US20140120051A1 - Skin Cosmetic - Google Patents

Skin Cosmetic Download PDF

Info

Publication number
US20140120051A1
US20140120051A1 US14/150,098 US201414150098A US2014120051A1 US 20140120051 A1 US20140120051 A1 US 20140120051A1 US 201414150098 A US201414150098 A US 201414150098A US 2014120051 A1 US2014120051 A1 US 2014120051A1
Authority
US
United States
Prior art keywords
component
urethane resin
mass
skin cosmetic
cosmetic according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/150,098
Inventor
Takayuki Omura
Mihoshi Yokoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to US14/150,098 priority Critical patent/US20140120051A1/en
Assigned to SHISEIDO COMPANY, LTD. reassignment SHISEIDO COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOKOO, MIHOSHI, OMURA, TAKAYUKI
Publication of US20140120051A1 publication Critical patent/US20140120051A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/2865Compounds having only one primary or secondary amino group; Ammonia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3212Polyhydroxy compounds containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5424Polymers characterized by specific structures/properties characterized by the charge anionic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5428Polymers characterized by specific structures/properties characterized by the charge amphoteric or zwitterionic

Definitions

  • the present invention relates to a skin cosmetic which contains an aqueous urethane resin liquid dissolving or dispersing an anionic or amphoteric urethane resin in water. More specifically, the invention relates to a cosmetic for skin which exerts a feeling of ameliorating effects to skin wrinkles and sagging by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin, and squeakiness.
  • the present inventors have proposed a wrinkle-ameliorating cosmetic containing a combination of an aqueous dispersion of a flexible polyurethane having a small shrinkage degree and an acrylic emulsion (see Patent Reference 3).
  • the said cosmetic has an excellent effect in ameliorating wrinkles, and can reduce a sticky-feeling and a shiny-feeling in use, however, none of special studies have been conducted for ameliorating skin sagging (i.e., for improving a tension of skin) and for improving in use such as preventing the twisting of the cosmetic applied on the skin.
  • the interest in antiaging is rapidly increasing, and the demand for an improved feeling of ameliorating effects to skin wrinkles and sagging and an improved feeling in use are increasing more than before; and it is desired to develop products capable of fully satisfying these requirements.
  • the present invention has been made with a view to meeting the above-mentioned need, and its object is to provide a skin cosmetic which exerts a feeling of ameliorating effect to skin wrinkles, a feeling of ameliorating effect to skin sagging (i.e., a feeling of skin-tensioning or skin-tightening effect) by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin (i.e., an excellent adhesionability of the applied cosmetic to the skin), and squeakiness.
  • the present inventors have conducted intensive studies for solving the above-mentioned problems and found that the problems could be solved by incorporating into a skin cosmetic an aqueous liquid of urethane resins dissolving or dispersing a urethane resin in water, as a film-forming composition, where the urethane resin is prepared by reacting a polyol compound with an isocyanate compound, in which said polyol compound comprises a specific monomer having a high glass transition point (high Tg) and a specific monomer having a low glass transition point (low Tg) in a specific ratio by mass (in terms of charge).
  • high Tg high glass transition point
  • low Tg low glass transition point
  • (b-1) cyclohexanedimethanol
  • (b-2) polypropylene glycol having a molecular weight of from 1000 to 3000
  • (b-3) a compound having an active hydrogen and a carboxyl group in one molecule.
  • (b-1) cyclohexanedimethanol
  • (b-2) polypropylene glycol having a molecular weight of from 1000 to 3000
  • (b-3) a compound having an active hydrogen and a carboxyl group in one molecule
  • (b-4) a compound having an active hydrogen and a tertiary amino group in one molecule.
  • a skin cosmetic which exerts a feeling of ameliorating effect to skin wrinkles, a feeling of ameliorating effect to skin sagging (i.e., a feeling of skin-tensioning effect) by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin (i.e., an excellent adhesionability of the applied cosmetic to the skin), and squeakiness.
  • the aqueous liquid of urethane resin prepared by dissolving or dispersing an anionic urethane resin or an amphoteric urethane resin into water, acts as a film-forming composition.
  • the anionic urethane resin or the amphoteric urethane resin to be used in the invention can be obtained by reacting (a) an isocyanate compound and (b) a polyol compound.
  • the isocyanate compound as component (a) is not specifically defined, including organic diisocyanate compounds, such as aliphatic diisocyanate compounds, alicyclic diisocyanate compounds, and aromatic diisocyanate compounds. One or more among these may be used.
  • the aliphatic diisocyanate compounds include ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • the alicyclic diisocyanate compounds include hydrogenated 4,4′-diphenylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (hereinafter this may be abbreviated as IPDI), and norbornane diisocyanate.
  • the aromatic diisocyanate compounds include 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, toluene diisocyanate, and naphthalene diisocyanate.
  • 4,4′-diphenylmethane diisocyanate 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, toluene diisocyanate, and naphthalene diisocyanate.
  • preferred are 1,6-hexamethylene diisocyanate, IPDI and norbornane diisocyanate as excellent in light-resistance and available at low cost.
  • polyol compound of component (b) As the polyol compound of component (b), following compounds are used in the invention: in case where an anionic urethane resin is produced, used is one comprising (b-1) cyclohexanedimethanol, especially 1,4-cyclohexanedimethanol (hereinafter this may be abbreviated as CHDM), (b-2) polypropylene glycol having a molecular weight of from 1000 to 3000 (hereinafter this may be abbreviated as, for example, PPG 1000), and (b-3) a compound having an active hydrogen and a carboxyl group in one molecule; while in case where an amphoteric urethane resin is produced, used is another one that contains (b-4) a compound having an active hydrogen and a tertiary amino group in one molecule in addition to components (b-1) to (b-3).
  • CHDM 1,4-cyclohexanedimethanol
  • PPG 1000 polypropylene glycol having a molecular weight of from
  • Component (b-1) is known as a high-glass-transition-point monomer (high-Tg monomer)
  • component (b-2) is known as a low-glass-transition-point monomer (low-Tg monomer).
  • the charge ratio (by mass) of component (b-1) to component (b-2) is defined to fall within the above range, and accordingly, the incorporation into a skin cosmetic of the aqueous liquid containing the obtained anionic or amphoteric urethane resin enable to control the hardness and elasticity of the coating film of the cosmetic applied on the skin, as well as the feeling of use, and advantageous effects of the invention can be achieved.
  • the ratio by mass of (b-1)/(b-2) is less than 0.15, then the coating film may be too much flexible or softened and may be sticky, and the cosmetic preparation is apt to twist, and its effect of enhancement of the skin-tension may be poor.
  • the ratio by mass of (b-1)/(b-2) is more than 3.0, then the coating film may be too much hardended or stiffed and it is apt to be squeaky in application to skin.
  • Component (b-3) may be any compound having at least one active hydrogen and at lest one carboxyl group in the molecule, and includes dimethylolpropionic acid (DMPA), dimethylolbutanoic acid (DMBA), and carboxyl group-containing polycaprolactonediol, but not limited thereto. One or more among these may be used.
  • DMPA dimethylolpropionic acid
  • DMBA dimethylolbutanoic acid
  • carboxyl group-containing polycaprolactonediol but not limited thereto. One or more among these may be used.
  • the method for producing the anionic urethane resin is not specifically defined, and the resin may be produced in any ordinary manner.
  • component (b) containing components (b-1) to (b-3) is reacted with component (a) excessively of the isocyanate group (NCO group) to prepare an isocyanate group-having prepolymer, and this is further polymerized to thereby produce the anionic urethane resin.
  • the anionic urethane resin has a carboxyl group in the structure thereof, and therefore can improve the dispersibility in water and the washability thereof.
  • the charge ratio (by mass) of component (a) and component (b) is preferably such that, in all the starting monomers (100% by mass), component (a) is from 30 to 70% by mass, more preferably from 40 to 60% by mass, the total amount of component (b-1) and component (b-2) is preferably from 20 to 60% by mass, more preferably from 25 to 55% by mass, and component (b-3) is preferably from 5 to 25% by mass, more preferably from 10 to 20% by mass.
  • component (b) is compound (b-4) having at least one active hydrogen and at least one tertiary amino group in the molecule, in addition to the above-mentioned components (b-1) to (b-3).
  • Component (b-4) includes N-alkyldialkanolamine compounds such as N-methyldiethanolamine (NMDEtA), and N-butyldiethanolamine; dimethylaminoethanol, etc., but not limited thereto. One or more among these may be used.
  • the method for producing the anionic urethane resin is not specifically defined, and the resin may be produced in any ordinary manner.
  • the isocyanate group-having prepolymer described above in the production method for the anionic urethane resin is reacted with component (b-4), and this is further polymerized to produce the amphoteric urethane resin.
  • the reaction sequence of component (b-3) and component (b-4) may be transposed to each other.
  • component (a), component (b-1), component (b-2) and component (b-4) are reacted with each other excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and the isocyanate group-having prepolymer is then reacted with component (b-3), and this is further polymerized to produce the intended resin.
  • the amphoteric urethane resin can be produced in a more simply and safely than before.
  • the amphoteric urethane resin has a carboxyl group and a tertiary amino group in the structure thereof, and therefore can improve the adhesionability to the skin in addition to improving the dispersibility in water and the washability thereof.
  • component (b-3) and component (b-4) when both component (b-3) and component (b-4) are reacted simultaneously with component (a), component (b-1) and component (b-2), then the carboxyl group in component (b-3) and the tertiary amino group in component (b-4) may form a salt in first to be insoluble in the reaction system, and even in the presence of the OH group, this could not more react with the isocyanate group and the intended amphoteric urethane resin could not be produced.
  • the charge ratio (by mass) of component (a) and component (b) is preferably such that, in all the starting monomers (100% by mass), component (a) is preferably from 30 to 70% by mass, more preferably from 40 to 60% by mass, the total amount of component (b-1) and component (b-2) is preferably from 20 to 60% by mass, more preferably from 25 to 55% by mass, component (b-3) is preferably from 5 to 25% by mass, more preferably from 10 to 20% by mass, and component (b-4) is preferably from 0.5 to 5.0% by mass, more preferably from 0.5 to 3.0% by mass.
  • any other polyol compound usable in ordinary urethane resin production may be optionally used in addition to the above-mentioned indispensable components (b-1) to (b-3), or (b-1) to (b-4).
  • the polyol compound include polyester polyols, polyether polyols, polycarbonate polyols, polybutadiene polyols, polyisoprene polyols, polyolefin polyols, and polyacrylate polyols, etc., and one or more among these may be used. Above all, preferred are polyester polyols and polyether polyols.
  • polyester polyol examples include those produced through polycondensation of at least one dicarboxylic acid of succinic acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, maleic acid, maleic acid, fumaric acid, phthalic acid, terephthalic acid or the like, and at least one polyalcohol of ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,8-octanediol, 1,10-decanediol, diethylene glycol, spiroglycol, trimethylolpropane or the like; and those produced through ring-opening polymerization of lactone acid.
  • polyether polyol usable examples are those produced through ring-opening addition polymerization of the polyalcohol used in producing the above-mentioned polyester polyols, and in addition to these, phenols such as bisphenol A or the like, or primary amines or secondary amines with cyclic ethers such as ethylene oxide, propylene oxide, oxetane, tetrahydrofuran or the like; and there are mentioned polyoxyethylene polyol, polyoxypropylene polyol, polyoxytetramethylene polyol, those produced through ring-opening addition polymerization of bisphenol A with at least one of propylene oxide or ethylene oxide (copolymers may be any of block copolymers or random copolymers).
  • a chain extender or a molecular weight controller may be used for the purpose of regulating the properties of the final product, urethane resin.
  • the chain extender includes low-molecular polyols, amines, but not limited thereto.
  • the low-molecular polyols include, for example, glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexanediol, spiroglycol, hydrogenated bisphenol A, neopentyl glycol, bis( ⁇ -hydroxyethoxy)benzene, and xylylene glycol; triols, such as trimethylolpropane, and glycerin.
  • the amines include ethylenediamine, propylenediamine, piperazine, hydrazine, isophoronediamine, methylene(bis-o-chloroaniline), and polypropylene glycol having an amino group at both terminals.
  • the molecular weight controller includes polypropylene glycol having an amino group at one terminal.
  • a solvent may be used.
  • an organic solvent is preferably used capable of dissolving both the starting materials and the produced polyurethane.
  • the organic solvent includes amides, such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide; ketones, such as acetone, methyl ethyl ketone; esters, such as ethyl acetate; and cellosolve acetate, cellosolve ether, etc.
  • a polymerization catalyst well known in the field of polyurethane may be used; and for example, tertiary amine catalysts, organic metal catalysts or the like may be used.
  • the tertiary amine catalysts include [2,2,2]diazabicyclooctane (DABCO), tetramethylenediamine, N-methylmorpholine, diazabicycloundecene (DBU).
  • the organic metal catalysts include dibutyltin dilaurate, etc.
  • the carboxyl group or the tertiary amino group incorporated in the structure thereof may be neutralized with a neutralizer to thereby enhance the dispersibility of the resin in water.
  • the neutralizer for the carboxyl group includes triethylamine, trimethylamine, 2-amino-2-methyl-1-propanol, triethanolamine, potassium hydroxide, sodium hydroxide, etc.
  • the neutralizer for the tertiary amino group includes, for example, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, dimethyl sulfate.
  • the anionic urethane resin or the amphoteric urethane resin preferably has a structural unit derived from ethylene oxide (EO) in the structure, from the viewpoint of the skin washability thereof.
  • EO ethylene oxide
  • the structural unit derived from EO includes an EO unit represented by the following formula (I), a propylene oxide (PO) unit represented by the following formula (II).
  • the PO unit is preferred.
  • the anionic urethane resin or the amphoteric urethane resin may have both the EO unit and the PO unit.
  • the ratio of the EO unit to the PO unit, EO unit/PO unit is, by mass, preferably within a range of from 10/0 to 2/8, more preferably from 10/0 to 4/6.
  • the recurring number, n, of the EO unit in the above formula (I) is preferably from 3 to 300, more preferably from 20 to 120.
  • n is less than 3, then the number of the EO units introduced into the urethane resin is too small, and therefore, the resin could not have sufficient hydrophilicity and could not exert sufficient skin washability.
  • n is more than 300, then the hydrophilicity of the urethane resin itself may be too strong, which is unfavorable from the viewpoint of the moisture resistance of the cosmetic preparation.
  • the recurring number, m, of the PO unit in the above formula (II) is also preferably from 3 to 300, more preferably from 20 to 120. In case where the resin contains both the EO unit and the PO unit, preferably, (n+m) is from 3 to 300, more preferably from 20 to 120.
  • ethylene oxide (EO)-derived structural unit for example, component (a), components (b-1), (b-2) and (b-3), and component (b-5) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, then the isocyanate group-having prepolymer is reacted with component (b-4), and this is further polymerized to produce the amphoteric urethane resin.
  • the reaction sequence of component (b-4) and component (b-3) may be transposed to each other in producing the resin.
  • polyethylene oxide derivative having an active hydrogen may be any one capable of introducing a structural unit derived from ethylene oxide (EO) into the structure of the anionic or amphoteric urethane resin; and not specifically indicated, it includes, for example, polyoxyethylene glycol (PEG), polyoxyethylene polyoxypropylene glycol (EO/PO block copolymer). Preferred is polyoxyethylene glycol (PEG).
  • Component (b-5) may be any of a type with an OH group introduced into both terminals; a type with an NH 2 group introduced into both terminals; a type with an OH group introduced into one terminal; or a type with an NH 2 group introduced into one terminal.
  • an anionic or amphoteric urethane resin having an EO unit in the main chain can be obtained.
  • an anionic or amphoteric urethane resin having an EO unit in the side branch or at the terminal can be obtained.
  • the molecular weight of component (b-5) is within a range of from 200 to 20,000, more preferably from 1,000 to 10,000.
  • component (b-5) When component (b-5) is used, its amount to be used (to be charged) is preferably from 1.0 to 10.0% by mass of all the starting monomers (100% by mass), more preferably from 3.0 to 8.0% by mass.
  • the anionic urethane resin or the amphoteric urethane resin may contain a polysiloxane compound for further improving the coating film smoothness.
  • the polysiloxane compound is preferably a silicone compound having a recurring number (n) of the siloxane bond (Si—O) falling within a range of from 5 to 300, more preferably from 20 to 150.
  • n is less than 5, then the proportion of the polysiloxane bond in the anionic urethane resin or the amphoteric urethane resin produced may be too small, and the preparation would be ineffective for exerting the feeling that is naturally to be attained by introduction of the polysiloxane bond; but on the other hand, when n is more than 300, then the compound may be poorly compatible with the other starting materials owing to its high hydrophobicity, and the reaction would be difficult, and in addition, since the produced urethane resin is too hydrophobic, it may detract from the adhesionability to the skin of the cosmetic preparation.
  • the polysiloxane compound may be incorporated in the structure of the urethane resin via a covalent bond, or may be in the structure as “held” and enveloped inside the urethane resin.
  • “Holding” the polysiloxane compound means that the polysiloxane compound is “strained” by the skeleton of the anionic urethane resin or the amphoteric urethane resin, or the polysiloxane compound is “entangled” in the skeleton of the anionic urethane resin or the amphoteric urethane resin. Specifically, this means that the polysiloxane compound is incorporated in the resin not bonded (by covalent bonding) to the skeleton of the urethane resin. In the state where the urethane resin holds the polysiloxane compound, the polysiloxane compound is hardly separable from the urethane resin while it is relatively movable.
  • the method for incorporating a polysiloxane compound in the urethane resin via a covalent bond is exemplarily described as follows:
  • components (b-1) to (b-3), component (a) and the polysiloxane compound having an active hydrogen are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and this is further polymerized to produce the resin.
  • amphoteric urethane resin for example, component (b-1), component (b-2), component (a), the polysiloxane compound having an active hydrogen, and component (b-3) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and the isocyanate group-having prepolymer is reacted with component (b-4), and this is further polymerized to produce the resin.
  • the reaction sequence of component (b-3) and component (b-4) may be transposed to each other to produce the resin.
  • the polysiloxane compound having an active hydrogen may be anyone capable of introducing a polysiloxane bond into the structure of the anionic urethane resin or the amphoteric urethane resin, and it includes polydialkylsiloxane-diol, polydialkylsiloxane-monool, polydialkylsiloxane-diamine, and polydialkylsiloxane-monoamine. One or more of these may be used herein.
  • the alkyl group bonding to Si of the siloxane bond in the polydialkylsiloxane-diol and others preferably has from 1 to 10 carbon atoms, more preferably from 1 to 5.
  • the number of the carbon atoms in the alkyl group bonding to Si of the individual siloxane bonds may differ.
  • the polydialkylsiloxane-diol includes polydimethylsiloxane-diol, polymethylethylsiloxane-diol.
  • the polydialkylsiloxane-diamine includes polydimethylsiloxane-diamine, polymethylethylsiloxane-diamine.
  • the polydialkylsiloxane-monoamine includes polydimethylsiloxane-monoamine, polymethylethylsiloxane-monoamine.
  • the method for making the polysiloxane compound held and enveloped inside the urethane resin is exemplarily described as follows:
  • anionic urethane resin for example, components (b-1) to (b-3), component (a) and a polysiloxane compound not having an active hydrogen are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and this is further polymerized to produce the resin.
  • component (b-1), component (b-2), component (a), a polysiloxane compound not having an active hydrogen, and component (b-3) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and the isocyanate group-having prepolymer is reacted with component (b-4), and this is further polymerized to produce the resin.
  • the reaction sequence of component (b-3) and component (b-4) may be transposed to each other to produce the resin.
  • the polysiloxane compound When the polysiloxane compound is used, its amount to be used (to be charged) is preferably from 0.1 to 5.0% by mass of all the starting monomers (100% by mass), more preferably from 0.5 to 3.0% by mass.
  • the polysiloxane compound includes a type with an OH group introduced into both terminals; a type with an NH 2 group introduced into both terminals; a type with an OH group introduced into one terminal; and a type with an NH 2 group introduced into one terminal.
  • a type with an OH group introduced into both terminals or the type with an NH 2 group introduced into both terminals is used, an anionic urethane resin or an amphoteric urethane resin having a polysiloxane bond in the side branch or at the terminal can be obtained.
  • the anionic urethane resin or the amphoteric urethane resin is preferably used as an aqueous liquid thereof.
  • the aqueous liquid is meant to include needless-to-say both an aqueous solution state where the anionic urethane resin or the amphoteric urethane resin is completely dissolved in water, and an aqueous dispersion state where the anionic urethane resin or the amphoteric urethane resin is dispersed in water.
  • the aqueous urethane resin liquid is preferably used as an aqueous liquid having a solid concentration of from 5.0 to 30.0% by mass.
  • a crosslinking agent such as a silane coupling agent or the like may be added to the aqueous liquid of the anionic urethane resin or the amphoteric urethane resin to crosslink the resin.
  • Various additives may be freely added to the liquid for enhancing the storage stability thereof; and the additives include a protective colloid agent, an antibacterial agent, an antifungal agent.
  • the amount of the aqueous anionic urethane resin liquid or the aqueous amphoteric urethane resin to be incorporated in the skin cosmetic of the invention is preferably from 0.1 to 5.0% by mass as the active ingredient (actual content, solid content), more preferably from 0.5 to 4.0% by mass.
  • the amount is less than 0.1% by mass, then the cosmetic could hardly exert the effect of the invention; but on the other hand, when the amount is more than 5.0% by mass, then the cosmetic may give a sticky feel in use.
  • the skin cosmetic of the invention is produced with the above-mentioned components as the base, according to an ordinary method.
  • any other components generally used in a skin cosmetic may be suitably incorporated in the skin cosmetic of the invention, if desired.
  • the additional components include powdery components, liquid oils and fats, solid oils and fats, waxes, hydrocarbon oils, higher fatty acids, higher alcohols, synthetic ester oils, silicone oils, anionic surfactants, cationic surfactants, ampholytic surfactants, nonionic surfactants, humectants, water-soluble polymers, viscosity improvers, film-forming agents, UV absorbents, metal ion sequestrants, lower alcohols, polyhydric alcohols, saccharides, amino acids, organic amines, polymer emulsions, pH regulators, skin nutrients, vitamins, antioxidants, antioxidant promoters, fragrances, water, etc.
  • the components that may be incorporated in the preparation are shown below, but not limited to these exemplifications.
  • the powdery components include inorganic powders, such as talc, kaolin, mica, sericite, muscovite, phlogopite, synthetic mica, lepidolite, biotite, vermiculite, magnesium carbonate, calcium carbonate, aluminium silicate, barium silicate, calcium silicate, magnesium silicate, strontium silicate, metal tungstate, magnesium, silica, zeolite, barium sulfate, fired calcium sulfate (burnt plaster), calcium phosphate, fluoroapatite, hydroxyapatite, ceramic powder, metal soap (e.g., zinc myristate, calcium palmitate, aluminium stearate), and boron nitride; organic powders, such as polyamide resin powder (nylon powder), polyethylene powder, polymethyl methacrylate powder, polystyrene powder, styrene/acrylic acid copolymer resin powder, benzoguanamine resin powder, polytetrafluoroethylene
  • liquid oils and fats examples include avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, egg-yolk oil, sesame oil, persic oil, wheat germ oil, sasanqua oil, castor oil, linseed oil, safflower oil, cottonseed oil, perilla oil, soybean oil, peanut oil, tea seed oil, nutmeg oil, rice bran oil, Chinese wood oil, Japanese wood oil, jojoba oil, germ oil, and triglycerin.
  • solid oils and fats examples include cacao bugger, coconut oil, horse fat, hardened coconut oil, palm oil, beef tallow, mutton tallow, hardened beef tallow, palm kernel oil, lard, beef bone tallow, Japanese core wax, hardened oil, neatsfoot Japanese wax, and hardened castor oil.
  • waxes examples include bees wax, candelilla wax, cotton wax, carnauba wax, bayberry wax, tree wax, whale wax, montan wax, bran wax, lanolin, kapok wax, lanolin acetate, liquid lanolin, sugar cane wax, lanolin fatty acid isopropyl ester, hexyl laurate, reduced lanolin, jojoba wax, hard lanolin, shellac wax, POE lanolin alcohol ether, POE lanolin alcohol acetate, POE cholesterol ether, lanolin fatty acid polyethylene glycol, and POE hydrogenated lanolin alcohol ether.
  • hydrocarbon oils examples include liquid paraffin, ozokerite, squalane, pristane, paraffin, ceresin, squalene, vaseline, and microcrystalline wax.
  • higher fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, undecylenic acid, tall oil acid, isostearic acid, linoleic acid, linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).
  • Examples of the higher alcohols include linear alcohols, such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, and cetostearyl alcohol; branched alcohols, such as monostearylglycerol ether (batyl alcohol), 2-decyltetradecynol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, and octyldodecanol.
  • linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, and cetostearyl alcohol
  • branched alcohols such as monostearylglycerol ether (batyl alcohol), 2-decyltetradecynol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl
  • ester oils examples include isopropyl myristate, cetyl octanoate, octyldodecyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, decyl oleate, hexyldecyl dimethyloctanoate, cetyl lactate, myristyl lactate, lanolin acetate, isocetyl stearate, isocetyl isostearate, cholesteryl 12-hydroxystearate, ethylene glycol di-2-ethylhexanoate, dipentaerythritol fatty acid ester, N-alkylglycol monoisostearate, neopentyl glycol dicaprylate, diisostearyl malate, glyceryl di-2-heptylundecanoate, trimethylolpropane tri-2
  • silicones examples include linear polysiloxanes, such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane; cyclic polysiloxanes, such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane; silicone resins forming three-dimensional networks; silicone rubbers; various modified polysiloxanes, such as amino-modified polysiloxanes, polyether-modified polysiloxanes, alkyl-modified polysiloxanes, and fluorine-modified polysiloxanes.
  • linear polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane
  • cyclic polysiloxanes such as octamethylcyclotetrasilox
  • anionic surfactants include fatty acid soaps, such as sodium laurate, and sodium palmitate; higher alkylsulfate salts, such as sodium laurylsulfate, and potassium lauryl sulfate; alkyl ether sulfate salts, such as triethanolamine POE-laurylsulfate, and sodium POE-laurylsulfate; N-acyl sarcosine acids, such as sodium lauroylsarcosine; higher fatty acid amide sulfonates, such as sodium N-myristoyl-N-methyltaurine, coconut oil fatty acid methyltaurid sodium salt, and laurylmethyltaurid sodium salt; phosphate esters, such as sodium POE oleyl ether phosphate, and POE stearyl ether phosphoric acid; sulfosuccinates, such as sodium di-2-ethylhexylsulfosuccinate, sodium monolauroy
  • Examples of the cationic surfactants include alkyltrimethyl ammonium salts, such as stearyltrimethyl ammonium chloride, and lauryltrimethyl ammonium chloride; alkylpyridinium salts, such as cetylpyridinium chloride; distearyldimethylammonium dialkyldimethylammonium chloride; poly(N,N′-dimethyl-3,5-methylenepyridinium) chloride; alkyl-quaternary ammonium salts; alkyldimethylbenzylammonium salts; alkylisoquinolinium salts; dialkylmorpholinium salts; POE-alkylamines; alkylamine salts; polyamine fatty acid derivatives; amyl alcohol fatty acid derivatives; benzalkonium chloride; and benzetonium chloride.
  • alkyltrimethyl ammonium salts such as stearyltrimethyl ammonium chloride, and lauryltrimethyl ammonium chloride
  • amphoteric surfactants examples include imidazoline-type amphoteric surfactants, such as 2-undecyl-N,N,N-(hydroxyethylcarboxymethyl)-2-imidazoline sodium salt, and 2-cocoyl-2-imidazaliniumhydroxide-1-carboxyethyloxy-2-sodium salt; betaine-type surfactants, such as 2-heptadecyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, betaine lauryldimethylamino-acetate, alkyl betaine, amide betaine, and sulfobetaine.
  • imidazoline-type amphoteric surfactants such as 2-undecyl-N,N,N-(hydroxyethylcarboxymethyl)-2-imidazoline sodium salt, and 2-cocoyl-2-imidazaliniumhydroxide-1-carboxyethyloxy-2-sodium salt
  • lipophilic nonionic surfactants include sorbitan fatty acid esters, such as sorbitan monooleate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate, diglycerolsorbitan penta-2-ethylhexanoate, and diglycerolsorbitan tetra-2-ethylhexanoate; glycerol polyglycerol fatty acids, such as mono-cottonseed-fatty acid glyceryl ester, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, glyceryl ⁇ , ⁇ ′-oleate pyroglutamate, and glyceryl monostearate malate; propylene glycol fatty acid esters, such as propylene glycol monostearate,
  • hydrophilic nonionic surfactants examples include POE-sorbitan fatty acid esters, such as POE-sorbitan monooleate, POE-sorbitan monostearate, POE-sorbitan monooleate, and POE-sorbitan tetraoleate; POE-sorbitol fatty acid esters, such as POE-sorbitol monolaurate, POE-sorbitol monooleate, POE-sorbitol pentaoleate, and POE-sorbitol monostearate; POE-glycerol fatty acid esters, such as POE-monooleates such as POE-glyceryl monostearate, POE-glyceryl monoisostearate, and POE-glyceryl triisostearate; POE-fatty acid esters, such as POE-distearate, and POE-monodioleate and ethylene glycol distearate; POE-alkyl ethers, such
  • humectants examples include polyethylene glycol, propylene glycol, glycerol, 1,3-butylene glycol, xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, charonic acid, atelocollagen, cholesteryl 12-hydroxystearate, sodium lactate, bile acid salt, dl-pyrrolidonecarboxylate salts, short-chain soluble collagen, diglycerol (EO)PO adducts, chestnut rose extract, yarrow extract, and melilot extract.
  • EO diglycerol
  • Examples of the natural water-soluble polymers include vegetable polymers, such as gum arabic, gum tragacanth, galactan, guar gum, carob gum, karaya gum, carrageenan, pectin, agar, quince seed ( Cydonia oblonga ), algae colloid (brown algae extract), starch (rice, corn, potato, wheat), and glycyrrhizic acid; microbial polymers, such as xanthan gum, dextran, succinoglucane, and pullulan; animal polymers, such as collagen, casein, albumin, and gelatin.
  • vegetable polymers such as gum arabic, gum tragacanth, galactan, guar gum, carob gum, karaya gum, carrageenan, pectin, agar, quince seed ( Cydonia oblonga ), algae colloid (brown algae extract), starch (rice, corn, potato, wheat), and glycyrrhizic acid
  • semi-synthetic water-soluble polymers include starch-type polymers, such as carboxymethyl starch, and methylhydroxypropyl starch; cellulose-type polymers, such as methyl cellulose, ethyl cellulose, methylhydroxypropyl cellulose, hydroxyethyl cellulose, sodium cellulose sulfate, hydroxypropyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, crystalline cellulose, and cellulose powder; alginic acid-type polymers, such as sodium alginate, and propyleneglycol alginate ester.
  • starch-type polymers such as carboxymethyl starch, and methylhydroxypropyl starch
  • cellulose-type polymers such as methyl cellulose, ethyl cellulose, methylhydroxypropyl cellulose, hydroxyethyl cellulose, sodium cellulose sulfate, hydroxypropyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, crystalline cellulose, and cellulose powder
  • Examples of the synthetic water-soluble soluble polymers include vinylic polymers, such as polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone, and carboxyvinyl polymer; polyoxyethylene-type polymers, such as polyoxyethylene-polyoxypropylene copolymers with polyethylene glycol 20,000, 40,000 or 60,000; acrylic polymers, such as sodium polyacrylate, polyethyl acrylate, and polyacrylamide; polyethyleneimine; and cationic polymers.
  • vinylic polymers such as polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone, and carboxyvinyl polymer
  • polyoxyethylene-type polymers such as polyoxyethylene-polyoxypropylene copolymers with polyethylene glycol 20,000, 40,000 or 60,000
  • acrylic polymers such as sodium polyacrylate, polyethyl acrylate, and polyacrylamide
  • polyethyleneimine polyethyleneimine
  • viscosity improvers examples include gum arabic, carrageenan, karaya gum, gum tragacanth, carob gum, quince seed ( Cydonia oblonga ), casein, dextrin, gelatin, sodium pectate, sodium alginate, methyl cellulose, ethyl cellulose, CMC, hydroxyethyl cellulose, hydroxypropyl cellulose, PVA, PVM, PVP, sodium polyacrylate, carboxyvinyl polymer, locust bean gum, guar gum, tamarind gum, cellulose dialkyldimethylammonium sulfate, xanthan gum, aluminum magnesium silicate, bentonite, hectorite, AlMg silicate (bee gum), laponite, and silicic anhydride.
  • UV absorbents examples include benzoic acid-type UV absorbents, such as paraminobenzoic acid (hereinafter this is abbreviated as PABA), PAPA monoglyceryl ester, N,N-dipropoxy-PABA ethyl ester, N,N-diethoxy-PABA ethyl ester, N,N-dimethyl-PABA ethyl ester, N,N-dimethyl-PABA butyl ester, and N,N-dimethyl-PABA ethyl ester; anthranilic acid-type UV absorbents, such as homomenthyl-N-acetyl anthranilate; salicylic acid-type UV absorbents, such as amyl salicylate, menthyl salicylate, homomethyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, and p-isopropanolphenyl salicylate; cinn
  • metal ion sequestrants examples include 1-hydroxyethane-1,1-diphosphonic acid, tetrasodium 1-hydroxyethane-1,1-diphosphonate, disodium edetate, trisodium edetate, tetrasodium edetate, sodium citrate, sodium polyphosphate, sodium metaphosphate, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid, and trisodium ethylenediaminehydroxyethyltriacetate.
  • Examples of the lower alcohols include ethanol, propanol, isopropanol, isobutyl alcohol, and t-butyl alcohol.
  • polyalcohols examples include dialcohols, such as ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, tetramethylene glycol, 2,3-butylene glycol, pentamethylene glycol, 2-butene-1,4-diol, hexylene glycol, and octylene glycol; trialcohols, such as glycerol, and trimethylolpropane; tetralcohols, such as pentaerythritol such as 1,2,6-hexanetriol; pentalcohols such as xylitol; hexylcohols, such as sorbitol, and mannitol; polyalcohol polymers, such as diethylene glycol, dipropylene glycol, triethylene glycol, polypropylene glycol, tetraethylene glycol, diglycerol, polyethylene glycol, triglycerol,
  • Examples of the monosaccharides include trioses, such as D-glyceryl aldehyde, and dihydroxy acetone; tetroses, such as D-erythrose, D-erythrulose, D-threose, and erythritol; pentoses, such as L-arabinose, D-xylose, L-lyxose, D-arabinose, D-ribose, D-ribulose, D-xylulose, and L-xylulose; hexoses, such as D-glucose, D-talose, D-psicose, D-galactose, D-fructose, L-galactose, L-mannose, and D-tagatose; heptoses, such as aldoheptose, and hepturose; octoses such as octurose; deoxysaccharides, such as 2-deoxy-D-rib
  • oligosaccharides examples include sucrose, gunchianose, umbelliferose, lactose, planteose, isolignoses, ⁇ , ⁇ -trehalose, raffinose, lignoses, umbilicine, stachyose, and belbascose.
  • polysaccharides examples include cellulose, quince seed, chondroitin sulfuric acid, starch, galactan, dermatan sulfate, glycogen, gum arabic, heparan sulfate, hyaluronic acid, gum tragacanth, keratan sulfate, chondroitin, xanthan gum, mucoitin sulfate, guar gum, dextran, kerato sulfate, locust bean gum, succinoglucane, and charonic acid.
  • amino acids examples include neutral amino acids, such as threonine, and cysteine; basic amino acids such as hydroxylysine.
  • the amino acid derivatives include sodium acylsarcosine (sodium lauroylsarcosine), acylglutamic acid salts, sodium acyl- ⁇ -alanine, glutathione, and pyrrolidonecarboxylic acid.
  • organic amines examples include monoethanolamine, diethanolamine, triethanolamine, morpholine, triisopropanolamine, 2-amino-2-methyl-1,3-propanediol, and 2-amino-2-methyl-1-propanol.
  • polymer emulsions examples include acrylic resin emulsion, polyethyl acrylate emulsion, acrylic resin liquid, polyacrylalkyl ester emulsion, polyvinyl acetate resin emulsion, and natural rubber latex.
  • vitamins examples include vitamin A, B1, B2, B6, C, E and their derivatives, pantothenic acid and its derivatives, and biotin.
  • antioxidants examples include tocopherols, dibutylhydroxytoluene, butylhydroxyanisole, and gallic acid esters.
  • antioxidant promoters examples include phosphoric acid, citric acid, ascorbic acid, maleic acid, malonic acid, succinic acid, fumaric acid, cephalin, hexametaphosphate, phytic acid, and ethylenediamine-tetraacetic acid.
  • ingredients that may be incorporated in the cosmtic of the invention are, for example, antiseptics, such as ethylparaben, and butylparaben; antiinflammatory agents, such as glycyrrhizinic acid derivatives, glycyrrhetinic acid derivatives, salicylic acid derivatives, hinokitiol, zinc oxide, and allantoin; skin-lightening agents, such as placenta extract, saxifrage extract, and arbutin; various extracts, such as Phellodendron bark, Coptis japonica, Lithospermum erythrorhizon, Paeonia lactiflora, Swertia japonica , birch, sage, loquat, ginseng, aloe, Malva sylve, iris, grapes, dove wheat, luffa , lily, saffron, Cnidium officinale, shengjiang, Hypericumerectum, On
  • the skin cosmetic of the invention may be in any form, including solubilization type one, emulsion type one, powdery dispersion type one, oil-water two-phase type one, oil-water-powder three-phase type one and others, but not limited thereto.
  • the skin care cosmetic of the invention may be in any product form, and may be used for facial skincare preparations such as lotions, milks, creams, facial masks and the like, as well as for body skin cosmetics and aromatizing skin cosmetics.
  • the compounding amount is in terms of % by mass relative to the composition in which the ingredient it incorporated.
  • IPDI Isophorone diisocyanate
  • PPG 1000 polypropylene glycol
  • DMBA 1,4-cyclohexanedimethanol
  • DMBA dimethylolbutanoic acid
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (16 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 25 mas. % dispersion of an anionic urethane resin substantially not containing a solvent.
  • CHDM/PPG 1000 about 0.15 (ratio by mass, in terms of charge).
  • Isophorone diisocyanate 100 g
  • polypropylene glycol PPG 1000, 66 g
  • cyclohexanedimethanol CHDM, 100 g
  • polyoxyethylene glycol PEG 1000, 20 g
  • dimethylolbutanoic acid DMBA, 36 g
  • N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours.
  • Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein.
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization.
  • CHDM/PPG 1000 about 1.5 (ratio by mass, in terms of charge).
  • Isophorone diisocyanate 100 g
  • PPG 1000 polypropylene glycol
  • CHDM 1,4-cyclohexanedimethanol
  • DMBA dimethylolbutanoic acid
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (16 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 26 mas. % dispersion of an anionic urethane resin substantially not containing a solvent.
  • CHDM/PPG 1000 0.5 (ratio by mass, in terms of charge).
  • Isophorone diisocyanate (IPDI, 100 g) and polydimethylsiloxanediol having two OH group at one terminal were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, and reacted for 2 hours under heat in an oil bath at 80° C.
  • PPG 3000 polypropylene glycol
  • CHDM 1,4-cyclohexanedimethanol
  • DMBA dimethylolbutanoic acid
  • N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours.
  • Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein.
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 27 mas. % dispersion of an amphoteric urethane resin having a dimethylsiloxane chain in the structure and substantially not containing a solvent.
  • CHDM/PPG 1000 3.0 (ratio by mass, in terms of charge).
  • IPDI Isophorone diisocyanate
  • PPG 1000 polypropylene glycol
  • CHDM 1,4-cyclohexanedimethanol
  • DMBA dimethylolbutanoic acid
  • N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours.
  • Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein.
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (16 g), and reacted for chain extension for 3 hours at 50° C. for polymerization.
  • Isophorone diisocyanate 100 g
  • polypropylene glycol PPG 1000, 10 g
  • 1,4-cyclohexanedimethanol CHDM, 50 g
  • polyoxyethylene glycol PEG 1000, 20 g
  • dimethylolbutanoic acid DMBA, 36 g
  • N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours.
  • Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein.
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization.
  • CHDM/PPG 1000 5.0 (ratio by mass, in terms of charge).
  • Isophorone diisocyanate (IPDI, 100 g) and polydimethylsiloxanediol having two OH groups at one terminal were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, and reacted for 2 hours under heat in an oil bath at 80° C.
  • PPG 1000, 10 g polypropylene glycol
  • CHDM, 40 g 1,4-cyclohexanedimethanol
  • DMBA dimethylolbutanoic acid
  • ethyl acetate 60 g serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C.
  • N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours.
  • Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein.
  • the NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 24 mas. % dispersion of an amphoteric urethane resin having a dimethylsiloxane chain in the structure and substantially not containing a solvent.
  • CHDM/PPG 1000 4.0 (ratio by mass, in terms of charge).
  • the obtained skin cosmetic was tested in a sensory evaluation test as described below, and evaluated for the usability. The results are shown in Tables 1 and 2.
  • At least 9 panelists evaluated as “little sticky” or better. ⁇ : From 6 to 8 panelists evaluated as “little sticky” or better. ⁇ : From 3 to 5 panelists evaluated as “little sticky” or better. x: At most 2 panelists evaluated as “little sticky” or better.
  • At least 9 panelists evaluated as “not squeaky”. ⁇ : From 2 to 8 panelists evaluated as “not squeaky”. x: At most 1 panelist evaluated as “not squeaky”.
  • At least 9 panelists evaluated as “effective feel to skin wrinkles and sagging” or better. ⁇ : From 6 to 8 panelists evaluated as “effective feel to skin wrinkles and sagging” or better. ⁇ : From 3 to 5 panelists evaluated as “effective feel to skin wrinkles and sagging” or better. x: At most 2 panelists evaluated as “effective feel to skin wrinkles and sagging” or better.
  • Examples 1 to 5 that are the preparations of the invention had excellent characteristics in that they were free from a sticky feel and a squeaky feel in use and did not twist on skin, and in addition, they were effective for wrinkles and sagging.
  • a different film former polyvinyl alcohol, polyvinyl pyrrolidone
  • Formulation examples of the skin cosmetic of the invention are shown below. These formulation examples shown below all had the excellent effects of the invention.
  • the skin cosmetic of the invention exerts a feeling of ameliorating effect to skin wrinkles, a feeling of ameliorating effect to skin sagging (i.e., a feeling of skin-tensioning effect) by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin (i.e., an excellent adhesionability of the applied cosmetic to the skin), and squeakiness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cosmetics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A skin cosmetic which exerts a feeling of ameliorating effect on skin wrinkles and sagging by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin, and squeakiness. The cosmetic comprises an aqueous liquid of an anionic or amphoteric urethane resin dissolved or dispersed in water and wherein the anionic or amphoteric urethane resin is prepared by reacting (a) an isocyanate compound with (b) a polyol compound containing the following components (b-1) to (b-3) or the following components (b-1) to (b-4) and having a ratio of (b-1)/(b-2) of 0.15-3.0 (by mass, in terms of charge): [(b-1): cyclohexanedimethanol, (b-2): polypropylene glycol having a molecular weight of 1000-3000, (b-3): a compound having an active hydrogen and a carboxyl group in one molecule, (b-4): a compound having an active hydrogen and a tertiary amino group in one molecule.]

Description

    TECHNICAL FIELD
  • The present invention relates to a skin cosmetic which contains an aqueous urethane resin liquid dissolving or dispersing an anionic or amphoteric urethane resin in water. More specifically, the invention relates to a cosmetic for skin which exerts a feeling of ameliorating effects to skin wrinkles and sagging by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin, and squeakiness.
  • BACKGROUND ART
  • Heretofore, there have been known methods in cosmetic technologies for treating skin wrinkles and sagging caused by skin aging: a method for ameliorating wrinkles by applying a sheet onto a skin containing a humectants such as dipropylene glycol, glycerin, 1,3-butylene glycol or the like, to thereby moisturize the skin (e.g., see Patent Reference 1); and a method for exerting an effect of skin-tensioning or skin-tightening by using a skin external preparation containing a water-soluble film forming agent of hydroxyethyl cellulose and polyvinyl alcohol and an oil-soluble film forming agent of a specific organopolysiloxane (e.g., see Patent Reference 2) or the like. In these conventional cosmetic technologies, a feeling of ameliorating effects to skin wrinkles and sagging could be attained to a certain extent, but recently, a further ever-more improved feeling of ameliorating effects on skin wrinkles and sagging and an improved feeling in use have become desired.
  • Given such situation, the present inventors have proposed a wrinkle-ameliorating cosmetic containing a combination of an aqueous dispersion of a flexible polyurethane having a small shrinkage degree and an acrylic emulsion (see Patent Reference 3). The said cosmetic has an excellent effect in ameliorating wrinkles, and can reduce a sticky-feeling and a shiny-feeling in use, however, none of special studies have been conducted for ameliorating skin sagging (i.e., for improving a tension of skin) and for improving in use such as preventing the twisting of the cosmetic applied on the skin. Nowadays, the interest in antiaging is rapidly increasing, and the demand for an improved feeling of ameliorating effects to skin wrinkles and sagging and an improved feeling in use are increasing more than before; and it is desired to develop products capable of fully satisfying these requirements.
      • Patent Reference 1: JP-A 2000-63253
      • Patent Reference 2: JP-A 10-101520
      • Patent Reference 3: JP-A 2005-200320
    DISCLOSURE OF THE INVENTION Problems that the Invention is to Solve
  • The present invention has been made with a view to meeting the above-mentioned need, and its object is to provide a skin cosmetic which exerts a feeling of ameliorating effect to skin wrinkles, a feeling of ameliorating effect to skin sagging (i.e., a feeling of skin-tensioning or skin-tightening effect) by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin (i.e., an excellent adhesionability of the applied cosmetic to the skin), and squeakiness.
  • Means for Solving the Problems
  • The present inventors have conducted intensive studies for solving the above-mentioned problems and found that the problems could be solved by incorporating into a skin cosmetic an aqueous liquid of urethane resins dissolving or dispersing a urethane resin in water, as a film-forming composition, where the urethane resin is prepared by reacting a polyol compound with an isocyanate compound, in which said polyol compound comprises a specific monomer having a high glass transition point (high Tg) and a specific monomer having a low glass transition point (low Tg) in a specific ratio by mass (in terms of charge). The present invention has been attained on the basis of this finding.
  • Therefore, the present invention provides a skin cosmetic which comprises an aqueous liquid of an anionic urethane resin dissolved or dispersed in water, wherein the anionic urethane resin is prepared by reacting (a) an isocyanate compound with (b) a polyol compound containing the following components (b-1) to (b-3) and having a ratio of component (b-1) to component (b-2) [=(b-1)/(b-2)] by mass (in terms of charge) of from 0.15 to 3.0:
  • (b-1): cyclohexanedimethanol,
    (b-2): polypropylene glycol having a molecular weight of from 1000 to 3000,
    (b-3): a compound having an active hydrogen and a carboxyl group in one molecule.
  • The invention also provides a skin cosmetic which comprises an aqueous liquid of an amphoteric urethane resin dissolved or dispersed in water, wherein the amphoteric urethane resin is prepared by reacting (a) an isocyanate compound with (b) a polyol compound containing the following components (b-1) to (b-4) and having a ratio of component (b-1) to component (b-2)[=(b-1)/(b-2)] by mass (in terms of charge) of from 0.15 to 3.0:
  • (b-1): cyclohexanedimethanol,
    (b-2): polypropylene glycol having a molecular weight of from 1000 to 3000,
    (b-3): a compound having an active hydrogen and a carboxyl group in one molecule,
    (b-4): a compound having an active hydrogen and a tertiary amino group in one molecule.
  • Effect of the Invention
  • According to the invention, there is provided a skin cosmetic which exerts a feeling of ameliorating effect to skin wrinkles, a feeling of ameliorating effect to skin sagging (i.e., a feeling of skin-tensioning effect) by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin (i.e., an excellent adhesionability of the applied cosmetic to the skin), and squeakiness.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The invention is described in detail hereinunder.
  • In the skin cosmetic of the invention, the aqueous liquid of urethane resin prepared by dissolving or dispersing an anionic urethane resin or an amphoteric urethane resin into water, acts as a film-forming composition.
  • The anionic urethane resin or the amphoteric urethane resin to be used in the invention can be obtained by reacting (a) an isocyanate compound and (b) a polyol compound.
  • The isocyanate compound as component (a) is not specifically defined, including organic diisocyanate compounds, such as aliphatic diisocyanate compounds, alicyclic diisocyanate compounds, and aromatic diisocyanate compounds. One or more among these may be used.
  • The aliphatic diisocyanate compounds include ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate. The alicyclic diisocyanate compounds include hydrogenated 4,4′-diphenylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate (hereinafter this may be abbreviated as IPDI), and norbornane diisocyanate. The aromatic diisocyanate compounds include 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, toluene diisocyanate, and naphthalene diisocyanate. Among those, preferred are 1,6-hexamethylene diisocyanate, IPDI and norbornane diisocyanate as excellent in light-resistance and available at low cost.
  • As the polyol compound of component (b), following compounds are used in the invention: in case where an anionic urethane resin is produced, used is one comprising (b-1) cyclohexanedimethanol, especially 1,4-cyclohexanedimethanol (hereinafter this may be abbreviated as CHDM), (b-2) polypropylene glycol having a molecular weight of from 1000 to 3000 (hereinafter this may be abbreviated as, for example, PPG 1000), and (b-3) a compound having an active hydrogen and a carboxyl group in one molecule; while in case where an amphoteric urethane resin is produced, used is another one that contains (b-4) a compound having an active hydrogen and a tertiary amino group in one molecule in addition to components (b-1) to (b-3). The present invention is characterized in that, in production of any of the anionic urethane resin and the amphoteric urethane resin, the charge ratio (by mass) of component (b-1) to component (b-2)[=(b-1)/(b-2)] in component (b) falls within a range of from 0.15 to 3.0, preferably from 0.2 to 2.5. Component (b-1) is known as a high-glass-transition-point monomer (high-Tg monomer), and component (b-2) is known as a low-glass-transition-point monomer (low-Tg monomer). In the present invention, the charge ratio (by mass) of component (b-1) to component (b-2) is defined to fall within the above range, and accordingly, the incorporation into a skin cosmetic of the aqueous liquid containing the obtained anionic or amphoteric urethane resin enable to control the hardness and elasticity of the coating film of the cosmetic applied on the skin, as well as the feeling of use, and advantageous effects of the invention can be achieved. When the ratio by mass of (b-1)/(b-2) is less than 0.15, then the coating film may be too much flexible or softened and may be sticky, and the cosmetic preparation is apt to twist, and its effect of enhancement of the skin-tension may be poor. On the other hand, when the ratio by mass of (b-1)/(b-2) is more than 3.0, then the coating film may be too much hardended or stiffed and it is apt to be squeaky in application to skin.
  • Component (b-3) may be any compound having at least one active hydrogen and at lest one carboxyl group in the molecule, and includes dimethylolpropionic acid (DMPA), dimethylolbutanoic acid (DMBA), and carboxyl group-containing polycaprolactonediol, but not limited thereto. One or more among these may be used.
  • The method for producing the anionic urethane resin is not specifically defined, and the resin may be produced in any ordinary manner. For example, component (b) containing components (b-1) to (b-3) is reacted with component (a) excessively of the isocyanate group (NCO group) to prepare an isocyanate group-having prepolymer, and this is further polymerized to thereby produce the anionic urethane resin. The anionic urethane resin has a carboxyl group in the structure thereof, and therefore can improve the dispersibility in water and the washability thereof.
  • In producing the anionic urethane resin, the charge ratio (by mass) of component (a) and component (b) is preferably such that, in all the starting monomers (100% by mass), component (a) is from 30 to 70% by mass, more preferably from 40 to 60% by mass, the total amount of component (b-1) and component (b-2) is preferably from 20 to 60% by mass, more preferably from 25 to 55% by mass, and component (b-3) is preferably from 5 to 25% by mass, more preferably from 10 to 20% by mass.
  • In producing the amphoteric urethane resin, additionally used as component (b) is compound (b-4) having at least one active hydrogen and at least one tertiary amino group in the molecule, in addition to the above-mentioned components (b-1) to (b-3). Component (b-4) includes N-alkyldialkanolamine compounds such as N-methyldiethanolamine (NMDEtA), and N-butyldiethanolamine; dimethylaminoethanol, etc., but not limited thereto. One or more among these may be used.
  • The method for producing the anionic urethane resin is not specifically defined, and the resin may be produced in any ordinary manner. For example, the isocyanate group-having prepolymer described above in the production method for the anionic urethane resin is reacted with component (b-4), and this is further polymerized to produce the amphoteric urethane resin. In the production of the amphoteric urethane resin, the reaction sequence of component (b-3) and component (b-4) may be transposed to each other. Specifically, component (a), component (b-1), component (b-2) and component (b-4) are reacted with each other excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and the isocyanate group-having prepolymer is then reacted with component (b-3), and this is further polymerized to produce the intended resin. According to these methods, the amphoteric urethane resin can be produced in a more simply and safely than before. The amphoteric urethane resin has a carboxyl group and a tertiary amino group in the structure thereof, and therefore can improve the adhesionability to the skin in addition to improving the dispersibility in water and the washability thereof.
  • In the above-mentioned production method, when both component (b-3) and component (b-4) are reacted simultaneously with component (a), component (b-1) and component (b-2), then the carboxyl group in component (b-3) and the tertiary amino group in component (b-4) may form a salt in first to be insoluble in the reaction system, and even in the presence of the OH group, this could not more react with the isocyanate group and the intended amphoteric urethane resin could not be produced.
  • In producing the amphoteric urethane resin, the charge ratio (by mass) of component (a) and component (b) is preferably such that, in all the starting monomers (100% by mass), component (a) is preferably from 30 to 70% by mass, more preferably from 40 to 60% by mass, the total amount of component (b-1) and component (b-2) is preferably from 20 to 60% by mass, more preferably from 25 to 55% by mass, component (b-3) is preferably from 5 to 25% by mass, more preferably from 10 to 20% by mass, and component (b-4) is preferably from 0.5 to 5.0% by mass, more preferably from 0.5 to 3.0% by mass.
  • As component (b), any other polyol compound usable in ordinary urethane resin production may be optionally used in addition to the above-mentioned indispensable components (b-1) to (b-3), or (b-1) to (b-4). Examples of the polyol compound include polyester polyols, polyether polyols, polycarbonate polyols, polybutadiene polyols, polyisoprene polyols, polyolefin polyols, and polyacrylate polyols, etc., and one or more among these may be used. Above all, preferred are polyester polyols and polyether polyols.
  • Examples of the polyester polyol include those produced through polycondensation of at least one dicarboxylic acid of succinic acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, maleic acid, maleic acid, fumaric acid, phthalic acid, terephthalic acid or the like, and at least one polyalcohol of ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,8-octanediol, 1,10-decanediol, diethylene glycol, spiroglycol, trimethylolpropane or the like; and those produced through ring-opening polymerization of lactone acid.
  • Examples of the polyether polyol usable are those produced through ring-opening addition polymerization of the polyalcohol used in producing the above-mentioned polyester polyols, and in addition to these, phenols such as bisphenol A or the like, or primary amines or secondary amines with cyclic ethers such as ethylene oxide, propylene oxide, oxetane, tetrahydrofuran or the like; and there are mentioned polyoxyethylene polyol, polyoxypropylene polyol, polyoxytetramethylene polyol, those produced through ring-opening addition polymerization of bisphenol A with at least one of propylene oxide or ethylene oxide (copolymers may be any of block copolymers or random copolymers).
  • In producing the isocyanate group-having prepolymer from the above-mentioned components, a chain extender or a molecular weight controller may be used for the purpose of regulating the properties of the final product, urethane resin.
  • The chain extender includes low-molecular polyols, amines, but not limited thereto. The low-molecular polyols include, for example, glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexanediol, spiroglycol, hydrogenated bisphenol A, neopentyl glycol, bis(β-hydroxyethoxy)benzene, and xylylene glycol; triols, such as trimethylolpropane, and glycerin. The amines include ethylenediamine, propylenediamine, piperazine, hydrazine, isophoronediamine, methylene(bis-o-chloroaniline), and polypropylene glycol having an amino group at both terminals.
  • The molecular weight controller includes polypropylene glycol having an amino group at one terminal.
  • In producing the anionic urethane resin or the amphoteric urethane resin, if desired, a solvent may be used. For example, an organic solvent is preferably used capable of dissolving both the starting materials and the produced polyurethane. The organic solvent includes amides, such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide; ketones, such as acetone, methyl ethyl ketone; esters, such as ethyl acetate; and cellosolve acetate, cellosolve ether, etc.
  • In producing the anionic urethane resin or the amphoteric urethane resin, a polymerization catalyst well known in the field of polyurethane may be used; and for example, tertiary amine catalysts, organic metal catalysts or the like may be used. The tertiary amine catalysts include [2,2,2]diazabicyclooctane (DABCO), tetramethylenediamine, N-methylmorpholine, diazabicycloundecene (DBU). The organic metal catalysts include dibutyltin dilaurate, etc.
  • In producing the anionic urethane resin or the amphoteric urethane resin, the carboxyl group or the tertiary amino group incorporated in the structure thereof may be neutralized with a neutralizer to thereby enhance the dispersibility of the resin in water. The neutralizer for the carboxyl group includes triethylamine, trimethylamine, 2-amino-2-methyl-1-propanol, triethanolamine, potassium hydroxide, sodium hydroxide, etc. The neutralizer for the tertiary amino group includes, for example, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, dimethyl sulfate.
  • The anionic urethane resin or the amphoteric urethane resin preferably has a structural unit derived from ethylene oxide (EO) in the structure, from the viewpoint of the skin washability thereof.
  • The structural unit derived from EO includes an EO unit represented by the following formula (I), a propylene oxide (PO) unit represented by the following formula (II). The PO unit is preferred.
  • Figure US20140120051A1-20140501-C00001
  • The anionic urethane resin or the amphoteric urethane resin may have both the EO unit and the PO unit. The ratio of the EO unit to the PO unit, EO unit/PO unit is, by mass, preferably within a range of from 10/0 to 2/8, more preferably from 10/0 to 4/6.
  • The recurring number, n, of the EO unit in the above formula (I) is preferably from 3 to 300, more preferably from 20 to 120. When n is less than 3, then the number of the EO units introduced into the urethane resin is too small, and therefore, the resin could not have sufficient hydrophilicity and could not exert sufficient skin washability. On the other hand, when n is more than 300, then the hydrophilicity of the urethane resin itself may be too strong, which is unfavorable from the viewpoint of the moisture resistance of the cosmetic preparation. The recurring number, m, of the PO unit in the above formula (II) is also preferably from 3 to 300, more preferably from 20 to 120. In case where the resin contains both the EO unit and the PO unit, preferably, (n+m) is from 3 to 300, more preferably from 20 to 120.
  • For producing the anionic urethane resin having the above-mentioned, ethylene oxide (EO)-derived structural unit, for example, component (a), components (b-1), (b-2) and (b-3), and a polyethylene oxide derivative having an active hydrogen (=component (b-5)) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and this is polymerized to produce the anionic urethane resin.
  • For producing the amphoteric urethane resin having the above-mentioned, ethylene oxide (EO)-derived structural unit, for example, component (a), components (b-1), (b-2) and (b-3), and component (b-5) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, then the isocyanate group-having prepolymer is reacted with component (b-4), and this is further polymerized to produce the amphoteric urethane resin. The reaction sequence of component (b-4) and component (b-3) may be transposed to each other in producing the resin.
  • Component (b-5), polyethylene oxide derivative having an active hydrogen may be any one capable of introducing a structural unit derived from ethylene oxide (EO) into the structure of the anionic or amphoteric urethane resin; and not specifically indicated, it includes, for example, polyoxyethylene glycol (PEG), polyoxyethylene polyoxypropylene glycol (EO/PO block copolymer). Preferred is polyoxyethylene glycol (PEG). Component (b-5) may be any of a type with an OH group introduced into both terminals; a type with an NH2 group introduced into both terminals; a type with an OH group introduced into one terminal; or a type with an NH2 group introduced into one terminal. In case where the type with an O group introduced into both terminals or the type with an NH2 group introduced into both terminals is used, an anionic or amphoteric urethane resin having an EO unit in the main chain can be obtained. In case where the type with an OH group introduced into one terminal or the type with an NH2 group introduced into one terminal is used, an anionic or amphoteric urethane resin having an EO unit in the side branch or at the terminal can be obtained.
  • Preferably, the molecular weight of component (b-5) is within a range of from 200 to 20,000, more preferably from 1,000 to 10,000.
  • When component (b-5) is used, its amount to be used (to be charged) is preferably from 1.0 to 10.0% by mass of all the starting monomers (100% by mass), more preferably from 3.0 to 8.0% by mass.
  • The anionic urethane resin or the amphoteric urethane resin may contain a polysiloxane compound for further improving the coating film smoothness. The polysiloxane compound is preferably a silicone compound having a recurring number (n) of the siloxane bond (Si—O) falling within a range of from 5 to 300, more preferably from 20 to 150. When n is less than 5, then the proportion of the polysiloxane bond in the anionic urethane resin or the amphoteric urethane resin produced may be too small, and the preparation would be ineffective for exerting the feeling that is naturally to be attained by introduction of the polysiloxane bond; but on the other hand, when n is more than 300, then the compound may be poorly compatible with the other starting materials owing to its high hydrophobicity, and the reaction would be difficult, and in addition, since the produced urethane resin is too hydrophobic, it may detract from the adhesionability to the skin of the cosmetic preparation.
  • The polysiloxane compound may be incorporated in the structure of the urethane resin via a covalent bond, or may be in the structure as “held” and enveloped inside the urethane resin. “Holding” the polysiloxane compound means that the polysiloxane compound is “strained” by the skeleton of the anionic urethane resin or the amphoteric urethane resin, or the polysiloxane compound is “entangled” in the skeleton of the anionic urethane resin or the amphoteric urethane resin. Specifically, this means that the polysiloxane compound is incorporated in the resin not bonded (by covalent bonding) to the skeleton of the urethane resin. In the state where the urethane resin holds the polysiloxane compound, the polysiloxane compound is hardly separable from the urethane resin while it is relatively movable.
  • The method for incorporating a polysiloxane compound in the urethane resin via a covalent bond is exemplarily described as follows: For the anionic urethane resin, for example, components (b-1) to (b-3), component (a) and the polysiloxane compound having an active hydrogen are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and this is further polymerized to produce the resin. For the amphoteric urethane resin, for example, component (b-1), component (b-2), component (a), the polysiloxane compound having an active hydrogen, and component (b-3) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and the isocyanate group-having prepolymer is reacted with component (b-4), and this is further polymerized to produce the resin. The reaction sequence of component (b-3) and component (b-4) may be transposed to each other to produce the resin.
  • The polysiloxane compound having an active hydrogen may be anyone capable of introducing a polysiloxane bond into the structure of the anionic urethane resin or the amphoteric urethane resin, and it includes polydialkylsiloxane-diol, polydialkylsiloxane-monool, polydialkylsiloxane-diamine, and polydialkylsiloxane-monoamine. One or more of these may be used herein. The alkyl group bonding to Si of the siloxane bond in the polydialkylsiloxane-diol and others preferably has from 1 to 10 carbon atoms, more preferably from 1 to 5. In the polysiloxane compound, the number of the carbon atoms in the alkyl group bonding to Si of the individual siloxane bonds may differ. Concretely, the polydialkylsiloxane-diol includes polydimethylsiloxane-diol, polymethylethylsiloxane-diol. The polydialkylsiloxane-diamine includes polydimethylsiloxane-diamine, polymethylethylsiloxane-diamine. The polydialkylsiloxane-monoamine includes polydimethylsiloxane-monoamine, polymethylethylsiloxane-monoamine.
  • The method for making the polysiloxane compound held and enveloped inside the urethane resin is exemplarily described as follows: For the anionic urethane resin, for example, components (b-1) to (b-3), component (a) and a polysiloxane compound not having an active hydrogen are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and this is further polymerized to produce the resin. For the amphoteric resin, for example, component (b-1), component (b-2), component (a), a polysiloxane compound not having an active hydrogen, and component (b-3) are reacted excessively of the isocyanate group to prepare an isocyanate group-having prepolymer, and the isocyanate group-having prepolymer is reacted with component (b-4), and this is further polymerized to produce the resin. The reaction sequence of component (b-3) and component (b-4) may be transposed to each other to produce the resin.
  • When the polysiloxane compound is used, its amount to be used (to be charged) is preferably from 0.1 to 5.0% by mass of all the starting monomers (100% by mass), more preferably from 0.5 to 3.0% by mass.
  • The polysiloxane compound includes a type with an OH group introduced into both terminals; a type with an NH2 group introduced into both terminals; a type with an OH group introduced into one terminal; and a type with an NH2 group introduced into one terminal. In case where the type with an OH group introduced into both terminals or the type with an NH2 group introduced into both terminals is used, an anionic urethane resin or an amphoteric urethane resin having a polysiloxane bond in the side branch or at the terminal can be obtained.
  • In the skin cosmetic of the invention, the anionic urethane resin or the amphoteric urethane resin is preferably used as an aqueous liquid thereof. In the invention, the aqueous liquid is meant to include needless-to-say both an aqueous solution state where the anionic urethane resin or the amphoteric urethane resin is completely dissolved in water, and an aqueous dispersion state where the anionic urethane resin or the amphoteric urethane resin is dispersed in water. The aqueous urethane resin liquid is preferably used as an aqueous liquid having a solid concentration of from 5.0 to 30.0% by mass.
  • A crosslinking agent such as a silane coupling agent or the like may be added to the aqueous liquid of the anionic urethane resin or the amphoteric urethane resin to crosslink the resin. Various additives may be freely added to the liquid for enhancing the storage stability thereof; and the additives include a protective colloid agent, an antibacterial agent, an antifungal agent.
  • The amount of the aqueous anionic urethane resin liquid or the aqueous amphoteric urethane resin to be incorporated in the skin cosmetic of the invention is preferably from 0.1 to 5.0% by mass as the active ingredient (actual content, solid content), more preferably from 0.5 to 4.0% by mass. When the amount is less than 0.1% by mass, then the cosmetic could hardly exert the effect of the invention; but on the other hand, when the amount is more than 5.0% by mass, then the cosmetic may give a sticky feel in use.
  • The skin cosmetic of the invention is produced with the above-mentioned components as the base, according to an ordinary method. In addition to the above-mentioned components but within the range not detracting from the effect of the invention, any other components generally used in a skin cosmetic may be suitably incorporated in the skin cosmetic of the invention, if desired. The additional components include powdery components, liquid oils and fats, solid oils and fats, waxes, hydrocarbon oils, higher fatty acids, higher alcohols, synthetic ester oils, silicone oils, anionic surfactants, cationic surfactants, ampholytic surfactants, nonionic surfactants, humectants, water-soluble polymers, viscosity improvers, film-forming agents, UV absorbents, metal ion sequestrants, lower alcohols, polyhydric alcohols, saccharides, amino acids, organic amines, polymer emulsions, pH regulators, skin nutrients, vitamins, antioxidants, antioxidant promoters, fragrances, water, etc. The components that may be incorporated in the preparation are shown below, but not limited to these exemplifications.
  • Examples of the powdery components include inorganic powders, such as talc, kaolin, mica, sericite, muscovite, phlogopite, synthetic mica, lepidolite, biotite, vermiculite, magnesium carbonate, calcium carbonate, aluminium silicate, barium silicate, calcium silicate, magnesium silicate, strontium silicate, metal tungstate, magnesium, silica, zeolite, barium sulfate, fired calcium sulfate (burnt plaster), calcium phosphate, fluoroapatite, hydroxyapatite, ceramic powder, metal soap (e.g., zinc myristate, calcium palmitate, aluminium stearate), and boron nitride; organic powders, such as polyamide resin powder (nylon powder), polyethylene powder, polymethyl methacrylate powder, polystyrene powder, styrene/acrylic acid copolymer resin powder, benzoguanamine resin powder, polytetrafluoroethylene powder, and cellulose powder; inorganic white pigments, such as titanium dioxide, and zinc oxide; inorganic reddish pigments, such as iron oxide (Bengal red), and iron titanate; inorganic brownish pigments such as γ-iron oxide; inorganic yellowish pigments, such as yellow iron oxide, and ocher; inorganic blackish pigments, such as black iron oxide, and low-order titanium oxide; inorganic violetish pigments, such as mango violet, and cobalt violet; inorganic greenish pigments, such as chromium oxide, chromium hydroxide, and cobalt titanate; inorganic bluish pigments, such as ultramarine, and prussian blue; pearl pigments, such as titanium oxide-coated mica, titanium oxide-coated bismuth oxychloride, titanium oxide-coated talc, colored titanium oxide-coated mica, bismuth oxychloride, and fish scale foil; metal powder pigments, such as aluminium powder, and copper powder; zirconium, barium or aluminium lake organic pigments (e.g., organic pigments such as Red No. 201, Red No. 202, Red No. 204, Red No. 205, Red No. 220, Red No. 226, Red No. 228, Red No. 405, Orange No. 203, Orange No. 204, Yellow No. 205, Yellow No. 401, Blue No. 404, etc.; as well as Red No. 3, Red No. 104, Red No. 106, Red No. 227, Red No. 230, Red No. 401, Red No. 505, Orange No. 205, Yellow No. 4, Yellow No. 5, Yellow No. 202, Yellow No. 203, Green No. 3, Blue No. 1, etc.); natural colorants, such as chlorophyll, and β-carotene.
  • Examples of the liquid oils and fats include avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, egg-yolk oil, sesame oil, persic oil, wheat germ oil, sasanqua oil, castor oil, linseed oil, safflower oil, cottonseed oil, perilla oil, soybean oil, peanut oil, tea seed oil, nutmeg oil, rice bran oil, Chinese wood oil, Japanese wood oil, jojoba oil, germ oil, and triglycerin.
  • Examples of the solid oils and fats include cacao bugger, coconut oil, horse fat, hardened coconut oil, palm oil, beef tallow, mutton tallow, hardened beef tallow, palm kernel oil, lard, beef bone tallow, Japanese core wax, hardened oil, neatsfoot Japanese wax, and hardened castor oil.
  • Examples of the waxes include bees wax, candelilla wax, cotton wax, carnauba wax, bayberry wax, tree wax, whale wax, montan wax, bran wax, lanolin, kapok wax, lanolin acetate, liquid lanolin, sugar cane wax, lanolin fatty acid isopropyl ester, hexyl laurate, reduced lanolin, jojoba wax, hard lanolin, shellac wax, POE lanolin alcohol ether, POE lanolin alcohol acetate, POE cholesterol ether, lanolin fatty acid polyethylene glycol, and POE hydrogenated lanolin alcohol ether.
  • Examples of the hydrocarbon oils include liquid paraffin, ozokerite, squalane, pristane, paraffin, ceresin, squalene, vaseline, and microcrystalline wax.
  • Examples of the higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, undecylenic acid, tall oil acid, isostearic acid, linoleic acid, linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).
  • Examples of the higher alcohols include linear alcohols, such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, and cetostearyl alcohol; branched alcohols, such as monostearylglycerol ether (batyl alcohol), 2-decyltetradecynol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, and octyldodecanol.
  • Examples of the synthetic ester oils include isopropyl myristate, cetyl octanoate, octyldodecyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, decyl oleate, hexyldecyl dimethyloctanoate, cetyl lactate, myristyl lactate, lanolin acetate, isocetyl stearate, isocetyl isostearate, cholesteryl 12-hydroxystearate, ethylene glycol di-2-ethylhexanoate, dipentaerythritol fatty acid ester, N-alkylglycol monoisostearate, neopentyl glycol dicaprylate, diisostearyl malate, glyceryl di-2-heptylundecanoate, trimethylolpropane tri-2-ethylhexanoate, trimethylolpropane triisostearate, pentaerythritol tetra-2-ethylhexanoate, glyceryl tri-2-ethylhexanoate, glyceryl trioctanoate, glyceryl triisopalmitate, trimethylolpropane triisostearate, cetyl 2-ethylhexanoate, 2-ethylhexyl palmitate, glyceryl trimyristate, tri-2-heptylundecanoic glyceride, castor oil fatty acid methyl ester, oleyl oleate, acetoglyceride, 2-heptylundecyl palmitate, diisobutyl adipate, 2-octyldodecyl N-lauroyl-L-glutamate, di-2-heptylundecyl adipate, ethyl laurate, di-2-ethylhexyl sebacate, 2-hexyldecyl myristate, 2-hexyldecyl palmitate, 2-hexyldecyl adipate, diisopropyl sebacate, 2-ethylhexyl succinate, and triethyl citrate.
  • Examples of the silicones include linear polysiloxanes, such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane; cyclic polysiloxanes, such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane; silicone resins forming three-dimensional networks; silicone rubbers; various modified polysiloxanes, such as amino-modified polysiloxanes, polyether-modified polysiloxanes, alkyl-modified polysiloxanes, and fluorine-modified polysiloxanes.
  • Examples of the anionic surfactants include fatty acid soaps, such as sodium laurate, and sodium palmitate; higher alkylsulfate salts, such as sodium laurylsulfate, and potassium lauryl sulfate; alkyl ether sulfate salts, such as triethanolamine POE-laurylsulfate, and sodium POE-laurylsulfate; N-acyl sarcosine acids, such as sodium lauroylsarcosine; higher fatty acid amide sulfonates, such as sodium N-myristoyl-N-methyltaurine, coconut oil fatty acid methyltaurid sodium salt, and laurylmethyltaurid sodium salt; phosphate esters, such as sodium POE oleyl ether phosphate, and POE stearyl ether phosphoric acid; sulfosuccinates, such as sodium di-2-ethylhexylsulfosuccinate, sodium monolauroylmonoethanolamide polyoxyethylene sulfosuccinate, and sodium laurylpolypropylene glycol sulfosuccinate; alkylbenzenesulfonate salts, such as sodium linear dodecylbenzenesulfonate, triethanolamine linear dodecylbenzenesulfonate, and linear dodecylbenzenesulfonic acid; higher fatty acid ester sulfate salts, such as hardened coconut oil fatty acid glycerin sulfate sodium salt; N-acylglutamate salts, such as monosodium N-lauroylglutamate, disodium N-stearoylglutamate, and monosodium N-myristoyl-L-glutamate; sulfated oils, such as turkey red oil; POE-alkyl ether carboxylic acids; POE-alkylaryl ether carboxylic acid salts; α-olefinsulfonic acid salts; higher fatty acid ester sulfonate salts; secondary alcohol sulfate salts; higher fatty acid alkylolamide sulfate salts; sodium lauroylmonoethanolamidesuccinate; ditriethanolamine N-palmitoylaspartate; and casein sodium.
  • Examples of the cationic surfactants include alkyltrimethyl ammonium salts, such as stearyltrimethyl ammonium chloride, and lauryltrimethyl ammonium chloride; alkylpyridinium salts, such as cetylpyridinium chloride; distearyldimethylammonium dialkyldimethylammonium chloride; poly(N,N′-dimethyl-3,5-methylenepyridinium) chloride; alkyl-quaternary ammonium salts; alkyldimethylbenzylammonium salts; alkylisoquinolinium salts; dialkylmorpholinium salts; POE-alkylamines; alkylamine salts; polyamine fatty acid derivatives; amyl alcohol fatty acid derivatives; benzalkonium chloride; and benzetonium chloride.
  • Examples of the amphoteric surfactants include imidazoline-type amphoteric surfactants, such as 2-undecyl-N,N,N-(hydroxyethylcarboxymethyl)-2-imidazoline sodium salt, and 2-cocoyl-2-imidazaliniumhydroxide-1-carboxyethyloxy-2-sodium salt; betaine-type surfactants, such as 2-heptadecyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, betaine lauryldimethylamino-acetate, alkyl betaine, amide betaine, and sulfobetaine.
  • Examples of the lipophilic nonionic surfactants include sorbitan fatty acid esters, such as sorbitan monooleate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate, diglycerolsorbitan penta-2-ethylhexanoate, and diglycerolsorbitan tetra-2-ethylhexanoate; glycerol polyglycerol fatty acids, such as mono-cottonseed-fatty acid glyceryl ester, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, glyceryl α, α′-oleate pyroglutamate, and glyceryl monostearate malate; propylene glycol fatty acid esters, such as propylene glycol monostearate; hardened castor oil derivatives; and glycerol alkyl ethers.
  • Examples of the hydrophilic nonionic surfactants include POE-sorbitan fatty acid esters, such as POE-sorbitan monooleate, POE-sorbitan monostearate, POE-sorbitan monooleate, and POE-sorbitan tetraoleate; POE-sorbitol fatty acid esters, such as POE-sorbitol monolaurate, POE-sorbitol monooleate, POE-sorbitol pentaoleate, and POE-sorbitol monostearate; POE-glycerol fatty acid esters, such as POE-monooleates such as POE-glyceryl monostearate, POE-glyceryl monoisostearate, and POE-glyceryl triisostearate; POE-fatty acid esters, such as POE-distearate, and POE-monodioleate and ethylene glycol distearate; POE-alkyl ethers, such as POE-lauryl ether, POE-oleyl ether, POE-stearyl ether, POE-behenyl ether, POE-2-octyldodecyl ether, and POE-cholestanol ether; Pluronics such as Pluronic; POE/POP-alkyl ethers, such as POE/POP-cetyl ether, POE/POP-2-decyltetradecyl ether, POE/POP-monobutyl ether, POE/POP-hydrogenated lanolin, and POE/POP-glyceryl ether; tetra-POE/tetra-POP-ethylenediamine condensates, such as Tetronic; POE-castor oil/hardened castor oil derivatives, such as POE-castor oil, POE-hardened castor oil, POE-hardened castor oil monoisostearate, POE-hardened castor oil triisostearate, POE-hardened castor oil monopyroglutamate monoisostearate diester, and POE-hardened castor oil maleate; POE-bees wax/lanolin derivatives, such as POE-sorbitol bees wax; alkanolamides, such as coconut oil fatty acid diethanolamide, lauric acid monoethanolamide, and fatty acid isopropanolamide; POE-propylene glycol fatty acid esters; POE-alkylamines; POE-fatty acid amides; sucrose fatty acid esters; alkylethoxydimethylamine oxides; and trioleyl phosphate.
  • Examples of the humectants include polyethylene glycol, propylene glycol, glycerol, 1,3-butylene glycol, xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, charonic acid, atelocollagen, cholesteryl 12-hydroxystearate, sodium lactate, bile acid salt, dl-pyrrolidonecarboxylate salts, short-chain soluble collagen, diglycerol (EO)PO adducts, chestnut rose extract, yarrow extract, and melilot extract.
  • Examples of the natural water-soluble polymers include vegetable polymers, such as gum arabic, gum tragacanth, galactan, guar gum, carob gum, karaya gum, carrageenan, pectin, agar, quince seed (Cydonia oblonga), algae colloid (brown algae extract), starch (rice, corn, potato, wheat), and glycyrrhizic acid; microbial polymers, such as xanthan gum, dextran, succinoglucane, and pullulan; animal polymers, such as collagen, casein, albumin, and gelatin.
  • Examples of the semi-synthetic water-soluble polymers include starch-type polymers, such as carboxymethyl starch, and methylhydroxypropyl starch; cellulose-type polymers, such as methyl cellulose, ethyl cellulose, methylhydroxypropyl cellulose, hydroxyethyl cellulose, sodium cellulose sulfate, hydroxypropyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, crystalline cellulose, and cellulose powder; alginic acid-type polymers, such as sodium alginate, and propyleneglycol alginate ester.
  • Examples of the synthetic water-soluble soluble polymers include vinylic polymers, such as polyvinyl alcohol, polyvinyl methyl ether, polyvinyl pyrrolidone, and carboxyvinyl polymer; polyoxyethylene-type polymers, such as polyoxyethylene-polyoxypropylene copolymers with polyethylene glycol 20,000, 40,000 or 60,000; acrylic polymers, such as sodium polyacrylate, polyethyl acrylate, and polyacrylamide; polyethyleneimine; and cationic polymers.
  • Examples of the viscosity improvers include gum arabic, carrageenan, karaya gum, gum tragacanth, carob gum, quince seed (Cydonia oblonga), casein, dextrin, gelatin, sodium pectate, sodium alginate, methyl cellulose, ethyl cellulose, CMC, hydroxyethyl cellulose, hydroxypropyl cellulose, PVA, PVM, PVP, sodium polyacrylate, carboxyvinyl polymer, locust bean gum, guar gum, tamarind gum, cellulose dialkyldimethylammonium sulfate, xanthan gum, aluminum magnesium silicate, bentonite, hectorite, AlMg silicate (bee gum), laponite, and silicic anhydride.
  • Examples of the UV absorbents include benzoic acid-type UV absorbents, such as paraminobenzoic acid (hereinafter this is abbreviated as PABA), PAPA monoglyceryl ester, N,N-dipropoxy-PABA ethyl ester, N,N-diethoxy-PABA ethyl ester, N,N-dimethyl-PABA ethyl ester, N,N-dimethyl-PABA butyl ester, and N,N-dimethyl-PABA ethyl ester; anthranilic acid-type UV absorbents, such as homomenthyl-N-acetyl anthranilate; salicylic acid-type UV absorbents, such as amyl salicylate, menthyl salicylate, homomethyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, and p-isopropanolphenyl salicylate; cinnamic acid-type UV absorbents, such as octyl cinnamate, ethyl 4-isopropylcinnamate, methyl 2,5-diisopropylcinnamate, ethyl 2,4-diisopropylcinnamate, methyl 2,4-diisopropylcinnamate, propyl p-methoxycinnamate, isopropyl p-methoxycinnamate, isoamyl p-methoxycinnamate, octyl p-methoxycinnamate (2-ethylhexyl p-methoxycinnamate), 2-ethoxyethyl p-methoxycinnamate, cyclohexyl p-methoxycinnamate, ethyl α-cyano-β-phenylcinnamate, 2-ethylhexyl α-cyano-β-phenylcinnamate, and glyceryl mono-2-ethylhexanoyl-diparamethoxycinnamate; benzophenone-type UV absorbents, such as 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4′-methylbenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid salt, 4-phenylbenzophenone, 2-ethylhexyl 4′-phenyl-benzophenone-2-carboxylate, 2-hydroxy-4-n-octoxybenzophenone, and 4-hydroxy-3-carboxybenzophenone; 3-(4′-methylbenzylidene)-d,l-camphor; 3-benzylidene-d,l-camphor; 2-phenyl-5-methylbenzoxazole; 2,2′-hydroxy-5-methylphenylbenzotriazole; 2-(2′-hydroxy-5′-t-octylphenyl)benzotriazole; 2-(2′-hydroxy-5′-methylphenylbenzotriazole); dibenzaladine; dianisoylmethane; 4-methoxy-4′-t-butyldibenzoylmethane; and 5-(3,3-dimethyl-2-norbornylidene)-3-pentan-2-one.
  • Examples of the metal ion sequestrants include 1-hydroxyethane-1,1-diphosphonic acid, tetrasodium 1-hydroxyethane-1,1-diphosphonate, disodium edetate, trisodium edetate, tetrasodium edetate, sodium citrate, sodium polyphosphate, sodium metaphosphate, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid, and trisodium ethylenediaminehydroxyethyltriacetate.
  • Examples of the lower alcohols include ethanol, propanol, isopropanol, isobutyl alcohol, and t-butyl alcohol.
  • Examples of the polyalcohols include dialcohols, such as ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, tetramethylene glycol, 2,3-butylene glycol, pentamethylene glycol, 2-butene-1,4-diol, hexylene glycol, and octylene glycol; trialcohols, such as glycerol, and trimethylolpropane; tetralcohols, such as pentaerythritol such as 1,2,6-hexanetriol; pentalcohols such as xylitol; hexylcohols, such as sorbitol, and mannitol; polyalcohol polymers, such as diethylene glycol, dipropylene glycol, triethylene glycol, polypropylene glycol, tetraethylene glycol, diglycerol, polyethylene glycol, triglycerol, tetraglycerol, and polyglycerol; dialcohol alkyl ethers, such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, ethylene glycol monohexyl ether, ethylene glycol mono-2-methylhexyl ether, ethylene glycol isoamyl ether, ethylene glycol benzyl ether, ethylene glycol isopropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether; dialcohol alkyl ethers, such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol butyl ether, diethylene glycol methyl ethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, and dipropylene glycol butyl ether; dialcohol ether esters, such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, ethylene glycol diadipate, ethylene glycol disuccinate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, and propylene glycol monophenyl ether acetate; glycerol monoalkyl ethers, such as xylyl alcohol, selachyl alcohol, batyl alcohol; sugar alcohols, such as sorbitol, maltitol, maltotriose, mannitol, sucrose, erythritol, glucose, fructose, starch amylolysis sugar, maltose, xylitose, and alcohol prepared by reducing starch amylolysis sugar; glysolid; tetrahydrofurfuryl alcohol; POE-tetrahydrofurfuryl alcohol; POP-butyl ether; POP/POE-butyl ether; tripolyoxypropylene glycerol ether; POP-glycerol ether; POP-glycerol ether phosphoric acid; POP/POE-pentaneerythritol ether, and polyglycerol.
  • Examples of the monosaccharides include trioses, such as D-glyceryl aldehyde, and dihydroxy acetone; tetroses, such as D-erythrose, D-erythrulose, D-threose, and erythritol; pentoses, such as L-arabinose, D-xylose, L-lyxose, D-arabinose, D-ribose, D-ribulose, D-xylulose, and L-xylulose; hexoses, such as D-glucose, D-talose, D-psicose, D-galactose, D-fructose, L-galactose, L-mannose, and D-tagatose; heptoses, such as aldoheptose, and hepturose; octoses such as octurose; deoxysaccharides, such as 2-deoxy-D-ribose, 6-deoxy-L-galactose, and 6-deoxy-L-mannose; aminosaccharides, such as D-glucosamine, D-galactosamine, sailic acid, aminouronic acid, and muramic acid; uronic acids, such as D-glucuronic acid, D-mannuronic acid, L-gulonic acid, D-galacturonic acid, and L-iduronic acid.
  • Examples of the oligosaccharides include sucrose, gunchianose, umbelliferose, lactose, planteose, isolignoses, α,α-trehalose, raffinose, lignoses, umbilicine, stachyose, and belbascose.
  • Examples of the polysaccharides include cellulose, quince seed, chondroitin sulfuric acid, starch, galactan, dermatan sulfate, glycogen, gum arabic, heparan sulfate, hyaluronic acid, gum tragacanth, keratan sulfate, chondroitin, xanthan gum, mucoitin sulfate, guar gum, dextran, kerato sulfate, locust bean gum, succinoglucane, and charonic acid.
  • Examples of the amino acids include neutral amino acids, such as threonine, and cysteine; basic amino acids such as hydroxylysine. The amino acid derivatives include sodium acylsarcosine (sodium lauroylsarcosine), acylglutamic acid salts, sodium acyl-β-alanine, glutathione, and pyrrolidonecarboxylic acid.
  • Examples of the organic amines include monoethanolamine, diethanolamine, triethanolamine, morpholine, triisopropanolamine, 2-amino-2-methyl-1,3-propanediol, and 2-amino-2-methyl-1-propanol.
  • Examples of the polymer emulsions include acrylic resin emulsion, polyethyl acrylate emulsion, acrylic resin liquid, polyacrylalkyl ester emulsion, polyvinyl acetate resin emulsion, and natural rubber latex.
  • Examples of the vitamins include vitamin A, B1, B2, B6, C, E and their derivatives, pantothenic acid and its derivatives, and biotin.
  • Examples of the antioxidants include tocopherols, dibutylhydroxytoluene, butylhydroxyanisole, and gallic acid esters.
  • Examples of the antioxidant promoters include phosphoric acid, citric acid, ascorbic acid, maleic acid, malonic acid, succinic acid, fumaric acid, cephalin, hexametaphosphate, phytic acid, and ethylenediamine-tetraacetic acid.
  • Other ingredients that may be incorporated in the cosmtic of the invention are, for example, antiseptics, such as ethylparaben, and butylparaben; antiinflammatory agents, such as glycyrrhizinic acid derivatives, glycyrrhetinic acid derivatives, salicylic acid derivatives, hinokitiol, zinc oxide, and allantoin; skin-lightening agents, such as placenta extract, saxifrage extract, and arbutin; various extracts, such as Phellodendron bark, Coptis japonica, Lithospermum erythrorhizon, Paeonia lactiflora, Swertia japonica, birch, sage, loquat, ginseng, aloe, Malva sylve, iris, grapes, dove wheat, luffa, lily, saffron, Cnidium officinale, shengjiang, Hypericumerectum, Ononis spinosa, garlic, red pepper, tangerine peel, Angelica acutiloba, and seaweed; activators, such as royal jelly, photosensitive agents, and cholesterol derivatives; blood circulation promoters, such as nonylic acid vanillylamide, benzyl nicotinate, β-butoxyethyl nicotinate, capsaicin, zingerone, cantharis tincture, ichthammol, tannic acid, α-borneol, tocopherol nicotinate, inositol hexanicotinate, cyclandelate, cinnarizine, tolazoline, acetylcholine, verapamil, cepharanthine, and γ-oryzanol; antiseborrheics, such as sulfur, and thiantol; antiinflammatory agents, such as tranexamic acid, thiotaurine, and hypotaurine.
  • The skin cosmetic of the invention may be in any form, including solubilization type one, emulsion type one, powdery dispersion type one, oil-water two-phase type one, oil-water-powder three-phase type one and others, but not limited thereto. The skin care cosmetic of the invention may be in any product form, and may be used for facial skincare preparations such as lotions, milks, creams, facial masks and the like, as well as for body skin cosmetics and aromatizing skin cosmetics.
  • EXAMPLES
  • The invention is described more concretely with reference to the following Examples, by which, however, the invention is not limited at all. Unless otherwise specifically indicated, the compounding amount is in terms of % by mass relative to the composition in which the ingredient it incorporated.
  • Preparation of Aqueous Urethane Resin Liquid Preparation Example 1
  • Isophorone diisocyanate (IPDI, 100 g), polypropylene glycol (PPG 1000, 66 g), 1,4-cyclohexanedimethanol (CHDM, 10 g) and dimethylolbutanoic acid (DMBA, 38 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C., thereby giving a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (16 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 25 mas. % dispersion of an anionic urethane resin substantially not containing a solvent. CHDM/PPG 1000=about 0.15 (ratio by mass, in terms of charge).
  • Preparation Example 2
  • Isophorone diisocyanate (IPDI, 100 g), polypropylene glycol (PPG 1000, 66 g), cyclohexanedimethanol (CHDM, 100 g), polyoxyethylene glycol (PEG 1000, 20 g) and dimethylolbutanoic acid (DMBA, 36 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C. Next, N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours. Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 30 mas. % dispersion of an amphoteric urethane resin having an ethylene oxide chain in the structure and substantially not containing a solvent.

  • CHDM/PPG 1000=about 1.5 (ratio by mass, in terms of charge).
  • Preparation Example 3
  • Isophorone diisocyanate (IPDI, 100 g), polypropylene glycol (PPG 1000, 60 g), 1,4-cyclohexanedimethanol (CHDM, 30 g) and dimethylolbutanoic acid (DMBA, 38 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C., thereby giving a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (16 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 26 mas. % dispersion of an anionic urethane resin substantially not containing a solvent.

  • CHDM/PPG 1000=0.5 (ratio by mass, in terms of charge).
  • Preparation Example 4
  • Isophorone diisocyanate (IPDI, 100 g) and polydimethylsiloxanediol having two OH group at one terminal (molecular weight 1000, 3 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, and reacted for 2 hours under heat in an oil bath at 80° C. Next, polypropylene glycol (PPG 3000, 20 g), 1,4-cyclohexanedimethanol (CHDM, 60 g), hydrogenated bisphenol A (5 g) and dimethylolbutanoic acid (DMBA, 36 g) were added to it, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C. Next, N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours. Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 27 mas. % dispersion of an amphoteric urethane resin having a dimethylsiloxane chain in the structure and substantially not containing a solvent.

  • CHDM/PPG 1000=3.0 (ratio by mass, in terms of charge).
  • Comparative Preparation Example 1
  • Isophorone diisocyanate (IPDI, 100 g), polypropylene glycol (PPG 1000, 60 g), 1,4-cyclohexanedimethanol (CHDM, 5 g) and dimethylolbutanoic acid (DMBA, 38 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C. Next, N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours. Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (16 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 24 mas. % dispersion of an amphoteric urethane resin substantially not containing a solvent. CHDM/PPG 1000=about 0.08 (ratio by mass, in terms of charge).
  • Comparative Preparation Example 2
  • Isophorone diisocyanate (IPDI, 100 g), polypropylene glycol (PPG 1000, 10 g), 1,4-cyclohexanedimethanol (CHDM, 50 g), polyoxyethylene glycol (PEG 1000, 20 g) and dimethylolbutanoic acid (DMBA, 36 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C.
  • Next, N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours. Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 25 mas. % dispersion of an amphoteric urethane resin having an ethylene oxide chain in the structure and substantially not containing a solvent.

  • CHDM/PPG 1000=5.0 (ratio by mass, in terms of charge).
  • Comparative Preparation Example 3
  • Isophorone diisocyanate (IPDI, 100 g) and polydimethylsiloxanediol having two OH groups at one terminal (molecular weight 1000, 3 g) were put into a four-neck glass flask equipped with a stirrer, a thermometer, a nitrogen-introducing duct and a reflux condenser, and reacted for 2 hours under heat in an oil bath at 80° C. Next, polypropylene glycol (PPG 1000, 10 g), 1,4-cyclohexanedimethanol (CHDM, 40 g) and dimethylolbutanoic acid (DMBA, 36 g) were added to it, then ethyl acetate (60 g) serving as a solvent was added thereto, and reacted for 4 hours under heat in an oil bath at 80° C. Next, N-methyldiethanolamine (2 g) and ethyl acetate (30 g) were added to it, and further reacted for 3 hours. Polypropylene glycol having one amino group at one terminal (“Jeffamine M1000” by Huntsman Corp., 30 g) and ethyl acetate (50 g) were added to it, and further reacted for 1 hour to give a solution of a polyurethane prepolymer with an NCO group remaining therein. The NCO group-having polyurethane polymer was dispersed in water (750 g) containing potassium hydroxide (15 g), and reacted for chain extension for 3 hours at 50° C. for polymerization. Ethyl acetate was removed under reduced pressure from the resulting aqueous dispersion, thereby giving an aqueous 24 mas. % dispersion of an amphoteric urethane resin having a dimethylsiloxane chain in the structure and substantially not containing a solvent.

  • CHDM/PPG 1000=4.0 (ratio by mass, in terms of charge).
  • Examples 1 to 5, Comparative Examples 1 to 6
  • Using the aqueous urethane resin dispersions obtained in the above Preparation Examples 1 to 4 and Comparative Preparation Examples 1 to 3, skin cosmetics (eye creams) shown in Tables 1 and 2 were formulated according to the method mentioned below.
  • (Formulation Procedure)
  • In Tables 1 and 2, (2) to (6), (18) and (19) were added to (1), heated up to 70° C. and uniformly dissolved (aqueous phase). Next, (7) to (17) were dissolved uniformly at 80° C. in a different reactor (oily phase). The aqueous phase at 70° C. was stirred with a homomixer. The oily phase at 80° C. was gradually added to it and emulsified, and finally, (20) to (28) were added thereto and uniformly stirred, and thereafter this was rapidly cooled to 40° C. or lower with a cooler (Onlator) thereby giving an oil-in-water skin cosmetic (eye cream).
  • The obtained skin cosmetic was tested in a sensory evaluation test as described below, and evaluated for the usability. The results are shown in Tables 1 and 2.
  • <Sensory Evaluation Test>
  • Sensory evaluation tests were conducted by 10 female expert panelists with the application of the cosmetic preparation sample on their skin, and evaluated them for “sticky feel”, “squeaky feel”, “twisting of the applied cosmetic on the skin” and “ameliorating effect feel on skin wrinkles and sagging (skin-tensioning effect feel)”, according to the evaluation criteria mentioned below.
  • (1) Sensory evaluation test for sticky feel in use:
    (Evaluation criteria)
    Almost not sticky.
    Little sticky.
    Somewhat sticky.
  • Sticky. (Evaluation Standards)
  • ⊚: At least 9 panelists evaluated as “little sticky” or better.
    ∘: From 6 to 8 panelists evaluated as “little sticky” or better.
    Δ: From 3 to 5 panelists evaluated as “little sticky” or better.
    x: At most 2 panelists evaluated as “little sticky” or better.
  • (2) Sensory Evaluation Test for Squeaky Feel:
  • (Evaluation criteria)
    Not squeaky.
    Somewhat squeaky.
  • Squeaky. (Evaluation Standards)
  • ∘: At least 9 panelists evaluated as “not squeaky”.
    Δ: From 2 to 8 panelists evaluated as “not squeaky”.
    x: At most 1 panelist evaluated as “not squeaky”.
  • (3) Sensory Evaluation Test for Twisting of the Cosmetic Applied on the Skin (Adhesiability of the Cosmetic to the Skin):
  • (Evaluation criteria)
  • Not twisted.
  • Somewhat twisted.
  • Twisted. (Evaluation Standards)
  • ∘: At least 9 panelists evaluated as “not twisted”.
    Δ: From 2 to 8 panelists evaluated as “not twisted”.
    x: At most 1 panelist evaluated as “not twisted”.
    (4) Sensory Evaluation Test for Effective Feel to Skin Wrinkles and Sagging (in 1 Hour after Application) (Skin Tension):
  • (Evaluation Criteria)
  • Extremely effective feel to skin wrinkles and sagging.
    Effective feel to skin wrinkles and sagging.
    Ineffective feel to skin wrinkles and sagging.
  • (Evaluation Standards)
  • ⊚: At least 9 panelists evaluated as “effective feel to skin wrinkles and sagging” or better.
    ∘: From 6 to 8 panelists evaluated as “effective feel to skin wrinkles and sagging” or better.
    Δ: From 3 to 5 panelists evaluated as “effective feel to skin wrinkles and sagging” or better.
    x: At most 2 panelists evaluated as “effective feel to skin wrinkles and sagging” or better.
  • TABLE 1
    Example
    Ingredients 1 2 3 4 5
    (1) Ion-exchanged water balance balance balance balance balance
    (2) Edetic acid salt 0.01 0.01 0.01 0.01 0.01
    (3) Acrylic acid amide/AMPS copolymer 0.4 0.4 0.4 0.4 0.4
    (4) Glycerin 3.0 3.0 3.0 3.0 3.0
    (5) 1,3-Butylene glycol 7.0 7.0 7.0 7.0 7.0
    (6) Phenoxyethanol 0.5 0.5 0.5 0.5 0.5
    (7) Decamethylcyclopentasiloxane 5.0 5.0 5.0 5.0 5.0
    (8) Trioctanoin 2.0 2.0 2.0 2.0 2.0
    (9) Vaseline 3.0 3.0 3.0 3.0 3.0
    (10) Cetanol 2.0 2.0 2.0 2.0 2.0
    (11) Self-emulsifying glyceryl monostearate 1.0 1.0 1.0 1.0 1.0
    (12) Polyethylene glycol monostearate (POE 40 mols) 0.5 0.5 0.5 0.5 0.5
    (13) Myristyl myristate 2.0 2.0 2.0 2.0 2.0
    (14) Sorbitol tristearate 0.1 0.1 0.1 0.1 0.1
    (15) Stearyl alcohol 0.2 0.2 0.2 0.2 0.2
    (16) Behenyl alcohol 0.3 0.3 0.3 0.3 0.3
    (17) Fragrance 0.1 0.1 0.1 0.1 0.1
    (18) Sodium hexametaphosphate 0.01 0.01 0.01 0.01 0.01
    (19) Titanium oxide 0.01 0.01 0.01 0.01 0.01
    (20) Aqueous dispersion of anionic urethane 0.4 (effective 1.2 (effective
    resin obtained in Preparation Example 1 (effective amount amount
    amount 25% by mass) 0.1) 0.3)
    (21) Aqueous dispersion of amphoteric urethane 1.7 (effective
    resin obtained in Preparation Example 2 (effective amount
    amount 30% by mass) 0.5)
    (22) Aqueous dispersion of anionic urethane 15.4 (effective 1.15
    resin obtained in Preparation Example 3 (effective amount (ffecttive
    amount 26% by mass) 4.0) amount 0.3)
    (23) Aqueous dispersion of amphoteric urethane 18.5
    resin obtained in Preparation Example 4 (effective (ffecttive
    amount 27% by mass) amount 5.0)
    (24) Aqueous dispersion of amphoteric urethane
    resin obtained in Comparative Preparation Example
    1 (effective amount 24% by mass)
    (25) Aqueous dispersion of amphoteric urethane
    resin obtained in Comparative Preparation Example
    2 (effective amount 25% by mass)
    (26) Aqueous dispersion of amphoteric urethane
    resin obtained in Comparative Preparation Example
    3 (effective amount 24% by mass)
    (27) Polyvinyl alcohol
    (28) Polyvinyl pyrrolidone
    Sticky feel (4-rank evaluation)
    Squeaky feel (3-rank evaluation)
    Twisting on skin (3-rank evaluation)
    Effective feel to wrinkles and sagging (4-rank
    evaluation)
  • TABLE 2
    Comparative Example
    Ingredients 1 2 3 4 5 6
    (1) Ion-exchanged water balance balance balance balance balance balance
    (2) Edetic acid salt 0.01 0.01 0.01 0.01 0.01 0.01
    (3) Acrylic acid amide/AMPS copolymer 0.4 0.4 0.4 0.4 0.4 0.4
    (4) Glycerin 3.0 3.0 3.0 3.0 3.0 3.0
    (5) 1,3-Butylene glycol 7.0 7.0 7.0 7.0 7.0 7.0
    (6) Phenoxyethanol 0.5 0.5 0.5 0.5 0.5 0.5
    (7) Decamethylcyclopentasiloxane 5.0 5.0 5.0 5.0 5.0 5.0
    (8) Trioctanoin 2.0 2.0 2.0 2.0 2.0 2.0
    (9) Vaseline 3.0 3.0 3.0 3.0 3.0 3.0
    (10) Cetanol 2.0 2.0 2.0 2.0 2.0 2.0
    (11) Self-emulsifying glyceryl monostearate 1.0 1.0 1.0 1.0 1.0 1.0
    (12) Polyethylene glycol monostearate (POE 0.5 0.5 0.5 0.5 0.5 0.5
    40 mots)
    (13) Myristyl myristate 2.0 2.0 2.0 2.0 2.0 2.0
    (14) Sorbitol tristearate 0.1 0.1 0.1 0.1 0.1 0.1
    (15) Stearyl alcohol 0.2 0.2 0.2 0.2 0.2 0.2
    (16) Behenyl alcohol 0.3 0.3 0.3 0.3 0.3 0.3
    (17) Fragrance 0.1 0.1 0.1 0.1 0.1 0.1
    (18) Sodium hexametaphosphate 0.01 0.01 0.01 0.01 0.01 0.01
    (19) Titanium oxide 0.01 0.01 0.01 0.01 0.01 0.01
    (20) Aqueous dispersion of anionic urethane
    resin obtained in Preparation Example 1
    (effective amount 25% by mass)
    (21) Aqueous dispersion of amphoteric urethane
    resin obtained in Preparation Example
    2 (effective amount 30% by mass)
    (22) Aqueous dispersion of anionic urethane
    resin obtained in Preparation Example 3
    (effective amount 26% by mass)
    (23) Aqueous dispersion of amphoteric urethane
    resin obtained in Preparation Example
    4 (effective amount 27% by mass)
    (24) Aqueous dispersion of amphoteric urethane 2.1
    resin obtained in Comparative Preparation (effective
    Example 1 (effective amount 24% by amount
    mass) 0.5)
    (25) Aqueous dispersion of amphoteric urethane 2.0
    resin obtained in Comparative Preparation (effective
    Example 2 (effective amount 25% by amount
    mass) 0.5)
    (26) Aqueous dispersion of amphoteric urethane 2.1 1.25
    resin obtained in Comparative Preparation (effective (effective
    Example 3 (effective amount 24% by amount amount
    mass) 0.5) 0.3)
    (27) Polyvinyl alcohol 0.2 0.5
    (28) Polyvinyl pyrrolidone 0.5
    Sticky feel (4-rank evaluation) X Δ X X
    Squeaky feel (3-rank evaluation) Δ X X Δ X
    Twisting on skin (3-rank evaluation) X Δ
    Effective feel to wrinkles and sagging (4-rank Δ Δ X
    evaluation)
  • As obvious from the results shown in Tables 1 and 2, Examples 1 to 5 that are the preparations of the invention had excellent characteristics in that they were free from a sticky feel and a squeaky feel in use and did not twist on skin, and in addition, they were effective for wrinkles and sagging.
  • As opposed to these, it is known that Comparative Examples 1 to 4 in which the ratio by mass of CHDM/PPG of the aqueous dispersion of amphoteric urethane resin was outside the scope of the invention were defective in any of the absence of stickiness and squeaky feel, the twisting on skin, and the effectiveness to wrinkles and sagging, or their effects were poor. Also it is known that Comparative Examples 5 and 6 in which a different film former (polyvinyl alcohol, polyvinyl pyrrolidone) was used were defective in any of sticky feel, squeaky feel, twisting on skin, and effective feel to wrinkles and sagging, or their effects were poor.
  • Formulation examples of the skin cosmetic of the invention are shown below. These formulation examples shown below all had the excellent effects of the invention.
  • Example 6 Solubilized-Type Lotion
  • (Constitutive Ingredients) (% by mass)
    (1) Pure water balance
    (2) Glycerin 3.0
    (3) 1,3-Butylene glycol 3.0
    (4) Ethanol 5.0
    (5) POE (60 mol-added) hardened castor oil 0.3
    (6) Aqueous dispersion of anionic urethane resin 2.0
    obtained in Preparation Example 1 (effective amount 0.5)
    (7) Phenoxyethanol 0.5
    (8) Field horsetail extract 0.1
    (9) Clove extract 0.1
    (10) Clematis extract 0.1
    (11) Althaea root extract 0.1
    (12) Melissa extract 0.1
    (13) Scutellaria root extract 0.1
    (14) Vinyl pyrrolidone/AMPS copolymer 0.05
    (15) Dimethylpolysiloxane (5 mPa · s) 0.01
    (16) Fragrance 0.1
  • (Preparation Procedure)
  • (15) and (16) were added to a mixture of (4) and (5), then (1) was added thereto and dissolved (main aqueous phase). Next, (2), (3) and (7) to (14) were added to the previous main aqueous phase, and finally (6) was added thereto to give the intended solubulized-type lotion.
  • Example 7 Oil-in-Water Type Emulsion Cream
  • (Constitutive Ingredients) (% by mass)
    (1) Pure water balance
    (2) Carboxyvinyl polymer 0.3
    (3) Ethanol 3.0
    (4) Glycerin 1.0
    (5) Dipropylene glycol 5.0
    (6) Aqueous dispersion of anionic urethane resin 4.0
    obtained in Preparation Example 1 (effective amount 1.0)
    (7) Stearyl alcohol 3.0
    (8) Cetyl alcohol 5.0
    (9) Monococoyl fatty acid ester POE(20) sorbitol 1.0
    (10) POE(20) hardened castor oil 0.5
    (11) Sodium hydroxide 0.1
    (12) Catechu extract 0.01
    (13) L-arginine 0.01
    (14) Beech bud extract 0.01
    (15) Turmeric extract 0.01
    (16) Paraben 0.1
    (17) Fragrance 0.1
    (18) Liquid paraffin 3.0
    (19) Dimethylsilicone (6 mPa · s) 3.0
  • (Preparation Procedure)
  • (2) to (5) and (11) to (15) were added to (1), and uniformly dissolved (aqueous phase). Next, (7) to (10) and (16) to (19) were uniformly mixed and dissolved at 80° C. in a different chamber (oily phase). Heated at 70° C., the aqueous phase was stirred with a homomixer, and the oily phase at 80° C. was gradually added thereto and emulsified. After the emulsification, (6) was added to it and uniformly stirred. Next, this was degassed and filtered to give the intended oil-in-water type emulsion cream.
  • Example 8 Oil-in-Water Type Emulsion Liquid
  • (Constitutive Ingredients) (% by mass)
    (1) Pure water balance
    (2) Sodium polyacrylate/AMPS copolymer 1.0
    (3) 1,3-Butylene glycol 5.0
    (4) Aqueous dispersion of amphoteric urethane 5.0
    resin obtained in Preparation Example 2 (effective amount 1.5)
    (5) Vaseline 1.0
    (6) Cetyl octanoate 1.0
    (7) Trioctanoin 0.1
    (8) Behenyl alcohol 2.0
    (9) Stearyl alcohol 2.0
    (10) Aralkyl alcohol 1.0
    (11) POE(20) behenyl alcohol 3.0
    (12) Cetostearyl glucoside 0.1
    (13) Dipotassium glycyrrhizinate 0.05
    (14) Vitamin E acetate 0.1
    (15) Soybean extract 0.01
    (16) Paraben 0.15
    (17) Fragrance 0.1
  • (Preparation Procedure)
  • (2), (3) and (13) to (15) were added to (1), and uniformly dissolved (aqueous phase). Next, (5) to (12) and (16) and (17) were uniformly mixed and dissolved at 70° C. in a different chamber (oily phase). Heated at 70° C., the aqueous phase was stirred with a homomixer, and the oily phase at 70° C. was gradually added thereto and emulsified. After the emulsification, (4) was added to it and uniformly stirred. Next, this was degassed and filtered to give the intended oil-in-water type emulsion liquid.
  • Example 9 Oil-in-Water Type Emulsion Cream
  • (Constitutive Ingredients) (% by mass)
    (1) Pure water balance
    (2) Sodium polyacrylate 1.5
    (3) Ethanol 3.0
    (4) Glycerin 1.0
    (5) Dipropylene glycol 5.0
    (6) Aqueous dispersion of anionic urethane resin 0.38
    obtained in Preparation Example 3 (effective amount 0.1)
    (7) Stearyl alcohol 1.0
    (8) Cetyl alcohol 1.0
    (9) Monococoyl fatty acid ester POE(20) sorbitol 0.3
    (10) POE(20) hardened castor oil 0.2
    (11) Sodium hydroxide 0.1
    (12) Catechu extract 0.01
    (13) L-arginine 0.01
    (14) Beech bud extract 0.01
    (15) Turmeric extract 0.01
    (16) Paraben 0.1
    (17) Fragrance 0.1
    (18) Liquid paraffin 3.0
    (19) Dimethylsilicone (6 mPa · s) 3.0
  • (Preparation Procedure)
  • (2) to (5) and (11) to (15) were added to (1), and uniformly dissolved (aqueous phase). Next, (7) to (10) and (16) to (19) were uniformly mixed and dissolved at 70° C. in a different chamber (oily phase). Heated at 70° C., the aqueous phase was stirred with a homomixer, and the oily phase at 70° C. was gradually added thereto and emulsified. After the emulsification, (6) was added to it and uniformly stirred. Next, this was degassed and filtered to give the intended oil-in-water type emulsion cream.
  • Example 10 Oil-in-Water Type Emulsion Essence
  • (Constitutive Ingredients) (% by mass)
    (1) Pure water balance
    (2) Acrylic acid/alkyl (C10-30) acrylate copolymer 0.3
    (3) 1,3-Butylene glycol 5.0
    (4) Aqueous dispersion of amphoteric urethane 11.1
    resin obtained in Preparation Example 4 (effective amount 3.0)
    (5) Vaseline 1.0
    (6) Cetyl octanoate 1.0
    (7) Trioctanoin 0.1
    (8) Behenyl alcohol 1.0
    (9) Stearyl alcohol 0.5
    (10) Aralkyl alcohol 0.5
    (11) POE(20) behenyl alcohol 0.5
    (12) Cetostearyl glucoside 0.1
    (13) Dipotassium glycyrrhizinate 0.05
    (14) Vitamin E acetate 0.1
    (15) Soybean extract 0.01
    (16) Paraben 0.15
    (17) Fragrance 0.1
    (18) Potassium hydroxide 0.1
  • (Preparation Procedure)
  • (2), (3) and (13) to (15) were added to (1), and uniformly dissolved (aqueous phase). Next, (5) to (12) and (16) and (17) were uniformly mixed and dissolved at 70° C. in a different chamber (oily phase). Heated at 70° C., the aqueous phase was stirred with a homomixer, and the oily phase at 70° C. was gradually added thereto and emulsified. After the emulsification, (4) and (18) were added to it and uniformly stirred. Next, this was degassed and filtered to give the intended oil-in-water type emulsion essence.
  • INDUSTRIAL APPLICABILITY
  • The skin cosmetic of the invention exerts a feeling of ameliorating effect to skin wrinkles, a feeling of ameliorating effect to skin sagging (i.e., a feeling of skin-tensioning effect) by application, and is free from uncomfortable feelings in use, such as stickiness, twisting of the cosmetic applied on the skin (i.e., an excellent adhesionability of the applied cosmetic to the skin), and squeakiness.

Claims (20)

What is claimed is:
1. A skin cosmetic comprising an aqueous liquid of an amphoteric urethane resin dissolved or dispersed in water, wherein the amphoteric urethane resin is prepared by reacting as starting monomers
(a) an isocyanate compound with
(b) a polyol compound containing the following components (b-1) to (b-4) and having a ratio of component (b-1) to component (b-2) by mass in terms of charge of from 0.15 to 3.0:
(b-1). cyclohexanedimethanol,
(b-2). polypropylene glycol having a molecular weight of from 1000 to 3000,
(b-3). a compound having an active hydrogen and a carboxyl group in one molecule,
(b-4). a compound having an active hydrogen and a tertiary amino group in one molecule.
2. The skin cosmetic according to claim 1, wherein the amphoteric urethane resin includes a structural unit derived from ethylene oxide.
3. The skin cosmetic according to claim 1, wherein the amount of the aqueous dispersion of amphoteric urethane resin in the skincare preparation is from about 0.1% to about 5% by mass.
4. The skin cosmetic according to claim 2, wherein the amount of the aqueous dispersion of amphoteric urethane resin in the skincare preparation is from about 0.1% to about 5% by mass.
5. The skin cosmetic according to claim 1, wherein a charge ratio of component (b-1) to component (b-2) is from 0.2 to 2.5 by mass.
6. The skin cosmetic according to claim 1, wherein component (b-1) comprises 1,4-cyclohexanedimethanol.
7. The skin cosmetic according to claim 1, wherein component (b-3) comprises at least one of dimethylolpropionic acid (DMPA), dimethylolbutanoic acid (DMBA), and carboxyl group-containing polycaprolactonediol.
8. The skin cosmetic according to claim 1, wherein component (b-4) comprises an N-alkyldialkanolamine compound.
9. The skin cosmetic according to claim 8, wherein the N-alkyldialkanolamine compound comprises at least one of N-methyldiethanolamine (NMDEtA), N-butyldiethanolamine, and dimethylaminoethanol.
10. The skin cosmetic according to claim 1, wherein in preparing the amphoteric urethane resin, a charge ratio of component (a) is from about 30% to about 70% by mass of the starting monomers.
11. The skin cosmetic according to claim 10, wherein in preparing the amphoteric urethane resin, a charge ratio of component (b-1) and (b-2) is from about 20% to about 60% by mass of the starting monomers; a charge ratio of component (b-3) is from about 5% to about 25% by mass of the starting monomers; and a charge ratio of component (b-4)) is from about 0.5% to about 5.0% by mass of the starting monomers.
12. The skin cosmetic according to claim 2, wherein the amphoteric urethane resin includes a structural unit derived from propylene oxide.
13. The skin cosmetic according to claim 12, wherein a ratio of the structural unit derived from ethylene oxide to the structural unit derived from propylene oxide is from about 10:0 to 2:8 by mass.
14. The skin cosmetic according to claim 1, wherein in preparing the amphoteric urethane resin, component (b) further comprises a component (b-5) at a charge ratio of from about 1.0% to about 10.0% by mass of the starting monomers, component (b-5) comprising a polyethylene oxide derivative having an active hydrogen.
15. The skin cosmetic according to claim 14, wherein component (b-5) comprises at least one of polyoxyethylene glycol (PEG) and polyoxyethylene polyoxypropylene glycol(EO/PO block copolymer).
16. The skin cosmetic according to claim 14, wherein a molecular weight of component (b-5) is from about 200 to about 20,000.
17. The skin cosmetic according to claim 1, wherein the starting monomers of the amphoteric urethane resin further comprise a polysiloxane compound having a recurring number of siloxane bonds (Si—O) from about 5 to about 300 at a charge ratio of from about 0.1% to about 5.0% by mass of the starting monomers.
18. The skin cosmetic according to claim 17, wherein the polysiloxane compound comprises at least one of polydialkylsiloxane-diol, polydialkylsiloxane-monool, polydialkylsiloxane-diamine, and polydialkylsiloxane-monoamine.
19. The skin cosmetic according to claim 1, wherein the aqueous liquid of an amphoteric urethane resin dissolved or dispersed in water has a solids concentration of from about 5.0% to about 30.0% by mass.
20. The skin cosmetic according to claim 1, wherein the amphoteric urethane resin includes from about 3 to about 300 repeating structural units derived from ethylene oxide.
US14/150,098 2007-11-13 2014-01-08 Skin Cosmetic Abandoned US20140120051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/150,098 US20140120051A1 (en) 2007-11-13 2014-01-08 Skin Cosmetic

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007294276A JP4450427B2 (en) 2007-11-13 2007-11-13 Skin cosmetics
JP2007-294276 2007-11-13
PCT/JP2008/070611 WO2009063917A1 (en) 2007-11-13 2008-11-12 Skin care preparations
US74244410A 2010-09-16 2010-09-16
US14/150,098 US20140120051A1 (en) 2007-11-13 2014-01-08 Skin Cosmetic

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/742,444 Division US8642023B2 (en) 2007-11-13 2008-11-12 Skin cosmetic
PCT/JP2008/070611 Division WO2009063917A1 (en) 2007-11-13 2008-11-12 Skin care preparations

Publications (1)

Publication Number Publication Date
US20140120051A1 true US20140120051A1 (en) 2014-05-01

Family

ID=40638766

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/742,444 Expired - Fee Related US8642023B2 (en) 2007-11-13 2008-11-12 Skin cosmetic
US14/150,098 Abandoned US20140120051A1 (en) 2007-11-13 2014-01-08 Skin Cosmetic

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/742,444 Expired - Fee Related US8642023B2 (en) 2007-11-13 2008-11-12 Skin cosmetic

Country Status (7)

Country Link
US (2) US8642023B2 (en)
EP (1) EP2221046A4 (en)
JP (1) JP4450427B2 (en)
KR (1) KR20100101104A (en)
CN (1) CN101917964B (en)
HK (1) HK1146580A1 (en)
WO (1) WO2009063917A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321252B1 (en) 2008-12-03 2013-10-28 가부시키가이샤 시세이도 Oil―in―water cosmetic
US8106111B2 (en) 2009-05-15 2012-01-31 Eastman Chemical Company Antimicrobial effect of cycloaliphatic diol antimicrobial agents in coating compositions
CN102596164B (en) 2009-10-26 2016-08-03 日产化学工业株式会社 Cosmetic preparation, skin preparations for extenal use and medical instrument
JP4837086B2 (en) * 2009-12-15 2011-12-14 株式会社 資生堂 Emulsified cosmetics
CN102294132B (en) * 2011-06-29 2013-09-25 南京四新科技应用研究所有限公司 Defoamer for cleaning printed circuit board
JP5257804B1 (en) * 2011-12-09 2013-08-07 Dic株式会社 Film-forming aid, aqueous resin composition containing the same, and steel sheet surface treatment agent
KR102330734B1 (en) * 2013-08-07 2021-11-23 재팬 코팅 레진 가부시키가이샤 Polyurethane, urethane-(meth)acrylate composite resin, and aqueous urethane-(meth)acrylate composite resin dispersion
JP6969352B2 (en) * 2017-12-20 2021-11-24 東洋インキScホールディングス株式会社 A method for manufacturing a skin adhesive, a skin adhesive, and a skin adhesive with a peeling sheet-like member.
JP7343310B2 (en) * 2019-06-10 2023-09-12 株式会社Adeka skin cosmetics
JP2021143127A (en) * 2020-03-10 2021-09-24 ロゼット株式会社 Gommage cosmetic composition
CN112480365B (en) * 2020-11-26 2022-06-07 文水县是大高分子材料有限公司 Polyurethane dispersant, preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646092B2 (en) * 2001-06-27 2003-11-11 National Starch And Chemical Investment Holding Corporation Method for manufacturing amphoteric urethane resin and amphoteric urethane resin and resin composition obtained therewith

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535322B2 (en) 1996-09-28 2004-06-07 株式会社資生堂 External preparation for skin
US5968494A (en) * 1998-02-24 1999-10-19 National Starch And Chemical Investment Holding Corporation Polyurethanes with carboxylate functionality for hair fixative applications
JP2000063253A (en) 1998-08-19 2000-02-29 Shiseido Co Ltd Makeup for improving wrinkle and cosmetic used therefor
AU2000243472A1 (en) * 2000-04-13 2002-01-30 National Starch And Chemical Investment Holding Corporation Cosmetic resin composition and cosmetic using the same
JP2002020451A (en) * 2000-07-07 2002-01-23 Nippon Nsc Ltd Amphoteric urethane resin composition
JP2003012440A (en) * 2001-06-27 2003-01-15 Shiseido Co Ltd Cosmetic
JP3701233B2 (en) * 2001-12-04 2005-09-28 株式会社資生堂 Hair cosmetics
JP3701234B2 (en) * 2001-12-04 2005-09-28 株式会社資生堂 Hair cosmetics
JP3701232B2 (en) * 2001-12-04 2005-09-28 株式会社資生堂 Hair cosmetics
JP3701237B2 (en) * 2001-12-14 2005-09-28 株式会社資生堂 Cosmetic composition
JP3701238B2 (en) * 2001-12-14 2005-09-28 株式会社資生堂 Hair cosmetics
TW200526262A (en) * 2004-01-14 2005-08-16 Shiseido Co Ltd Skin preparations for external use for wrinkle diminution
JP4590186B2 (en) 2004-01-14 2010-12-01 株式会社資生堂 Skin external preparation for wrinkle improvement
JP4819332B2 (en) * 2004-08-25 2011-11-24 株式会社 資生堂 Hair cosmetics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646092B2 (en) * 2001-06-27 2003-11-11 National Starch And Chemical Investment Holding Corporation Method for manufacturing amphoteric urethane resin and amphoteric urethane resin and resin composition obtained therewith

Also Published As

Publication number Publication date
HK1146580A1 (en) 2011-06-24
JP4450427B2 (en) 2010-04-14
KR20100101104A (en) 2010-09-16
EP2221046A1 (en) 2010-08-25
US20110002873A1 (en) 2011-01-06
CN101917964A (en) 2010-12-15
US8642023B2 (en) 2014-02-04
EP2221046A4 (en) 2015-07-01
WO2009063917A1 (en) 2009-05-22
JP2009120510A (en) 2009-06-04
CN101917964B (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US8642023B2 (en) Skin cosmetic
JP4699215B2 (en) Hair cosmetics
AU2016204668B2 (en) External preparation for skin
US20090326151A1 (en) Hair cosmetic
JP5022818B2 (en) Hair cosmetics
US8232321B2 (en) Alkylene oxide derivative and skin external preparation containing the same
JP6688801B2 (en) Cured silicone particles, cosmetics containing this
CN108602930B (en) Water-absorbent resin having siloxane skeleton and cosmetic material containing the same
KR102563845B1 (en) Underwater cosmetics
CN109069395B (en) Emulsified cosmetic
JP4601056B2 (en) Siloxane ester compound, skin external preparation oil or hair cosmetic oil, and skin external preparation or hair cosmetic containing the same
JP4491305B2 (en) Cosmetic composition
JPWO2003026698A1 (en) Skin preparation
JP2022029704A (en) Cosmetic composition
EP4119194A1 (en) Oily composition and cosmetics composition containing said oily composition
WO2006073174A1 (en) Hair cosmetic
JP2004091415A (en) Skin cosmetic
JP7169879B2 (en) hair styling composition
CN113194922B (en) Microemulsion composition, cured product thereof, and cosmetic containing cured product thereof
JP2022029705A (en) Emulsified cosmetic composition
WO2023210084A1 (en) Cosmetic
JP7250725B2 (en) Microemulsion composition and cosmetics containing the same
WO2023182149A1 (en) Method for thickening oily component and composition containing oily component
JP2006188477A (en) External preparation composition for skin
TW202027714A (en) Water-in-oil emulsion composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHISEIDO COMPANY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OMURA, TAKAYUKI;YOKOO, MIHOSHI;SIGNING DATES FROM 20100816 TO 20100823;REEL/FRAME:032644/0579

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION