperature range of 200° C. to 300° C., which is one of the experiment conditions.
  • the content of oxygen in the ZrB x film was about 5%.
  • step coverage was evaluated by forming a ZrB x film on a SiO 2 film having a hole with an opening diameter of 120 nm and an aspect ratio of 1.5 to 4 or a trench with an opening width of 120 nm and an aspect ratio of 1.5 to 4.
  • the ZrB x film was formed at a processing temperature of 200° C. for 15 minutes (a desired film thickness is 20 to 21 nm), or a processing temperature of 250° C. for 5 minutes (a desired film thickness is 125 to 130 nm).
  • a flow rate of H 2 gas, a flow rate of Zr(BH 4 ) 4 gas and a processing pressure were set to 20 mL/min (sccm), 6 mL/min (sccm) and 50 Pa, respectively.
  • FIG. 16 shows the results of measurement of step coverage for a hole having an aspect ratio of 1.5 to 4.
  • FIG. 17 shows the results of measurement of step coverage for a trench having an aspect ratio of 1.5 to 4. From FIG. 16 and FIG. 17 , it can be seen that a ratio (T S /T T ) of side film thickness (T S ) to top film thickness (T T ) is 0.8 or more for the hole and 0.8 or more for the trench, and a ratio (T B /T T ) of bottom film thickness (T B ) to top film thickness (T T ) is 0.9 or more for the hole and 0.85 or more for the trench. Thus, it is confirmed that the film forming method of this embodiment provide good step coverage.
  • H 2 gas is used as a carrier gas to evaporate and guide solid raw material Zr(BH 4 ) 4 into the processing container 1 .
  • the H 2 gas acts as a carrier gas simply and has a function of maintaining the processing container 1 under a reducing atmosphere and approaching a B/Zr ratio of a Zr(BH 4 ) 4 film formed in connection with a film forming reaction to a proper stoichiometric ratio. That is, typically, a thermal decomposition reaction such as the following chemical formula 1 is generated on a wafer W heated to a predetermined temperature in forming a film using a thermal CVD with Zr(BH 4 ) 4 gas as raw material.
  • a thermal decomposition reaction such as the following chemical formula 2 is generated on a wafer W heated to a predetermined temperature, since excessive H 2 gas and Zr(BH 4 ) 4 gas are mixed and introduced into the processing container 1 .
  • a volume ratio of the flow rates of the H 2 gas and Zr(BH 4 ) 4 gas (H 2 /M(BH 4 ) 4 ratio) is set to 2 or more, preferably 2.5 to 10, more preferably 3.3 to 7.7. This can achieve a ZrB x film having a B/Zr ratio of 1.8 to 2.5 and good electrical properties and barrier-capability, which was difficult to achieve using conventional thermal CVD methods using a processing temperature of 300° C.
  • the film forming method of this embodiment it is possible to achieve a ZrB x film 87 formed uniformly at a predetermined thickness on an insulating film 81 .
  • a ZrB x film 87 having good step coverage and formed substantially at a uniform thickness in an opening 83 which is formed in an insulating film 81 and has a large aspect ratio, i.e., a large ratio of depth to opening diameter.
  • the ZrB x film 87 obtained thus has good electrical properties and good barrier-capability to Cu diffusion.
  • the ZrB x film 87 formed according to the film forming method of this embodiment can secure electrical connection between wirings and effectively prevent Cu from being diffused from a copper wiring into the insulating film 81 in a semiconductor device. Accordingly, by forming the ZrB x film 87 as a barrier film according to the film forming method of this embodiment, it is possible to secure reliability of the semiconductor device.
  • FIG. 18 is a sectional view of a main portion of a wafer W, showing a stack before a ZrBx film 87 is formed.
  • an etching stopper film 102 On an interlayer insulating film 101 as a base wiring layer is formed an etching stopper film 102 , an interlayer insulating film 103 as a via layer, an etching stopper film 104 and an interlayer insulating film 105 as a wiring layer in order.
  • a lower wiring layer 106 in which Cu is buried is formed on the interlayer insulating film 101 .
  • the etching stopper films 102 and 104 have barrier-capability to prevent copper from being diffused.
  • the interlayer insulating films 103 and 105 are low-k films formed using, for example, a CVD.
  • the etching stopper films 102 and 104 may be silicon carbide (SiC) films, silicon nitride (SiN) films, silicon carbonitride (SiCN) films or the like formed using, for example, a CVD.
  • openings 103 a and 105 a are formed with their respective patterns in the interlayer insulating films 103 and 105 , respectively. These openings 103 a and 105 a may be formed by etching the interlayer insulating films 103 and 105 into predetermined patterns using a photolithograpy process in a typical manner.
  • the opening 103 a is a via hole and the opening 105 is a wiring groove.
  • the opening 103 a reaches the top of the lower wiring layer 106 and the opening 105 a reaches the top of the etching stopper film 104 .
  • FIG. 19 shows the stack of FIG. 18 under a state after the ZrB x film 87 is formed using the film forming apparatus 100 by means of a CVD.
  • the film forming process by performing a thermal CVD under the above film formation conditions, it is possible to form a ZrB x film 87 having good adhesion to the interlayer insulating films 103 and 105 at a uniform thickness and having good step coverage even when the openings 103 a and 105 a have high aspect ratios.
  • a Cu film 107 is formed to be filled in the openings 103 a and 105 a by depositing Cu on the interlayer insulating film 105 .
  • the Cu film 107 may be formed using, for example, a CVD, a PVD, a plating method or the like.
  • the Cu film 107 filled in the opening 103 a becomes a Cu plug and the Cu film 107 filled in the opening 105 becomes a Cu wiring.
  • an excess of Cu film 107 is removed through a planarization process by a chemical mechanical polishing (CMP) in a typical manner, thereby completing a multilayer wiring structure having the Cu plug and the Cu wiring.
  • CMP chemical mechanical polishing
  • the ZrB x film 87 since the ZrB x film 87 has good barrier-capability, it is possible to prevent Cu from being diffused from the Cu film 107 into the interlayer insulating films 103 and 105 .
  • the ZrB x film 87 becomes a low resistant film by forming it on the lower wiring layer 106 at the bottom of the opening 103 a, it is possible to secure an electrical contact between the Cu film 107 filled in the openings 103 a and 105 a and the lower wiring layer 106 .
  • the film forming method is applied to a dual damascene process, this method may be equally applied to a single damascene process.
  • the present disclosure may be modified in various ways without be limited to the disclosed embodiment.
  • the disclosed embodiment has been illustrated with a semiconductor wafer as a substrate to be processed, the present disclosure is not limited thereto but may be applied to other substrates such as a glass substrate, an LCD substrate, a ceramics substrate and so on.
  • M in the MB x film is Zr
  • a HfB x film including Hf as M may be formed in the same manner because of its similar chemical property.
  • the film forming method of the present disclosure by evaporating solid raw material Zr(BH 4 ) 4 using H 2 gas as a carrier gas and introducing a mixture of H 2 gas and Zr(BH 4 ) 4 gas having a volume ratio of flow rates (H 2 /Zr(BH 4 ) 4 ) of 2 or more into the processing container, it is possible to form a MB x film having a proper range of B/Zr ratio (that is, x is 1.8 to 2.5) close to a stoichiometric ratio using a thermal CVD without requiring remote plasma. This allows significant simplification of a configuration of a film forming apparatus as compared to conventional methods requiring remote plasma.
  • the film forming method of the present disclosure it is possible to achieve a MrB x film formed uniformly at a predetermined thickness on an insulating film.
  • the MB x film obtained thus has good electrical properties and good barrier-capability to Cu diffusion.
  • the MB x film formed according to the film forming method of the present disclosure can secure an electrical connection between wirings and effectively prevent Cu from being diffused from a copper wiring into the insulating film in a semiconductor device. Accordingly, by forming the MB x film as a barrier film according to the film forming method of the present disclosure, it is possible to secure reliability of the semiconductor device.

Abstract

A method for forming a film includes the steps of: placing an object to be processed into a processing container; and generating M(BH4)4 gas by feeding H2 gas as carrier gas into a raw material container in which solid M(BH4)4 (where M is Zr or Hf) is accommodated to introduce a mixture gas of H2 gas and M(BH4)4 gas having a volume ratio of flow rates (H2/M(BH4)4) of 2 or more into the processing container, and deposit a MBx film (where M is Zr or Hf and x is 1.8 to 2.5) on the object using a thermal CVD.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of Japanese Patent Application No. 2010-232276, filed on Oct. 15, 2010, in the Japan Patent Office, the disclosure of which is incorporated herein in its entirety by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to a film forming method and apparatus for use in manufacturing a semiconductor device, and a method for manufacturing a semiconductor device.
  • BACKGROUND
  • Zr compound films such as ZrN films, ZrB2 films and the like have been used for barrier films against diffusion of high melting point metal compounds used to form films in a process of manufacturing a semiconductor device. A Zr compound is promising for a conductive barrier film because of its low bulk resistivity of 10 μΩcm. In addition, it has been proposed to use a Zr compound for a conductive cap film, which is unnecessary to be eliminated, based on the property that its resistivity is extremely varied depending on the type of a base film.
  • In addition, a method has been proposed to form a ZrN film by a thermal chemical vapor deposition (CVD). However, this method needs to pay attention to high resistance due to residual carbon and generation of insulative compounds such as Zr3N4 and the like since a film formation temperature is above 300° C. or an alkylamino-based compound or the like is used as a raw material, which contains carbon.
  • On the other hand, regarding the formation of a ZrB2 film, a technique has been proposed for forming a film using a CVD or an atomic layer deposition (ALD) by using Zr(BH4)4 as a raw material and introducing H2 gas or NH3 gas excited by plasma into a processing container.
  • However, a conventional technique is known that requires a remote plasma equipment to introduce atomic H or the like into the processing container. This makes a configuration of a film forming apparatus complicated, which is inappropriate for industrial applicability in a semiconductor process. In addition, in the above technique, a B/Zr ratio in the ZrB2 film formed using a thermal CVD with Zr(BH4)4 used as a raw material becomes excessive, which may result in a deterioration of film quality.
  • SUMMARY
  • According to one embodiment of the present disclosure, there is provided a method for forming a film, including: placing an object to be processed into a processing container; and generating M(BH4)4 gas by feeding H2 gas as carrier gas into a raw material container in which solid raw material M(BH4)4 (where M is Zr or Hf) is accommodated to introduce a mixture gas of H2 gas and M(BH4)4 gas having a volume ratio of flow rates (H2/M(BH4)4) of 2 or more into the processing container, and deposit a MBx film (where M is Zr or Hf and x is 1.8 to 2.5) on the object using a thermal CVD.
  • According to another embodiment of the present disclosure, there is provided an apparatus for forming a film, including: a processing container which can be made vacuous; a loading table which is placed in the processing container and loads an object to be processed; a heater which heats the object loaded on the loading table to a predetermined temperature; an exhauster which exhausts the interior of the processing container in a pressure reducing manner; a raw material container which holds solid raw material M(BH4)4 (where M is Zr or Hf); a temperature regulator which cools or heat-insulates the solid raw material in the raw material container; a H2 gas feeder which feeds H2 gas into the raw material container; and a gas feeding pipe through which a mixture gas of H2 gas and M(BH4)4 gas is fed from the raw material container into the processing container; wherein the mixture of H2 gas and M(BH4)4 gas is introduced while controlling a flow rate of the M(BH4)4 gas evaporated by the feeding of the H2 gas and a volume ratio of flow rates (H2/M(BH4)4) of H2 gas and M(BH4)4 gas by adjusting a flow rate of H2 gas fed into the raw material container and an internal pressure of the raw material container, and a MBx film (where M is Zr or Hf and x is 1.8 to 2.5) is deposited on the object using a thermal CVD.
  • According to another embodiment of the present disclosure, there is provided a method for manufacturing a semiconductor device, including: depositing a MBx film (where M is Zr or Hf and x is 1.8 to 2.5), as a barrier film, on an insulating film of an object to be processed using the above-described film forming method; and depositing a metal film on the MBx film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the present disclosure, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the present disclosure.
  • FIG. 1 is a sectional view showing a general configuration of a film forming apparatus for use with a film forming method according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a control system of the film forming apparatus of FIG. 1.
  • FIG. 3 is a flow chart showing an example film forming process according to an embodiment of the present disclosure.
  • FIG. 4 is a sectional view showing a main portion of a wafer surface with a patterned insulating film formed thereon, which is used to explain a film forming process, according to an embodiment of the present disclosure.
  • FIG. 5 is a continuation of FIG. 4, which is a sectional view showing a main portion of a wafer surface with a ZrBx film formed thereon.
  • FIG. 6 is a graph showing a relationship between film formation time and thickness of a ZrBx film at a processing temperature of 160° C.
  • FIG. 7 is a graph showing a relationship between film formation time and thickness of a ZrBx film at a processing temperature of 200° C.
  • FIG. 8 is a graph showing a relationship between film formation time and thickness of a ZrBx film at a processing temperature of 250° C.
  • FIG. 9 is a graph showing a relationship between film formation time and thickness of a ZrBx film at a processing temperature of 300° C.
  • FIG. 10 is a graph showing a relationship between film formation time and thickness of a ZrBx film at a processing temperature of 180° C.
  • FIG. 11 is another graph showing a relationship between film formation time and thickness of a ZrBx film at a processing temperature of 180° C.
  • FIG. 12 is a graph showing a relationship between film formulation time and thickness of a ZrBx film at a processing temperature of 200° C. in an experiment with a changed process pressure and a changed flow rate of Zr(BH4)4.
  • FIG. 13 is a graph showing a relationship between a type of a base film and a film formation speed at a processing temperature of 200° C. in an experiment with a changed process pressure and a changed flow rate of Zr(BH4)4.
  • FIG. 14 is a chart showing a result of XPS analysis on a ZrBx film.
  • FIG. 15 is a graph showing a result of analysis on a B/Zr ratio and an O/Zr ratio of a ZrBx film formed under different conditions.
  • FIG. 16 is a graph showing a result of measurement of step coverage for a hole having an aspect ratio of 1.5 to 4.
  • FIG. 17 is a graph showing a result of measurement of step coverage for a trench having an aspect ratio of 1.5 to 4.
  • FIG. 18 is a sectional view showing a wafer surface, which is used to explain a film forming process applied to a damascene process, according to an embodiment of the present disclosure.
  • FIG. 19 is a continuation of FIG. 18, which is a sectional view showing a main portion of a wafer surface with a ZrBx film formed thereon.
  • FIG. 20 is a continuation of FIG. 19, which is a sectional view showing a main portion of a wafer surface with a Cu film burred therein.
  • DETAILED DESCRIPTION
  • Exemplary embodiments of the present disclosure will now be described in detail with reference to the drawings.
  • <General Configuration of Film Forming Apparatus>
  • First, a configuration of a film forming apparatus adapted for embodiments of a film forming method of the present disclosure is explained. FIG. 1 shows a general configuration of a film forming apparatus 100 for use with a film forming method according to an embodiment of the present disclosure. The film forming apparatus 100 is implemented by a thermal CVD apparatus. The film forming apparatus 100 may perform a film forming process of forming an MBx film (where M represents Zr or Hf and x represents a number of 1.8 to 2.5) on an insulating film such as a low-permittivity film or the like. This embodiment will be illustrated with a film including Zr as M, i.e., a ZrBx film (which may be indicated by a ZrB2 film based on a stoichiometric ratio).
