US20140110269A1 - Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine - Google Patents

Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine Download PDF

Info

Publication number
US20140110269A1
US20140110269A1 US14/046,261 US201314046261A US2014110269A1 US 20140110269 A1 US20140110269 A1 US 20140110269A1 US 201314046261 A US201314046261 A US 201314046261A US 2014110269 A1 US2014110269 A1 US 2014110269A1
Authority
US
United States
Prior art keywords
anode
process according
fluorine
carbon
nitrogen trifluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/046,261
Inventor
James Patrick Nehlsen
Kerry Renard Berger
Reinaldo Mario Machado
Kyoung-Ho Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versum Materials US LLC
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Priority to US14/046,261 priority Critical patent/US20140110269A1/en
Assigned to AIR PRODUCTS AND CHEMICALS, INC. reassignment AIR PRODUCTS AND CHEMICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, KYOUNG-HO, BERGER, KERRY RENARD, MACHADO, REINALDO MARIO, NEHLSEN, JAMES PATRICK
Priority to TW102137820A priority patent/TW201416492A/en
Priority to CN201310495849.6A priority patent/CN103774171A/en
Priority to JP2013218456A priority patent/JP2014084529A/en
Publication of US20140110269A1 publication Critical patent/US20140110269A1/en
Assigned to VERSUM MATERIALS US, LLC reassignment VERSUM MATERIALS US, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AIR PRODUCTS AND CHEMICALS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • C25B11/12
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the present invention relates generally to the electrolytic production of nitrogen trifluoride and fluorine, and in particular, to the use of anodes made from parallel ordered anisotropic carbon, including needle coke and mesophase carbon, that exhibit certain physical properties for generating nitrogen trifluoride and fluorine.
  • Nitrogen trifluoride is a stable gas that has little reactivity at room temperature.
  • Fluorine (F 2 ) is a reactive gas with most materials at ambient conditions. Both NF 3 and F 2 have found growing use in semiconductor manufacturing. For example, NF 3 is typically used as an etchant for silicon or silicon oxide layers on a semiconductor substrate or as a CVD chamber cleaning gas where it is activated in situ.
  • NF 3 may be manufactured by a fluorination process.
  • fluorination process There are two principle methods for fluorination: direct fluorination (DF) and electrochemical fluorination (ECF).
  • electrochemical fluorination an electrolyte may be electrolyzed in an electrolytic cell to produce the NF 3 .
  • F 2 is produced in an electrochemical process that resembles the ECF process for producing NF 3 .
  • Traditional electrolytic cells use a carbon steel cathode and extruded, carbonized anodes made from carbon coke particles and a carbon pitch binder, for example.
  • Traditional anodes are made from isotropic coke and exhibit high macroporosity as a result of the large particle size used, often greater than 100 microns.
  • the traditional extruded carbon anodes are carbonized at temperatures below 1000° C. and are typically not graphitized, which requires temperatures in excess of 1500° C.
  • CF 4 tetrafluoromethane or carbon tetrafluoride
  • Contamination of any sort is a concern because a high purity NF 3 or F 2 is desired and is required in many industries, such as the semiconductor industry.
  • CF 4 is practically impossible to separate from NF 3 . J. Massonne, CHEMIE INGENIEUR TECHNIK, v. 41, N 12, p. 695 (1969).
  • any CF 4 contamination reduces the purity of the resulting NF 3 and cannot be readily removed.
  • F 2 although CF 4 may be formed, it can be separated and removed, this requires additional and expensive process steps to purify and recover purified F 2 , however.
  • Another problem associated with traditional carbon anodes is that the anodes need to be extruded, machined, or both to be formed into the anode shape.
  • the anodes may not be of precise shape and design to properly function and may not be reproducible. This results in poor dimensional and mechanical integrity of the anodes.
  • polarization Another problem is polarization of the anode when the anode becomes passivated and stops functioning. This state is indicated by higher than normal cell voltage and is referred to as “polarization.”
  • polarization is a major cause of cell failure. Extreme situations are sometimes referred to as the “anode effect.” M. Jaccaud, R. Faron, D. Devilliers, and R. Romano, “Fluorine” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, 2000.
  • By preventing polarization cells are allowed to be run longer between rebuilds, thereby cutting the cost of production.
  • the present invention provides for the production of nitrogen trifluoride, fluorine, or both using an electrolytic cell where the anode is made from parallel ordered anisotropic carbon or coke, including needle coke, lenticular coke, mesophase carbon, and incipient mesophase carbon, including mesocarbon microbeads, all as defined by J. Speight, Handbook of Petroleum Product Analysis, John Wiley & Sons, 2002. Carbons of this type exhibit substantially parallel ordered or layered domains of various sizes, in contrast to randomly layered or concentrically layered (onion-like) carbons, or amorphous or glass-like carbons.
  • anode comprised of parallel ordered anisotropic carbon
  • lower cell voltage and higher current density are achievable than with conventional anodes made from sponge, shot, concentrically layered, amorphous, or any isotropic cokes.
  • such anodes exhibiting certain physical characteristics offer reduced and minimized production of by-products, such as CF4; thus, greatly improving the purity of the nitrogen trifluoride or fluorine produced.
  • the physical properties offering this advantage include small particle size, low open porosity, high density, and/or a reduced quantity of microporous carbon such as that arising from the carbonization of oxygen-containing carbon precursors or the use of porous cokes like sponge coke.
  • the anodes may be molded, instead of extruded or machined, providing for improved dimensional and mechanical integrity of the anode.
  • the shape of the molded anode is set by the mold making it more precise and reproducible providing for a higher quality and better functioning anode. This also allows the geometry of the cell to be more consistent which allows electrolyte circulation and gas bubble disengagement to be more reproducible.
  • the anodes of the present invention also exhibit improved resistance to polarization along with other benefits as described herein.
  • Carbon articles of the type described in this document are typically characterized using apparent density, among other physical properties. Because these materials consist of aggregated and bound or sintered particles, they are porous. The extent of this porosity, measured as a percentage of total article volume, as well as features such as average pore diameter, pore size distribution, and whether the pores are interconnected (open) or isolated (closed), are all functions of the processing conditions and techniques. Pure, crystalline graphite represents the highest density packing for sp 2 -hybridized carbon, such as that found in the carbon articles described herein. The presence of pores reduces the apparent density from this theoretical maximum of about 2.23 g/cm 3 . Most carbon and graphite articles, including conventional and the disclosed carbon anodes for the production of NF 3 and F 2 , have an apparent density of about 1.5 g/cm 3 to 1.9 g/cm 3 .
  • reduced porosity is believed to lead to lower surface area that is accessible by the liquid electrolyte.
  • the formation of CF 4 is believed to be minimized by reducing this accessible surface area and eliminating the trapping of electrolyte in small pores.
  • the present invention provides a process of producing nitrogen trifluoride or fluorine comprising performing electrolysis of an electrolyte by using an electrolytic anode comprising parallel ordered anisotropic carbon (e.g., mesophase carbon, such as mesocarbon microbeads), to obtain nitrogen trifluoride or fluorine.
  • the anode may have an active geometric surface area up to about 70,000 cm 2 or more, for example.
  • the mesocarbon microbeads may be isostatically pressed mesocarbon microbeads.
  • the anode consists only of molded and self-sintered mesocarbon microbeads and includes no binders or other additives to mold or sinter the anode.
  • the mesocarbon microbeads are also preferably not graphitized.
  • the anode made from molded mesocarbon microbeads is of high density, e.g., a density of 1.7 g/cm 3 or higher, with porosity less than about 20%, or more preferably less than about 15%.
  • the mesocarbon microbeads may have an average particle size ranging from about 1-5 microns in diameter.
  • the present invention provides a process of producing nitrogen trifluoride or fluorine comprising performing electrolysis of an electrolyte by using an electrolytic anode comprising needle coke.
  • the needle coke may be bound together with a suitable binder that may contain low amounts of oxygen in the precursor, such as highly aromatic pitch binder or mesophase-forming pitch.
  • the anode may be comprised of particles less than 50 microns, or more preferably less than 20 microns, may have a density greater than 1.6 g/cm 3 , or more preferably greater than 1.7 g/cm 3 and most preferably greater than 1.8 g/cm 3 .
  • the anode is preferably baked to a temperature not higher than about 1600° C.
  • the needle coke in this embodiment could also be replaced by other parallel ordered cokes, such as lenticular coke.
  • the coke or binder could be replaced by mesophase, incipient mesophase coke or pitch, or an amorphous but mesophase-forming pitch.
  • the process may produce less than 100 ppm of CF 4 , preferably less than 75 ppm of CF 4 , even more preferably less than 50 ppm of CF 4 in pure nitrogen trifluoride or fluorine product gasses.
  • the selectivity in the electrolytic process for producing the nitrogen trifluoride or the fluorine may be 70% or greater, preferably 80% or greater. Suitable electrolytes may be selected by one of ordinary skill in the art.
  • the electrolyte may be a binary electrolyte or a ternary electrolyte, for example.
  • the binary electrolyte may include HF and NH 4 F or other suitable binary electrolytes known in the art.
  • the ternary electrolyte may include HF, NH 4 F, and one of KF, LiF, CsF, or the like, or other suitable ternary electrolytes known in the art.
  • a ternary electrolyte composition may comprise about 35-45 wt % HF, about 15-25 wt % NH 4 F, and about 40-45 wt % KF.
  • the electrolyte may be a binary electrolyte, for example, including HF and KF.
  • nitrogen trifluoride process and the fluorine process may be conducted under appropriate conditions and operating process parameters, including temperatures and current densities, selected by one of ordinary skill in the art.
  • nitrogen trifluoride may be produced at temperatures of about 120-140° C. and current densities up to about 250 mA/cm 2 .
  • Fluorine may be produced at temperatures of about 80-90° C. and current densities up to about 350 mA/cm 2 .
  • the present invention provides an electrolytic cell for producing nitrogen trifluoride or fluorine comprising an anode comprising parallel ordered anisotropic carbon, a cathode, and an electrolyte composition comprising HF, optionally KF, and optionally NH 4 F.
  • the electrolytic cell is operated to produce nitrogen trifluoride or fluorine at high purities with little or no contamination of CF 4 .
  • the anode consists of self-sintered isostatically pressed mesocarbon microbeads.
  • the anode consists of isostatically molded mesocarbon microbeads optionally with a phenolic resin sintering aid.
  • the anode consists of needle coke bound with a highly aromatic binder and exhibiting low porosity (e.g. less than 20% porosity) and density above 1.7 g/cm 3 , formed by isostatic molding.
  • FIG. 1 shows two views of (a) a mesophase carbon sphere and (b) a section through the mesophase sphere shown in (a);
  • FIG. 2 is a cross-sectional view of one embodiment of an electrolytic cell useful in this invention.
  • FIG. 3 is a cross-sectional view of another embodiment an electrolytic cell useful in this invention.
  • FIG. 4 is an X-ray diffraction pattern for mesophase carbon, which may be suitable to form the anodes in accordance with the present invention.
  • the present invention provides for the production of high purity nitrogen trifluoride and fluorine using anodes comprising parallel ordered anisotropic carbon.
  • a process of producing nitrogen trifluoride or fluorine includes performing electrolysis of an electrolyte by using an electrolytic anode comprising mesophase carbon, mesocarbon microbeads, needle coke, or other parallel ordered anisotropic carbon to obtain nitrogen trifluoride or fluorine with high selectivity and with reduced or minimal amounts of CF 4 .
  • anode means the electrochemically-active portion of the electrode where the nitrogen trifluoride or the fluorine is generated in the cell when current is applied to the cell.
  • the terms “comprising” and “including” are inclusive or open-ended and do not exclude additional unrecited elements, compositional components, or method steps. Accordingly, the terms “comprising” and “including” encompass the more restrictive terms “consisting essentially of” and “consisting of.” Unless specified otherwise, all values provided herein include up to and including the endpoints given, and the values of the constituents or components of the compositions are expressed in weight percent or % by weight of each ingredient in the composition.
  • the present invention provides for the production of high purity nitrogen trifluoride and fluorine using anodes comprising parallel ordered anisotropic carbon or coke.
  • the anode for producing nitrogen trifluoride or fluorine is comprised of parallel ordered anisotropic carbon, such as mesocarbon microbeads (or MCMBs) or needle coke.
  • parallel ordered anisotropic carbon or “parallel ordered anisotropic coke” is intended to encompass a class of carbon, which exhibits substantially parallel ordered or layered domains, in contrast to randomly layered carbons, concentrically layered (onion-like) carbons, amorphous carbons, or disordered glass-like carbons.
  • Parallel ordered anisotropic carbon or coke may include needle coke, lenticular coke, mesophase carbon, incipient mesophase carbon, and mesocarbon microbeads, for example, as defined by J. Speight, Handbook of Petroleum Product Analysis, John Wiley & Sons, 2002.
  • mesophase carbon or “mesocarbon” is the optically anisotropic, graphitizable carbon phase derived from fusible organic compounds. Needle coke and related parallel ordered anisotropic carbons are sometimes considered to be a “mesophase” of carbon, though often the two terms refer to different physical forms of carbon that exhibit similar microstructural properties.
  • Mesophase carbon can be separated from optically isotropic material in the form of small particles, often referred to as mesocarbon microbeads.
  • mesophase carbon is intended to encompass carbon having an optically anisotropic phase. In other words, the carbon exhibits optical anisotropy when observed under a polarizing microscope (e.g., an optical microscope with polarized light).
  • needle coke is the optically anisotropic, acicular coke comprising ordered, parallel layers or carbon, or any carbon conforming to the definition of needle coke proposed in “Recommended Terminology for the Description of Carbon as a Solid,” IUPAC, Pure & Appl. Chem., Vol. 67, No. 3, pp. 473-506, 1995. It is understood that physical alteration of needle coke by grinding or size reduction does not remove it from this definition, even to a particle size near 1 micron.
  • the anode is primarily comprised of parallel ordered anisotropic carbon.
  • “primarily” indicates that that component is present in a greater amount than any other component of the relevant composition, for example, the anode is largely or exclusively parallel ordered anisotropic carbon.
  • the parallel ordered anisotropic carbon makes up the majority of the anode more so than any other component.
  • the anode may comprise at least 40%, at least 50%, at least 60%, at least 75%, at least 90%, at least 95%, or at least 99% parallel ordered anisotropic carbon.
  • the anode is a substantially pure parallel ordered anisotropic carbon.
  • the anode is mostly or substantially all parallel ordered anisotropic carbon, as opposed to coke or carbonized pitch or anodes that by chance contain some small amount of parallel ordered anisotropic carbon.
  • the anode is mostly parallel ordered anisotropic carbon, as opposed to binders, fillers, or other aids known in the art.
  • the anode is primarily comprised of mesophase carbon, such as mesocarbon microbeads.
  • the anode is largely or exclusively mesophase carbon.
  • the mesophase carbon makes up the majority of the anode more so than any other component.
  • the anode may comprise at least 40%, at least 50%, at least 60%, at least 75%, at least 90%, at least 95%, or at least 99% mesophase carbon.
  • the anode is a substantially pure mesophase carbon.
  • the anode is mostly or substantially all mesocarbon, as opposed to coke or carbonized pitch or anodes that by chance contain some small amount of mesocarbon.
  • the anode is mostly mesocarbon, as opposed to binders, fillers, or other aids known in the art.
  • the anode for producing nitrogen trifluoride or fluorine is comprised of mesocarbon microbeads.
  • FIG. 1 depicts an example of a mesocarbon microbead including a depiction of (a) a mesophase sphere 100 and (b) a section through the mesophase sphere 100 a.
  • the mesophase sphere 100 may include two poles 110 , a trace of lamellae direction 120 , and an edge of disk 130 of the mesophase sphere 100 .
  • the mesocarbon microbead shown in FIG. 1 has a lamellar structure, mesocarbon microbeads made by other routes may have other forms.
  • the mesocarbon microbeads may be spherical in shape, or may have elongated or irregular shapes, for example.
  • the microbeads may have a bead diameter up to about 100 ⁇ m (e.g., about 1-100 ⁇ m in diameter).
  • the mesocarbon microbeads may have an average particle size ranging from about 1-5 microns in diameter.
  • the mesocarbon microbeads may have a high specific surface area ranging from 1,000 to 4,000 m 2 /g, for example.
  • the anode for producing nitrogen trifluoride or fluorine is comprised of needle coke and a binder with a maximum particle size of 20 microns, or more preferably a particle size less than 10 microns, a density greater than 1.6 g/cm 3 or more preferably greater than 1.7 g/cm 3 and less than 15% porosity, or more preferably less than 10% porosity.
  • the needle coke and binder may be molded into the desired form.
  • FIG. 4 depicts an X-ray diffraction (XRD) pattern for a suitable type of mesophase carbon.
  • the sharp peaks with indication marks at the top, are from ZnO, which is added as an internal calibration standard during the analysis and are not part of the carbon anode.
  • ZnO Zinc Oxide
  • FIG. 4 shows only one broad peak between 25-30° indicating poorly-registered graphene-type planes of carbon.
  • the anode is primarily composed of parallel ordered anisotropic coke, such as needle coke, bound with a suitable binding agent that results in a minimal amount of porosity in the final article.
  • Aromatic pitch, mesophase pitch, coal tar pitch, and the like are preferred binders, while oxygen-containing binders such as polyfurfural alcohol or phenolic resin are less preferred.
  • the anode is not graphitized.
  • Parallel ordered anisotropic cokes including needle coke and mesophase carbon or mesocarbon microbeads may be produced, for example, by heating a bituminous precursor, such as coal tar, coal tar pitch, a petroleum heavy oil, decant oil, pyrolysis residue, petroleum pitch, emulsion-polymerized plastics, synthetic pitch, surfactants, or small molecules, to cause the low-molecular material to be converted into a high-molecular material through repeated polycondensation.
  • Parallel ordered anisotropic cokes and mesophase carbon can also be produced synthetically from aromatic molecules, such as napthalene.
  • the precursor material may be heated at 200-600° C.
  • mesophase carbon may be optionally removed by solvent extraction to generate a pure mesophase carbon.
  • the green carbon particles are then molded or pressed into the desired shape and then may be baked to sinter and remove volatiles.
  • Various methods of producing mesophase carbon are known, such as those taught and described in world patent WO 2006/109497 and Korean patent 10-2006-0138731.
  • Needle coke, mesophase carbon, mesocarbon microbeads, or other forms of parallel layered anisotropic coke may be produced or obtained from any suitable supplier or distributor, such as CR Tech with offices in Korea, MWI with offices in Rochester, N.Y., Graftech International with offices in Parma, Ohio, Y-Carbon with offices in Bristol, Pa., Timcal Graphite and Carbon, Ltd. with offices in Bodio, Switzerland, Qinhuangdao Huarui Coal Chemicals Co., Ltd. with offices in Tangshen, China, Asbury Carbons, Inc.
  • the parallel ordered anisotropic carbon is used to create the anode.
  • the anode may be molded from a blend of the parallel ordered anisotropic coke and suitable pitch binder or from mesocarbon microbeads.
  • the anode may be molded using any suitable molds and molding techniques known in the art.
  • the coke/pitch blends or mesocarbon microbeads are isostatically pressed (e.g., cold isostatically pressed) to form the anode.
  • Cold isostatic pressing includes applying pressure to a mold at substantially room temperature (e.g., using a fluid as a means of applying pressure to the mold at a temperature of about 20-25° C.).
  • Self-sintering means the microbeads are pressed and fused together and sintered or heated, but require no binders, resins, fillers, or the like in order to mold and sinter the anode part.
  • the anode consists only of molded and self-sintered mesocarbon microbeads.
  • the parallel ordered anisotropic carbon or mesocarbons may also be formed using other techniques known in the art, including, but not limited to, isostatic pressing, uniaxial pressing or extrusion.
  • At least one stabilization aid or sintering aid such as phenolic resin
  • the stabilization aid may contain oxygen or sulfur.
  • small amounts of stabilization or sintering aids such as phenolic resins, may be provided to introduce oxygen that serves to cross-link the parallel ordered anisotropic carbon and imparts resistance to deformation when the form is heated during the carbonization process.
  • the anode may comprise 10% or less, 8% or less, 5% or less, 3% or less, or 1% or less of the stabilization or sintering aid.
  • the binder, pore filler, or sintering aids comprise an aromatic pitch, aromatic synthetic pitch, or other carbon precursors known to produce graphitizing carbons when heated.
  • the formed greenbody may optionally be oxidized, for example, by exposure to air at elevated temperature, to stabilize the physical form and reduce or eliminate deformation during subsequent heating.
  • the greenbody may be oxidized by heating in air or an oxygen-containing gas.
  • Suitable conditions for oxidizing mesocarbon forms are known in the art.
  • Various methods to oxidatively stabilize mesophase carbon articles have been described in the literature, such as by F. Fanjul, M. Granda, R. Santamaria, and R. Menendez, “On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase.” Fuel. 2002 November; 81(16):2061-70.
  • the sintering treatment may also be following by a densifying heat treatment, for example, at temperatures of about 500-1500° C.
  • the density or apparent density of the molded anode may be a low density ranging from about 1.60-1.65 g/cm 3 .
  • the anode formed from parallel ordered anisotropic carbon e.g., mesocarbon microbeads
  • the anodes comprising parallel ordered anisotropic carbon have a low porosity (e.g., less than 20% porosity, preferably, less than 15% porosity, and more preferably, less than 10% porosity).
  • the anode may be of any suitable size and shape as would be ordinarily used in electrolytic cells known in the art.
  • the anode blade may range from about 1.5 to 2.5 feet long, about 6-10 inches wide, and about 1-3 inch in thickness.
  • the anode blade may be flat and/or may comprise other surface features, including grooves, ridges, indentations, pyramids, and the like in order to improve the surface area or other features known in the industry for producing anode blades having an extended geometric surface area, for example, as described in U.S. Pat. Nos. 5,290,413 and 4,511,440.
  • the anode may have any suitable active surface area.
  • the shape and physical features of the anode may be formed during the molding process, or they may be machined at any time after forming the greenbody using conventional fabrication techniques.
  • the anodes of the present invention are preferably not graphitized.
  • Graphitized carbon materials including needle coke, mesocarbon microbeads and conventional extruded carbon anodes, are typically baked after being molded, extruded, or otherwise formed to remove volatile materials and sinter or consolidate the bulk carbonaceous material. This baking can occur at temperatures up to about 1300° C. At higher temperatures, typically greater than 1500° C. but depending on the type of carbon material, the carbon begins to form larger graphitic domains, and the electrical resistance decreases. This is called graphitization. Many types of carbon articles are partly or fully graphitized.
  • Anodes for NF 3 and F 2 production are preferably not graphitized because this can lead to poor performance in an electrolytic cell (e.g., graphite is attacked by the fluorine product and also disintegrates due to intercalation by various components in the electrolyte).
  • the anodes of the present invention including parallel ordered anisotropic cokes, including needle coke and mesocarbon microbeads provide for a number of benefits such as: (1) reduced formation of CF 4 , thus, providing higher purity NF 3 and F 2 ; (2) shorter manufacturing times (for example, without the need for additional separation steps in F 2 production); (3) less machining required to create finished anode; (4) lower manufacturing costs for the anode, which translates into lower cost of production for NF 3 and F 2 ; (5) improved resistance to polarization; (6) the ability to operate at higher current density; and (7) reduced operating cell voltage.
  • the process may produce less than 100 ppm (by volume), preferably less than 75 ppm (by volume), even more preferably less than 50 ppm (by volume), and most preferably less than 25 ppm (by volume) of CF 4 in pure NF 3 or F 2 .
  • 25 ppm is equal to 25 molecules of CF 4 per million molecules of NF 3 or 25 mL of CF 4 per million mL of NF 3 .
  • the selectivity in the process for producing the NF 3 or F 2 is also preferably high and may be on the order of 70% or greater, preferably 80% or greater, even more preferably 85% or greater, or even 90% or greater selectivity for NF 3 or F 2 .
  • Traditional carbon anodes often develop a low-energy surface as a result of their interactions with the electrolyte and electrochemically-produced species, such as fluorine, during the production of NF 3 or F 2 .
  • the wetting of the anode surface by the electrolyte becomes poor, resulting in a higher cell operating voltage and an increased tendency to polarize.
  • an anode of known geometric surface area can be used to produce NF 3 via electrolysis of a ternary KF—HF—NH 4 F molten salt electrolyte, with composition of 40 wt % HF, 18 wt % NH 4 F, and 42 wt % KF, at or near 130° C. for at least 150 hours at a current density of 70 mA/cm 2 , or more preferably 180 mA/cm 2 .
  • the anode can be washed with water without physically abrading the active surface and dried.
  • the surface energy of the active surface can then be determined using known surface tension inks or markers (“dyne pens”).
  • Anodes of the present invention were found to show a high surface energy of 65 dyne/cm or greater after more than 150 hours of operation at 70 mA/cm 2 across at least 30% of the active surface.
  • the anodes of the present invention comprising parallel ordered anisotropic carbon exhibit retained wettability over an extended duration without needing a wetting agent.
  • conventional extruded carbon anodes display surface energies below this value, for example, often below 55 dyne/cm and require a wetting agent to improve the wetability.
  • P. Hough “Fluorine Production and Use—An Overview” in Electrochemistry in the Preparation of Fluorine and its Compounds, W. Childs and T.
  • the parallel ordered anisotropic carbon such as mesocarbon microbeads, which form the anodes resist the formation of a low-energy surface without the need for such wetting additives, resulting in lower cell operating voltages and the ability to operate at higher current density than conventional carbon anodes.
  • Lower cell voltage results in reduced power consumption during the manufacture of NF 3 or F 2 , while increased current density permits more NF 3 or F 2 to be produced from a given cell.
  • removal of traditional wetting aids from the anode composition reduces cost and contaminations in the manufacturing process.
  • U.S. Publication No. 2010/0193371 describes the use of a conductive diamond film on glassy carbon.
  • U.S. Publication No. 2010/0252425 suggests the use of mesophase carbon as a filler or binding agent for a more desired carbonaceous component with a specified X-ray diffraction pattern. It also suggests that a high degree of porosity is desirable, and that the specified carbonaceous material needs a conductive diamond coating to perform well as an anode.
  • the present invention does not require expensive diamond films. Instead, the present invention establishes that a properly prepared parallel ordered anisotropic carbon material is advantageous as an anode material.
  • the parallel ordered anisotropic carbon may exhibit a low porosity, for example, less than 15% or less than 10% porosity. Furthermore, the parallel ordered anisotropic carbon materials of the present invention do not exhibit the diffraction pattern specified in U.S. Publication No. 2010/0252425 requiring crystallized, well-formed graphite or other crystal phases. As discussed above, the parallel ordered anisotropic carbon material of the present invention contains no definite diffraction peaks other than the broad peak between 25-30° indicating that the parallel ordered anisotropic carbon does not contain any well-formed graphite or other crystal structures.
  • the present invention provides an electrolytic cell for producing nitrogen trifluoride or fluorine comprising an anode comprising parallel ordered anisotropic carbon (e.g., mesocarbon microbeads), a cathode, and an electrolyte composition.
  • the electrolytic cell is operated to produce nitrogen trifluoride or fluorine.
  • the process of forming nitrogen trifluoride or fluorine includes electrolyzing an electrolyte, for example, using an electrolytic cell. Any suitable electrolytic cell known in the art may be selected by one of ordinary skill in the art.
  • the electrolytic cell may include a container or housing comprised of walls inert to and for containing the electrolyte.
  • the anode and cathode may be connected to a source of direct current.
  • the electrode may be positioned in the container for immersion into the electrolyte, such that when current is applied the electrodes are made electrochemically anodic and cathodic.
  • a partition wall or separation skirt may be disposed for preventing fluorine or nitrogen trifluoride from being mixed with hydrogen during the electrolysis when the fluorine or nitrogen trifluoride is generated at the anode and hydrogen is generated at the cathode.
  • the partition wall may be disposed vertically.
  • any materials may be used to construct the components of the cell so long as the materials are durable when exposed to the corrosive conditions of the cell.
  • Useful materials for the cell body and separation skirt are iron, stainless steel, carbon steel, nickel or a nickel alloy such as MONEL®, TEFLON®, and the like, as known to a person of skill in the art.
  • the material(s) of construction for the cathode is not specifically limited so long as the cathode is made of a material which is useful for that purpose as known to a person of skill in the art, such as nickel, carbon steel, and iron.
  • FIG. 2 shows a schematic representation of one example of an electrolytic cell apparatus, which may be suitable for the production of nitrogen trifluoride or fluorine in accordance with the present invention.
  • the electrolytic cell apparatus may include an electrolytic cell 25 having an electrolyzer body 26 , side faces 51 , 52 , and an upper lid or covering 28 .
  • the cell 25 is partitioned into anode chambers 17 and cathode chambers 18 by vertically disposed gas separation skirt 19 and diaphragm 22 .
  • Anodes 20 are disposed in the anode chambers 17
  • cathodes 21 are disposed in the cathode chambers 18 .
  • the electrolyte 23 is disposed in the electrolytic cell 25 and the level 27 of the electrolyte 23 is the height of the electrolyte 23 above the bottom surface 53 of the electrolytic cell 25 .
  • the level of the electrolyte 23 may be determined by a level indicator 31 , and the level 27 may be controlled between a high level set point 32 and a low level set point 33 , for example. Additionally, the composition of the electrolyte 23 may be sampled by an electrolyte sample port 41 .
  • the electrolytic cell 25 may include feed tubes 12 and 16 for feeding raw materials or the components that make up the electrolyte 23 .
  • the feed tubes 12 and 16 are provided in the cathode chamber 18 .
  • the anode chamber 17 may have an anode product outlet pipe 11 for withdrawing the product gas mixture (e.g., NF 3 or F 2 ) from the electrolytic cell 25 .
  • the cathode chamber 18 may have a cathode product outlet pipe 13 for withdrawing gas from the electrolytic cell 25 .
  • the electrolytic cell 25 can include a temperature detector 30 , temperature adjusting means 29 , and the like to control the appropriate process parameters during electrolysis.
  • the electrolytic apparatus of the present invention may further comprise additional components, such as purge gas pipe connections in the anode and cathode chambers 17 , 18 .
  • a purge gas source such as nitrogen for example, may be connected to the anode chamber 17 and/or the cathode chamber 18 (not shown) of the electrolytic cell 25 to provide for a purge of the electrolytic cell 25 for safety reasons, to provide a blow-out means for clogged pipes, or to otherwise provide for the proper functioning of the inlet and outlet tubes and pipes and other instrumentation.
  • the nitrogen trifluoride or fluorine containing gas is generated at the anode 20 and hydrogen is generated at the cathode 21 .
  • the gases generated in the anode chamber 17 may comprise nitrogen trifluoride (NF 3 ), nitrogen (N 2 ) and fluorine (F 2 ), for example.
  • the gases generated in the anode chamber 17 may comprise fluorine (F 2 ), for example.
  • HF may optionally be present in the gas leaving both the anode chamber 17 and cathode chamber 18 .
  • FIG. 3 shows a cross sectional view of an electrolytic cell 25 similar to the one shown in FIG. 2 except that the cell 25 shown in FIG. 3 comprises only one anode chamber 17 and one cathode chamber 18 .
  • the anode chamber 17 has one anode 20 and the cathode chamber 18 has one cathode 21 .
  • Like components in FIGS. 2 and 3 are numbered the same.
  • the cell 25 shown in FIG. 3 comprises a current controller 39 that supplies current to the anode 20 through anode current connection 14 and to the cathode 21 through cathode current connection 15 at a level that can be increased or decreased within a target range specified by the operator or the control process for the electrolytic cell 25 .
  • the cell 25 could include any known or hereafter developed cell design.
  • the cell type may include the ICI fluorine cell design described in Fluorine, The First Hundred Years, R. E. Banks, D. W. A. Sharp, and J. C. Tatlows, eds. Elsevier Sequoia, Netherlands, 1986.
  • the electrolytic cell may be capable of producing NF 3 , F 2 , or both, and the processes are substantially similar.
  • the minor differences between the production of NF 3 or F 2 include the use of different electrolyte solutions and different operating conditions. Otherwise, the two processes are substantially identical.
  • the cells are almost interchangeable, and the anodes used in both are the same parallel ordered anisotropic carbon-based anode material as described herein.
  • the undesired by-product CF 4 is made in both processes.
  • the only difference is that CF 4 and F 2 can be separated by distillation, whereas CF 4 and NF 3 cannot practically be separated. In either case, it is preferable to not produce CF 4 because then the separation requires an additional process step.
  • Nitrogen trifluoride may be produced by using the electrolytic apparatus of the present invention along with an electrolyte comprised of any known electrolyte that is useful in making nitrogen trifluoride.
  • suitable electrolytes may include ternary electrolytes (e.g., an HF-containing molten salt of ammonium fluoride (NH 4 F), potassium fluoride (KF), and hydrogen fluoride (HF).
  • molten salt electrolyte may also contain other additives such as cesium fluoride, lithium fluoride, and the like.
  • the ternary electrolyte composition may comprise about 35-45 wt % HF, about 15-25 wt % NH 4 F, and about 40-45 wt % KF.
  • concentrations may be expressed in terms of mol % NF 4 F and HF ratio.
  • the HF ratio is defined by the equation below:
  • HF Ratio (moles of HF titratable to neutral pH)/(NH4F (moles)+KF(moles)).
  • the HF ratio represents the ratio of the solvent to salt in the electrolyte.
  • the preferred concentration range may vary depending on the operating conditions such as applied current and electrolyte temperature. It is desirable to choose the concentration range based on a balance between high efficiency of the electrolytic cell and safe operation.
  • the nitrogen trifluoride electrolytic process may be conducted under appropriate conditions known in the art, including temperatures and current densities.
  • nitrogen trifluoride may be produced at temperatures of about 100-140° C., preferably about 120-130° C. and current densities up to 250 mA/cm 2 .
  • a fluorine-producing electrolyte may include a binary electrolyte.
  • the binary electrolyte may include a hydrogen fluoride (HF)-containing molten salt of HF and KF.
  • the HF-containing molten salt electrolyte may also contain other additives such as ammonium fluoride, cesium fluoride, lithium fluoride, and the like.
  • the HF ratio may be similar to those described above in order to achieve a balance between high efficiency of the electrolytic cell and safe operation and may be defined as:
  • This invention is not limited to any specific electrolyte composition, and any description herein referring to, for example, the binary electrolyte is for convenience only. It is understood that any electrolyte useful for making F 2 can be substituted into the description and is included in the invention.
  • the fluorine electrolytic process may be conducted under appropriate conditions known in the art, including temperatures and current densities.
  • fluorine may be produced at temperatures of about 80-90° C. and at a current density up to 250 mA/cm 2 .
  • a ternary electrolyte with composition 40 wt % HF, 19.5 wt % NH 4 F, and 40.5 w % KF was electrolyzed in a 250 mL laboratory cell to generate NF 3 .
  • the cathode was carbon steel, and the cell was equipped with a Cu/CuF 2 reference electrode.
  • the anode was isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm 2 .
  • the anode and cathode product gases were kept separated by means of a TEFLON® skirt that extended below the liquid line.
  • the cell was operated at 130° C.
  • the electrolysis was conducted in galvanostatic mode with an applied current density of 70 mA/cm 2 .
  • the anode gas was analyzed after allowing the cell to reach steady state by means of gas chromatography.
  • the anode gas contained 71 ppm CF 4 on a pure NF 3 basis.
  • the selectivity to NF 3 was 70.7% defined as:
  • NF 3 Selectivity (moles of NF 3 produced)/(moles of NF 3 produced+moles of N 2 produced).
  • the anode was removed from the electrolyte, cooled to room temperature, washed with water without abrading the active surface, and was well wet by a 70 dyne/cm ink (a high surface energy ink) over about 50% of the surface, indicating a surface energy above this value. The remaining surface was wet by a 58 dyne/cm ink.
  • a ternary electrolyte with composition 37.5 wt % HF, 18.3 wt % NH 4 F, and 44.2 wt % KF was electrolyzed in a 250 mL laboratory cell to generate NF 3 .
  • the cathode was carbon steel, and the cell was equipped with a Cu/CuF 2 reference electrode.
  • the anode was isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm 2 .
  • the anode and cathode product gases were kept separated by means of a Teflon skirt that extended below the liquid line.
  • the cell was operated at 139° C.
  • the electrolysis was conducted in galvanostatic mode with an applied current density of 100 mA/cm 2 .
  • the anode gas was analyzed after allowing the cell to reach steady state by means of gas chromatography.
  • the anode gas contained 20 ppm CF 4 on a pure NF 3 basis.
  • Example 2 The electrolysis described in Example 2 was repeated except that the anode was replaced with a conventional extruded carbon anode.
  • the active anode area was kept at 2.25 cm 2 .
  • the anode gas contained 70 ppm CF 4 (on a pure NF 3 basis) and the selectivity to NF 3 was 87.0%.
  • a ternary electrolyte with HF, NH 4 F, and KF was electrolyzed in a 250 mL laboratory cell to generate NF 3 .
  • the cathode was carbon steel, and the cell was equipped with a Cu/CuF 2 reference electrode.
  • the anode was low density (1.60 g/cm 3 ) isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm 2 .
  • the anode and cathode product gases were kept separated by means of a Teflon skirt that extended below the liquid line.
  • the cell was operated at 130° C.
  • the electrolysis was conducted in galvanostatic mode with an applied current density of 70 mA/cm 2 .
  • the anode gas was analyzed after allowing the cell to reach steady state by means of gas chromatography.
  • the anode gas contained 61 ppm CF 4 on a pure NF 3 basis.
  • the selectivity to NF 3 was 82.3%.
  • the anode was evaluated for surface energy as described in Example 1, and was wet by a 70 dyne/cm ink over at about 40% of the surface, and the remaining areas were wet by a 58 dyne/cm ink.
  • Example 3A The electrolysis described in Example 3A was repeated except that the anode was replaced with high density ( ⁇ 1.70 g/cm 3 ) isostatically-pressed mesocarbon microbeads.
  • the anode gas contained ⁇ 25 ppm CF 4 (on a pure NF 3 basis) and the selectivity to NF 3 was 84.7%.
  • the anode was evaluated for surface energy as described in Example 1, and was wet by a 70 dyne/cm ink over at about 40% of the surface, and the remaining areas were wet by a 58 dyne/cm ink.
  • Example 3A The electrolysis described in Example 3A was repeated except that the anode was replaced with a conventional extruded carbon anode.
  • the anode gas contained 341 ppm CF 4 (on a pure NF 3 basis) and the selectivity to NF 3 was 89.9%.
  • the anode was evaluated for surface energy as described in Example 1, and was wet by a 50 dyne/cm ink but not by any higher surface energy inks.
  • Example 3A The electrolysis described in Example 3A was repeated except that the anode was replaced with an isostatically pressed non-mesocarbon anode.
  • the composition of this anode resembles the conventional extruded carbon (i.e., based on carbonized coke and pitch rather than mesocarbon).
  • the anode gas contained 212 ppm CF 4 (on a pure NF 3 basis) and the selectivity to NF 3 was 88.3%.
  • the anode was evaluated for surface energy as described in Example 1, and was wet by a 48 dyne/cm ink but not by any higher surface energy inks.
  • Example 2 The electrolysis described in Example 1 was repeated using an anode comprised primarily of needle coke with a pitch-based binder.
  • the anode had an apparent density of 1.75 g/cm 3 and total porosity of 15%.
  • the anode was not graphitized.
  • the cell was operated at a current density of 70 mA/cm 2 .
  • the cell temperature was 130° C.
  • the anode potential during the test was 5.15 V vs. Cu/CuF 2 reference, the selectivity to NF 3 was 88%, and the CF 4 content of the NF 3 product was 30 ppm.
  • Example 4 The electrolysis described in Example 4 was repeated at a current density of 178 mA/cm 2 .
  • the cell temperature was 140° C.
  • the anode potential during the test was 5.47 V vs. Cu/CuF 2 reference, the selectivity to NF 3 was 88%, and the CF 4 content of the NF 3 product was 20 ppm.
  • Electrolyte Ternary (NH 4 F-KF-HF) Electrolyte Temperature 130° C. Current Density: 70 mA/cm 2 Anode Material CF 4 Level NF 3 Selectivity Traditional Extruded 341 ppm 89.9% Anodes (Comparative Example 1) IP MCMB (Example 1) 71 ppm 70.7%
  • Electrolyte Ternary (NH 4 F-KF-HF) Electrolyte Temperature 139° C. Current Density: 100 mA/cm 2 Anode Material CF 4 Level NF 3 Selectivity Traditional Extruded 70 ppm 87.0% Anodes (Comparative Example 2) IP MCMB (Example 2) 20 ppm 77.6%
  • Electrolyte Ternary (NH 4 F-KF-HF) Electrolyte Temperature 130° C. Current Density: 70 mA/cm 2 Anode Material CF 4 Level NF 3 Selectivity Traditional Extruded 341 ppm 89.9% Anodes (Comparative Example 3A) Non-Mesocarbon 212 ppm 88.3% Isostatically Pressed Anode (Comparative Example 3B) LD IP MCMB (Example 61 ppm 82.3% 3A) HD IP MCMB (Example ⁇ 25 ppm 84.7% 3B) Needle Coke Anode 30 ppm 88.0% (Example 4A)
  • Example 4B The electrolysis of Example 4B was repeated using an anode of the same composition as in that example, but having been graphitized by heating to temperatures above 2000° C.
  • the selectivity and CF 4 levels were identical, but the anode operated unstably with an anode potential varying between 6 and 7 V.
  • a binary electrolyte with composition 40 wt % HF and 60 wt % KF was electrolyzed in a 250 mL laboratory cell to generate F 2 .
  • the cathode was carbon steel, and the cell was equipped with a Cu/CuF 2 reference electrode.
  • the anode was isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm 2 .
  • the anode and cathode product gases were kept separated by means of a TEFLON® skirt that extended below the liquid line.
  • the cell was operated at 88° C.
  • the electrolysis was conducted in galvanostatic mode with an applied current density of 80 mA/cm 2 .
  • the cell operated stably, discharging fluorine gas, with a cell voltage of 6.4 Volts.
  • Example 5 The electrolysis described in Example 5 was repeated except that the anode was replaced with a conventional extruded carbon anode.
  • the cell operated stably, discharging fluorine gas, but with a higher cell voltage of 7.0 Volts.
  • Example 5 The electrolysis described in Example 5 was repeated, except that a smaller cell holding 25 mL of electrolyte was used.
  • the isostatically-pressed mesocarbon anode had an active area of 0.5 cm 2 .
  • the cell was operated at a current density of 225 mA/cm 2 .
  • the anode discharged F 2 gas, with stable operation at a cell voltage of 6.8 Volts.
  • Example 6 The electrolysis described in Example 6 was repeated, except that the anode was a conventional extruded carbon anode.
  • the cell was again operated at a current density of 225 mA/cm 2 .
  • the cell discharged F 2 gas, but with an unstable cell voltage of 7.7-8.5 Volts.

Abstract

A process and an anode for the production of nitrogen trifluoride or fluorine where the anode in the electrolytic cell is made primarily from parallel ordered anisotropic carbon, including needle coke and/or mesocarbon microbeads. The parallel ordered anisotropic carbon anodes minimize the production of CF4 and improve the purity of the nitrogen trifluoride or fluorine gas produced. Additionally, the anodes may be molded, instead of extruded or machined, providing for improved dimensional and mechanical integrity of the anode.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 13/859,263, filed on Apr. 9, 2013, which claims the benefit of priority under 35 U.S.C. §119(e) to earlier filed U.S. patent application Ser. No. 61/716,259, filed on Oct. 19, 2012, and U.S. patent application Ser. No. 61/790,810, filed on Mar. 15, 2013. The content of each priority application is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to the electrolytic production of nitrogen trifluoride and fluorine, and in particular, to the use of anodes made from parallel ordered anisotropic carbon, including needle coke and mesophase carbon, that exhibit certain physical properties for generating nitrogen trifluoride and fluorine.
  • Nitrogen trifluoride (NF3) is a stable gas that has little reactivity at room temperature. Fluorine (F2), on the other hand, is a reactive gas with most materials at ambient conditions. Both NF3 and F2 have found growing use in semiconductor manufacturing. For example, NF3 is typically used as an etchant for silicon or silicon oxide layers on a semiconductor substrate or as a CVD chamber cleaning gas where it is activated in situ.
  • On an industrial scale, NF3 may be manufactured by a fluorination process. There are two principle methods for fluorination: direct fluorination (DF) and electrochemical fluorination (ECF). In electrochemical fluorination, an electrolyte may be electrolyzed in an electrolytic cell to produce the NF3. F2 is produced in an electrochemical process that resembles the ECF process for producing NF3. Traditional electrolytic cells use a carbon steel cathode and extruded, carbonized anodes made from carbon coke particles and a carbon pitch binder, for example. Traditional anodes are made from isotropic coke and exhibit high macroporosity as a result of the large particle size used, often greater than 100 microns. The traditional extruded carbon anodes are carbonized at temperatures below 1000° C. and are typically not graphitized, which requires temperatures in excess of 1500° C. There are a number of drawbacks associated with traditional extruded carbon anodes, however, as described in the literature, for example in the reference Ellis, J. F. and G. F. May, “Modern Fluorine Generation” in Fluorine, the First Hundred Years, R. E. Banks, D. W. A. Sharp, and J. C. Tatlow, eds., Elsevier Sequoia, 1986.
  • One problem associated with electrochemical fluorination is contamination of the electrolytically-generated NF3 or F2 with CF4 (tetrafluoromethane or carbon tetrafluoride). Contamination of any sort is a concern because a high purity NF3 or F2 is desired and is required in many industries, such as the semiconductor industry. CF4 is practically impossible to separate from NF3. J. Massonne, CHEMIE INGENIEUR TECHNIK, v. 41, N 12, p. 695 (1969). Thus, any CF4 contamination reduces the purity of the resulting NF3 and cannot be readily removed. With respect to F2, although CF4 may be formed, it can be separated and removed, this requires additional and expensive process steps to purify and recover purified F2, however.
  • Another problem associated with traditional carbon anodes, such as those with carbon coke with pitch binder, is that the anodes need to be extruded, machined, or both to be formed into the anode shape. The anodes, however, may not be of precise shape and design to properly function and may not be reproducible. This results in poor dimensional and mechanical integrity of the anodes.
  • Another problem is polarization of the anode when the anode becomes passivated and stops functioning. This state is indicated by higher than normal cell voltage and is referred to as “polarization.” When carbon-type anodes are used to manufacture F2 or NF3, polarization is a major cause of cell failure. Extreme situations are sometimes referred to as the “anode effect.” M. Jaccaud, R. Faron, D. Devilliers, and R. Romano, “Fluorine” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, 2000. By preventing polarization, cells are allowed to be run longer between rebuilds, thereby cutting the cost of production.
  • Thus, there remains a need for anodes which form fewer by-products in the electrolytic production of NF3 or F2 and thereby produce higher purity NF3 or F2, anodes which have better dimensional integrity, and anodes that minimize or reduce polarization.
  • SUMMARY OF THE INVENTION
  • The present invention provides for the production of nitrogen trifluoride, fluorine, or both using an electrolytic cell where the anode is made from parallel ordered anisotropic carbon or coke, including needle coke, lenticular coke, mesophase carbon, and incipient mesophase carbon, including mesocarbon microbeads, all as defined by J. Speight, Handbook of Petroleum Product Analysis, John Wiley & Sons, 2002. Carbons of this type exhibit substantially parallel ordered or layered domains of various sizes, in contrast to randomly layered or concentrically layered (onion-like) carbons, or amorphous or glass-like carbons. It has been discovered that by using such an anode comprised of parallel ordered anisotropic carbon, lower cell voltage and higher current density are achievable than with conventional anodes made from sponge, shot, concentrically layered, amorphous, or any isotropic cokes. Furthermore, it has been discovered that such anodes exhibiting certain physical characteristics offer reduced and minimized production of by-products, such as CF4; thus, greatly improving the purity of the nitrogen trifluoride or fluorine produced. The physical properties offering this advantage include small particle size, low open porosity, high density, and/or a reduced quantity of microporous carbon such as that arising from the carbonization of oxygen-containing carbon precursors or the use of porous cokes like sponge coke. Additionally, the anodes may be molded, instead of extruded or machined, providing for improved dimensional and mechanical integrity of the anode. In other words, unlike traditional anodes, requiring extruding and/or machining, the shape of the molded anode is set by the mold making it more precise and reproducible providing for a higher quality and better functioning anode. This also allows the geometry of the cell to be more consistent which allows electrolyte circulation and gas bubble disengagement to be more reproducible. The anodes of the present invention also exhibit improved resistance to polarization along with other benefits as described herein.
  • Carbon articles of the type described in this document are typically characterized using apparent density, among other physical properties. Because these materials consist of aggregated and bound or sintered particles, they are porous. The extent of this porosity, measured as a percentage of total article volume, as well as features such as average pore diameter, pore size distribution, and whether the pores are interconnected (open) or isolated (closed), are all functions of the processing conditions and techniques. Pure, crystalline graphite represents the highest density packing for sp2-hybridized carbon, such as that found in the carbon articles described herein. The presence of pores reduces the apparent density from this theoretical maximum of about 2.23 g/cm3. Most carbon and graphite articles, including conventional and the disclosed carbon anodes for the production of NF3 and F2, have an apparent density of about 1.5 g/cm3 to 1.9 g/cm3.
  • Although no ASTM standard test for porosity of carbon materials currently exists, several techniques known in the art are applied routinely. For example, mercury porosimetry and gas adsorption data can be analyzed using the Washburn equation and Brunauer-Emmett-Teller theory, respectively. Most synthetic carbon and graphite articles made via bound or sintered carbon powders exhibit open porosity of about 8% to about 20% using mercury porosimetry. It has been reported in the literature that higher density for a given carbon material, which necessarily indicates reduced total porosity, also corresponds to lower open porosity and fewer small pores (Properties and Characteristics of Graphite, R. G. Sheppard, Dwayne Morgan, D. M. Mathes, D. J. Bray, eds., POCO Graphite, Inc., 2002).
  • Without being bound by a particular theory, reduced porosity is believed to lead to lower surface area that is accessible by the liquid electrolyte. The formation of CF4 is believed to be minimized by reducing this accessible surface area and eliminating the trapping of electrolyte in small pores.
  • In one embodiment, the present invention provides a process of producing nitrogen trifluoride or fluorine comprising performing electrolysis of an electrolyte by using an electrolytic anode comprising parallel ordered anisotropic carbon (e.g., mesophase carbon, such as mesocarbon microbeads), to obtain nitrogen trifluoride or fluorine. The anode may have an active geometric surface area up to about 70,000 cm2 or more, for example. In the case of mesocarbon microbeads, the mesocarbon microbeads may be isostatically pressed mesocarbon microbeads. In one embodiment, the anode consists only of molded and self-sintered mesocarbon microbeads and includes no binders or other additives to mold or sinter the anode. The mesocarbon microbeads are also preferably not graphitized. In one embodiment, the anode made from molded mesocarbon microbeads is of high density, e.g., a density of 1.7 g/cm3 or higher, with porosity less than about 20%, or more preferably less than about 15%. Also, the mesocarbon microbeads may have an average particle size ranging from about 1-5 microns in diameter.
  • In another embodiment, the present invention provides a process of producing nitrogen trifluoride or fluorine comprising performing electrolysis of an electrolyte by using an electrolytic anode comprising needle coke. The needle coke may be bound together with a suitable binder that may contain low amounts of oxygen in the precursor, such as highly aromatic pitch binder or mesophase-forming pitch. Furthermore, the anode may be comprised of particles less than 50 microns, or more preferably less than 20 microns, may have a density greater than 1.6 g/cm3, or more preferably greater than 1.7 g/cm3 and most preferably greater than 1.8 g/cm3. The anode is preferably baked to a temperature not higher than about 1600° C. The needle coke in this embodiment could also be replaced by other parallel ordered cokes, such as lenticular coke. In a further embodiment, the coke or binder could be replaced by mesophase, incipient mesophase coke or pitch, or an amorphous but mesophase-forming pitch.
  • By using carbon conforming to the invention as the anode material, it is possible to produce nitrogen trifluoride and fluorine at higher purities, with little or substantially less CF4 compared to traditional extruded carbon anodes. For example, the process may produce less than 100 ppm of CF4, preferably less than 75 ppm of CF4, even more preferably less than 50 ppm of CF4 in pure nitrogen trifluoride or fluorine product gasses. The selectivity in the electrolytic process for producing the nitrogen trifluoride or the fluorine may be 70% or greater, preferably 80% or greater. Suitable electrolytes may be selected by one of ordinary skill in the art. To produce nitrogen trifluoride, the electrolyte may be a binary electrolyte or a ternary electrolyte, for example. The binary electrolyte may include HF and NH4F or other suitable binary electrolytes known in the art. The ternary electrolyte may include HF, NH4F, and one of KF, LiF, CsF, or the like, or other suitable ternary electrolytes known in the art. For example, a ternary electrolyte composition may comprise about 35-45 wt % HF, about 15-25 wt % NH4F, and about 40-45 wt % KF. To produce fluorine, the electrolyte may be a binary electrolyte, for example, including HF and KF.
  • The nitrogen trifluoride process and the fluorine process may be conducted under appropriate conditions and operating process parameters, including temperatures and current densities, selected by one of ordinary skill in the art. For example, nitrogen trifluoride may be produced at temperatures of about 120-140° C. and current densities up to about 250 mA/cm2. Fluorine may be produced at temperatures of about 80-90° C. and current densities up to about 350 mA/cm2.
  • In another embodiment, the present invention provides an electrolytic cell for producing nitrogen trifluoride or fluorine comprising an anode comprising parallel ordered anisotropic carbon, a cathode, and an electrolyte composition comprising HF, optionally KF, and optionally NH4F. The electrolytic cell is operated to produce nitrogen trifluoride or fluorine at high purities with little or no contamination of CF4. In an exemplary embodiment, the anode consists of self-sintered isostatically pressed mesocarbon microbeads. In another exemplary embodiment, the anode consists of isostatically molded mesocarbon microbeads optionally with a phenolic resin sintering aid. In another exemplary embodiment, the anode consists of needle coke bound with a highly aromatic binder and exhibiting low porosity (e.g. less than 20% porosity) and density above 1.7 g/cm3, formed by isostatic molding.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The invention is best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following figures:
  • FIG. 1 shows two views of (a) a mesophase carbon sphere and (b) a section through the mesophase sphere shown in (a);
  • FIG. 2 is a cross-sectional view of one embodiment of an electrolytic cell useful in this invention;
  • FIG. 3 is a cross-sectional view of another embodiment an electrolytic cell useful in this invention; and
  • FIG. 4 is an X-ray diffraction pattern for mesophase carbon, which may be suitable to form the anodes in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides for the production of high purity nitrogen trifluoride and fluorine using anodes comprising parallel ordered anisotropic carbon. In particular, a process of producing nitrogen trifluoride or fluorine includes performing electrolysis of an electrolyte by using an electrolytic anode comprising mesophase carbon, mesocarbon microbeads, needle coke, or other parallel ordered anisotropic carbon to obtain nitrogen trifluoride or fluorine with high selectivity and with reduced or minimal amounts of CF4.
  • As used herein, “anode” means the electrochemically-active portion of the electrode where the nitrogen trifluoride or the fluorine is generated in the cell when current is applied to the cell.
  • As used herein and in the claims, the terms “comprising” and “including” are inclusive or open-ended and do not exclude additional unrecited elements, compositional components, or method steps. Accordingly, the terms “comprising” and “including” encompass the more restrictive terms “consisting essentially of” and “consisting of.” Unless specified otherwise, all values provided herein include up to and including the endpoints given, and the values of the constituents or components of the compositions are expressed in weight percent or % by weight of each ingredient in the composition.
  • Parallel Ordered Anisotropic Carbon
  • The present invention provides for the production of high purity nitrogen trifluoride and fluorine using anodes comprising parallel ordered anisotropic carbon or coke. The anode for producing nitrogen trifluoride or fluorine is comprised of parallel ordered anisotropic carbon, such as mesocarbon microbeads (or MCMBs) or needle coke. As used herein, “parallel ordered anisotropic carbon” or “parallel ordered anisotropic coke” is intended to encompass a class of carbon, which exhibits substantially parallel ordered or layered domains, in contrast to randomly layered carbons, concentrically layered (onion-like) carbons, amorphous carbons, or disordered glass-like carbons. Parallel ordered anisotropic carbon or coke may include needle coke, lenticular coke, mesophase carbon, incipient mesophase carbon, and mesocarbon microbeads, for example, as defined by J. Speight, Handbook of Petroleum Product Analysis, John Wiley & Sons, 2002.
  • As used herein, “mesophase carbon” or “mesocarbon” is the optically anisotropic, graphitizable carbon phase derived from fusible organic compounds. Needle coke and related parallel ordered anisotropic carbons are sometimes considered to be a “mesophase” of carbon, though often the two terms refer to different physical forms of carbon that exhibit similar microstructural properties. Mesophase carbon can be separated from optically isotropic material in the form of small particles, often referred to as mesocarbon microbeads. Thus, mesophase carbon is intended to encompass carbon having an optically anisotropic phase. In other words, the carbon exhibits optical anisotropy when observed under a polarizing microscope (e.g., an optical microscope with polarized light).
  • As used herein, “needle coke” is the optically anisotropic, acicular coke comprising ordered, parallel layers or carbon, or any carbon conforming to the definition of needle coke proposed in “Recommended Terminology for the Description of Carbon as a Solid,” IUPAC, Pure & Appl. Chem., Vol. 67, No. 3, pp. 473-506, 1995. It is understood that physical alteration of needle coke by grinding or size reduction does not remove it from this definition, even to a particle size near 1 micron.
  • In an exemplary embodiment, the anode is primarily comprised of parallel ordered anisotropic carbon. As used herein, “primarily” indicates that that component is present in a greater amount than any other component of the relevant composition, for example, the anode is largely or exclusively parallel ordered anisotropic carbon. In other words, the parallel ordered anisotropic carbon makes up the majority of the anode more so than any other component. In particular, the anode may comprise at least 40%, at least 50%, at least 60%, at least 75%, at least 90%, at least 95%, or at least 99% parallel ordered anisotropic carbon. In an exemplary embodiment, the anode is a substantially pure parallel ordered anisotropic carbon. In other words, the anode is mostly or substantially all parallel ordered anisotropic carbon, as opposed to coke or carbonized pitch or anodes that by chance contain some small amount of parallel ordered anisotropic carbon. In addition, the anode is mostly parallel ordered anisotropic carbon, as opposed to binders, fillers, or other aids known in the art.
  • In one embodiment, the anode is primarily comprised of mesophase carbon, such as mesocarbon microbeads. For example, the anode is largely or exclusively mesophase carbon. In other words, the mesophase carbon makes up the majority of the anode more so than any other component. In particular, the anode may comprise at least 40%, at least 50%, at least 60%, at least 75%, at least 90%, at least 95%, or at least 99% mesophase carbon. In an exemplary embodiment, the anode is a substantially pure mesophase carbon. In other words, the anode is mostly or substantially all mesocarbon, as opposed to coke or carbonized pitch or anodes that by chance contain some small amount of mesocarbon. In addition, the anode is mostly mesocarbon, as opposed to binders, fillers, or other aids known in the art.
  • In one embodiment, the anode for producing nitrogen trifluoride or fluorine is comprised of mesocarbon microbeads. FIG. 1 depicts an example of a mesocarbon microbead including a depiction of (a) a mesophase sphere 100 and (b) a section through the mesophase sphere 100 a. The mesophase sphere 100 may include two poles 110, a trace of lamellae direction 120, and an edge of disk 130 of the mesophase sphere 100. Although the mesocarbon microbead shown in FIG. 1 has a lamellar structure, mesocarbon microbeads made by other routes may have other forms. The mesocarbon microbeads may be spherical in shape, or may have elongated or irregular shapes, for example.
  • The microbeads may have a bead diameter up to about 100 μm (e.g., about 1-100 μm in diameter). In an exemplary embodiment, the mesocarbon microbeads may have an average particle size ranging from about 1-5 microns in diameter. The mesocarbon microbeads may have a high specific surface area ranging from 1,000 to 4,000 m2/g, for example. Similarly, in another embodiment the anode for producing nitrogen trifluoride or fluorine is comprised of needle coke and a binder with a maximum particle size of 20 microns, or more preferably a particle size less than 10 microns, a density greater than 1.6 g/cm3 or more preferably greater than 1.7 g/cm3 and less than 15% porosity, or more preferably less than 10% porosity. The needle coke and binder may be molded into the desired form.
  • FIG. 4 depicts an X-ray diffraction (XRD) pattern for a suitable type of mesophase carbon. The sharp peaks with indication marks at the top, are from ZnO, which is added as an internal calibration standard during the analysis and are not part of the carbon anode. As is evident, there are no graphite peaks in the XRD indicating that well-crystallized graphite is not present. The XRD shows only one broad peak between 25-30° indicating poorly-registered graphene-type planes of carbon. There are no peaks at lower angles indicating that that the mesophase carbon does not contain any well-crystallized or well-formed graphite or other crystal structures.
  • In another embodiment, the anode is primarily composed of parallel ordered anisotropic coke, such as needle coke, bound with a suitable binding agent that results in a minimal amount of porosity in the final article. Aromatic pitch, mesophase pitch, coal tar pitch, and the like are preferred binders, while oxygen-containing binders such as polyfurfural alcohol or phenolic resin are less preferred. In all cases, the anode is not graphitized.
  • Parallel ordered anisotropic cokes, including needle coke and mesophase carbon or mesocarbon microbeads may be produced, for example, by heating a bituminous precursor, such as coal tar, coal tar pitch, a petroleum heavy oil, decant oil, pyrolysis residue, petroleum pitch, emulsion-polymerized plastics, synthetic pitch, surfactants, or small molecules, to cause the low-molecular material to be converted into a high-molecular material through repeated polycondensation. Parallel ordered anisotropic cokes and mesophase carbon can also be produced synthetically from aromatic molecules, such as napthalene. For example, the precursor material may be heated at 200-600° C. (depending on the precursor) to generate a “mesophase” green carbon particle or greenbody. Isotropic carbon may be optionally removed by solvent extraction to generate a pure mesophase carbon. The green carbon particles are then molded or pressed into the desired shape and then may be baked to sinter and remove volatiles. Various methods of producing mesophase carbon are known, such as those taught and described in world patent WO 2006/109497 and Korean patent 10-2006-0138731.
  • Needle coke, mesophase carbon, mesocarbon microbeads, or other forms of parallel layered anisotropic coke may be produced or obtained from any suitable supplier or distributor, such as CR Tech with offices in Korea, MWI with offices in Rochester, N.Y., Graftech International with offices in Parma, Ohio, Y-Carbon with offices in Bristol, Pa., Timcal Graphite and Carbon, Ltd. with offices in Bodio, Switzerland, Qinhuangdao Huarui Coal Chemicals Co., Ltd. with offices in Tangshen, China, Asbury Carbons, Inc. with offices in Asbury, N.J., MTI Corporation with offices in Richmond, Calif., Linyi Gelon New Battery Materials Co., Ltd with offices in Shandong, China, Osaka Gas Chemicals Co., Ltd with offices in Osaka, Japan, SGL Carbon SE with offices in Wiesbaden, Germany, China Steel Chemical Corporation with offices in Kaohsiung, Taiwan, ROC, SEC Carbon, Ltd. with offices in Amagasaki, Japan, or other suppliers producing anisotropic carbon.
  • The parallel ordered anisotropic carbon is used to create the anode. For example, the anode may be molded from a blend of the parallel ordered anisotropic coke and suitable pitch binder or from mesocarbon microbeads. The anode may be molded using any suitable molds and molding techniques known in the art. In one embodiment, the coke/pitch blends or mesocarbon microbeads are isostatically pressed (e.g., cold isostatically pressed) to form the anode. Cold isostatic pressing (CIP) includes applying pressure to a mold at substantially room temperature (e.g., using a fluid as a means of applying pressure to the mold at a temperature of about 20-25° C.). The part optionally may be heated in the mold or while under applied pressure to soften the pitch or mesocarbon during forming. The part may or may not undergo heating or sintering after being released from the mold. In an exemplary embodiment, the molded form is sintered. If a binder such as pitch is used, the binder will soften and then melt, filling the intersticies between coke particles before carbonizing to hold the finished body together. In contrast, due to the nature of the mesocarbon microbeads, the mesocarbon microbeads may self-sinter at low temperatures (e.g., about 400-600° C.). Self-sintering means the microbeads are pressed and fused together and sintered or heated, but require no binders, resins, fillers, or the like in order to mold and sinter the anode part. In one embodiment, the anode consists only of molded and self-sintered mesocarbon microbeads. The parallel ordered anisotropic carbon or mesocarbons may also be formed using other techniques known in the art, including, but not limited to, isostatic pressing, uniaxial pressing or extrusion.
  • In another embodiment, at least one stabilization aid or sintering aid, such as phenolic resin, may be added for the purpose of stabilizing the formed parallel ordered anisotropic carbon without or in addition to oxidation. The stabilization aid may contain oxygen or sulfur. For example, small amounts of stabilization or sintering aids, such as phenolic resins, may be provided to introduce oxygen that serves to cross-link the parallel ordered anisotropic carbon and imparts resistance to deformation when the form is heated during the carbonization process. The anode may comprise 10% or less, 8% or less, 5% or less, 3% or less, or 1% or less of the stabilization or sintering aid.
  • In a preferred embodiment, the binder, pore filler, or sintering aids comprise an aromatic pitch, aromatic synthetic pitch, or other carbon precursors known to produce graphitizing carbons when heated.
  • The formed greenbody may optionally be oxidized, for example, by exposure to air at elevated temperature, to stabilize the physical form and reduce or eliminate deformation during subsequent heating. In other words, the greenbody may be oxidized by heating in air or an oxygen-containing gas. Suitable conditions for oxidizing mesocarbon forms are known in the art. Various methods to oxidatively stabilize mesophase carbon articles have been described in the literature, such as by F. Fanjul, M. Granda, R. Santamaria, and R. Menendez, “On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase.” Fuel. 2002 November; 81(16):2061-70.
  • The sintering treatment may also be following by a densifying heat treatment, for example, at temperatures of about 500-1500° C. The density or apparent density of the molded anode may be a low density ranging from about 1.60-1.65 g/cm3. In one embodiment, the anode formed from parallel ordered anisotropic carbon (e.g., mesocarbon microbeads) preferably has a high density of about 1.7 g/cm3 or higher. It may also be preferred that the anodes comprising parallel ordered anisotropic carbon have a low porosity (e.g., less than 20% porosity, preferably, less than 15% porosity, and more preferably, less than 10% porosity).
  • The anode may be of any suitable size and shape as would be ordinarily used in electrolytic cells known in the art. For example, the anode blade may range from about 1.5 to 2.5 feet long, about 6-10 inches wide, and about 1-3 inch in thickness. The anode blade may be flat and/or may comprise other surface features, including grooves, ridges, indentations, pyramids, and the like in order to improve the surface area or other features known in the industry for producing anode blades having an extended geometric surface area, for example, as described in U.S. Pat. Nos. 5,290,413 and 4,511,440. The anode may have any suitable active surface area. The shape and physical features of the anode may be formed during the molding process, or they may be machined at any time after forming the greenbody using conventional fabrication techniques.
  • The anodes of the present invention are preferably not graphitized. Graphitized carbon materials, including needle coke, mesocarbon microbeads and conventional extruded carbon anodes, are typically baked after being molded, extruded, or otherwise formed to remove volatile materials and sinter or consolidate the bulk carbonaceous material. This baking can occur at temperatures up to about 1300° C. At higher temperatures, typically greater than 1500° C. but depending on the type of carbon material, the carbon begins to form larger graphitic domains, and the electrical resistance decreases. This is called graphitization. Many types of carbon articles are partly or fully graphitized. Anodes for NF3 and F2 production are preferably not graphitized because this can lead to poor performance in an electrolytic cell (e.g., graphite is attacked by the fluorine product and also disintegrates due to intercalation by various components in the electrolyte).
  • As compared to conventional extruded anodes, the anodes of the present invention including parallel ordered anisotropic cokes, including needle coke and mesocarbon microbeads provide for a number of benefits such as: (1) reduced formation of CF4, thus, providing higher purity NF3 and F2; (2) shorter manufacturing times (for example, without the need for additional separation steps in F2 production); (3) less machining required to create finished anode; (4) lower manufacturing costs for the anode, which translates into lower cost of production for NF3 and F2; (5) improved resistance to polarization; (6) the ability to operate at higher current density; and (7) reduced operating cell voltage.
  • By using parallel ordered anisotropic carbon to form the anode, it is possible to produce nitrogen NF3 and F2 at higher purities, with little or substantially less CF4 compared to traditional extruded anodes. For example, the process may produce less than 100 ppm (by volume), preferably less than 75 ppm (by volume), even more preferably less than 50 ppm (by volume), and most preferably less than 25 ppm (by volume) of CF4 in pure NF3 or F2. Thus, 25 ppm is equal to 25 molecules of CF4 per million molecules of NF3 or 25 mL of CF4 per million mL of NF3. The selectivity in the process for producing the NF3 or F2 is also preferably high and may be on the order of 70% or greater, preferably 80% or greater, even more preferably 85% or greater, or even 90% or greater selectivity for NF3 or F2.
  • Carbon articles made from parallel ordered anisotropic cokes, including needle coke and mesocarbon microbead anodes also may exhibit improved wetting characteristics without incorporating a traditional wetting aid. Traditional carbon anodes often develop a low-energy surface as a result of their interactions with the electrolyte and electrochemically-produced species, such as fluorine, during the production of NF3 or F2. The wetting of the anode surface by the electrolyte becomes poor, resulting in a higher cell operating voltage and an increased tendency to polarize. For example, an anode of known geometric surface area can be used to produce NF3 via electrolysis of a ternary KF—HF—NH4F molten salt electrolyte, with composition of 40 wt % HF, 18 wt % NH4F, and 42 wt % KF, at or near 130° C. for at least 150 hours at a current density of 70 mA/cm2, or more preferably 180 mA/cm2. Upon removal from the melt and cooling to about room temperature, the anode can be washed with water without physically abrading the active surface and dried. The surface energy of the active surface can then be determined using known surface tension inks or markers (“dyne pens”).
  • Anodes of the present invention were found to show a high surface energy of 65 dyne/cm or greater after more than 150 hours of operation at 70 mA/cm2 across at least 30% of the active surface. In other words, the anodes of the present invention comprising parallel ordered anisotropic carbon exhibit retained wettability over an extended duration without needing a wetting agent. In contrast, conventional extruded carbon anodes display surface energies below this value, for example, often below 55 dyne/cm and require a wetting agent to improve the wetability. For example, P. Hough, “Fluorine Production and Use—An Overview” in Electrochemistry in the Preparation of Fluorine and its Compounds, W. Childs and T. Fuchigami, eds., The Electrochemical Society, 1997 suggests incorporating additives into the carbon to enhance wetting. Similarly, U.S. Pat. No. 7,608,235 uses the addition of Mg F2 or AlF3 to traditional carbon anodes to improve wetting. Additives such as these, however, add cost to the anodes and may contaminate the electrolyte and the anode manufacturing facility.
  • It has been surprisingly found, unlike other carbon forms, the parallel ordered anisotropic carbon, such as mesocarbon microbeads, which form the anodes resist the formation of a low-energy surface without the need for such wetting additives, resulting in lower cell operating voltages and the ability to operate at higher current density than conventional carbon anodes. Lower cell voltage results in reduced power consumption during the manufacture of NF3 or F2, while increased current density permits more NF3 or F2 to be produced from a given cell. Moreover, removal of traditional wetting aids from the anode composition reduces cost and contaminations in the manufacturing process.
  • Other attempts have been made to improve upon the conventional extruded carbon anode material. U.S. Publication No. 2010/0193371 describes the use of a conductive diamond film on glassy carbon. U.S. Publication No. 2010/0252425 suggests the use of mesophase carbon as a filler or binding agent for a more desired carbonaceous component with a specified X-ray diffraction pattern. It also suggests that a high degree of porosity is desirable, and that the specified carbonaceous material needs a conductive diamond coating to perform well as an anode. The present invention does not require expensive diamond films. Instead, the present invention establishes that a properly prepared parallel ordered anisotropic carbon material is advantageous as an anode material. The parallel ordered anisotropic carbon may exhibit a low porosity, for example, less than 15% or less than 10% porosity. Furthermore, the parallel ordered anisotropic carbon materials of the present invention do not exhibit the diffraction pattern specified in U.S. Publication No. 2010/0252425 requiring crystallized, well-formed graphite or other crystal phases. As discussed above, the parallel ordered anisotropic carbon material of the present invention contains no definite diffraction peaks other than the broad peak between 25-30° indicating that the parallel ordered anisotropic carbon does not contain any well-formed graphite or other crystal structures.
  • Electrolytic Cell
  • In one embodiment, the present invention provides an electrolytic cell for producing nitrogen trifluoride or fluorine comprising an anode comprising parallel ordered anisotropic carbon (e.g., mesocarbon microbeads), a cathode, and an electrolyte composition. The electrolytic cell is operated to produce nitrogen trifluoride or fluorine. The process of forming nitrogen trifluoride or fluorine includes electrolyzing an electrolyte, for example, using an electrolytic cell. Any suitable electrolytic cell known in the art may be selected by one of ordinary skill in the art.
  • For example, the electrolytic cell may include a container or housing comprised of walls inert to and for containing the electrolyte. The anode and cathode may be connected to a source of direct current. For example, the electrode may be positioned in the container for immersion into the electrolyte, such that when current is applied the electrodes are made electrochemically anodic and cathodic. A partition wall or separation skirt may be disposed for preventing fluorine or nitrogen trifluoride from being mixed with hydrogen during the electrolysis when the fluorine or nitrogen trifluoride is generated at the anode and hydrogen is generated at the cathode. In general, the partition wall may be disposed vertically.
  • Any materials may be used to construct the components of the cell so long as the materials are durable when exposed to the corrosive conditions of the cell. Useful materials for the cell body and separation skirt are iron, stainless steel, carbon steel, nickel or a nickel alloy such as MONEL®, TEFLON®, and the like, as known to a person of skill in the art. The material(s) of construction for the cathode is not specifically limited so long as the cathode is made of a material which is useful for that purpose as known to a person of skill in the art, such as nickel, carbon steel, and iron.
  • FIG. 2 shows a schematic representation of one example of an electrolytic cell apparatus, which may be suitable for the production of nitrogen trifluoride or fluorine in accordance with the present invention. The electrolytic cell apparatus may include an electrolytic cell 25 having an electrolyzer body 26, side faces 51, 52, and an upper lid or covering 28. The cell 25 is partitioned into anode chambers 17 and cathode chambers 18 by vertically disposed gas separation skirt 19 and diaphragm 22. Anodes 20 are disposed in the anode chambers 17, and cathodes 21 are disposed in the cathode chambers 18. The electrolyte 23 is disposed in the electrolytic cell 25 and the level 27 of the electrolyte 23 is the height of the electrolyte 23 above the bottom surface 53 of the electrolytic cell 25. The level of the electrolyte 23 may be determined by a level indicator 31, and the level 27 may be controlled between a high level set point 32 and a low level set point 33, for example. Additionally, the composition of the electrolyte 23 may be sampled by an electrolyte sample port 41.
  • The electrolytic cell 25 may include feed tubes 12 and 16 for feeding raw materials or the components that make up the electrolyte 23. In general, the feed tubes 12 and 16 are provided in the cathode chamber 18. The anode chamber 17 may have an anode product outlet pipe 11 for withdrawing the product gas mixture (e.g., NF3 or F2) from the electrolytic cell 25. The cathode chamber 18 may have a cathode product outlet pipe 13 for withdrawing gas from the electrolytic cell 25. The electrolytic cell 25 can include a temperature detector 30, temperature adjusting means 29, and the like to control the appropriate process parameters during electrolysis.
  • If desired, the electrolytic apparatus of the present invention may further comprise additional components, such as purge gas pipe connections in the anode and cathode chambers 17, 18. A purge gas source, such as nitrogen for example, may be connected to the anode chamber 17 and/or the cathode chamber 18 (not shown) of the electrolytic cell 25 to provide for a purge of the electrolytic cell 25 for safety reasons, to provide a blow-out means for clogged pipes, or to otherwise provide for the proper functioning of the inlet and outlet tubes and pipes and other instrumentation.
  • When the cell 25 is operated, the nitrogen trifluoride or fluorine containing gas is generated at the anode 20 and hydrogen is generated at the cathode 21. When used to produce nitrogen trifluoride, the gases generated in the anode chamber 17 may comprise nitrogen trifluoride (NF3), nitrogen (N2) and fluorine (F2), for example. When used to produce fluorine, the gases generated in the anode chamber 17 may comprise fluorine (F2), for example. In addition, HF may optionally be present in the gas leaving both the anode chamber 17 and cathode chamber 18.
  • FIG. 3 shows a cross sectional view of an electrolytic cell 25 similar to the one shown in FIG. 2 except that the cell 25 shown in FIG. 3 comprises only one anode chamber 17 and one cathode chamber 18. The anode chamber 17 has one anode 20 and the cathode chamber 18 has one cathode 21. Like components in FIGS. 2 and 3 are numbered the same.
  • The cell 25 shown in FIG. 3 comprises a current controller 39 that supplies current to the anode 20 through anode current connection 14 and to the cathode 21 through cathode current connection 15 at a level that can be increased or decreased within a target range specified by the operator or the control process for the electrolytic cell 25.
  • Although specific electrolytic cells 25 are described and shown herein, the cell 25 could include any known or hereafter developed cell design. For example, the cell type may include the ICI fluorine cell design described in Fluorine, The First Hundred Years, R. E. Banks, D. W. A. Sharp, and J. C. Tatlows, eds. Elsevier Sequoia, Netherlands, 1986.
  • Production of NF3 or F2
  • The electrolytic cell may be capable of producing NF3, F2, or both, and the processes are substantially similar. The minor differences between the production of NF3 or F2 include the use of different electrolyte solutions and different operating conditions. Otherwise, the two processes are substantially identical. The cells are almost interchangeable, and the anodes used in both are the same parallel ordered anisotropic carbon-based anode material as described herein. As noted above, the undesired by-product CF4 is made in both processes. The only difference is that CF4 and F2 can be separated by distillation, whereas CF4 and NF3 cannot practically be separated. In either case, it is preferable to not produce CF4 because then the separation requires an additional process step.
  • (a) Production of NF3
  • Nitrogen trifluoride may be produced by using the electrolytic apparatus of the present invention along with an electrolyte comprised of any known electrolyte that is useful in making nitrogen trifluoride. For example, suitable electrolytes may include ternary electrolytes (e.g., an HF-containing molten salt of ammonium fluoride (NH4F), potassium fluoride (KF), and hydrogen fluoride (HF). In addition, the molten salt electrolyte may also contain other additives such as cesium fluoride, lithium fluoride, and the like. In an exemplary embodiment, the ternary electrolyte composition may comprise about 35-45 wt % HF, about 15-25 wt % NH4F, and about 40-45 wt % KF. The concentrations may be expressed in terms of mol % NF4F and HF ratio. The HF ratio is defined by the equation below:

  • HF Ratio=(moles of HF titratable to neutral pH)/(NH4F (moles)+KF(moles)).
  • The HF ratio represents the ratio of the solvent to salt in the electrolyte. In some embodiments with the ternary electrolyte, it may be preferable to operate the electrolytic cell with the NH4F concentration in the range of 14 wt % and 24 wt %, more preferably between 16 wt % and 21 wt %, most preferably between 17.5 wt % and 19.5 wt %; with the HF ratio preferably between 1.3 and 1.7, more preferably between 1.45 and 1.6, most preferably between 1.5 and 1.55. In other embodiments, the preferred concentration range may vary depending on the operating conditions such as applied current and electrolyte temperature. It is desirable to choose the concentration range based on a balance between high efficiency of the electrolytic cell and safe operation.
  • This invention is not limited to any specific electrolyte composition, and any description herein referring to, for example, the ternary electrolyte is for convenience only. It is understood that any electrolyte useful for making NF3 can be substituted into the description and is included in the invention.
  • The nitrogen trifluoride electrolytic process may be conducted under appropriate conditions known in the art, including temperatures and current densities. For example, nitrogen trifluoride may be produced at temperatures of about 100-140° C., preferably about 120-130° C. and current densities up to 250 mA/cm2.
  • (b) Production of F2
  • In the case of fluorine, a fluorine-producing electrolyte may include a binary electrolyte. For example, the binary electrolyte may include a hydrogen fluoride (HF)-containing molten salt of HF and KF. In addition, the HF-containing molten salt electrolyte may also contain other additives such as ammonium fluoride, cesium fluoride, lithium fluoride, and the like.
  • The HF ratio may be similar to those described above in order to achieve a balance between high efficiency of the electrolytic cell and safe operation and may be defined as:

  • HF Ratio=(moles of HF titratable to neutral pH)/(KF(moles)).
  • This invention is not limited to any specific electrolyte composition, and any description herein referring to, for example, the binary electrolyte is for convenience only. It is understood that any electrolyte useful for making F2 can be substituted into the description and is included in the invention.
  • The fluorine electrolytic process may be conducted under appropriate conditions known in the art, including temperatures and current densities. For example, fluorine may be produced at temperatures of about 80-90° C. and at a current density up to 250 mA/cm2.
  • EXAMPLES Example 1 Production of NF3 with Mesocarbon Anode
  • A ternary electrolyte with composition 40 wt % HF, 19.5 wt % NH4F, and 40.5 w % KF was electrolyzed in a 250 mL laboratory cell to generate NF3. The cathode was carbon steel, and the cell was equipped with a Cu/CuF2 reference electrode. The anode was isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm2. The anode and cathode product gases were kept separated by means of a TEFLON® skirt that extended below the liquid line. The cell was operated at 130° C. The electrolysis was conducted in galvanostatic mode with an applied current density of 70 mA/cm2. The anode gas was analyzed after allowing the cell to reach steady state by means of gas chromatography.
  • The anode gas contained 71 ppm CF4 on a pure NF3 basis. The selectivity to NF3 was 70.7% defined as:

  • NF3 Selectivity=(moles of NF3 produced)/(moles of NF3 produced+moles of N2 produced).
  • After more than 150 hours of operation as an anode at 70 mA/cm2, the anode was removed from the electrolyte, cooled to room temperature, washed with water without abrading the active surface, and was well wet by a 70 dyne/cm ink (a high surface energy ink) over about 50% of the surface, indicating a surface energy above this value. The remaining surface was wet by a 58 dyne/cm ink.
  • Comparative Example 1 Traditional Anode
  • The electrolysis described in Example 1 was repeated except that the anode was replaced with a conventional extruded carbon anode. The active anode area was kept at 2.25 cm2. The anode gas contained 341 ppm CF4 (on a pure NF3 basis) and the selectivity to NF3 was 89.9%. The anode was removed after more than 150 hours of operation and subjected to the same test as Example 1, during which the anode was wet by only a 50 dyne/cm ink but not by any higher surface energy inks.
  • Example 2 Production of NF3 with Mesocarbon Anode
  • A ternary electrolyte with composition 37.5 wt % HF, 18.3 wt % NH4F, and 44.2 wt % KF was electrolyzed in a 250 mL laboratory cell to generate NF3. The cathode was carbon steel, and the cell was equipped with a Cu/CuF2 reference electrode. The anode was isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm2. The anode and cathode product gases were kept separated by means of a Teflon skirt that extended below the liquid line. The cell was operated at 139° C. The electrolysis was conducted in galvanostatic mode with an applied current density of 100 mA/cm2. The anode gas was analyzed after allowing the cell to reach steady state by means of gas chromatography. The anode gas contained 20 ppm CF4 on a pure NF3 basis. The selectivity to NF3 was 77.6%.
  • Comparative Example 2 Traditional Anode
  • The electrolysis described in Example 2 was repeated except that the anode was replaced with a conventional extruded carbon anode. The active anode area was kept at 2.25 cm2. The anode gas contained 70 ppm CF4 (on a pure NF3 basis) and the selectivity to NF3 was 87.0%.
  • Example 3A Production of NF3 with Low Density Mesocarbon Anode
  • A ternary electrolyte with HF, NH4F, and KF was electrolyzed in a 250 mL laboratory cell to generate NF3. The cathode was carbon steel, and the cell was equipped with a Cu/CuF2 reference electrode. The anode was low density (1.60 g/cm3) isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm2. The anode and cathode product gases were kept separated by means of a Teflon skirt that extended below the liquid line. The cell was operated at 130° C. The electrolysis was conducted in galvanostatic mode with an applied current density of 70 mA/cm2. The anode gas was analyzed after allowing the cell to reach steady state by means of gas chromatography. The anode gas contained 61 ppm CF4 on a pure NF3 basis. The selectivity to NF3 was 82.3%. The anode was evaluated for surface energy as described in Example 1, and was wet by a 70 dyne/cm ink over at about 40% of the surface, and the remaining areas were wet by a 58 dyne/cm ink.
  • Example 3B Production of NF3 with High Density Mesocarbon Anode
  • The electrolysis described in Example 3A was repeated except that the anode was replaced with high density (≧1.70 g/cm3) isostatically-pressed mesocarbon microbeads. The anode gas contained <25 ppm CF4 (on a pure NF3 basis) and the selectivity to NF3 was 84.7%. The anode was evaluated for surface energy as described in Example 1, and was wet by a 70 dyne/cm ink over at about 40% of the surface, and the remaining areas were wet by a 58 dyne/cm ink.
  • Comparative Example 3A Traditional Anode
  • The electrolysis described in Example 3A was repeated except that the anode was replaced with a conventional extruded carbon anode. The anode gas contained 341 ppm CF4 (on a pure NF3 basis) and the selectivity to NF3 was 89.9%. The anode was evaluated for surface energy as described in Example 1, and was wet by a 50 dyne/cm ink but not by any higher surface energy inks.
  • Comparative Example 3B Isostatically Pressed Conventional Anode
  • The electrolysis described in Example 3A was repeated except that the anode was replaced with an isostatically pressed non-mesocarbon anode. The composition of this anode resembles the conventional extruded carbon (i.e., based on carbonized coke and pitch rather than mesocarbon). The anode gas contained 212 ppm CF4 (on a pure NF3 basis) and the selectivity to NF3 was 88.3%. The anode was evaluated for surface energy as described in Example 1, and was wet by a 48 dyne/cm ink but not by any higher surface energy inks.
  • Example 4A Production of NF3 using a Needle Coke-Based Anode
  • The electrolysis described in Example 1 was repeated using an anode comprised primarily of needle coke with a pitch-based binder. The anode had an apparent density of 1.75 g/cm3 and total porosity of 15%. The anode was not graphitized. The cell was operated at a current density of 70 mA/cm2. The cell temperature was 130° C. The anode potential during the test was 5.15 V vs. Cu/CuF2 reference, the selectivity to NF3 was 88%, and the CF4 content of the NF3 product was 30 ppm.
  • Example 4B Production of NF3 using a Needle Coke-Based Anode at High Current Density
  • The electrolysis described in Example 4 was repeated at a current density of 178 mA/cm2. The cell temperature was 140° C. The anode potential during the test was 5.47 V vs. Cu/CuF2 reference, the selectivity to NF3 was 88%, and the CF4 content of the NF3 product was 20 ppm.
  • These results are summarized in the Tables below where IP=isostatically pressed, MCMB=mesocarbon microbeads, LD=low density, and HD=high density.
  • TABLE 1
    Electrolyte: Ternary (NH4F-KF-HF) Electrolyte
    Temperature
    130° C.
    Current Density: 70 mA/cm2
    Anode Material CF4 Level NF3 Selectivity
    Traditional Extruded 341 ppm 89.9%
    Anodes (Comparative
    Example 1)
    IP MCMB (Example 1)  71 ppm 70.7%
  • TABLE 2
    Electrolyte: Ternary (NH4F-KF-HF) Electrolyte
    Temperature 139° C.
    Current Density: 100 mA/cm2
    Anode Material CF4 Level NF3 Selectivity
    Traditional Extruded
    70 ppm 87.0%
    Anodes (Comparative
    Example 2)
    IP MCMB (Example 2) 20 ppm 77.6%
  • TABLE 3
    Electrolyte: Ternary (NH4F-KF-HF) Electrolyte
    Temperature
    130° C.
    Current Density: 70 mA/cm2
    Anode Material CF4 Level NF3 Selectivity
    Traditional Extruded 341 ppm 89.9%
    Anodes (Comparative
    Example 3A)
    Non-Mesocarbon 212 ppm 88.3%
    Isostatically Pressed
    Anode (Comparative
    Example 3B)
    LD IP MCMB (Example  61 ppm 82.3%
    3A)
    HD IP MCMB (Example <25 ppm 84.7%
    3B)
    Needle Coke Anode  30 ppm 88.0%
    (Example 4A)
  • Comparative Example 4 Production of NF3 using a Graphitized Needle Coke-Based Anode
  • The electrolysis of Example 4B was repeated using an anode of the same composition as in that example, but having been graphitized by heating to temperatures above 2000° C. The selectivity and CF4 levels were identical, but the anode operated unstably with an anode potential varying between 6 and 7 V.
  • Example 5 Production of F2 with a Mesocarbon Anode
  • A binary electrolyte with composition 40 wt % HF and 60 wt % KF was electrolyzed in a 250 mL laboratory cell to generate F2. The cathode was carbon steel, and the cell was equipped with a Cu/CuF2 reference electrode. The anode was isostatically-pressed mesocarbon microbeads with an active area of 2.25 cm2. The anode and cathode product gases were kept separated by means of a TEFLON® skirt that extended below the liquid line. The cell was operated at 88° C. The electrolysis was conducted in galvanostatic mode with an applied current density of 80 mA/cm2. The cell operated stably, discharging fluorine gas, with a cell voltage of 6.4 Volts.
  • Comparative Example 5 Production of F2 with a Traditional Anode
  • The electrolysis described in Example 5 was repeated except that the anode was replaced with a conventional extruded carbon anode. The cell operated stably, discharging fluorine gas, but with a higher cell voltage of 7.0 Volts.
  • Example 6 Production of F2 at High Current Density with a Mesocarbon Anode
  • The electrolysis described in Example 5 was repeated, except that a smaller cell holding 25 mL of electrolyte was used. The isostatically-pressed mesocarbon anode had an active area of 0.5 cm2. The cell was operated at a current density of 225 mA/cm2. The anode discharged F2 gas, with stable operation at a cell voltage of 6.8 Volts.
  • Comparative Example 6 Production of F2 at High Current Density on a Conventional Anode
  • The electrolysis described in Example 6 was repeated, except that the anode was a conventional extruded carbon anode. The cell was again operated at a current density of 225 mA/cm2. The cell discharged F2 gas, but with an unstable cell voltage of 7.7-8.5 Volts.
  • Although illustrated and described above with reference to certain specific embodiments and examples, the present invention is nevertheless not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the spirit of the invention. It is expressly intended, for example, that all ranges broadly recited in this document include within their scope all narrower ranges which fall within the broader ranges. In addition, features of one embodiment may be incorporated into another embodiment. All publications, patents, and other documents referred to in this document are incorporated by reference herein, as though individually incorporated by reference, in their entirety for all purposes.

Claims (32)

What is claimed is:
1. A process of producing nitrogen trifluoride or fluorine comprising:
performing electrolysis of an electrolyte by using an electrolytic anode comprising primarily parallel ordered anisotropic carbon to obtain nitrogen trifluoride or fluorine.
2. The process according to claim 1, wherein the parallel ordered anisotropic carbon comprises needle coke.
3. The process according to claim 2, wherein the anode comprises:
at least 60% needle coke; and
optionally, 0 to 40% of a binding agent.
4. The process according to claim 3, wherein the anode comprises the binding agent and the binding agent is pitch.
5. The process according to claim 2, wherein the anode comprises the binding agent, and the needle coke and binding agent are isostatically pressed into a form.
6. The process according to claim 2, wherein the anode comprises the binding agent, and the needle coke and binding agent have an average particle size of less than 25 microns.
7. The process according to claim 2, wherein the needle coke is not graphitized.
8. The process according to claim 1, wherein the parallel ordered anisotropic carbon comprises mesocarbon microbeads.
9. The process according to claim 8, wherein the mesocarbon microbeads are isostatically pressed mesocarbon microbeads.
10. The process according to claim 8, wherein the mesocarbon microbeads have an average particle size of about 1-5 microns.
11. The process according to claim 8, wherein the mesocarbon microbeads are not graphitized.
12. The process according to claim 1, wherein the parallel ordered anisotropic carbon comprises mesophase carbon, and the anode comprises:
at least 40% mesophase carbon; and
optionally, up to 10% of a stabilizing aid.
13. The process according to claim 1, wherein the anode has a density of 1.7 g/cm3 or higher.
14. The process according to claim 1, wherein the anode consists of molded and self-sintered mesocarbon microbeads and optionally a sintering aid.
15. The process according to claim 1, wherein the anode has an active area up to about 70,000 cm2.
16. The process according to claim 1, wherein the process produces less than 100 ppm of CF4 in pure nitrogen trifluoride or fluorine.
17. The process according to claim 1, wherein the process produces less than 25 ppm of CF4 in pure nitrogen trifluoride or fluorine.
18. The process according to claim 1, wherein the process produces nitrogen trifluoride or fluorine with a selectivity of 70% or greater.
19. The process according to claim 1, wherein the process produces nitrogen trifluoride or fluorine with a selectivity of 80% or greater.
20. The process according to claim 1, wherein nitrogen trifluoride is produced and the electrolyte is a ternary electrolyte composition comprising HF, NH4F, and KF.
21. The process according to claim 20, wherein the ternary electrolyte composition comprises 35-45 wt % HF, 15-25 wt % NH4F, and 40-45 wt % KF.
22. The process according to claim 1, wherein fluorine is produced and the electrolyte is a binary electrolyte composition comprising HF and KF.
23. The process according to claim 1, wherein nitrogen trifluoride is produced and the electrolyte is electrolyzed at a temperature of about 120-140° C.
24. The process according to claim 1, wherein fluorine is produced and the electrolyte is electrolyzed at a temperature of about 80-90° C.
25. The process according to claim 1, wherein the process is operated at a current density of about 70-250 mA/cm2.
26. The process according to claim 1, wherein nitrogen trifluoride is produced and the process is operated at a current density of about 100-250 mA/cm2.
27. The process according to claim 1, wherein fluorine is produced and the process is operated at a current density of about 120-250 mA/cm2.
28. An electrolytic cell for producing nitrogen trifluoride or fluorine comprising:
an anode comprising parallel ordered anisotropic carbon;
a cathode; and
an electrolyte composition comprising HF, optionally KF, and optionally NH4F,
wherein the electrolytic cell is operated to produce nitrogen trifluoride or fluorine.
29. The electrolytic cell according to claim 28, wherein the anode consists of self-sintered isostatically pressed mesocarbon microbeads and optionally a sintering aid.
30. The electrolytic cell according to claim 28, wherein the anode consists of needle coke and pitch binder.
31. The electrolytic cell according to claim 30 in which the pitch binder and the needle coke are first blended and then ground prior to pressing.
32. The electrolytic cell according to claim 28, where the anode exhibits retained wettability without the addition of a wetting agent.
US14/046,261 2012-10-19 2013-10-04 Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine Abandoned US20140110269A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/046,261 US20140110269A1 (en) 2012-10-19 2013-10-04 Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine
TW102137820A TW201416492A (en) 2012-10-19 2013-10-18 Anodes for the electrolytic production of nitrogen trifluoride and fluorine
CN201310495849.6A CN103774171A (en) 2012-10-19 2013-10-21 Anodes for the electrolytic production of nitrogen trifluoride and fluorine
JP2013218456A JP2014084529A (en) 2012-10-19 2013-10-21 Anodes for electrolytic production of nitrogen trifluoride or fluorine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261716259P 2012-10-19 2012-10-19
US201361790810P 2013-03-15 2013-03-15
US14/046,261 US20140110269A1 (en) 2012-10-19 2013-10-04 Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine

Publications (1)

Publication Number Publication Date
US20140110269A1 true US20140110269A1 (en) 2014-04-24

Family

ID=50484350

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/859,263 Abandoned US20140110267A1 (en) 2012-10-19 2013-04-09 Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine
US14/046,261 Abandoned US20140110269A1 (en) 2012-10-19 2013-10-04 Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/859,263 Abandoned US20140110267A1 (en) 2012-10-19 2013-04-09 Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine

Country Status (5)

Country Link
US (2) US20140110267A1 (en)
JP (1) JP2014084529A (en)
CN (1) CN103774171A (en)
TW (1) TW201416492A (en)
ZA (1) ZA201307805B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240367A1 (en) * 2014-02-26 2015-08-27 Air Products And Chemicals, Inc. Electrolytic Apparatus, System and Method for the Efficient Production of Nitrogen Trifluoride
CN104947135A (en) * 2015-06-09 2015-09-30 中国船舶重工集团公司第七一八研究所 Device for preparing nitrogen trifluoride and application
TWI762016B (en) * 2020-09-08 2022-04-21 美商慧盛材料美國責任有限公司 Electrode attachment assembly, cell and method of use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222688B (en) * 2016-07-19 2018-01-09 浙江博瑞电子科技有限公司 A kind of method of ammonium acid fluoride Electrowinning Nitrogen trifluoride
CN109267098B (en) * 2018-09-27 2019-10-18 四川大学 Fluorine anode processed and preparation method thereof
CN114213128A (en) * 2021-12-28 2022-03-22 成都炭素有限责任公司 Preparation method for preparing fluorocarbon anode plate by isostatic pressing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067111A (en) * 1957-12-16 1962-12-04 Schmeisser Production of nitrogen trifluoride
US5153082A (en) * 1990-09-04 1992-10-06 Bridgestone Corporation Nonaqueous electrolyte secondary battery
US5160415A (en) * 1990-02-06 1992-11-03 Toyo Tanso Co., Ltd. Carbon electrode, and method and apparatus for the electrolysis of a hydrogen fluoride-containing molten salt with the carbon electrode
US20060219570A1 (en) * 2005-03-14 2006-10-05 Permelec Electrode Ltd. Electrolytic anode and method for electrolytically synthesizing fluorine containing substance using the electrolytic anode
US20070215460A1 (en) * 2006-01-20 2007-09-20 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623285A (en) * 1979-08-02 1981-03-05 Nobuatsu Watanabe Production of fluorine
JP3037464B2 (en) * 1991-05-16 2000-04-24 信淳 渡辺 Method for producing nitrogen trifluoride gas
SG87196A1 (en) * 1999-12-21 2002-03-19 Mitsui Chemicals Inc Electrode and electrolyte for use in preparation of nitrogen trifluoride gas, and preparation method of nitrogen trifluoride gas by use of them
JP3550074B2 (en) * 2000-04-07 2004-08-04 東洋炭素株式会社 Carbon electrode for generating fluorine gas or nitrogen trifluoride gas and fluorine gas or nitrogen trifluoride gas generator using the same
CN1180128C (en) * 2003-04-30 2004-12-15 中国船舶重工集团公司第七一八研究所 Technological method and equipment for preparing nitrogen trifluoride gas
JP2004211205A (en) * 2004-03-29 2004-07-29 Toyo Tanso Kk Carbon electrode for generating gaseous fluorine or gaseous nitrogen trifluoride, and gaseous fluoride or gaseous nitrogen trifluoride generator using the same
JP5151278B2 (en) * 2007-07-06 2013-02-27 ソニー株式会社 Negative electrode for secondary battery and secondary battery
JP2010018849A (en) * 2008-07-10 2010-01-28 Permelec Electrode Ltd Method of electrolytically synthesizing nitrogen trifluoride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067111A (en) * 1957-12-16 1962-12-04 Schmeisser Production of nitrogen trifluoride
US5160415A (en) * 1990-02-06 1992-11-03 Toyo Tanso Co., Ltd. Carbon electrode, and method and apparatus for the electrolysis of a hydrogen fluoride-containing molten salt with the carbon electrode
US5153082A (en) * 1990-09-04 1992-10-06 Bridgestone Corporation Nonaqueous electrolyte secondary battery
US20060219570A1 (en) * 2005-03-14 2006-10-05 Permelec Electrode Ltd. Electrolytic anode and method for electrolytically synthesizing fluorine containing substance using the electrolytic anode
US20070215460A1 (en) * 2006-01-20 2007-09-20 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240367A1 (en) * 2014-02-26 2015-08-27 Air Products And Chemicals, Inc. Electrolytic Apparatus, System and Method for the Efficient Production of Nitrogen Trifluoride
US9528191B2 (en) * 2014-02-26 2016-12-27 Air Products And Chemicals, Inc. Electrolytic apparatus, system and method for the efficient production of nitrogen trifluoride
CN104947135A (en) * 2015-06-09 2015-09-30 中国船舶重工集团公司第七一八研究所 Device for preparing nitrogen trifluoride and application
TWI762016B (en) * 2020-09-08 2022-04-21 美商慧盛材料美國責任有限公司 Electrode attachment assembly, cell and method of use

Also Published As

Publication number Publication date
CN103774171A (en) 2014-05-07
TW201416492A (en) 2014-05-01
JP2014084529A (en) 2014-05-12
US20140110267A1 (en) 2014-04-24
ZA201307805B (en) 2015-09-30

Similar Documents

Publication Publication Date Title
US20140110269A1 (en) Anodes for the Electrolytic Production of Nitrogen Trifluoride and Fluorine
JP5345060B2 (en) Carbonaceous substrate and electrode for fluorine generation electrolysis
CN1840742A (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
JPH0159703B2 (en)
EP0691699A1 (en) Graphite layer material
JPS6112994B2 (en)
KR20150126636A (en) Activated carbon for electric double layer capacitor electrode and production method for same
US3389200A (en) Process for producing compressed vermicular graphite structures
US20200343578A1 (en) Alkali-Ion Battery Based on Selected Allotropes of Sulphur, and Methods for the Production Thereof
JP5230117B2 (en) Method for producing graphite particles
KR101625010B1 (en) Method of electrolytically synthesizing fluorine-containing compound
Adcock et al. Towards the selective modification of soft-templated mesoporous carbon materials by elemental fluorine for energy storage devices
JPH03232988A (en) Carbon electrode, method and device for electrolyzing hf-containing molten salt using the same
WO2016031423A1 (en) Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon
KR20140052853A (en) Anodes for the electrolytic production of nitrogen trifluoride and fluorine
JP2005047763A (en) Carbon nano- and micro-meter structures and method for manufacturing them
JP3037464B2 (en) Method for producing nitrogen trifluoride gas
RU2666806C2 (en) Method of manufacturing cathode block for electrolytic cell for aluminum production
RU2556192C2 (en) Method of obtaining of cathode pack for electrolyser for aluminium production and cathode pack
Wang et al. Silicon Carbide-Derived Carbon Prepared by Fused Salt Electrolysis and Electrochemical Performance
JP3037463B2 (en) Method for producing nitrogen trifluoride gas
KR102608029B1 (en) Method for preparation of high crystalline artificial graphite from hard carbon and artificial graphite by the same
US10707488B2 (en) Carbon electrode and lithium ion hybrid capacitor comprising same
김지현 et al. 1P-685 C-rate and cyclic stability of graphite/graphite foam composite as anode material of lithium ion battery
Childs Porous Carbon Anodes in the cave KF˙ 2HF Electrolyte

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIR PRODUCTS AND CHEMICALS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEHLSEN, JAMES PATRICK;BERGER, KERRY RENARD;MACHADO, REINALDO MARIO;AND OTHERS;SIGNING DATES FROM 20131001 TO 20131002;REEL/FRAME:031349/0016

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: VERSUM MATERIALS US, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIR PRODUCTS AND CHEMICALS, INC.;REEL/FRAME:041772/0733

Effective date: 20170214