  • The film forming apparatus 100 has an airtight cylindrical processing container 1. The processing container 1 is made of material such as aluminum subjected to alumite treatment (i.e., anode oxidation). A stage 3, which is a loading table horizontally supporting a semiconductor wafer W to be processed (hereinafter abbreviated as a “wafer”), is arranged in the processing container 1. The stage 3 is supported by a cylindrical support member 5. A heater 6 as a heating means for heating the wafer W is buried in the stage 3. The heater 6 is a resistive heater to heat the wafer W to a predetermined temperature by feeding power from a heater power source 7. In addition, a thermocouple (TC) 9 and a thermometer 8, which constitute a temperature measuring means, are connected to the stage 3, whereby a temperature of the stage 3 is measured in real time and is fed back to the heater power source 7. Unless specifically stated, a heating temperature or a processing temperature of the wafer W refers to a temperature of a wafer W being processed, which is actually measured by a wafer with a thermocouple and is estimated based on the measurement. A heating means for heating the wafer may include, but is not limited to, a resistive heater and a lamp heater.
  • Although not shown, the stage 3 has a plurality of lift pins which support and lift up/down the wafer W and project from a substrate loading surface S of the stage 3. The plurality of lift pins are configured to be vertically dislocated by any lifting mechanism and to transfer the wafer W between the plurality of lift pins and a carrying device (not shown) at an ascending position.
  • A shower head 11 is placed on a ceiling plate 1 a of the processing container 1. The shower head 11 has a gas diffusion space 12 defined therein. A plurality of gas discharge holes 13 is formed in the lower portion of the shower head 11. The gas diffusion space 12 communicates with the gas discharge holes 13. Gas feeding pipes 15 b 1 and 15 c 1 communicating with the gas diffusion space 12 are connected to the central portion of the shower head 11.
  • A gas source 19 feeds hydrogen (H2) gas. The H2 gas is used as carrier gas to evaporate Zr(BH4)4, which is a solid raw material, and carry the evaporated material into the processing container 1. The H2 gas is also used to condition the interior of the processing container 1 before performing a film forming process. Although not shown, in addition to the gas source 19, the film forming apparatus 100 may include a cleaning gas source used to clean the interior of the processing container 1, a purge gas source used to purge the interior of the processing container 1, etc.
  • A gas feeding pipe 15 is connected to the gas source 19. The gas feeding pipe 15 branches into gas feeding pipes 15 a and 15 b on the way to the processing container 1. A mass flow controller (MFC) 17 a to regulate a flow rate and a valve 18 a placed between the gas source 19 and the MFC 17 a are arranged on the gas feeding pipe 15 a. A mass flow controller (MFC) 17 b to regulate a flow rate and a valve 18 b placed between the gas source 19 and the MFC 17 b are arranged on the gas feeding pipe 15 b.
  • A raw material container 21 is provided with a gas inlet 21 a, a gas bypass pipe 21 b, a gas outlet 21 c, and valves 18 c, 18 d and 18 e arranged in association therewith. The gas feeding pipe 15 a is inserted and connected to the raw material container 21 accommodating the solid raw material Zr(BH4)4 through the valve 18 c, so that H2 gas can be fed into the raw material container 21. The raw material container 21 is a pressure-resistant container and its internal pressure can be adjusted with a manometer 16 and a pressure regulation valve 18 f via the outlet valve 18 e of the container. The raw material container 21 has a temperature regulator (a cooler or a thermostat) 23 such as, for example, a jacket heat exchanger, and is configured to cool and maintain Zr(BH4)4 accommodated therein to, for example, a temperature range of −15° C. to 5° C. Since Zr(BH4)4, has a melting point of 28.7° C., it remains solidified in the cool-reserved raw material container 21. If H2 gas is maintained or circulated in the raw material container, Zr(BH4)4 may also be kept at 10 to 45° C. If Zr(BH4)4 is kept at 30° C. or more, it remains liquefied.
  • A gas feeding pipe 15 c connected to the pressure regulation valve 18 f, which is the outlet of the raw material container, branches into two pipes, that is, a gas feeding pipe 15 c 1 connected to the shower head 11 via a valve 18 g and a gas feeding pipe 15 c 2 connected to an exhauster 35 via a valve 18 i. The gas feeding pipe 15 b connected to the mass flow controller (MFC) 17 b branches into two pipes, that is, a gas feeding pipe 15 b 1 connected to the shower head 11 via a valve 18 h and a gas feeding pipe 15 b 2 joining with the gas feeding pipe 15 c 2 via a valve 18 j and connected to the exhauster 35.
  • In the film forming apparatus as configured above, H2 gas is fed from the gas source 19 into the raw material container 21 via the gas feeding pipe 15 a and contacts the cooled or cool-reserved Zr(BH4)4, thereby evaporating (or sublimating) Zr(BH4)4 from solid or liquid state. H2 gas serving as carrier gas is fed into the gas diffusion space 12 of the shower head 11 via the gas feeding pipes 15 c and 15 c 1 and may be discharged from the gas discharge holes 13 to the wafer W placed on the stage 3 in the processing container 1. In this embodiment, in this manner, H2 gas acts as carrier gas as well as a part of film forming gas (i.e., mixture gas of H2 gas and Zr(BH4)4 gas).
  • In addition, in the film forming apparatus 100, H2 gas can also be fed from the gas source 19 into the gas diffusion space 12 of the shower head 11 via the gas feeding pipes 15 b and 15 b 1 and into the processing container 1 through the gas discharge holes 13.
  • In the side wall 1 b of the processing container 1 is formed an opening 25 through which the wafer W is carried in/out of the processing container 1 and provided a gate valve 26 for opening/closing the opening 25.
  • A main exhaustion hole 31 and an exhaustion hole 32 are formed in a side of the bottom wall 1 c of the processing container 1. The exhauster 35 is connected to the main exhaustion hole 31 via a main exhaustion valve 33 and to the exhaustion hole 32 via a pressure regulation valve 34 which can be controlled by a manometer 34 a disposed around the processing container 1. The exhauster 35 includes a vacuum pump, an exhaustion detoxification device (both of which are not shown) and so on and is configured to make the processing container 1 vacuous by exhausting the interior of the processing container 1.
  • An O-ring as a sealing member is disposed at a junction of each of member constituting the processing container 1 in order to secure airtightness of the junction. As a representative example, FIG. 1 shows an annular O-ring 41 disposed at a junction between the ceiling plate la and the side wall 1 b. Although O-rings may be disposed at other portions, they will not be shown and described herein for the purpose of brevity.
  • End devices (for example, the heater power source 7, the thermometer 8, the MFCs 17 a and 17 b, the exhauster 35 and so on) constituting the film forming apparatus 100 are connected to and controlled by a control unit 70. FIG. 2 shows an exemplary control system of the film forming apparatus 100. The control unit 70 includes a controller 71, which is a computer having a CPU, a user interface 72 connected to the controller 71, and a storage 73. The user interface 72 may include a keyboard and/or a touch panel for command input by an operator who manages the film forming apparatus 100, a display for visually displaying operation situations of the film forming apparatus 100, etc. The storage 73 stores a control program (software) to implement various kinds of processes performed by the film forming apparatus 100 under the control of the controller 71, recipes with processing condition data and so on. As needed, by reading a control program and a recipe from the storage 73 according to a command from the user interface 72 and causing the controller 71 to execute the read control program and recipe, a desired process is performed in the processing container 1 of the film forming apparatus 100 under the control of the controller 71.
  • The control program and the recipes with processing condition data may be used by installing those stored in a computer-readable recording medium 74 into the storage 73. Examples of the computer-readable recording medium 74 may include, but is not limited to, a CD-ROM, a hard disk, a flexible disk, a flash memory, a DVD and the like. The recipes may be downloaded on-line from other devices via a dedicated line, for example.
  • The above-configured film forming apparatus 100 performs a process of forming a ZrBx film using a CVD under the control of the control unit 70. As one example of the film forming process, a wafer W is first carried into the processing container 1 through the opening 25 with the gate valve 26 opened, and is then transferred to lift pins (not shown) of the stage 3. Then, the lift pins are descended to load the wafer W on the stage 3. Subsequently, the gate valve 26 is closed and the exhauster 35 is actuated to make the processing container 1 vacuous. In addition, the wafer W is heated to a predetermined temperature by the heater 6. Then, film forming gas is fed to the wafer W through the gas discharge holes 13 of the shower head 11. Thus, the ZrBx film can be formed on the surface of the wafer W.
  • <Film Forming Method>
  • Next, a method for forming a film with the film forming apparatus 100 will be described in more detail with reference to FIG. 3 to FIG. 5. FIG. 3 is a flow chart showing an exemplary film forming method. FIG. 4 and FIG. 5 are views showing a main process of the film forming method according to this embodiment. The film forming method according to this embodiment includes, for example, placing a wafer W having a patterned insulating film in the processing container 1 of the film forming apparatus 100 (STEP 1), feeding H2 gas into the processing container 1 to condition the processing container 1 (STEP 2), and feeding a mixture gas of H2 gas and Zr(BH4)4 gas into the processing container 1 to deposit a ZrBx film on a surface of an insulating film using a CVD (STEP 3).
  • (Step 1)
  • In STEP 1, the wafer W to be processed, which is provided with an insulating film, is placed in the processing container 1 of the film forming apparatus 100. Specifically, the wafer W is carried into the processing container 1 through the opening 25 of the film forming apparatus 100, and is then transferred to the lift pins (not shown) of the stage 3. Then, the lift pins are descended to load the wafer W on the stage 3. As shown in FIG. 4, on the wafer W are formed a base film 80 and an insulating film 81 stacked thereon. The insulating film 81 is formed with a predetermined pattern of unevenness and has an opening 83 (for example, a concave portion such as a trench, or a through hole). Although a single opening 83 is shown in FIG. 4, the number of openings may be two or more.
  • The insulating film 81 is an interlayer insulating film having, for example, a multilayered wiring structure and the opening 83 is a portion to be a wiring groove or a via hole in a later process. An example of the insulating film 81 may include a low-permittivity film made of material such as SiO2, SiN, SiCOH, SiOF, CFy (y is a positive number), BSG, HSQ, porous silica, SiOC, MSQ, porous MSQ, porous SiCOH or the like.
  • (Step 2)
  • In STEP 2, H2 gas is fed into the processing container 1 to condition the processing container 1. The conditioning may be performed by introducing H2 gas from the gas source 19 into the processing container 1 through the gas feeding pipes 15 b and 15 b 1 and the gas diffusion space 12 and gas discharge holes 13 of the shower head 11. A flow rate of H2 gas is substantially proportional to an area of the wafer W (there is a need to adjust the flow rate of H2 gas depending on the volume of the processing container 1 or capability of the exhauster 35), which is similar to a subsequent film forming step. For example, if the wafer W having a diameter of 100 mm is processed, the flow rate of H2 gas may be set to fall within a range of 12 sccm (mL//min) to 64 sccm (mL/min). Since the conditioning can stabilize the internal temperature, pressure and atmosphere of the processing container 1, a desired ZrBx film can be formed in a subsequent film forming step. In addition, the conditioning can decrease a deviation of process between wafers. The conditioning step of STEP 2 is optional but is preferably performed since it can stabilize conditions of the film forming process and maintain uniformity of process between wafers.
  • (Step 3)
  • In STEP 3 as a film forming step, a ZrBx film 87 is formed on the surface of the insulating film 81 using a CVD, as shown in FIG. 5. That is, this step is a step of feeding a mixture gas of H2 gas and Zr(BH4)4 gas into the processing container 1 and depositing the ZrBx film 87 on the surface of the insulating film 81. In STEP 3, the H2 gas is fed from the gas source 19 into the raw material container 21 via the gas feeding pipe 15 a while controlling its flow rate by means of the mass flow controller 17 a. At this time, it is preferable to cool and maintain the interior of the raw material container 21 within a temperature range in which solid Zr(BH4)4 can be stabilized, for example, within a temperature range of −15° C. to 5° C., so that a useless decomposition side reaction cannot occur in the raw material container 21. If Zr(BH4)4 is stabilized by the H2 gas, it may be maintained at a temperature of 45° C. or less at which no significant decomposition reaction occurs. Solid raw material Zr(BH4)4 is evaporated by contact with the introduced H2 gas in the raw material container 21. Then, film forming gas, that is, a mixture gas of H2 gas and Zr(BH4)4 gas, is introduced into the processing container 1 through the gas feeding pipes 15 c and 15 c 1 and the gas diffusion space 12 and gas discharge holes 13 of the shower head 11 and fed to the wafer W. This results in formation of the ZrBx film 87 to cover the surface of the insulating film 81 in the processing container 1 using a thermal CVD.
  • <Film Formation Conditions>
  • Now, preferred conditions for the formation of the ZrBx film using the CVD in STEP 3 will be described in detail.
  • (Film Forming Gas)
  • In the film forming method according to this embodiment, a mixture gas of H2 gas and Zr(BH4)4 gas is used as a film forming gas. A flow rate of H2 gas is not particularly limited but may be properly changed depending on the volume of the processing container 1 or a size of the wafer W. For example, if a wafer W having a diameter of 100 mm is processed, the flow rate of H2 gas may be preferably set to fall within a range of 12 sccm (mL//min) to 64 sccm (mL/min), more preferably a range of 20 sccm (mL//min) to 40 sccm (mL/min). In addition, a flow rate of Zr(BH4)4 gas is not particularly limited but may be properly changed depending on the volume of the processing container 1 or a size of the wafer W. For example, if a wafer W having a diameter of 100 mm is processed, the flow rate of Zr(BH4)4 gas may be preferably set to fall within a range of 3 sccm (mL//min) to 16 sccm (mL/min), more preferably a range of 5 sccm (mL//min) to 8 sccm (mL/min).
  • A ratio of flow rates of the film forming gas is an important factor in maintaining a B/Zr ratio of the ZrBx film within a range appropriate as a barrier film (that is, x=1.8 to 2.5). In this respect, a volume ratio of flow rates of the H2 gas and Zr(BH4)4 gas (H2/M(BH4)4 ratio) may be 2 or more, preferably 2.5 to 10, more preferably 3.3 to 7.7. If the H2/M(BH4)4 ratio is less than 2, x in the ZrBx film increases (that is, B becomes excessive) and accordingly the film is greatly deviated from a proper stoichiometric ratio, which results in a low quality barrier film. On the contrary, if the H2/M(BH4)4 ratio exceeds 10, x in the ZrBx film approaches a stoichiometric ratio of 2 but a film forming rate becomes low providing low practicability.
  • In the film forming apparatus 100 according to this embodiment, by evaporating solid raw material Zr(BH4)4 using the H2 gas under a stable temperature environment in the raw material container 21 having the temperature regulator 23, the Zr(BH4)4 gas can be fed into the processing container 1 with little decomposition side reaction while easily adjusting the H2/Zr(BH4)4 ratio to 2 or more. For example, assuming that P1 is a total pressure which is an addition of vapor pressures of H2 gas and Zr(BH4)4 gas at a maintenance temperature in the raw material container 21, P2 is a vapor pressure of Zr(BH4)4 gas and F1 is a flow rate of H2 gas, a flow rate F2 of the evaporated Zr(BH4)4 gas may be expressed by the following chemical formula (i).

  • F2=[P2/(P1−P2)]×F1   (i)
  • As apparent from this formula, the flow rate F2 of the Zr(BH4)4 gas can be determined by adjusting the flow rate F1 of the H2 gas and the total pressure P1 in the raw material container 21, and accordingly the H2/Zr(BH4)4 ratio can be easily controlled.
  • (Processing Pressure)
  • A processing pressure in the ZrBx film forming process is set to, for example, 10 Pa to 300 Pa, preferably 25 Pa to 100 Pa, more preferably 30 Pa to 70 Pa. A film forming speed tends to increase as the processing pressure increases, and the film forming speed tends to decrease as the processing pressure decreases. Therefore, if the processing pressure is lower than 10 Pa, the film forming speed may not be sufficient. On the contrary, if the processing pressure exceeds 300 Pa, the film forming speed may be too high, which may result in a B/Zr ratio exceeding 2.5 and hence peeling out of the ZrBx film.
  • (Processing Temperature)
  • A processing temperature (wafer W heating temperature) in the ZrBx film forming process is set to, for example, 160° C. to 300° C., preferably 180° C. to 250° C. The film forming speed tends to increase as the processing temperature increases, and the film forming speed tends to decrease as the processing temperature decreases. Therefore, if the wafer W heating temperature is lower than 160° C., the film forming speed may not be sufficient, which may result in low throughput. On the contrary, if the wafer W heating temperature exceeds 300° C., the film forming speed may be too high, which may result in a B/Zr ratio exceeding 2.5 and hence peeling out of the ZrBx film.
  • In the film forming apparatus 100, by combining the conditions of the above-mentioned ranges of gas flow rate, processing pressure and processing temperature, the ZrBx film can be formed on a Cu film at a speed of 3 nm/min to 80 nm/min, or on SiO2 film at a speed of 1 nm/min to 25 nm/min, for example. The film formation conditions may be stored as recipes in the storage 73 of the control unit 70. Then, the controller 71 may read the recipes and send control signals to end devices of the film forming apparatus 100, so that the film forming process can be performed under desired conditions in the film forming apparatus 100.
  • The ZrBx film 87 formed through the above-described steps STEP 1 to STEP 3 can act as a barrier film to prevent Cu from being diffused into the insulating film 81 after the opening 83 is filled with a Cu wiring or a Cu plug. The thickness of the ZrBx film 87 is, for example, 0.5 to 7 nm, preferably 1 to 3 nm since it can maintain barrier capability and suppress an increase in a RC product.
  • In addition, the film forming method according to this embodiment provides good step coverage. For example, assuming that TT is a thickness of the ZrBx film 87 formed on portions other than the opening 83 of the insulating film 81 in FIG. 5 (top film thickness), TS is a thickness of the ZrBx film 87 formed on a side of the opening 83 (side film thickness), and TB is a thickness of the ZrBx film 87 formed on the bottom of the opening 83 (bottom film thickness), the film may be formed to establish a relationship of 0.8×TT≦TS and a relationship of 0.8×TT≦TB.
  • In addition, the ZrBx film 87 formed by the film forming method of this embodiment has good adhesion with the insulating film 81. In addition, the ZrBx film 87 has a relatively higher resistance if it is deposited on an insulating film and relatively lower resistance if it is deposited on a conductive film. For example, if a metal film (not shown) of a lower layer wiring such as a Cu film is exposed to the bottom of the opening 83, the metal film can be electrically conducted with a wiring buried in the opening 83 even with the ZrBx film 87 interposed therebetween.
  • In addition to the steps STEP 1 to STEP 3, the film forming method of this embodiment may include any other steps such as, for example, a step of modifying the surface of the insulating film 81, a sputtering step by Ar plasma, etc.
  • Next, results of experiments forming the basis of the present disclosure will be described,
  • (Examination on Processing Temperature)
  • ZrBx films were formed on different base films while changing a processing temperature. The processing temperature was set to 160° C., 200° C., 250° C. or 300° C. A flow rate of film forming gas was set to 20 mL/min (sccm) for H2 gas and 6 mL/min (sccm) for Zr(BH4)4 gas. A H2/Zr(BH4)4 ratio was 3.3. A processing pressure was set to 50 Pa. The base films used were a Ta film, a Cu film, a low-k film (CORAL (trade mark) available from Novellus Company) and a SiO2 film. FIGS. 6 to 9 are graphs showing the results at processing temperatures of 160° C., 200° C., 250° C. and 300° C., respectively. In addition, since a film forming speed was too high in a preliminary experiment, the flow rate of the Zr(BH4)4 gas was set to 2.6 mL/min (sccm) only for the processing temperature of 300° C. In FIGS. 6 to 9, the horizontal axis represents film formation time [min], and film thickness [nm] on the vertical axis was plotted for each base film. The film thickness was measured by a scanning electron microscope (SEM) if it was relatively large (about 15 nm or more) and was measured by fluorescent X-ray analysis (XRF) if it was relatively small (below about 15 nm).
  • First, from FIGS. 6 and 9, it can be seen that a film forming speed for any base film is too low for the processing temperature of 160° C. and conversely is too high for 300° C. (where the flow rate of Zr(BH4)4 gas is half of those for other processing temperatures), which is inappropriate to form the ZrBx film at a thickness of 0.5 to 9 nm to be used as a barrier film. In comparison, from FIGS. 7 and 8, it can be seen that the processing temperature of 200° C. to 250° C. is appropriate to form the ZrBx film at a thickness of several to several tens nm In addition, it is considered that a processing temperature slightly lower than 200° C. is also preferable to form the ZrBx film at a thickness of 1 to 3 nm targeted for a barrier film.
  • Based on the above results, ZrBx films were formed on different base films with a processing temperature fixed at 180° C. The base films used were a Cu film, an Ru film, a low-k film (CORAL (trade mark) available from Novellus Company), a TiN film, a SiN film, a SiC film and a SiO2 film. A flow rate of film forming gas was set to 20 mL/min (sccm) for H2 gas and 6 mL/min (sccm) for Zr(BH4)4 gas. A H2/Zr(BH4)4 ratio was 3.3. A processing pressure was set to 50 Pa. In graphs of FIGS. 10 and 11, the horizontal axis represents film formation time [min] and film thickness [nm] on the vertical axis was plotted for each base film. FIG. 10 shows the results of measurement of film thickness by a scanning electron microscope (SEM) and FIG. 11 shows the results of measurement of film thickness by fluorescent X-ray analysis (XRF). From FIGS. 10 and 11, it can be seen that the thickness of the ZrBx film increases substantially in proportion to film formation time within a thickness range of 0.5 to 20 nm Therefore, it can be seen that the ZrBx film can be formed with good controllability at a thickness of 1 to 3 nm targeted for a barrier layer if the film formation temperature falls within the range of 180° C. to 250° C.
  • (Examination on Processing Temperature)
  • ZrBx films were formed using a Ta film and a SiO2 film as base films while changing a processing pressure to 25 Pa, 50 Pa or 100 Pa. A flow rate of film forming gas was set to 20 mL/min (sccm) for H2 gas and 6 mL/min (sccm) for Zr(BH4)4 gas. A H2/Zr(BH4)4 ratio was 3.3. A processing temperature was set to 250° C. and film forming time was set to 5 minutes. As a result, although metallic-lustering ZrBx films could be formed on the base films at any processing pressure, there were some cases where the ZrBx films were peeled out at 100 Pa due to an excessive amount of film formation. In addition, since a film forming speed tends to increase with an increase in the processing pressure, it is considered that a processing pressure is preferably 100 Pa or less which does not significantly increase the film forming speed in view of the controllability of the thickness of the ZrBx film. Accordingly, from the result of this experiment, although the processing pressure preferably falls within a range of 25 Pa to 100 Pa in forming the ZrBx film, it is considered that the processing pressure most preferably falls within a range of 30 Pa to 70 Pa.
  • (Examination on Flow Rate of Raw Material Gas)
  • ZrBx films were formed using Ta, Cu and SiO2 films as base films with a flow rate of H2 gas fixed at 20 mL/min (sccm) and a flow rate of Zr(BH4)4 gas set to 2.6 mL/min (sccm) [H2/Zr(BH4)4 ratio: 7.7], 6 mL/min (sccm) [H2/Zr(BH4)4 ratio: 3.3] or 15.5 mL/min (sccm) [H2/Zr(BH4)4 ratio: 1.3]. All processing pressures were set to 50 Pa. A processing temperature was set to 250° C. and film forming time was set to 5 minutes. As a result, metallic-lustering ZrBx films could be formed on the base films at any flow rate of raw material gas.
  • (Examination on Film Formation Conditions)
  • Based on the results of the experiment for the processing temperature, processing pressure and flow rate of raw material gas, film formation conditions were examined. ZrBx films were formed on different base films while changing a flow rate and pressure of film forming gas (H2 gas and Zr(BH4)4 gas). Ta, Cu and SiO2 films were used as the base films. A processing temperature was set to 200° C. The flow rate of film forming gas was fixed at 20 mL/min (sccm) for H2 gas and set to 2.6 mL/min (sccm) or 6 mL/min (sccm) for Zr(BH4)4 gas. An processing pressure was set to 25 Pa or 50 Pa.
  • Here, film formation conditions were set as follows.
  • Standard conditions (Std): Combination of a flow rate of 6 mL/min (sccm) for Zr(BH4)4 gas and a processing pressure of 50 Pa.
  • Low pressure conditions (LP): Combination of a flow rate of 6 mL/min (sccm) for Zr(BH4)4 gas and a processing pressure of 25 Pa.
  • Low raw material conditions (LS): Combination of a flow rate of 2.6 mL/min (sccm) for Zr(BH4)4 gas and a processing pressure of 50 Pa.
  • In the graph of FIG. 12, the horizontal axis represents film formation time [min] and film thickness [nm] on the vertical axis was plotted for each base film. In the bar graph of FIG. 13, the horizontal axis represents a type of base film and the vertical axis represents a film forming speed. From FIG. 12, it can be seen that the thickness of the ZrBx film tends to increase with an extension of film forming time and shows a big difference depending on the type of base film. In addition, from FIG. 13, it can be seen that a film forming speed is higher in the low pressure conditions (LP) than in the low raw material conditions (LS) for any base film and the standard conditions (Std) provides the highest film forming speed. Thus, the film forming speed can be adjusted depending on the processing pressure and the flow rate of Zr(BH4)4 gas. In addition, it can be seen that the standard conditions where the flow rate of Zr(BH4)4 gas is 6 mL/min (sccm) and the processing pressure is 50 Pa are most preferable in view of the film forming speed.
  • (Analysis on Film Component)
  • Next, an analysis of components of ZrBx films formed at a thickness of 100 nm or more on Ta and SiO2 films using the film forming apparatus 100 was made by X-ray photoelectron spectroscopy (XPS). The ZrBx films were formed at a processing temperature of 200° C. for 15 minutes, a processing temperature of 250° C. for 5 minutes, or a processing temperature of 300° C. for 2 minutes. A flow rate of H2 gas, a flow rate of Zr(BH4)4 gas and a processing pressure were set to 20 mL/min (sccm), 6 mL/min (sccm) and 50 Pa, respectively. In addition, an analysis of samples with their surface layers removed by Ar sputtering to remove natural oxide films formed thereon was made.
  • FIG. 14 is a chart showing a result of XPS analysis on a ZrBx film formed on a SiO2 film at a processing temperature of 250° C. for 5 minutes. From FIG. 14, it can be seen from the sample subjected to Ar sputtering that the interior of the ZrBx film is nearly formed by ZrBx although the outermost surface of the ZrBx film (a surface not subjected to Ar sputtering) has a peak of ZrO2 or Zr(OH)x and is oxidized. In addition, FIG. 15 shows a B/Zr ratio and an O/Zr ratio of a ZrBx film formed under the conditions of different temperatures and types of base films (SiO2 and Ta films). From FIG. 15, it can be confirmed that the B/Zr ratio of the ZrBx film falls within a range of 2.1 to 2.5, which is close to a proper stoichiometric ratio, within a processing temperature range of 200° C. to 300° C., which is one of the experiment conditions. In addition, the content of oxygen in the ZrBx film was about 5%.
  • (Evaluation of Step Coverage)
  • Next, step coverage was evaluated by forming a ZrBx film on a SiO2 film having a hole with an opening diameter of 120 nm and an aspect ratio of 1.5 to 4 or a trench with an opening width of 120 nm and an aspect ratio of 1.5 to 4. The ZrBx film was formed at a processing temperature of 200° C. for 15 minutes (a desired film thickness is 20 to 21 nm), or a processing temperature of 250° C. for 5 minutes (a desired film thickness is 125 to 130 nm). A flow rate of H2 gas, a flow rate of Zr(BH4)4 gas and a processing pressure were set to 20 mL/min (sccm), 6 mL/min (sccm) and 50 Pa, respectively.
  • FIG. 16 shows the results of measurement of step coverage for a hole having an aspect ratio of 1.5 to 4. FIG. 17 shows the results of measurement of step coverage for a trench having an aspect ratio of 1.5 to 4. From FIG. 16 and FIG. 17, it can be seen that a ratio (TS/TT) of side film thickness (TS) to top film thickness (TT) is 0.8 or more for the hole and 0.8 or more for the trench, and a ratio (TB/TT) of bottom film thickness (TB) to top film thickness (TT) is 0.9 or more for the hole and 0.85 or more for the trench. Thus, it is confirmed that the film forming method of this embodiment provide good step coverage.
  • <Operation>
  • In the film forming method of this embodiment, H2 gas is used as a carrier gas to evaporate and guide solid raw material Zr(BH4)4 into the processing container 1. The H2 gas acts as a carrier gas simply and has a function of maintaining the processing container 1 under a reducing atmosphere and approaching a B/Zr ratio of a Zr(BH4)4 film formed in connection with a film forming reaction to a proper stoichiometric ratio. That is, typically, a thermal decomposition reaction such as the following chemical formula 1 is generated on a wafer W heated to a predetermined temperature in forming a film using a thermal CVD with Zr(BH4)4 gas as raw material.

  • Zr(BH4)4→ZrB2+B2H6+5H2   [Chemical Formula 1]
  • However, in the film forming step STEP 3 in the film forming method of this embodiment, it is considered that a thermal decomposition reaction such as the following chemical formula 2 is generated on a wafer W heated to a predetermined temperature, since excessive H2 gas and Zr(BH4)4 gas are mixed and introduced into the processing container 1.

  • Zr(BH4)4+nH2→ZrB2+B2H6+(5+n)H2   [Chemical Formula 2]
  • Although the role of H2 in Chemical Formula 2 is not necessarily definitely elucidated, it is considered that the excessive existence of H2 with regard to Zr(BH4)4 promotes the generation of B6H6 (consumption of boron), thereby suppressing excessive boron from remaining in the ZrBx film. In the film forming method of this embodiment, in order to sufficiently draw such an effect of the addition of H2 gas, a volume ratio of the flow rates of the H2 gas and Zr(BH4)4 gas (H2/M(BH4)4 ratio) is set to 2 or more, preferably 2.5 to 10, more preferably 3.3 to 7.7. This can achieve a ZrBx film having a B/Zr ratio of 1.8 to 2.5 and good electrical properties and barrier-capability, which was difficult to achieve using conventional thermal CVD methods using a processing temperature of 300° C.
  • As described above, in the film forming method of this embodiment, by evaporating solid raw material Zr(BH4)4 using H2 gas as a carrier gas and introducing a mixture gas of H2 gas and Zr(BH4)4 gas having a volume ratio of flow rates (H2/Zr(BH4)4) of 2 or more into the processing container 1, it is possible to form a ZrBx film having a proper range of B/Zr ratio (that is, x is 1.8 to 2.5) close to a stoichiometric ratio without requiring remote plasma. This makes it possible to simplify a configuration of a film forming apparatus as compared to conventional methods requiring remote plasma.
  • In addition, according to the film forming method of this embodiment, it is possible to achieve a ZrBx film 87 formed uniformly at a predetermined thickness on an insulating film 81. In addition, it is possible to achieve a ZrBx film 87 having good step coverage and formed substantially at a uniform thickness in an opening 83 which is formed in an insulating film 81 and has a large aspect ratio, i.e., a large ratio of depth to opening diameter. The ZrBx film 87 obtained thus has good electrical properties and good barrier-capability to Cu diffusion. In other words, the ZrBx film 87 formed according to the film forming method of this embodiment can secure electrical connection between wirings and effectively prevent Cu from being diffused from a copper wiring into the insulating film 81 in a semiconductor device. Accordingly, by forming the ZrBx film 87 as a barrier film according to the film forming method of this embodiment, it is possible to secure reliability of the semiconductor device.
  • [Application to Damascene Process]
  • Next, an application of the film forming method of this embodiment to a damascene process will be described with reference to FIGS. 18 to 20. FIG. 18 is a sectional view of a main portion of a wafer W, showing a stack before a ZrBx film 87 is formed. On an interlayer insulating film 101 as a base wiring layer is formed an etching stopper film 102, an interlayer insulating film 103 as a via layer, an etching stopper film 104 and an interlayer insulating film 105 as a wiring layer in order. In addition, a lower wiring layer 106 in which Cu is buried is formed on the interlayer insulating film 101. The etching stopper films 102 and 104 have barrier-capability to prevent copper from being diffused. The interlayer insulating films 103 and 105 are low-k films formed using, for example, a CVD. The etching stopper films 102 and 104 may be silicon carbide (SiC) films, silicon nitride (SiN) films, silicon carbonitride (SiCN) films or the like formed using, for example, a CVD.
  • As shown in FIG. 18, openings 103 a and 105 a are formed with their respective patterns in the interlayer insulating films 103 and 105, respectively. These openings 103 a and 105 a may be formed by etching the interlayer insulating films 103 and 105 into predetermined patterns using a photolithograpy process in a typical manner. The opening 103 a is a via hole and the opening 105 is a wiring groove. The opening 103 a reaches the top of the lower wiring layer 106 and the opening 105 a reaches the top of the etching stopper film 104.
  • Next, FIG. 19 shows the stack of FIG. 18 under a state after the ZrBx film 87 is formed using the film forming apparatus 100 by means of a CVD. In the film forming process, by performing a thermal CVD under the above film formation conditions, it is possible to form a ZrBx film 87 having good adhesion to the interlayer insulating films 103 and 105 at a uniform thickness and having good step coverage even when the openings 103 a and 105 a have high aspect ratios.
  • Next, as shown in FIG. 20, a Cu film 107 is formed to be filled in the openings 103 a and 105 a by depositing Cu on the interlayer insulating film 105. The Cu film 107 may be formed using, for example, a CVD, a PVD, a plating method or the like. The Cu film 107 filled in the opening 103 a becomes a Cu plug and the Cu film 107 filled in the opening 105 becomes a Cu wiring. Subsequently, an excess of Cu film 107 is removed through a planarization process by a chemical mechanical polishing (CMP) in a typical manner, thereby completing a multilayer wiring structure having the Cu plug and the Cu wiring.
  • In the multilayer wiring structure formed thus, since the ZrBx film 87 has good barrier-capability, it is possible to prevent Cu from being diffused from the Cu film 107 into the interlayer insulating films 103 and 105. In addition, since the ZrBx film 87 becomes a low resistant film by forming it on the lower wiring layer 106 at the bottom of the opening 103 a, it is possible to secure an electrical contact between the Cu film 107 filled in the openings 103 a and 105 a and the lower wiring layer 106. Thus, it is possible to manufacture electronic components having a multilayer wiring structure having high reliability.
  • Although it has been illustrated in the above that the film forming method is applied to a dual damascene process, this method may be equally applied to a single damascene process.
  • Although the exemplary embodiment of the present disclosure has been described and shown, the present disclosure may be modified in various ways without be limited to the disclosed embodiment. For example, although the disclosed embodiment has been illustrated with a semiconductor wafer as a substrate to be processed, the present disclosure is not limited thereto but may be applied to other substrates such as a glass substrate, an LCD substrate, a ceramics substrate and so on. In addition, although the disclosed embodiment has been illustrated with the case where M in the MBx film is Zr, a HfBx film including Hf as M (which may be typically represented by a HfB2 film) may be formed in the same manner because of its similar chemical property.
  • According to the film forming method of the present disclosure, by evaporating solid raw material Zr(BH4)4 using H2 gas as a carrier gas and introducing a mixture of H2 gas and Zr(BH4)4 gas having a volume ratio of flow rates (H2/Zr(BH4)4) of 2 or more into the processing container, it is possible to form a MBx film having a proper range of B/Zr ratio (that is, x is 1.8 to 2.5) close to a stoichiometric ratio using a thermal CVD without requiring remote plasma. This allows significant simplification of a configuration of a film forming apparatus as compared to conventional methods requiring remote plasma.
  • In addition, according to the film forming method of the present disclosure, it is possible to achieve a MrBx film formed uniformly at a predetermined thickness on an insulating film. In addition, it is possible to achieve a MBx film having good step coverage and formed substantially at a uniform thickness in an opening which is formed in an insulating film and has a large aspect ratio, i.e., a large ratio of depth to opening diameter. The MBx film obtained thus has good electrical properties and good barrier-capability to Cu diffusion. In other words, the MBx film formed according to the film forming method of the present disclosure can secure an electrical connection between wirings and effectively prevent Cu from being diffused from a copper wiring into the insulating film in a semiconductor device. Accordingly, by forming the MBx film as a barrier film according to the film forming method of the present disclosure, it is possible to secure reliability of the semiconductor device.
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosures. Indeed, the novel methods and apparatuses described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosures. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosures.

Claims (5)

1-7. (canceled)
8. An apparatus for forming a film, comprising:
a processing container which can be made vacuous;
a loading table which is placed in the processing container and loads an object to be processed;
a heater which heats the object loaded on the loading table to a predetermined temperature;
an exhauster which exhausts the interior of the processing container in a pressure reducing manner;
a raw material container holding solid raw material, M(BH4)4 (where M is Zr or Hf);
a temperature regulator which cools or heat-insulates the solid raw material in the raw material container;
a H2 gas feeder which feeds H2 gas into the raw material container; and
a gas feeding pipe through which a mixture gas of H2 gas and M(BH4)4 gas is fed from the raw material container into the processing container;
wherein the mixture gas of H2 gas and M(BH4)4 gas is introduced while controlling a flow rate of the M(BH4)4 gas evaporated by the feeding of the H2 gas and a volume ratio of flow rates (H2/M(BH4)4) of H2 gas and M(BH4)4 gas, by adjusting a flow rate of H2 gas fed into the raw material container and an internal pressure of the raw material container, and a MBx film (where M is Zr or Hf and x is 1.8 to 2.5) is deposited on the object using a thermal CVD.
9. The apparatus of claim 8, wherein an internal pressure of the processing container is set to 10 Pa or more to 300 Pa or less when the MBx film is deposited.
10. The apparatus of claim 8, wherein a temperature of the object is set to 160° C. or more to 300° C. or less when the MBx film is deposited.
11. The apparatus of claim 8, wherein the H2 gas is fed while the solid raw material in the raw material container is cooled and maintained in a range of −15° C. to 5° C.
US14/170,694 2010-10-15 2014-02-03 Film forming apparatus Abandoned US20140174363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/170,694 US20140174363A1 (en) 2010-10-15 2014-02-03 Film forming apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010232276A JP5627984B2 (en) 2010-10-15 2010-10-15 Film forming method, film forming apparatus and semiconductor device manufacturing method
JP2010-232276 2010-10-15
US13/273,594 US8679978B2 (en) 2010-10-15 2011-10-14 Method for forming a film including Zr, Hf or the like, and method for manufacturing a semiconductor device using the same
US14/170,694 US20140174363A1 (en) 2010-10-15 2014-02-03 Film forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/273,594 Division US8679978B2 (en) 2010-10-15 2011-10-14 Method for forming a film including Zr, Hf or the like, and method for manufacturing a semiconductor device using the same

Publications (1)

Publication Number Publication Date
US20140174363A1 true US20140174363A1 (en) 2014-06-26

Family

ID=45934515

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/273,594 Expired - Fee Related US8679978B2 (en) 2010-10-15 2011-10-14 Method for forming a film including Zr, Hf or the like, and method for manufacturing a semiconductor device using the same
US14/170,694 Abandoned US20140174363A1 (en) 2010-10-15 2014-02-03 Film forming apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/273,594 Expired - Fee Related US8679978B2 (en) 2010-10-15 2011-10-14 Method for forming a film including Zr, Hf or the like, and method for manufacturing a semiconductor device using the same

Country Status (4)

Country Link
US (2) US8679978B2 (en)
JP (1) JP5627984B2 (en)
KR (1) KR101374038B1 (en)
CN (1) CN102453886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667418A (en) * 2015-06-05 2018-02-06 应用材料公司 For reducing the heteropical Improvement type device of substrate temperature

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504793B2 (en) * 2009-09-26 2014-05-28 東京エレクトロン株式会社 Heat treatment apparatus and cooling method
US9513003B2 (en) * 2010-08-16 2016-12-06 Purpose Company Limited Combustion apparatus, method for combustion control, board, combustion control system and water heater
CN103811393B (en) * 2012-11-07 2016-12-07 北京北方微电子基地设备工艺研究中心有限责任公司 Electrostatic chuck and plasma processing device for bearing wafer
TWI559381B (en) * 2013-02-19 2016-11-21 應用材料股份有限公司 Atomic layer deposition of metal alloy films
CN106922071B (en) * 2015-12-25 2019-10-01 中微半导体设备(上海)股份有限公司 A kind of spray head heating-cooling device and method for plasma reaction device
JP6936027B2 (en) * 2017-03-09 2021-09-15 ルネサスエレクトロニクス株式会社 Semiconductor devices and their manufacturing methods
JP7115688B2 (en) * 2019-01-25 2022-08-09 株式会社デンソー Film forming apparatus and semiconductor device manufacturing method
US11502160B2 (en) * 2020-03-02 2022-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for forming metal-insulator-metal capacitors
KR20220112094A (en) * 2021-02-03 2022-08-10 삼성전자주식회사 Process apparatus comprising gas supply and method for operating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100108690A (en) * 2009-03-30 2010-10-08 이득규 Flow rate controlling apparatus using gas pressure control in liquid material supplying apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202860A (en) * 1988-02-09 1989-08-15 Oki Electric Ind Co Ltd Semiconductor device
JPH01321657A (en) * 1988-06-08 1989-12-27 Fairchild Semiconductor Corp High perfurmance interconnection system for integrated circuit
JP3225706B2 (en) * 1993-08-25 2001-11-05 ソニー株式会社 Method of forming barrier metal layer in semiconductor device
US5856236A (en) * 1996-06-14 1999-01-05 Micron Technology, Inc. Method of depositing a smooth conformal aluminum film on a refractory metal nitride layer
JP2004327534A (en) * 2003-04-22 2004-11-18 Nec Kansai Ltd Organic metal material vapor phase epitaxy device
JP4480516B2 (en) * 2004-08-23 2010-06-16 株式会社アルバック Formation method of barrier film
JP4943110B2 (en) * 2006-10-13 2012-05-30 株式会社アルバック Semiconductor device and manufacturing method of semiconductor device
JP4943111B2 (en) * 2006-10-13 2012-05-30 株式会社アルバック Manufacturing method of semiconductor device
KR101064354B1 (en) * 2006-11-09 2011-09-14 가부시키가이샤 알박 Barrier film forming method
KR20090096549A (en) * 2007-01-04 2009-09-10 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 Zirconium and hafnium boride alloy templates on silicon for nitride integration applications
JP4960193B2 (en) * 2007-10-12 2012-06-27 株式会社アルバック Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP2010180114A (en) * 2009-02-06 2010-08-19 Meijo Univ METHOD FOR GROWING GaN-BASED COMPOUND SEMICONDUCTOR AND SUBSTRATE WITH GROWTH LAYER

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100108690A (en) * 2009-03-30 2010-10-08 이득규 Flow rate controlling apparatus using gas pressure control in liquid material supplying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667418A (en) * 2015-06-05 2018-02-06 应用材料公司 For reducing the heteropical Improvement type device of substrate temperature

Also Published As

Publication number Publication date
CN102453886A (en) 2012-05-16
US20120094483A1 (en) 2012-04-19
JP2012089546A (en) 2012-05-10
US8679978B2 (en) 2014-03-25
KR20120039491A (en) 2012-04-25
KR101374038B1 (en) 2014-03-12
JP5627984B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
US8679978B2 (en) Method for forming a film including Zr, Hf or the like, and method for manufacturing a semiconductor device using the same
US20200251384A1 (en) Deposition of aluminum oxide etch stop layers
US8440563B2 (en) Film forming method and processing system
US8247321B2 (en) Method of manufacturing semiconductor device, semiconductor device, electronic instrument, semiconductor manufacturing apparatus, and storage medium
JP5487748B2 (en) Barrier layer, film forming method and processing system
US20090186481A1 (en) Method for integrating selective low-temperature ruthenium deposition into copper metallization of a semiconductor device
US7432195B2 (en) Method for integrating a conformal ruthenium layer into copper metallization of high aspect ratio features
KR20220079671A (en) Gap Fill Deposition Process
US7763311B2 (en) Method for heating a substrate prior to a vapor deposition process
KR20180101226A (en) Method of manufacturing ruthenium wiring
US20140363971A1 (en) Manganese oxide film forming method
US9779950B2 (en) Ruthenium film forming method, film forming apparatus, and semiconductor device manufacturing method
US10096548B2 (en) Method of manufacturing Cu wiring
US20080241379A1 (en) Method and apparatus for reducing substrate temperature variability
TWI663277B (en) Film-forming method and film-forming device for ruthenium film, and method for manufacturing semiconductor device
JP2017050304A (en) Semiconductor device manufacturing method
JP6584326B2 (en) Manufacturing method of Cu wiring
JP6253214B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP2017135237A (en) MANUFACTURING METHOD OF Cu WIRING AND MANUFACTURING SYSTEM OF Cu WIRING
US20120211890A1 (en) Method for forming metal thin film, semiconductor device and manufacturing method thereof
JP5938164B2 (en) Film forming method, film forming apparatus, semiconductor device and manufacturing method thereof
JP2019031746A (en) Tungsten film forming method and film forming device
WO2022209982A1 (en) Method for forming ruthenium film and processing apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION