WO2016031423A1 - Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon - Google Patents

Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon Download PDF

Info

Publication number
WO2016031423A1
WO2016031423A1 PCT/JP2015/070417 JP2015070417W WO2016031423A1 WO 2016031423 A1 WO2016031423 A1 WO 2016031423A1 JP 2015070417 W JP2015070417 W JP 2015070417W WO 2016031423 A1 WO2016031423 A1 WO 2016031423A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
carbon
less
ppm
raw material
Prior art date
Application number
PCT/JP2015/070417
Other languages
French (fr)
Japanese (ja)
Inventor
正利 西田
政喜 藤井
慶三 猪飼
正剛 小関
陽介 大津
Original Assignee
Jx日鉱日石エネルギー株式会社
南開工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 南開工業株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2016031423A1 publication Critical patent/WO2016031423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to activated carbon and a carbon raw material of activated carbon, and more particularly to an activated carbon and a carbon raw material of activated carbon that are optimal for use in electrodes of electric double layer capacitors and lithium ion capacitors.
  • Electric double layer capacitors (EDLC) and lithium ion capacitors (LIC) are characterized by superior power density and charge / discharge cycle life compared to general secondary batteries. Its applications are expanding, such as being used in stop systems.
  • the electric double layer capacitor has a structure in which a pair of polarizable electrodes made of activated carbon are opposed to each other through a separator as a positive electrode and a negative electrode.
  • Each polarizable electrode is impregnated with a water-soluble electrolyte solution or a non-aqueous solvent electrolyte solution, and each polarizable electrode is in contact with a collecting electrode.
  • the performance such as resistance, low temperature characteristics and life depends on the performance of activated carbon used as a polarizable electrode.
  • activated carbon As the carbon material for the polarizable electrode of the electric double layer capacitor, activated carbon having a large specific surface area is usually used.
  • Activated carbon is usually produced by carbonizing a carbonaceous material at a temperature of 800 ° C. or lower and then performing an activation treatment.
  • the activation treatment is, for example, a method of heating in an atmosphere such as water vapor or carbon dioxide (gas activation method), a method of mixing zinc chloride, potassium hydroxide, etc. and heating in an inert atmosphere (chemical activation method).
  • gas activation method gas activation method
  • chemical activation method for example, Patent Documents 1 and 2
  • the polarizable electrode is produced by a method of adding a conductive agent and a binder to activated carbon and kneading and rolling, a method of mixing activated carbon with uncarbonized resins, and sintering.
  • the capacity of the electric double layer capacitor or lithium ion capacitor is determined by the electric double layer capacity of the activated carbon electrode.
  • the capacitance of the activated carbon could be increased.
  • the capacitor exhibits high capacitance at room temperature, but it cannot fully demonstrate capacitance under low temperature conditions. There was a problem.
  • An object of the present invention is to provide activated carbon, a carbon raw material for activated carbon, and a method for producing the same that can exhibit sufficiently high capacitance even under low temperature conditions in an electric double layer capacitor and a lithium ion capacitor. .
  • the sodium content is 20 ppm or more and less than 4000 ppm
  • the phosphorus content is 100 ppm or more and less than 2000 ppm
  • the average particle size measured by a laser scattering particle size distribution analyzer is 1 ⁇ m or more and 50 ⁇ m.
  • the activated carbon for capacitors having a BET specific surface area of 1400 m 2 / g or more and less than 3300 m 2 / g.
  • Another aspect of the present invention is a carbon raw material for activated carbon.
  • the carbon raw material has a phosphorus content of 0.3% by mass to 2.0% by mass and an oxygen content of 10% by mass to 30%.
  • Carbon for producing activated carbon having a mass ratio H / C of hydrogen atom to carbon atom of 0.05 to 0.54 and a BET specific surface area of 100 m 2 / g or more and less than 600 m 2 / g It is a raw material.
  • the present invention is a method for producing a carbon raw material for activated carbon, the carbonizing coke is obtained by heating a graphitizable carbon material in an inert atmosphere to obtain carbonized coke. It is a manufacturing method including at least an oxidation step of adding a phosphorus compound and heating to an oxide, and a cleaning step of cleaning the oxide.
  • the present invention is a method for producing a carbon raw material of activated carbon different from the above in another aspect, and the production method includes a carbonization step of heating and carbonizing a mixture containing at least cellulose acetate and a phosphorus compound in an inert atmosphere. It is a manufacturing method including at least.
  • Another aspect of the present invention is a method for producing activated carbon, the production method including at least an activation treatment step of activating the mixture of the carbon raw material and sodium hydroxide under an inert atmosphere,
  • the mass ratio of the carbon raw material and the sodium hydroxide is 1: 1.5 to 3.5
  • the activated carbon has a sodium content of 20 ppm or more and less than 4000 ppm, and a phosphorus content of 100 ppm or more and less than 2000 ppm.
  • average particle diameter measured by a laser scattering type particle size distribution meter is less than 50 ⁇ m more than 1 [mu] m
  • BET specific surface area of the manufacturing method of the activated carbon is less than 1400 m 2 / g or more 3300 m 2 / g.
  • Another aspect of the present invention is an electric double layer capacitor using the activated carbon as an electrode.
  • Another aspect of the present invention is a lithium ion capacitor using the activated carbon as an electrode.
  • the activated carbon for the capacitor has a sodium content of 20 ppm or more and less than 4000 ppm, a phosphorus content of 100 ppm or more and less than 2000 ppm, and an average particle size measured by a laser scattering particle size distribution meter of 1 ⁇ m or more and less than 50 ⁇ m,
  • the BET specific surface area is 1400 m 2 / g or more and less than 3300 m 2 / g.
  • the sodium content of the activated carbon is 20 ppm or more and less than 4000 ppm, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor. It is considered that sodium can penetrate into the carbon crystals during activation and push between the crystals of the activated carbon, and as a result, ions can easily enter and exit even at low temperatures when the viscosity of the electrolytic solution increases.
  • the sodium content of the activated carbon is less than 20 ppm, the effect of pushing the gap between the crystals of the activated carbon is not sufficient, and thus the capacitance under low temperature conditions tends to decrease.
  • the sodium content of the activated carbon is 40 ppm to 3500 ppm, a higher capacitance can be expressed under low temperature conditions.
  • the phosphorus content of the activated carbon is 100 ppm or more and less than 2000 ppm, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor.
  • the capacitance under low temperature conditions tends to decrease.
  • the phosphorus content is 2000 ppm or more, the specific surface area tends to decrease and the capacitance tends to decrease.
  • the phosphorus content of the activated carbon is 200 ppm or more and less than 1500 ppm, higher capacitance can be developed under low temperature conditions.
  • the average particle diameter of the activated carbon is 1 ⁇ m or more and less than 50 ⁇ m, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor.
  • the average particle diameter of the activated carbon is smaller than 1 ⁇ m, it becomes difficult to process as a capacitor electrode.
  • the average particle diameter is larger than 50 ⁇ m, it is difficult to produce a thin electrode, which is not preferable.
  • the average particle diameter of the activated carbon is 2 ⁇ m or more and less than 20 ⁇ m, a higher capacitance can be expressed under low temperature conditions.
  • the average particle diameter of the activated carbon is measured with a laser scattering particle size distribution meter.
  • the activated carbon has a BET specific surface area of 1400 m 2 / g or more and less than 3300 m 2 / g, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor.
  • the BET specific surface area is less than 1400 m 2 / g, since the pore volume itself is small, the capacitance tends to decrease under low temperature conditions when the capacitor is used.
  • the BET specific surface area is 3300 m 2 / g or more, the pore volume is too large, and a sufficient capacitance cannot be obtained per volume, which is not preferable.
  • the carbon raw material of activated carbon has a phosphorus content of 0.3% to 2.0% by mass, an oxygen content of 10% by mass to less than 30% by mass, and a molar ratio of hydrogen atoms to carbon atoms.
  • H / C is 0.05 to 0.54, and the BET specific surface area is 100 m 2 / g or more and less than 600 m 2 / g.
  • the activation activity of the alkali activator, particularly sodium hydroxide can be increased. Moreover, since it is possible to prevent spills and expansions in the activation process, it is possible to increase the production efficiency of activated carbon and to obtain a sufficient capacitance when used in a capacitor. In particular, when used in a capacitor, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions.
  • the content of phosphorus in the carbon raw material is 0.3% to 2.0% by mass
  • the activation activity of the alkali activator, especially sodium hydroxide is increased, and it is sufficient even under low temperature conditions when used in a capacitor.
  • the content of phosphorus is less than 0.3% by mass, it is possible to obtain only activated carbon having a small specific surface area as compared with the case of using a raw material containing phosphorus in the above range, which is likely to spill during the activation process. Can not.
  • the phosphorus content exceeds 2.0 mass%, the target activated carbon cannot be obtained because the alkali activation reaction does not proceed sufficiently.
  • the molar ratio H / C of hydrogen atoms to carbon atoms in the carbon raw material is 0.05 to 0.54, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor.
  • the activated carbon which can be provided can be provided.
  • the H / C ratio is less than 0.05, the carbon raw material is too high in carbonization, so that the capacitor cannot sufficiently obtain pores for expressing a high capacitance under low temperature conditions.
  • the H / C ratio is larger than 0.54, the desired activated carbon cannot be obtained because the foam is violently foamed and blown out during alkali activation.
  • the content of oxygen in the carbon raw material is 10% by mass or more and less than 30% by mass, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. it can.
  • the oxygen content is less than 10% by mass, the reactivity with the alkali activator, particularly sodium hydroxide is poor, and activated carbon with a large specific surface area that can provide a large capacitance when used in a capacitor cannot be obtained.
  • An oxygen content of 30% by mass or more is not preferable because the activated carbon has a larger specific surface area than the intended activated carbon. Moreover, since an activation reaction yield falls extremely, it is remarkably inferior to industrial productivity.
  • the carbon raw material has a BET specific surface area of 100 m 2 / g or more and less than 600 m 2 / g, it provides activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. be able to.
  • the BET specific surface area of the carbon raw material is less than 100 m 2 / g, activated carbon that is poorly reactive with an alkali activator, particularly sodium hydroxide, and sufficiently develops capacitance even under low temperature conditions when used in a capacitor. Difficult to get.
  • the carbon material has a BET specific surface area of 600 m 2 / g or more, carbonization proceeds excessively in the majority of the carbon material, so that fine pores are not easily generated, and a high electrostatic capacity when used in a capacitor. It is difficult to obtain activated carbon that exhibits capacity.
  • the carbon raw material satisfies the conditions of the phosphorus and oxygen content, the hydrogen / carbon molar ratio H / C and the BET specific surface area, the carbon raw material is activated using a predetermined amount of sodium hydroxide. By doing so, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. If any one of these conditions is out of the above range, the electrostatic capacity cannot be sufficiently exhibited under low temperature conditions when used for a capacitor.
  • the method for producing a carbon raw material includes at least a carbonization step, an oxidation step, and a cleaning step.
  • the carbonization step is a step of heating the graphitizable carbon material in an inert atmosphere to obtain carbonized coke.
  • the reason for carbonizing the graphitizable carbon material is to reduce the volatile matter. When the volatile matter is removed, the carbonized coke and the phosphorus compound are more in contact with each other in the subsequent oxidation step, and are easily oxidized.
  • Carbonization of the graphitizable carbon material is carried out by heating in an inert atmosphere with an inert gas so that coke is not oxidized in this step. Nitrogen gas, rare gas, etc. can be used as the inert gas.
  • the heating can be performed in a temperature range of 500 ° C. to 900 ° C., more preferably 500 ° C. to 800 ° C.
  • the temperature is raised from an unheated state (for example, an air temperature of about 25 ° C.), usually 30 ° C./hour to 600 ° C./hour, more preferably about 60 ° C./hour to 300 ° C./hour. It is desirable to use speed. After reaching the target temperature, the temperature is maintained for a certain time. This holding time is, for example, about 10 minutes to 2 hours.
  • the graphitizable carbon material used as a starting material is a carbon material that can be graphitized by high-temperature heat treatment.
  • the graphitizable carbon material peat, grass coal, lignite, lignite, bituminous coal, anthracite and other coal, coal tar, petroleum, coal pitch, coke and other mineral raw materials can be used.
  • the pitch may be an isotropic pitch or an anisotropic pitch (such as a mesophase pitch). These carbon materials can be used alone or in combination of two or more.
  • the graphitizable carbon material is a carbon material that is easily graphitized. Among the above carbon materials, there are petroleum coke and coal coke, etc.
  • mesophase pitch and mesophase pitch fiber spun from it are infusible. Carbonized materials can be mentioned. Of these, petroleum coke is preferred. By using the graphitizable carbon material, the capacitance of the obtained activated carbon is increased, and if it is needle coke, activation is easy with high purity.
  • the raw coke produced by the delayed coking method usually has a volatile content of 6 to 13% by mass, and the raw coke produced by the fluid coke method usually has a volatile content of 4 to 7% by mass. is there.
  • Raw coke by any method may be used, but raw coke that is easily available and is produced by a delayed coking method with stable quality is particularly suitable.
  • the heavy fraction of petroleum is not particularly limited. Heavy oil obtained as residual oil when petroleum is distilled under reduced pressure, heavy oil obtained when fluids are cracked by fluid catalytic cracking, petroleum Examples thereof include heavy oils obtained by hydrodesulfurization, and mixtures thereof.
  • Examples of the vacuum distillation conditions include a method in which crude oil is changed in a range of 320 to 360 ° C. at a furnace outlet temperature under a reduced pressure of 10 to 30 Torr.
  • the conditions for fluid catalytic cracking include, for example, a method in which atmospheric distillation residual oil is reacted in a fluid catalytic cracking apparatus with a reactor reaction temperature of 510 to 540 ° C. and a catalyst / residual oil ratio of 6 to 8. Is mentioned.
  • the hydrodesulfurization conditions include, for example, a method in which a residual oil having a sulfur content of 2.0 to 5.0% is reacted in the presence of a catalyst at a total pressure of 180 MPa, a hydrogen partial pressure of 160 MPa, and a temperature of 380 ° C. Is mentioned.
  • the oxidation step in the carbon raw material production method is a step in which a phosphorus compound is added to the carbonized coke and heated to form an oxide.
  • a phosphorus compound By adding a phosphorus compound to carbonized coke to oxidize and modify it, sodium hydroxide that is relatively inexpensive and weakly activating can be used as an activator.
  • the activated carbon after activation can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor.
  • the phosphorus compound phosphoric acid, phosphorous acid, peroxomonophosphoric acid, diphosphorus pentoxide and the like can be used. In particular, phosphoric acid used industrially is desirable.
  • the phosphorus compound can be added so that the mass ratio of the carbonized coke to the phosphorus compound is preferably 1: 3 to 10. Heating is preferably performed at 80 ° C. to 150 ° C. for 30 minutes to 2 hours.
  • the oxidation step a step in which carbonized coke is added to the phosphorous compound aqueous solution and heated at 120 ° C. for 1 hour with stirring to oxidize it is mentioned.
  • the carbon raw material production method can be easily mixed with a phosphorus compound after the carbonization step, a particle size adjustment step for adjusting the particle size to 2 mm or less so that petroleum-based delayed coke can be easily pulverized before the carbonization step, Therefore, a pulverizing step for pulverizing the carbonized coke so as to have an average particle diameter of 5 ⁇ m to 10 ⁇ m can be included.
  • the average particle diameter can be adjusted by a usual method, for example, by a method such as a jet mill, a ball mill, a high-pressure pulverizing roll, a disk mill, a bead mill, or the like.
  • the method for producing a carbon raw material includes at least a carbonization step of heating and carbonizing a mixture containing at least cellulose acetate and a phosphorus compound in an inert atmosphere. Activated carbon produced using a carbonized carbon raw material can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor.
  • a mixture containing at least cellulose acetate and a phosphorus compound is used as a starting raw material.
  • An example of the starting material is a mixture (for example, a film) mainly composed of cellulose acetate, in which a phosphorus compound is added as a plasticizer to cellulose acetate.
  • Cellulose acetate having a substitution degree of acetic acid in the range of 2 to 3 is preferred because it is commercially available.
  • Cellulose not substituted with acetic acid is not preferred as a starting material because it does not melt by heating.
  • a cellulose acetate for example, forms, such as a flake, a pellet, a fiber, a woven fabric, a tow, a film, can be taken.
  • the amount of cellulose acetate in the starting material is preferably high in purity considering that extra impurities are mixed into the carbide or activated carbon.
  • the amount of cellulose acetate in the starting material can be used as a starting material as long as it is 50% by mass or more, more preferably 80% by mass or more, and still more preferably 85 to 99.5% by mass. .
  • examples of the phosphorus compound contained in the starting material include phosphoric acid, phosphate, and phosphate ester.
  • phosphoric acid include orthophosphoric acid and condensed phosphoric acid.
  • examples of the phosphate include ammonium salts, alkali metal salts, and alkaline earth metal salts.
  • examples of the phosphate ester include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate.
  • the starting material may contain components other than cellulose acetate and a phosphorus compound, and is preferably a component that melts together with cellulose acetate by heating.
  • components include plasticizers, deterioration inhibitors, ultraviolet absorbers (UV agents), optical anisotropy control agents, retardation control agents, dyes, matting agents, release agents, release accelerators, and the like.
  • plasticizers plasticizers, deterioration inhibitors, ultraviolet absorbers (UV agents), optical anisotropy control agents, retardation control agents, dyes, matting agents, release agents, release accelerators, and the like.
  • UV agents ultraviolet absorbers
  • optical anisotropy control agents retardation control agents
  • dyes dyes, matting agents, release agents, release accelerators
  • the details are described in paragraphs 0196 to 0516 of Patent Document 3.
  • the starting material can be obtained by adding the phosphorus compound to the waste or the like.
  • a waste material containing a phosphorus compound and a waste material not containing a phosphorus compound can be appropriately mixed and adjusted to a predetermined phosphorus amount to be used as a starting material.
  • the starting material is adjusted to an appropriate size and shape by crushing or cutting before being heated in the carbonization step, so that the carbonization can be made uniform and the carbonization step can be shortened.
  • the mixture is heated at a temperature of 250 ° C. to 600 ° C. to melt the cellulose acetate and then carbonize.
  • the phosphorus compound is uniformly dispersed in the mixture.
  • the inert gas used for the inert atmosphere include noble gases such as nitrogen gas, argon gas, helium gas, xenon gas, and neon gas.
  • the heating time is usually in the range of 5 minutes to 600 minutes, for example, 5 minutes to 30 minutes if the heating temperature is about 500 ° C, and 30 minutes to 500 minutes if the heating temperature is about 300 ° C. In addition, it may be performed until the mixture is carbonized.
  • the heating temperature is preferably 300 ° C.
  • the carbon material treated at a heating temperature lower than 250 ° C. tends to expand in the activation raw material mixture during activation, and the carbon material treated at a heating temperature higher than 600 ° C. spills out of the container during activation. In either case, it becomes difficult to obtain activated carbon.
  • the carbonization step is preferably performed using a continuous heating furnace in which the heating object in the furnace is conveyed by a roller or a belt conveyor.
  • a roller-type roller hearth kiln it is more preferable to use a roller-type roller hearth kiln as a method for conveying the heating object because the temperature in the furnace can be easily controlled.
  • the carbon raw material production method may include an acetic acid removing step of removing the acetic acid by heating the carbide after the carbonizing step, if necessary.
  • acetic acid may remain in the carbide after the carbonization step. If acetic acid remains, acetic acid gas is generated at the time of alkali activation, which is liable to cause spillage, and the activity of the alkali activator is reduced.
  • Acetic acid is removed by heating the carbide at a temperature of 380 ° C. to 700 ° C., preferably 500 ° C. to 650 ° C. Thereby, acetic acid volatilizes and is removed.
  • the heating of the carbide is preferably performed in an inert atmosphere using an inert gas.
  • the inert gas include nitrogen gas, argon gas, helium gas, xenon gas, rare gas such as neon gas, and the like.
  • CO gas generated during the carbonization process can also be used as an inert gas.
  • the heating time for removing acetic acid is generally in the range of 10 minutes to 10 hours, preferably in the range of 30 minutes to 5 hours.
  • the removal of acetic acid is preferably performed in a stationary state without stirring, because a carbide with developed pores is obtained.
  • the acetic acid removing step is preferably performed using a continuous heating furnace in which the heating object is transported in the furnace by a roller type or a belt conveyor type.
  • a roller-type roller hearth kiln it is more preferable to use a roller-type roller hearth kiln as a method for conveying the heating object because the temperature in the furnace can be easily controlled.
  • the method for producing activated carbon includes at least an activation treatment step.
  • the activation treatment step the mixture of the carbon raw material and sodium hydroxide is activated in an inert atmosphere.
  • Sodium hydroxide is used as an alkali metal hydroxide used for the activation reaction. Although sodium hydroxide is less expensive than other alkali metal hydroxides, sodium hydroxide is not preferable because it has a weak activation power and requires an excessive amount when used in a normal alkali activation treatment. However, in the case of a carbon raw material that has been oxidized and modified with phosphorus, inexpensive activated sodium hydroxide is used as an activator, so that activated carbon can be sufficiently static even under low temperature conditions when used in a capacitor. The capacity can be demonstrated.
  • the mass ratio of the carbon raw material to the sodium hydroxide in the mixture is 1: 1.5 to 3.5.
  • the activated carbon after activation can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor.
  • the mass ratio is smaller than the above range, the activated BET specific surface area of activated carbon becomes small, and a sufficiently high capacitance cannot be exhibited under low temperature conditions.
  • the mass ratio is larger than the above range, the activated BET specific surface area of the activated carbon increases, and the electrode density of the capacitor decreases.
  • the reason for setting the reaction condition as an inert atmosphere is to prevent the carbon raw material from being oxidized during the activation treatment.
  • an inert gas can be used.
  • a rare gas such as nitrogen gas, argon gas, helium gas, xenon gas, or neon gas can be used.
  • the activation treatment process is a process that can be performed by any equipment as long as the equipment can seal the mixture of the carbon material and sodium hydroxide in an inert atmosphere and heat the mixture.
  • the activation process can be performed by using a tubular furnace or the like equipped with a heater.
  • the heating of the mixture includes a temperature raising step for raising the temperature of the mixture from 700 ° C. to 900 ° C. from an unheated state (for example, an air temperature of about 25 ° C.), and then a temperature holding step for keeping the temperature of the mixture. It can be heating.
  • Sodium hydroxide increases its activation activity in a high temperature range of about 700 ° C to 900 ° C. Therefore, it is possible to provide a temperature raising step for raising the temperature of the room temperature mixture to a temperature at which the activity of the alkali activator is increased.
  • the temperature raising condition in the temperature raising stage can be a normal condition used for the activation treatment, and if it is within the range of 1 ° C./min to 50 ° C./min, there is no problem in the activation treatment. Considering the efficiency of the activation process and the load on the equipment used for the activation process, the temperature raising condition can be set to 5 ° C./min to 30 ° C./min.
  • the activation process proceeds sufficiently by maintaining the temperature of the mixture for about 10 minutes to 2 hours, more preferably for 30 minutes to 1 hour.
  • the average particle diameter of the carbon raw material can be adjusted in advance before mixing with sodium hydroxide. For example, by adjusting the average particle diameter of the carbon raw material to 1 ⁇ m to 50 ⁇ m, a uniform activation process is facilitated.
  • the average particle diameter can be adjusted by a usual method, for example, by a method such as a jet mill, a ball mill, a high-pressure pulverizing roll, a disk mill, a bead mill, or the like.
  • the activated carbon described above is used for electrodes of electric double layer capacitors and lithium ion capacitors.
  • the electric double layer capacitor includes an electrode including the activated carbon of the present invention.
  • the electrode may be configured by adding the activated carbon of the present invention and a binder, more preferably a conductive agent, and may be an electrode integrated with a current collector.
  • binder known ones can be used, for example, polyolefins such as polyethylene and polypropylene, fluorinated polymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymers, and carboxy.
  • fluorinated polymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymers, and carboxy.
  • examples thereof include celluloses such as methylcellulose, vinyl polymers such as polyvinylpyrrolidone and polyvinyl alcohol, and polyacrylic acid.
  • the content of the binder in the electrode is not particularly limited, but is appropriately selected within the range of usually about 0.1% by mass to 30% by mass with respect to the total amount of the activated carbon and the binder of the present invention.
  • the conductive agent powders of carbon black, powder graphite, titanium oxide, ruthenium oxide, etc. are used.
  • the blending amount of the conductive agent in the electrode is appropriately selected according to the blending purpose, but is usually 1% by mass to 50% by mass, preferably based on the total amount of the activated carbon, the binder and the conductive agent of the present invention. It is appropriately selected within the range of about 2% by mass to 30% by mass.
  • a known method can be appropriately applied. For example, there is a method in which a solvent having a property of dissolving a binder is added to the activated carbon, the binder, and the conductive agent to form a slurry, which is uniformly applied on the current collector. In addition, there is a method in which the activated carbon, the binder, and the conductive agent are kneaded without adding a solvent, and then pressure-molded at room temperature or under heating.
  • a known material and shape can be used.
  • a metal such as aluminum, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.
  • a unit cell of an electric double layer capacitor is generally formed by using a pair of the above electrodes as a positive electrode and a negative electrode, facing each other through a separator (polypropylene fiber nonwoven fabric, glass fiber nonwoven fabric, synthetic cellulose paper, etc.), and immersing in an electrolytic solution. Is done.
  • electrolytic solution a known aqueous electrolytic solution or organic electrolytic solution can be used. More preferably, an organic electrolyte is used as the electrolyte. As such an organic electrolytic solution, one used as a solvent for an electrochemical electrolytic solution can be used.
  • examples include ethane, methyl formate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • these electrolyte solutions can be mixed and used.
  • the supporting electrolyte in the organic electrolyte is not particularly limited, and various kinds of salts, acids, alkalis, and the like that are usually used in the field of electrochemistry or the field of batteries can be used.
  • examples include inorganic ion salts such as alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, quaternary phosphonium salts, and the like.
  • (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 2 H 5 ) 3 (CH 3 ) PBF 4 and the like are preferable.
  • the concentration of these salts in the electrolytic solution is appropriately selected within the range of usually about 0.1 mol / l to 5 mol / l, preferably about 0.5 mol / l to 3 mol / l.
  • the specific configuration of the electric double layer capacitor is not particularly limited.
  • the electric double layer capacitor is accommodated in a metal case via a separator between a pair of thin sheet or disk electrodes (positive electrode and negative electrode) having a thickness of 10 ⁇ m to 500 ⁇ m.
  • the lithium ion capacitor includes a positive electrode including the activated carbon of the present invention and a negative electrode capable of absorbing and releasing lithium ions.
  • the positive electrode is constituted, for example, by adding the activated carbon of the present invention and a binder, more preferably a conductive agent.
  • the negative electrode is configured by adding, for example, hard carbon, a binder, and a conductive agent. Both the positive electrode and the negative electrode may be electrodes integrated with the current collector.
  • the positive electrode binder known materials can be used, for example, polyolefins such as polyethylene and polypropylene, fluorinated polymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymers, Examples thereof include celluloses such as carboxymethyl cellulose, styrene-butadiene rubbers, vinyl polymers such as polyvinyl pyrrolidone and polyvinyl alcohol, and polyacrylic acid.
  • the content of the binder in the electrode is not particularly limited, but is appropriately selected within a range of usually about 0.1% by mass to 30% by mass with respect to the total amount of the activated carbon and the binder of the present invention. .
  • the positive electrode conductive agent powders such as carbon black, powdered graphite, and titanium oxide are used.
  • the blending amount of the conductive agent in the electrode is appropriately selected according to the blending purpose.
  • the content of the conductive agent in the electrode is usually in the range of about 1% to 50% by weight, preferably about 2% to 30% by weight, based on the total amount of the activated carbon, the binder and the conductive agent of the present invention. Is appropriately selected.
  • a known method can be appropriately applied. For example, there is a method in which a solvent having a property of dissolving a binder is added to the activated carbon, the binder, and the conductive agent to form a slurry, which is uniformly applied on the current collector. In addition, there is a method in which the activated carbon, the binder, and the conductive agent are kneaded without adding a solvent, and then pressure-molded at room temperature or under heating.
  • a known material and shape can be used as the positive electrode current collector.
  • a metal such as aluminum, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.
  • the negative electrode active material a known material capable of absorbing and releasing lithium ions can be used. Examples thereof include organic compounds such as hard carbon, coke, graphite and polyolefin, or inorganic compounds containing lithium in the structure such as lithium titanate.
  • the particle diameter is preferably about 0.01 ⁇ m to 100 ⁇ m, more preferably 0.1 ⁇ m to 30 ⁇ m for convenience of electrode forming.
  • the negative electrode binder known materials can be used, for example, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, fluorinated polymers such as fluoroolefin / vinyl ether copolymer crosslinked polymers, Examples thereof include celluloses such as carboxymethyl cellulose, styrene-butadiene rubbers, vinyl polymers such as polyvinyl pyrrolidone and polyvinyl alcohol, and polyacrylic acid.
  • the content of the binder in the electrode is not particularly limited, but is appropriately selected within the range of usually about 0.1% by mass to 30% by mass with respect to the total amount of the activated carbon and the binder of the present invention.
  • the negative electrode conductive agent powders such as carbon black, powdered graphite and titanium oxide are used.
  • the addition of the conductive auxiliary agent to the negative electrode is not essential, and the blending amount of the conductive agent in the electrode is appropriately selected according to the blending purpose, but with respect to the total amount of the negative electrode active material, the binder and the conductive agent, It is appropriately selected within the range of about 1 to 50% by mass, preferably about 2 to 30% by mass.
  • a known method can be appropriately applied. For example, there is a method in which a solvent having a property of dissolving a binder is added to the activated carbon, the binder, and the conductive agent to form a slurry, which is uniformly applied on the current collector. In addition, there is a method in which the activated carbon, the binder, and the conductive agent are kneaded without adding a solvent, and then pressure-molded at room temperature or under heating.
  • the negative electrode current collector known materials and shapes can be used.
  • a metal such as copper, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.
  • a unit cell of a lithium ion capacitor is generally formed by using a pair of the positive electrode and the negative electrode, facing each other through a separator, and immersing in an electrolytic solution.
  • a material for the separator polypropylene fiber nonwoven fabric, glass fiber nonwoven fabric, synthetic cellulose paper, or the like can be used.
  • electrolytic solution a known aqueous electrolytic solution or organic electrolytic solution can be used. More preferably, an organic electrolyte is used as the electrolyte. As such an organic electrolytic solution, one used as a solvent for an electrochemical electrolytic solution can be used.
  • examples include ethane, methyl formate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • these electrolyte solutions can be mixed and used.
  • the supporting electrolyte in the organic electrolytic solution is not particularly limited, but in general, various lithium salts can be used.
  • Lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) There are 2 etc.
  • the concentration of these salts in the electrolytic solution is appropriately selected within the range of usually about 0.1 mol / l to 5 mol / l, preferably about 0.5 mol / l to 3 mol / l.
  • the specific configuration of the lithium ion capacitor is not particularly limited.
  • the lithium ion capacitor is accommodated in a metal case via a separator between a pair of thin sheet or disk electrodes (positive electrode and negative electrode) having a thickness of 10 ⁇ m to 500 ⁇ m.
  • the analysis methods used in the examples are as follows. ⁇ Oxygen content, hydrogen atom / carbon atom ratio> Remaining carbon content (mass%), hydrogen content (mass%) and nitrogen content (mass%) of the sample using an elemental analyzer (manufactured by Sumika Chemical Analysis Co., Ltd., NCH-22F type) Using the X-ray fluorescence analyzer (manufactured by Techno-X Co., Ltd., WED-100), the phosphorous content calculated by subtracting the phosphorus content calculated from the calibration curve of each element by the fluorescent X-ray method Amount (mass%). Moreover, the molar ratio (H / C) of a hydrogen atom and a carbon atom was computed from said carbon content and hydrogen content.
  • ⁇ Average particle size> Using a laser diffraction particle size distribution measuring device (LA-950, manufactured by Horiba, Ltd.), a small amount of a surfactant was added using water as a dispersion medium, and the measurement was performed after irradiating ultrasonic waves. The 50% particle diameter (average particle diameter) was determined from the obtained volume-based particle size integration curve.
  • LA-950 laser diffraction particle size distribution measuring device
  • Example 1 Using raw petroleum coke as a starting material, a carbon raw material for activated carbon was produced.
  • the oil raw coke was adjusted to a particle size of 2 mm or less so as to be easily pulverized, heated at 600 ° C. in an inert atmosphere with nitrogen gas for 1 hour using a rotary kiln, and carbonized to obtain carbonized coke (carbonization step).
  • the obtained carbonized coke was pulverized by a jet mill so that the average particle size was 8 ⁇ m.
  • Carbonized coke is added to 85 mass% phosphoric acid aqueous solution so that the mass ratio of carbonized coke to 85 mass% phosphoric acid aqueous solution is 1: 5, and heated at 120 ° C. for 1 hour with stirring.
  • the obtained oxide was washed several times with pure water (washing step) and then dried at 100 ° C. to obtain a carbon raw material for activated carbon.
  • activated carbon was manufactured using the carbon raw material of the obtained activated carbon.
  • Sodium hydroxide was added to the obtained carbon raw material so that the mass ratio of the carbon raw material of activated carbon and sodium hydroxide was 1: 2.8, and the mixture was mixed for 30 minutes with a ball mill (mixing step). ).
  • the obtained mixture was filled in a nickel container and placed in a ceramic electric furnace, and after purging nitrogen gas in the furnace to an inert atmosphere, The temperature of the furnace was raised from room temperature to 750 ° C., and the activation treatment was performed by maintaining the temperature at 750 ° C. for 30 minutes from the time when the temperature in the furnace reached 750 ° C. (activation treatment step). After the activation treatment, heating of the electric furnace was stopped, and natural cooling was performed in a nitrogen gas atmosphere. After cooling to below 170 ° C., the activated product was taken out from the electric furnace, and the activated product was repeatedly washed with water and acid washed with hydrochloric acid to remove residual impurities, and then dried to obtain activated carbon of Example 1.
  • Example 2 A carbon raw material for activated carbon was produced using a flaky ground product of a mixture containing 12% by mass of triphenyl phosphate and the balance of cellulose acetate as the starting material. The amount of phosphorus in the mixture is about 1% by weight.
  • the starting material was put in a heat-resistant container, and the container was put in a batch electric furnace equipped with a thermometer, an oxygen gas detector, a nitrogen gas inlet, and a gas exhaust port. Next, nitrogen gas is supplied to the nitrogen gas inlet at a supply rate of 2.0 L / min to bring the inside of the electric furnace and the heat-resistant container to an inert atmosphere, and the temperature is raised until the internal temperature of the heat-resistant container reaches 350 ° C.
  • Example 3 Activated carbon of Example 3 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 2.4 by mass ratio.
  • Example 4 Activated carbon of Example 4 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 2.0 by mass ratio.
  • Example 5 Activated carbon of Example 5 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 1.6.
  • Example 6 The activated carbon of Example 6 is obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide is 1: 2.2 by mass ratio, and the temperature of the activation treatment process is 800 ° C. It was.
  • Example 1 The starting material for the carbon material of the activated carbon was the same as in Example 2 except that a pulverized pulverized product of cellulose acetate was used without adding a phosphorus compound, but spilling occurred during the activation process. I could't get a sample.
  • Activated carbon was produced using the same mixture of activated carbon carbon material and sodium hydroxide as in Example 2. The mixture was filled in an alumina boat and placed in a ceramic tubular electric furnace and sealed. From the time when the electric furnace was heated from room temperature to 900 ° C. under a temperature rising condition of 4 ° C./min by passing 1000 cm 3 of carbon dioxide gas through the tubular electric furnace, and the temperature in the furnace became 900 ° C. The activation process was performed by maintaining 900 ° C. for 60 minutes. After the activation treatment, the heating of the electric furnace was stopped, and it was naturally cooled to room temperature by switching to a nitrogen gas atmosphere. The activated material obtained was sieved with a 45 ⁇ m sieve to obtain activated carbon of Comparative Example 3.
  • Comparative Example 5 Comparative Example 5 was carried out under the same production conditions as in Example 2, except that potassium hydroxide was used as the activator instead of sodium hydroxide, and the mixing ratio of the carbon raw material and potassium hydroxide was 1: 2.4. Of activated carbon was obtained.
  • Comparative Example 6 Activated carbon of Comparative Example 6 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 1.2 by mass ratio.
  • Comparative Example 7 Activated carbon of Comparative Example 7 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 4.0 by mass ratio.
  • Table 1 shows the properties of the starting materials, the carbon materials of the activated carbon produced, the activation conditions, and the properties of the activated carbon when activated carbon was produced in Examples 1 to 6 and Comparative Examples 1 to 8.
  • Electric double layer capacitors were produced using the activated carbon produced in Examples 1 to 6 and Comparative Examples 1 to 8. 7 parts by weight of carbon black (manufactured by Lion Corporation, ECP600JD) and 86 parts by weight of activated carbon as a conductive additive, granular polytetrafluoroethylene as a binder (manufactured by Daikin Industries, Ltd., PTFE Polyflon F-104) 7 parts by weight and water were added and mixed using an agate mortar, and the mixture was pressed into a sheet using a roll press machine until the thickness became 150 ⁇ m to prepare a carbon electrode sheet.
  • carbon black manufactured by Lion Corporation, ECP600JD
  • activated carbon as a conductive additive granular polytetrafluoroethylene as a binder
  • This carbon electrode sheet was cut into a size of 14 mm ⁇ 20 mm and attached to an aluminum current collector to form an electrode.
  • the prepared two electrodes are a positive electrode 2 and a negative electrode 3, and a current collector 4 is attached to these electrodes, and a cellulose separator 5 (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TF40-50).
  • the laminate cell 1 was manufactured by covering the outside with a laminate film 6, injecting an electrolytic solution, and sealing with a heat sealer.
  • a 1.5M triethylmethylammonium tetrafluoroborate (TEMA-BF 4 ) solution in propylene carbonate (PC) was used as the electrolyte.
  • FIG. 2 shows a graph in which the vertical axis represents voltage (V) and the horizontal axis represents time (S).
  • Table 2 shows the electrode density and capacitance results of the laminate cells prepared using the activated carbons of Examples 1 to 6 and Comparative Examples 1 to 8.
  • the laminate cells using the activated carbons of Examples 1 to 6 exhibited a capacitance of 90% or more under 20 ° C. conditions even at a low temperature of ⁇ 30 ° C. (Table 2).
  • Comparative Example 1 Comparative Example 2, and Comparative Example 8
  • the mixture was ejected from the container during the activation process, and activated carbon could not be obtained.
  • the laminate cells using the activated carbons of Comparative Examples 3 to 6 had a result that the capacitance under the ⁇ 30 ° C. condition was inferior to the capacitance under the 20 ° C. condition.
  • the laminate cell using the activated carbon of Comparative Example 7 exhibited 96% capacitance under the low temperature condition of ⁇ 30 ° C. even under the low temperature condition of ⁇ 30 ° C., but due to the large specific surface area of the activated carbon,
  • the electrode density was smaller than the practical level (about 0.40 g / cm 3 ).
  • a capacitor electrode that can exhibit a sufficiently high capacitance even under a low temperature condition can be provided, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided is activated carbon which is capable of achieving sufficiently high electrostatic capacitance under low temperature conditions if used in an electric double layer capacitor or in a lithium ion capacitor. Specifically provided is activated carbon for capacitors, which has a sodium content of 20 ppm or more but less than 4,000 ppm, a phosphorus content of 100 ppm or more but less than 2,000 ppm, and an average particle diameter of 1 μm or more but less than 50 μm as determined by a laser scattering particle size distribution measuring instrument, and a BET specific surface area of 1,400 m2/g or more but less than 3,300 m2/g.

Description

活性炭、活性炭の炭素原料およびこれらの製造方法Activated carbon, carbon raw material of activated carbon, and production method thereof
 本発明は、活性炭および活性炭の炭素原料、特に電気二重層キャパシタやリチウムイオンキャパシタの電極に使用するのに最適な活性炭および活性炭の炭素原料に関する。 The present invention relates to activated carbon and a carbon raw material of activated carbon, and more particularly to an activated carbon and a carbon raw material of activated carbon that are optimal for use in electrodes of electric double layer capacitors and lithium ion capacitors.
 電気二重層キャパシタ(EDLC)やリチウムイオンキャパシタ(LIC)は、一般的な二次電池と比較して、出力密度および充放電のサイクル寿命に優れているという特徴を有し、近年、自動車のアイドリングストップシステムに採用されるなど、その用途は拡大している。 Electric double layer capacitors (EDLC) and lithium ion capacitors (LIC) are characterized by superior power density and charge / discharge cycle life compared to general secondary batteries. Its applications are expanding, such as being used in stop systems.
 電気二重層キャパシタは、正極および負極として、活性炭で構成された一対の分極性電極を、セパレータを介して対向させた構造を有している。各分極性電極には水溶性電解質溶液や非水溶媒電解質溶液が含浸されており、各分極性電極はそれぞれ集電極と接触している。 The electric double layer capacitor has a structure in which a pair of polarizable electrodes made of activated carbon are opposed to each other through a separator as a positive electrode and a negative electrode. Each polarizable electrode is impregnated with a water-soluble electrolyte solution or a non-aqueous solvent electrolyte solution, and each polarizable electrode is in contact with a collecting electrode.
 電気二重層キャパシタの特性の中でも抵抗、低温特性や寿命等の性能は、分極性電極として用いられる活性炭の性能に左右される。電気二重層キャパシタの分極性電極用の炭素材としては、通常、大きな比表面積を有する活性炭が用いられる。 Among the characteristics of electric double layer capacitors, the performance such as resistance, low temperature characteristics and life depends on the performance of activated carbon used as a polarizable electrode. As the carbon material for the polarizable electrode of the electric double layer capacitor, activated carbon having a large specific surface area is usually used.
 活性炭は、通常、800℃以下の温度で炭素質材料を炭化した後、賦活処理することにより製造される。ここで、賦活処理は、例えば、水蒸気、二酸化炭素などの雰囲気中で加熱する方法(ガス賦活法)、塩化亜鉛、水酸化カリウム等を混合して不活性雰囲気で加熱する方法(薬品賦活法)などにより行われる(例えば特許文献1、2)。この賦活過程では、炭素化過程で生じた炭素材の表面に、吸着に適した多数の細孔が生成する。そして、分極性電極は、活性炭に導電剤および結合剤を加えて混練圧延する方法や、活性炭に未炭化樹脂類を混合して焼結する方法などにより作製される。 Activated carbon is usually produced by carbonizing a carbonaceous material at a temperature of 800 ° C. or lower and then performing an activation treatment. Here, the activation treatment is, for example, a method of heating in an atmosphere such as water vapor or carbon dioxide (gas activation method), a method of mixing zinc chloride, potassium hydroxide, etc. and heating in an inert atmosphere (chemical activation method). (For example, Patent Documents 1 and 2). In this activation process, many pores suitable for adsorption are generated on the surface of the carbon material generated in the carbonization process. The polarizable electrode is produced by a method of adding a conductive agent and a binder to activated carbon and kneading and rolling, a method of mixing activated carbon with uncarbonized resins, and sintering.
国際公開第2012/074054号International Publication No. 2012/074054 特開2011-136856号公報JP 2011-136856 A 特開2005-104148号公報Japanese Patent Laid-Open No. 2005-104148
 近年、電気二重層キャパシタやリチウムイオンキャパシタの用途拡大に伴い、キャパシタには出力特性だけでなく容量が求められるようになってきた。これは、自動車などのアプリケーションにおいて設置場所の制約があるため、同じ体積で容量が高いキャパシタ、もしくは、同じ容量で体積が小さいキャパシタが所望されるためである。そして、自動車のような輸送機器に用いられる場合、外部環境温度が氷点下から70℃程度までの広い温度域にさらされるため、電解液の粘度が高くなる低温度でも室温と同様の容量を発揮する必要がある。 In recent years, with the expansion of applications of electric double layer capacitors and lithium ion capacitors, not only output characteristics but also capacity has been required for capacitors. This is because there is a restriction on the installation location in an application such as an automobile, and therefore a capacitor having the same volume and a high capacity or a capacitor having the same capacity and a small volume is desired. When used in transportation equipment such as automobiles, the external environment temperature is exposed to a wide temperature range from below freezing to about 70 ° C., so that it exhibits the same capacity as room temperature even at low temperatures where the electrolyte viscosity increases. There is a need.
 電気二重層キャパシタもしくはリチウムイオンキャパシタの容量は、活性炭電極の電気二重層容量により決定される。従来のアルカリ賦活法を用いた場合に、活性炭の静電容量を大きくすることはできた。しかしながら、水酸化カリウムを主に用いて賦活するアルカリ賦活法によって製造した活性炭を用いた場合、キャパシタは室温で高い静電容量を発揮するものの、低温条件下では静電容量を十分に発揮できないという課題があった。 The capacity of the electric double layer capacitor or lithium ion capacitor is determined by the electric double layer capacity of the activated carbon electrode. When the conventional alkali activation method was used, the capacitance of the activated carbon could be increased. However, when activated carbon produced by an alkali activation method that is mainly activated using potassium hydroxide is used, the capacitor exhibits high capacitance at room temperature, but it cannot fully demonstrate capacitance under low temperature conditions. There was a problem.
 本発明は、電気二重層キャパシタ、およびリチウムイオンキャパシタにおいて、低温条件下でも十分に高い静電容量を発揮することができる活性炭、活性炭の炭素原料およびこれらの製造方法を提供することを目的とする。 An object of the present invention is to provide activated carbon, a carbon raw material for activated carbon, and a method for producing the same that can exhibit sufficiently high capacitance even under low temperature conditions in an electric double layer capacitor and a lithium ion capacitor. .
 電気二重層キャパシタやリチウムイオンキャパシタの静電容量を、低温条件下でも維持することのできる活性炭について、鋭意検討を行った。その結果、石油系ディレードコークスを炭化した後、リン化合物を加えて酸化した炭素原料、または、酢酸セルロースとリン化合物の混合物を不活性雰囲気下で加熱して炭化した炭素原料を、賦活剤として水酸化ナトリウムを用いて賦活処理して得られる活性炭であれば、低温条件下でも十分に高い静電容量を発揮するキャパシタとすることができることを見出し、本発明に想到するに至った。 Investigate the activated carbon that can maintain the capacitance of electric double layer capacitors and lithium ion capacitors even under low temperature conditions. As a result, after carbonizing petroleum-based delayed coke, a carbon raw material oxidized by adding a phosphorus compound or a carbon raw material carbonized by heating a mixture of cellulose acetate and a phosphorus compound in an inert atmosphere is used as an activator. The inventors have found that activated carbon obtained by activation treatment using sodium oxide can be a capacitor exhibiting a sufficiently high capacitance even under low temperature conditions, and have arrived at the present invention.
 すなわち、本発明の一つの側面では、ナトリウムの含有量が20ppm以上4000ppm未満であり、リンの含有量が100ppm以上2000ppm未満であり、レーザー散乱式粒度分布計で測定した平均粒子径が1μm以上50μm未満であり、BET比表面積が1400m/g以上3300m/g未満であるキャパシタ用活性炭である。
 本発明は、別の側面で活性炭の炭素原料であり、当該炭素原料は、リンの含有量が0.3質量%~2.0質量%以下であり、酸素の含有量が10質量%以上30質量%未満であり、水素原子と炭素原子とのモル比H/Cが0.05~0.54であり、BET比表面積が100m/g以上600m/g未満である活性炭製造用の炭素原料である。
 本発明は、別の側面で活性炭の炭素原料の製造方法であり、当該製造方法は、易黒鉛化性炭素材料を不活性雰囲気下で加熱して炭化コークスとする炭化工程と、前記炭化コークスにリン化合物を加えて加熱して酸化物とする酸化工程と、前記酸化物を洗浄する洗浄工程とを少なくとも含む製造方法である。
 本発明は、別の側面で上記とは異なる活性炭の炭素原料の製造方法であり、当該製造方法は、酢酸セルロースとリン化合物を少なくとも含む混合物を不活性雰囲気下で加熱して炭化する炭化工程を少なくとも含む製造方法である。
 本発明は、別の側面で活性炭の製造方法であり、当該製造方法は、上記炭素原料と水酸化ナトリウムとの混合物を不活性雰囲気下で賦活処理する賦活処理工程を少なくとも含み、前記混合物の前記炭素原料と前記水酸化ナトリウムの質量比は1:1.5~3.5であり、前記活性炭は、ナトリウムの含有量が20ppm以上4000ppm未満であり、リンの含有量が100ppm以上2000ppm未満であり、レーザー散乱式粒度分布計で測定した平均粒子径が1μm以上50μm未満であり、BET比表面積が1400m/g以上3300m/g未満である活性炭の製造方法である。
 本発明は、別の側面で上記活性炭を電極に用いた電気二重層キャパシタである。
 本発明は、別の側面で上記活性炭を電極に用いたリチウムイオンキャパシタである。
That is, in one aspect of the present invention, the sodium content is 20 ppm or more and less than 4000 ppm, the phosphorus content is 100 ppm or more and less than 2000 ppm, and the average particle size measured by a laser scattering particle size distribution analyzer is 1 μm or more and 50 μm. The activated carbon for capacitors having a BET specific surface area of 1400 m 2 / g or more and less than 3300 m 2 / g.
Another aspect of the present invention is a carbon raw material for activated carbon. The carbon raw material has a phosphorus content of 0.3% by mass to 2.0% by mass and an oxygen content of 10% by mass to 30%. Carbon for producing activated carbon having a mass ratio H / C of hydrogen atom to carbon atom of 0.05 to 0.54 and a BET specific surface area of 100 m 2 / g or more and less than 600 m 2 / g It is a raw material.
In another aspect, the present invention is a method for producing a carbon raw material for activated carbon, the carbonizing coke is obtained by heating a graphitizable carbon material in an inert atmosphere to obtain carbonized coke. It is a manufacturing method including at least an oxidation step of adding a phosphorus compound and heating to an oxide, and a cleaning step of cleaning the oxide.
The present invention is a method for producing a carbon raw material of activated carbon different from the above in another aspect, and the production method includes a carbonization step of heating and carbonizing a mixture containing at least cellulose acetate and a phosphorus compound in an inert atmosphere. It is a manufacturing method including at least.
Another aspect of the present invention is a method for producing activated carbon, the production method including at least an activation treatment step of activating the mixture of the carbon raw material and sodium hydroxide under an inert atmosphere, The mass ratio of the carbon raw material and the sodium hydroxide is 1: 1.5 to 3.5, and the activated carbon has a sodium content of 20 ppm or more and less than 4000 ppm, and a phosphorus content of 100 ppm or more and less than 2000 ppm. , average particle diameter measured by a laser scattering type particle size distribution meter is less than 50μm more than 1 [mu] m, BET specific surface area of the manufacturing method of the activated carbon is less than 1400 m 2 / g or more 3300 m 2 / g.
Another aspect of the present invention is an electric double layer capacitor using the activated carbon as an electrode.
Another aspect of the present invention is a lithium ion capacitor using the activated carbon as an electrode.
 本発明によれば、電気二重層キャパシタ、およびリチウムイオンキャパシタに使用する際、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。 According to the present invention, when used in an electric double layer capacitor and a lithium ion capacitor, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions.
ラミネートセルの構造を説明する斜視図である。It is a perspective view explaining the structure of a laminate cell. ラミネートセルの充放電の関係を示すグラフである。It is a graph which shows the relationship of charging / discharging of a laminate cell.
 以下に、本発明の実施の形態について、その一態様を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。 Hereinafter, one aspect of the embodiment of the present invention will be described. However, the present invention is not limited to the embodiments described below.
(1)活性炭
 まず、活性炭について説明する。キャパシタ用の活性炭は、ナトリウムの含有量が20ppm以上4000ppm未満であり、リンの含有量が100ppm以上2000ppm未満であり、レーザー散乱式粒度分布計で測定した平均粒子径が1μm以上50μm未満であり、BET比表面積が1400m/g以上3300m/g未満である。
(1) Activated carbon First, activated carbon is demonstrated. The activated carbon for the capacitor has a sodium content of 20 ppm or more and less than 4000 ppm, a phosphorus content of 100 ppm or more and less than 2000 ppm, and an average particle size measured by a laser scattering particle size distribution meter of 1 μm or more and less than 50 μm, The BET specific surface area is 1400 m 2 / g or more and less than 3300 m 2 / g.
 活性炭のナトリウム含有量が20ppm以上4000ppm未満の場合には、キャパシタに使用した際に低温条件下でも十分に高い静電容量を発現することができる。ナトリウムは、賦活時に炭素結晶内に侵入して活性炭の結晶間を押し広げることができ、その結果、電解液の粘度が高くなる低温時においても、イオンの出入りが容易になるものと考えられる。活性炭のナトリウム含有量が20ppm未満の場合、活性炭の結晶間を押し広げる効果が十分でないため、低温条件下の静電容量が減少する傾向にある。また、ナトリウム含有量が4000ppmより大きい場合は、過剰量のナトリウムによって細孔が閉塞し、比表面積そのものが低下して静電容量が減少してしまう傾向にある。活性炭のナトリウム含有量が、40ppm~3500ppmであれば、低温条件下でより高い静電容量を発現することができる。 When the sodium content of the activated carbon is 20 ppm or more and less than 4000 ppm, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor. It is considered that sodium can penetrate into the carbon crystals during activation and push between the crystals of the activated carbon, and as a result, ions can easily enter and exit even at low temperatures when the viscosity of the electrolytic solution increases. When the sodium content of the activated carbon is less than 20 ppm, the effect of pushing the gap between the crystals of the activated carbon is not sufficient, and thus the capacitance under low temperature conditions tends to decrease. On the other hand, when the sodium content is greater than 4000 ppm, the pores are blocked by an excessive amount of sodium, and the specific surface area itself tends to decrease and the capacitance tends to decrease. When the sodium content of the activated carbon is 40 ppm to 3500 ppm, a higher capacitance can be expressed under low temperature conditions.
 活性炭のリンの含有量が100ppm以上2000ppm未満の場合には、キャパシタに使用した際に低温条件下でも十分に高い静電容量を発現することができる。リン含有量が100ppm未満の場合には、低温条件下の静電容量が減少する傾向がある。また、リン含有量が2000ppm以上の場合は、比表面積が低下して静電容量が減少する傾向がある。活性炭のリンの含有量が、200ppm以上1500ppm未満であれば、低温条件下でより高い静電容量を発現することができる。 When the phosphorus content of the activated carbon is 100 ppm or more and less than 2000 ppm, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor. When the phosphorus content is less than 100 ppm, the capacitance under low temperature conditions tends to decrease. When the phosphorus content is 2000 ppm or more, the specific surface area tends to decrease and the capacitance tends to decrease. When the phosphorus content of the activated carbon is 200 ppm or more and less than 1500 ppm, higher capacitance can be developed under low temperature conditions.
 活性炭の平均粒子径が、1μm以上50μm未満の場合には、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。活性炭の平均粒子径が1μmより小さい場合は、キャパシタ電極として加工することが難しくなる。また、平均粒子径が50μmより大きい場合は、薄い電極を製造することが困難になるため好ましくない。活性炭の平均粒子径が、2μm以上20μm未満であれば、低温条件下でより高い静電容量を発現することができる。活性炭の平均粒子径は、レーザー散乱式粒度分布計で測定する。 When the average particle diameter of the activated carbon is 1 μm or more and less than 50 μm, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor. When the average particle diameter of the activated carbon is smaller than 1 μm, it becomes difficult to process as a capacitor electrode. On the other hand, when the average particle diameter is larger than 50 μm, it is difficult to produce a thin electrode, which is not preferable. If the average particle diameter of the activated carbon is 2 μm or more and less than 20 μm, a higher capacitance can be expressed under low temperature conditions. The average particle diameter of the activated carbon is measured with a laser scattering particle size distribution meter.
 活性炭のBET比表面積が、1400m/g以上3300m/g未満であることにより、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。BET比表面積が1400m/g未満の場合、細孔容積そのものが小さいためキャパシタにした際の低温条件下において静電容量が低下する傾向にある。また、BET比表面積が3300m/g以上の場合、細孔容積が大きすぎるため、体積当りで十分な静電容量が得られないため、好ましくない。 When the activated carbon has a BET specific surface area of 1400 m 2 / g or more and less than 3300 m 2 / g, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor. When the BET specific surface area is less than 1400 m 2 / g, since the pore volume itself is small, the capacitance tends to decrease under low temperature conditions when the capacitor is used. Moreover, when the BET specific surface area is 3300 m 2 / g or more, the pore volume is too large, and a sufficient capacitance cannot be obtained per volume, which is not preferable.
 上記したナトリウムおよびリンの含有量、平均粒子径、およびBET比表面積の条件を満たす活性炭であれば、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。これらの条件のいずれかが上記範囲から外れると、キャパシタに使用した際に、低温条件下にて静電容量を十分に発揮することができない。 If the activated carbon satisfies the above conditions of sodium and phosphorus contents, average particle diameter, and BET specific surface area, it can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. If any one of these conditions is out of the above range, the electrostatic capacity cannot be sufficiently exhibited under low temperature conditions when used for a capacitor.
(2)活性炭製造用の炭素原料
 次に、活性炭製造用の炭素原料について説明する。活性炭の炭素原料は、リンの含有量が0.3質量%~2.0質量%であり、酸素の含有量が10質量%以上30質量%未満であり、水素原子と炭素原子とのモル比H/Cが0.05~0.54であり、BET比表面積が100m/g以上600m/g未満である。
(2) Carbon raw material for activated carbon production Next, the carbon raw material for activated carbon production will be described. The carbon raw material of activated carbon has a phosphorus content of 0.3% to 2.0% by mass, an oxygen content of 10% by mass to less than 30% by mass, and a molar ratio of hydrogen atoms to carbon atoms. H / C is 0.05 to 0.54, and the BET specific surface area is 100 m 2 / g or more and less than 600 m 2 / g.
 炭素原料のリンの含有量、H/C、および酸素の含有量が上記範囲内であれば、アルカリ賦活剤、特に水酸化ナトリウムの賦活活性を高めることができる。また、賦活工程での噴きこぼれや膨張を防ぐことができるため、活性炭の生産効率を高めると共に、キャパシタに使用した際に、十分な静電容量を得ることができる。特に、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。 If the content of phosphorus, H / C, and oxygen in the carbon raw material are within the above ranges, the activation activity of the alkali activator, particularly sodium hydroxide can be increased. Moreover, since it is possible to prevent spills and expansions in the activation process, it is possible to increase the production efficiency of activated carbon and to obtain a sufficient capacitance when used in a capacitor. In particular, when used in a capacitor, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions.
 炭素原料中のリンの含有量が0.3質量%~2.0質量%である場合、アルカリ賦活剤、特に水酸化ナトリウムの賦活活性を高め、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。リンの含有量が0.3質量%未満の場合、賦活工程において、噴きこぼれが生じやすく、かつ、上記範囲のリンを含む原料を用いた場合と比較して比表面積が小さい活性炭しか得ることができない。また、リンの含有量が2.0質量%を超える場合は、アルカリ賦活反応が十分に進行しないため、目的の活性炭を得ることができない。 When the content of phosphorus in the carbon raw material is 0.3% to 2.0% by mass, the activation activity of the alkali activator, especially sodium hydroxide is increased, and it is sufficient even under low temperature conditions when used in a capacitor. In addition, it is possible to provide activated carbon that can exhibit a high electrostatic capacity. When the content of phosphorus is less than 0.3% by mass, it is possible to obtain only activated carbon having a small specific surface area as compared with the case of using a raw material containing phosphorus in the above range, which is likely to spill during the activation process. Can not. On the other hand, when the phosphorus content exceeds 2.0 mass%, the target activated carbon cannot be obtained because the alkali activation reaction does not proceed sufficiently.
 炭素原料中の水素原子と炭素原子とのモル比H/Cが0.05~0.54である場合、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。一方、H/C比が0.05未満の場合、炭素原料の炭化度が高すぎることにより、キャパシタが低温条件下で高い静電容量を発現するための細孔を十分に得ることができない。また、H/C比が0.54より大きい場合、アルカリ賦活中に激しく発泡し噴きこぼれるため、目的の活性炭を得ることができない。 When the molar ratio H / C of hydrogen atoms to carbon atoms in the carbon raw material is 0.05 to 0.54, a sufficiently high capacitance can be exhibited even under low temperature conditions when used in a capacitor. The activated carbon which can be provided can be provided. On the other hand, when the H / C ratio is less than 0.05, the carbon raw material is too high in carbonization, so that the capacitor cannot sufficiently obtain pores for expressing a high capacitance under low temperature conditions. On the other hand, when the H / C ratio is larger than 0.54, the desired activated carbon cannot be obtained because the foam is violently foamed and blown out during alkali activation.
 炭素原料中の酸素の含有量が10質量%以上30質量%未満である場合、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。酸素の含有量が10質量%より小さい場合、アルカリ賦活剤、特に水酸化ナトリウムとの反応性が悪く、キャパシタに使用した際に大きな静電容量が得られる比表面積の大きい活性炭を得ることができない。酸素の含有量が30質量%以上の場合、目的とする活性炭より比表面積が大きい活性炭となるため、好ましくない。また、賦活反応収率が極端に低下するため、工業生産性に著しく劣る。 When the content of oxygen in the carbon raw material is 10% by mass or more and less than 30% by mass, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. it can. When the oxygen content is less than 10% by mass, the reactivity with the alkali activator, particularly sodium hydroxide is poor, and activated carbon with a large specific surface area that can provide a large capacitance when used in a capacitor cannot be obtained. . An oxygen content of 30% by mass or more is not preferable because the activated carbon has a larger specific surface area than the intended activated carbon. Moreover, since an activation reaction yield falls extremely, it is remarkably inferior to industrial productivity.
 炭素原料のBET比表面積が、100m/g以上600m/g未満であることにより、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。炭素原料のBET比表面積が100m/g未満の場合、アルカリ賦活剤、特に水酸化ナトリウムとの反応性が悪く、キャパシタに使用した際に低温条件下でも充分に静電容量を発現する活性炭を得ることが難しい。また、炭素原料のBET比表面積が600m/g以上の場合、炭素原料の大部分において炭化が過度に進行しているため、微細な細孔が生じにくく、キャパシタに使用した際に高い静電容量を発現する活性炭を得ることが難しい。 When the carbon raw material has a BET specific surface area of 100 m 2 / g or more and less than 600 m 2 / g, it provides activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. be able to. When the BET specific surface area of the carbon raw material is less than 100 m 2 / g, activated carbon that is poorly reactive with an alkali activator, particularly sodium hydroxide, and sufficiently develops capacitance even under low temperature conditions when used in a capacitor. Difficult to get. In addition, when the carbon material has a BET specific surface area of 600 m 2 / g or more, carbonization proceeds excessively in the majority of the carbon material, so that fine pores are not easily generated, and a high electrostatic capacity when used in a capacitor. It is difficult to obtain activated carbon that exhibits capacity.
 上記したリンおよび酸素の含有量、水素原子と炭素原子とのモル比H/CおよびBET比表面積の条件を満たす炭素原料であれば、所定量の水酸化ナトリウムを用いて当該炭素原料を賦活処理することにより、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる活性炭を提供することができる。これらの条件のいずれかが上記範囲から外れると、キャパシタに使用した際に、低温条件下にて静電容量を十分に発揮することができない。 If the carbon raw material satisfies the conditions of the phosphorus and oxygen content, the hydrogen / carbon molar ratio H / C and the BET specific surface area, the carbon raw material is activated using a predetermined amount of sodium hydroxide. By doing so, it is possible to provide activated carbon that can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. If any one of these conditions is out of the above range, the electrostatic capacity cannot be sufficiently exhibited under low temperature conditions when used for a capacitor.
(3)易黒鉛化性炭素材料を用いる炭素原料の製造方法
 次に、炭素原料の製造方法について説明する。炭素原料の製造方法は、炭化工程と、酸化工程と、洗浄工程とを少なくとも含む。
(3) Carbon Raw Material Production Method Using Easily Graphitizable Carbon Material Next, a carbon raw material production method will be described. The method for producing a carbon raw material includes at least a carbonization step, an oxidation step, and a cleaning step.
 前記炭化工程は、易黒鉛化性炭素材料を不活性雰囲気下で加熱して炭化コークスとする工程である。易黒鉛化性炭素材料を炭化するのは、揮発分を減少させるためである。揮発分が除去されると、後工程である酸化工程にて炭化コークスとリン化合物とがより接触し、酸化され易くなる。易黒鉛化性炭素材料の炭化は、本工程にてコークスが酸化しないよう不活性ガスによる不活性雰囲気下で加熱して行う。不活性ガスとしては、窒素ガスや希ガス等を用いることができる。また、加熱は、500℃~900℃、より好ましくは500℃~800℃の温度範囲行うことができる。その際、昇温速度については特に制限はないが、あまり遅すぎても処理工程に時間がかかり、逆にあまり急激な温度上昇は揮発分の爆発的な揮散を招き、結晶構造を破壊することがある。これらの点を考慮して、加熱していない状態(例えば気温約25℃)から、通常は30℃/時~600℃/時、より好ましくは60℃/時~300℃/時程度の昇温速度とすることが望ましい。目標の温度に達した後は、一定時間その温度を保持する。この保持時間は、たとえば10分~2時間程度である。これらの炭化条件により、揮発分の除去が容易となる。 The carbonization step is a step of heating the graphitizable carbon material in an inert atmosphere to obtain carbonized coke. The reason for carbonizing the graphitizable carbon material is to reduce the volatile matter. When the volatile matter is removed, the carbonized coke and the phosphorus compound are more in contact with each other in the subsequent oxidation step, and are easily oxidized. Carbonization of the graphitizable carbon material is carried out by heating in an inert atmosphere with an inert gas so that coke is not oxidized in this step. Nitrogen gas, rare gas, etc. can be used as the inert gas. The heating can be performed in a temperature range of 500 ° C. to 900 ° C., more preferably 500 ° C. to 800 ° C. At that time, there is no particular restriction on the rate of temperature rise, but if it is too slow, it takes time for the treatment process, and conversely, if the temperature rises too rapidly, explosive volatilization of volatile components will occur, destroying the crystal structure. There is. Considering these points, the temperature is raised from an unheated state (for example, an air temperature of about 25 ° C.), usually 30 ° C./hour to 600 ° C./hour, more preferably about 60 ° C./hour to 300 ° C./hour. It is desirable to use speed. After reaching the target temperature, the temperature is maintained for a certain time. This holding time is, for example, about 10 minutes to 2 hours. These carbonization conditions make it easy to remove volatile components.
 出発原料として用いる易黒鉛化性炭素材料は、高温熱処理により黒鉛化し得る炭素材料である。易黒鉛化性炭素材料としては、泥炭、草炭、亜炭、褐炭、瀝青炭、無煙炭などの石炭、コールタール、石油又は石炭ピッチ、コークスなどの鉱物系原料などを利用することができる。ピッチは、等方性ピッチであってもよく異方性ピッチ(メソフェーズピッチなど)であってもよい。これらの炭素材料は、単独で又は二種以上組み合わせて使用することができる。易黒鉛化性炭素材料は、黒鉛化の容易な炭素材料であり、上記炭素材料のうち、石油コークスや石炭コークス等が挙げられ、また、メソフェーズピッチやそれを紡糸したメソフェーズピッチ繊維を不融化・炭素化したもの等を挙げることができる。これらの中では石油コークスが好ましい。易黒鉛化性炭素材料を使用することにより、得られる活性炭の静電容量が大きくなり、ニードルコークスであれば、高純度で賦活が容易となる。 The graphitizable carbon material used as a starting material is a carbon material that can be graphitized by high-temperature heat treatment. As the graphitizable carbon material, peat, grass coal, lignite, lignite, bituminous coal, anthracite and other coal, coal tar, petroleum, coal pitch, coke and other mineral raw materials can be used. The pitch may be an isotropic pitch or an anisotropic pitch (such as a mesophase pitch). These carbon materials can be used alone or in combination of two or more. The graphitizable carbon material is a carbon material that is easily graphitized. Among the above carbon materials, there are petroleum coke and coal coke, etc. Also, mesophase pitch and mesophase pitch fiber spun from it are infusible. Carbonized materials can be mentioned. Of these, petroleum coke is preferred. By using the graphitizable carbon material, the capacitance of the obtained activated carbon is increased, and if it is needle coke, activation is easy with high purity.
 石油コークスは、石油の重質留分を、例えば温度450℃~550℃、圧力0.01~1.00MPaの条件で熱分解(コーキング)して得られる固形の炭素を主成分とする製品であり、通常の石炭系のコークスに対して石油コークスと呼ぶ。石油コークスにはディレード・コーキング法によるものとフルイド・コーキング法によるものとがあり、現在においては前者によるものが大半を占めている。炭素原料の出発原料としては、この石油コークスでコーカーから取り出されたままの状態である石油生コークス(生コークス)を用いるのが好ましい。ディレード・コーキング法により生産される生コークスは、揮発分が通常6質量%~13質量%であり、フルイド・コーキング法により生産される生コークスは、揮発分が通常4質量%~7質量%である。いずれの方法による生コークスを用いてもよいが、容易に入手が可能でかつ品質の安定したディレード・コーキング法により生産される生コークスが特に好適である。 Petroleum coke is a product mainly composed of solid carbon obtained by pyrolyzing (coking) a heavy oil fraction under conditions of a temperature of 450 ° C. to 550 ° C. and a pressure of 0.01 to 1.00 MPa. Yes, it is called petroleum coke compared to normal coal-based coke. There are two types of petroleum coke, the delayed coking method and the fluid coking method, and the former is the majority. As a starting material for the carbon raw material, it is preferable to use raw petroleum coke (raw coke) that has been taken out from the coker with this petroleum coke. The raw coke produced by the delayed coking method usually has a volatile content of 6 to 13% by mass, and the raw coke produced by the fluid coke method usually has a volatile content of 4 to 7% by mass. is there. Raw coke by any method may be used, but raw coke that is easily available and is produced by a delayed coking method with stable quality is particularly suitable.
 上記石油の重質留分としては、特に限定されないが、石油類を減圧蒸留したときに残渣油として得られる重質油、石油類を流動接触分解した際に得られる重質油、石油類を水素化脱硫した際に得られる重質油、およびこれらの混合物等が挙げられる。減圧蒸留の条件としては、例えば、10~30Torrの減圧下で原油を加熱炉出口温度320~360℃の範囲で変化させる方法が挙げられる。そして、流動接触分解の条件としては、例えば、常圧蒸留残油を流動接触分解装置にて、リアクター反応温度510~540℃、触媒/残油比率6~8の範囲で変化させて反応させる方法が挙げられる。また、水素化脱硫の条件としては、例えば、触媒存在下で硫黄分2.0~5.0%の残渣油を触媒存在下、全圧180MPa、水素分圧160MPa、温度380℃で反応させる方法が挙げられる。 The heavy fraction of petroleum is not particularly limited. Heavy oil obtained as residual oil when petroleum is distilled under reduced pressure, heavy oil obtained when fluids are cracked by fluid catalytic cracking, petroleum Examples thereof include heavy oils obtained by hydrodesulfurization, and mixtures thereof. Examples of the vacuum distillation conditions include a method in which crude oil is changed in a range of 320 to 360 ° C. at a furnace outlet temperature under a reduced pressure of 10 to 30 Torr. The conditions for fluid catalytic cracking include, for example, a method in which atmospheric distillation residual oil is reacted in a fluid catalytic cracking apparatus with a reactor reaction temperature of 510 to 540 ° C. and a catalyst / residual oil ratio of 6 to 8. Is mentioned. The hydrodesulfurization conditions include, for example, a method in which a residual oil having a sulfur content of 2.0 to 5.0% is reacted in the presence of a catalyst at a total pressure of 180 MPa, a hydrogen partial pressure of 160 MPa, and a temperature of 380 ° C. Is mentioned.
 炭素原料の製造方法における酸化工程は、前記炭化コークスにリン化合物を加えて加熱して酸化物とする工程である。炭化コークスにリン化合物を加えて酸化させ、改質させることにより、比較的安価で賦活力の弱い水酸化ナトリウムを賦活剤として用いることができる。そして、賦活後の活性炭は、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。 The oxidation step in the carbon raw material production method is a step in which a phosphorus compound is added to the carbonized coke and heated to form an oxide. By adding a phosphorus compound to carbonized coke to oxidize and modify it, sodium hydroxide that is relatively inexpensive and weakly activating can be used as an activator. The activated carbon after activation can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor.
 リン化合物としては、リン酸、亜リン酸、ペルオキソ一リン酸、五酸化二リン等を使用することができる。特に工業的に使用されているリン酸が望ましい。リン化合物は、炭化コークスとリン化合物との質量比が好ましくは1:3~10となるように加えることができる。加熱は、好ましくは80℃~150℃で30分~2時間行うことができる。酸化工程の一例としては、リン化合物水溶液に炭化コークスを加え、撹拌しながら120℃で1時間加熱して、酸化させる工程が挙げられる。 As the phosphorus compound, phosphoric acid, phosphorous acid, peroxomonophosphoric acid, diphosphorus pentoxide and the like can be used. In particular, phosphoric acid used industrially is desirable. The phosphorus compound can be added so that the mass ratio of the carbonized coke to the phosphorus compound is preferably 1: 3 to 10. Heating is preferably performed at 80 ° C. to 150 ° C. for 30 minutes to 2 hours. As an example of the oxidation step, a step in which carbonized coke is added to the phosphorous compound aqueous solution and heated at 120 ° C. for 1 hour with stirring to oxidize it is mentioned.
 炭素原料の製造方法における洗浄工程は、前記酸化物を洗浄する工程である。酸化物に不純物が残留していると、活性炭の製造やキャパシタとした場合に悪影響を及ぼすおそれがあるため、洗浄により不純物を除去する。この洗浄工程により、例えば、洗浄排水のpHが6~7程度になるまで洗浄すれば、不純物を十分に除去することができる。酸化物の洗浄方法としては、酸化物を洗浄液により洗浄し、固液分離する方法を採用することができる。例えば、酸化物を洗浄液に浸漬し、必要に応じて撹拌、加熱を行い、洗浄液と混合した後、洗浄液を除去する方法を挙げることができる。 The cleaning step in the carbon raw material manufacturing method is a step of cleaning the oxide. If impurities remain in the oxide, the impurities may be adversely affected when the activated carbon is manufactured or the capacitor is used. Therefore, the impurities are removed by washing. In this cleaning step, for example, if cleaning is performed until the pH of the cleaning wastewater reaches about 6 to 7, impurities can be sufficiently removed. As a method of cleaning the oxide, a method of cleaning the oxide with a cleaning liquid and performing solid-liquid separation can be employed. For example, a method of immersing the oxide in a cleaning solution, stirring and heating as necessary, mixing with the cleaning solution, and then removing the cleaning solution can be mentioned.
 炭素原料の製造方法は、上記工程の他、炭化工程の前に石油系ディレードコークスを粉砕し易いように2mm以下に粒度調整する粒度調整工程や、炭化工程の後にリン化合物との混合を容易とするために平均粒子径が5μm~10μmとなるよう炭化コークスを粉砕する粉砕工程等を含むことができる。平均粒子径の調整は、通常の方法により行うことができ、例えば、ジェットミル、ボールミル、高圧粉砕ロールによる粉砕のほか、ディスクミル、ビーズミル等といった方法により行うことができる。 In addition to the above steps, the carbon raw material production method can be easily mixed with a phosphorus compound after the carbonization step, a particle size adjustment step for adjusting the particle size to 2 mm or less so that petroleum-based delayed coke can be easily pulverized before the carbonization step, Therefore, a pulverizing step for pulverizing the carbonized coke so as to have an average particle diameter of 5 μm to 10 μm can be included. The average particle diameter can be adjusted by a usual method, for example, by a method such as a jet mill, a ball mill, a high-pressure pulverizing roll, a disk mill, a bead mill, or the like.
(4)酢酸セルロースを用いる炭素原料の製造方法
 次に、上記とは異なる炭素原料の製造方法について、説明する。炭素原料の製造方法は、酢酸セルロースとリン化合物を少なくとも含む混合物を不活性雰囲気下で加熱して炭化する炭化工程を少なくとも含む。炭化させた炭素原料を用いて製造した活性炭は、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。
(4) Carbon Raw Material Production Method Using Cellulose Acetate Next, a carbon raw material production method different from the above will be described. The method for producing a carbon raw material includes at least a carbonization step of heating and carbonizing a mixture containing at least cellulose acetate and a phosphorus compound in an inert atmosphere. Activated carbon produced using a carbonized carbon raw material can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor.
 炭素原料の製造方法において、酢酸セルロースとリン化合物を少なくとも含む混合物を出発原料とする。出発原料の一例としては、酢酸セルロースに、可塑剤としてリン化合物が加えられた、酢酸セルロースを主とする混合物(例えばフィルム)が挙げられる。酢酸セルロースは、酢酸の置換度が2~3の範囲にあるものが工業的に入手可能であるため好ましい。酢酸で置換されていないセルロースは、加熱溶融しないため、出発原料としては好ましくない。また、酢酸セルロースの形態には特に制限はなく、例えば、フレーク、ペレット、繊維、織布、トウ、フィルム等の形態をとることができる。出発原料中の酢酸セルロース量は、炭化物や活性炭へ余分な不純物が混入することを考慮すると、純度の高いことが好ましい。出発原料中の酢酸セルロース量としては、50質量%以上であれば出発原料として使用可能であり、80質量%以上であることがより好ましく、85~99.5質量%であることがさらにより好ましい。 In the carbon raw material manufacturing method, a mixture containing at least cellulose acetate and a phosphorus compound is used as a starting raw material. An example of the starting material is a mixture (for example, a film) mainly composed of cellulose acetate, in which a phosphorus compound is added as a plasticizer to cellulose acetate. Cellulose acetate having a substitution degree of acetic acid in the range of 2 to 3 is preferred because it is commercially available. Cellulose not substituted with acetic acid is not preferred as a starting material because it does not melt by heating. Moreover, there is no restriction | limiting in particular in the form of a cellulose acetate, For example, forms, such as a flake, a pellet, a fiber, a woven fabric, a tow, a film, can be taken. The amount of cellulose acetate in the starting material is preferably high in purity considering that extra impurities are mixed into the carbide or activated carbon. The amount of cellulose acetate in the starting material can be used as a starting material as long as it is 50% by mass or more, more preferably 80% by mass or more, and still more preferably 85 to 99.5% by mass. .
 また、出発原料中に含まれるリン化合物の例としては、リン酸、リン酸塩、およびリン酸エステル等が挙げられる。リン酸としては、例えばオルトリン酸および縮合リン酸が挙げられる。リン酸塩としては、例えば、アンモニウム塩、アルカリ金属塩およびアルカリ土類金属塩が挙げられる。リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェートが挙げられる。リンは、リン化合物として酢酸セルロース中に分子で分散していることが好ましい。出発原料中にリンが存在することにより、炭素材料中のリン量を適切に制御することができる。出発原料中の好ましいリンの量は、炭化温度と時間により異なるが、0.1質量%~5質量%である。0.1質量%より少ないと、炭素材料中に必要なリン量を得ることができず、5質量%より多いと、炭素材料中のリン量が過剰になる。炭素材料中のリン量としては、0.1質量%~2.0質量%であることが、炭化温度と時間を広範囲に設定できるため特に好ましい。 Moreover, examples of the phosphorus compound contained in the starting material include phosphoric acid, phosphate, and phosphate ester. Examples of phosphoric acid include orthophosphoric acid and condensed phosphoric acid. Examples of the phosphate include ammonium salts, alkali metal salts, and alkaline earth metal salts. Examples of the phosphate ester include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate. It is preferable that phosphorus is dispersed in molecules in cellulose acetate as a phosphorus compound. When phosphorus is present in the starting material, the amount of phosphorus in the carbon material can be appropriately controlled. The preferable amount of phosphorus in the starting material is 0.1% by mass to 5% by mass, although it varies depending on the carbonization temperature and time. If the amount is less than 0.1% by mass, the amount of phosphorus required in the carbon material cannot be obtained. If the amount is more than 5% by mass, the amount of phosphorus in the carbon material becomes excessive. The amount of phosphorus in the carbon material is particularly preferably 0.1% by mass to 2.0% by mass because the carbonization temperature and time can be set over a wide range.
 出発原料には、酢酸セルロースとリン化合物の他、これら以外の成分が含まれていてもよく、加熱によって酢酸セルロースと共に溶融する成分であることが好ましい。このような成分としては、例えば、可塑剤、劣化防止剤、紫外線吸収剤(UV剤)、光学異方性コントロール剤、レタデーション制御剤、染料、マット剤、剥離剤、剥離促進剤等が挙げられる。なお、酢酸セルロースの詳細については、特許文献3の段落0140~0195に記載されている。また、溶媒及び可塑剤、劣化防止剤、紫外線吸収剤(UV剤)、光学異方性コントロール剤、レタデーション制御剤、染料、マット剤、剥離剤、剥離促進剤等の添加剤についても、同じく、特許文献3の段落0196~0516に詳細に記載されている。 The starting material may contain components other than cellulose acetate and a phosphorus compound, and is preferably a component that melts together with cellulose acetate by heating. Examples of such components include plasticizers, deterioration inhibitors, ultraviolet absorbers (UV agents), optical anisotropy control agents, retardation control agents, dyes, matting agents, release agents, release accelerators, and the like. . Details of cellulose acetate are described in paragraphs 0140 to 0195 of Patent Document 3. Similarly, additives such as solvents and plasticizers, deterioration inhibitors, ultraviolet absorbers (UV agents), optical anisotropy control agents, retardation control agents, dyes, matting agents, release agents, release accelerators, The details are described in paragraphs 0196 to 0516 of Patent Document 3.
 出発原料としては、酢酸セルロースを含む工業製品の生産時に発生する不具合品や使用済み品として廃棄された廃棄物を用いることができる。このような工業製品の例としては、写真フィルム、偏光板、煙草のフィルター、浄水用のろ過膜を挙げることができる。これらの酢酸セルロースを含む工業製品には、例えば写真フィルムに可塑剤としてリン酸エステルが含まれている等、リンが含まれている場合がある。酢酸セルロースを含む工業製品の廃棄物を出発原料に用いる場合は、洗浄、分別、分離等の手段により、廃棄物から予め酢酸セルロースやリン化合物以外の不要な成分を除去することが好ましい。例えば、煙草の廃棄物の場合、巻紙や刻みタバコ等のフィルター以外の部分は予め除去することが好ましい。廃棄物等にリン化合物が含まれていない場合には、廃棄物等にリン化合物を加えることにより、出発原料とすることができる。また、リン化合物が含まれる廃棄物等とリン化合物が含まれていない廃棄物等を適宜混合し、所定のリン量に調整して出発原料として用いることができる。 As a starting material, defective products generated during the production of industrial products containing cellulose acetate and wastes discarded as used products can be used. Examples of such industrial products include photographic films, polarizing plates, cigarette filters, and water purification filter membranes. These industrial products containing cellulose acetate may contain phosphorus, for example, a photographic film contains a phosphate ester as a plasticizer. When industrial product waste containing cellulose acetate is used as a starting material, it is preferable to remove unnecessary components other than cellulose acetate and phosphorus compounds in advance from waste by means such as washing, separation, and separation. For example, in the case of tobacco waste, it is preferable to remove portions other than the filter, such as wrapping paper and cigarettes. When the phosphorus compound is not contained in the waste or the like, the starting material can be obtained by adding the phosphorus compound to the waste or the like. In addition, a waste material containing a phosphorus compound and a waste material not containing a phosphorus compound can be appropriately mixed and adjusted to a predetermined phosphorus amount to be used as a starting material.
 出発原料は、炭化工程で加熱する前に、破砕または裁断等により適切な大きさや形状に調整しておくことで、炭化の均一化や炭化工程の短縮を図ることができる。 The starting material is adjusted to an appropriate size and shape by crushing or cutting before being heated in the carbonization step, so that the carbonization can be made uniform and the carbonization step can be shortened.
 炭化工程では、上記混合物を250℃~600℃の温度で加熱して、酢酸セルロースを溶融させた後に炭化させる。酢酸セルロースが溶融することにより、混合物中でリン化合物が均一に分散する。不活性雰囲気下とするために用いる不活性ガスとしては、例えば窒素ガスおよびアルゴンガス、ヘリウムガス、キセノンガス、ネオンガス等の希ガスを挙げることができる。加熱時間は、通常は5分~600分の範囲で、例えば加熱温度が500℃程度であれば5分~30分、加熱温度が300℃程度であれば30分~500分と、加熱温度条件に併せて、混合物が炭化するまで行えばよい。加熱温度は、300℃~500℃が好ましく、350℃~450℃が特に好ましい。加熱温度が250℃よりも低い温度で処理した炭素材料は、賦活時に賦活原料混合物に膨張が生じ易く、加熱温度が600℃よりも高い温度で処理した炭素材料は、賦活時に混合物が容器から吹きこぼれ、いずれの場合も活性炭を得ることが困難になる。 In the carbonization step, the mixture is heated at a temperature of 250 ° C. to 600 ° C. to melt the cellulose acetate and then carbonize. As the cellulose acetate melts, the phosphorus compound is uniformly dispersed in the mixture. Examples of the inert gas used for the inert atmosphere include noble gases such as nitrogen gas, argon gas, helium gas, xenon gas, and neon gas. The heating time is usually in the range of 5 minutes to 600 minutes, for example, 5 minutes to 30 minutes if the heating temperature is about 500 ° C, and 30 minutes to 500 minutes if the heating temperature is about 300 ° C. In addition, it may be performed until the mixture is carbonized. The heating temperature is preferably 300 ° C. to 500 ° C., particularly preferably 350 ° C. to 450 ° C. The carbon material treated at a heating temperature lower than 250 ° C. tends to expand in the activation raw material mixture during activation, and the carbon material treated at a heating temperature higher than 600 ° C. spills out of the container during activation. In either case, it becomes difficult to obtain activated carbon.
 混合物の炭化は、撹拌をせずに静置状態で加熱処理することが、細孔が発達した炭化物が得られるため、好ましい。そのため、炭化工程は、炉内での加熱対象物の搬送方式がローラー式もしくはベルトコンベア式の連続式加熱炉を用いて行うことが好ましい。連続式加熱炉には、加熱対象物の搬送方式がローラー式のローラーハースキルンを用いることが、炉内での温度の制御が容易であるので、より好ましい。 For the carbonization of the mixture, it is preferable to perform the heat treatment in a stationary state without stirring, because a carbide having developed pores can be obtained. For this reason, the carbonization step is preferably performed using a continuous heating furnace in which the heating object in the furnace is conveyed by a roller or a belt conveyor. In the continuous heating furnace, it is more preferable to use a roller-type roller hearth kiln as a method for conveying the heating object because the temperature in the furnace can be easily controlled.
 炭素原料の製造方法は、必要に応じて、前記炭化工程後の炭化物を加熱して酢酸を除去する酢酸除去工程を含むことができる。例えば、炭化工程の加熱温度が250℃~350℃である場合、炭化工程後の炭化物中に酢酸が残留することがある。酢酸が残留すると、アルカリ賦活時に酢酸ガスを発生し、吹きこぼれを起こしやすいこと、及びアルカリ賦活剤の活性を低下させること等の弊害があるため好ましくない。酢酸の除去は、前記炭化物を380℃~700℃、好ましくは500℃~650℃の温度で加熱することにより行う。これにより、酢酸が揮発して除去される。炭化物から酢酸が揮発する際の通路が、細孔として炭化物内に多数形成される。炭化物の加熱は、不活性ガスを用いて不活性雰囲気下により行うことが好ましい。不活性ガスとしては、窒素ガスおよびアルゴンガス、ヘリウムガス、キセノンガス、ネオンガス等の希ガス等が挙げられる。また、炭化工程中に発生するCOガスも不活性ガスとして使用することができる。酢酸の除去のための加熱時間は、一般に10分~10時間の範囲、好ましくは30分~5時間の範囲である。 The carbon raw material production method may include an acetic acid removing step of removing the acetic acid by heating the carbide after the carbonizing step, if necessary. For example, when the heating temperature in the carbonization step is 250 ° C. to 350 ° C., acetic acid may remain in the carbide after the carbonization step. If acetic acid remains, acetic acid gas is generated at the time of alkali activation, which is liable to cause spillage, and the activity of the alkali activator is reduced. Acetic acid is removed by heating the carbide at a temperature of 380 ° C. to 700 ° C., preferably 500 ° C. to 650 ° C. Thereby, acetic acid volatilizes and is removed. Many passages when acetic acid volatilizes from the carbide are formed as pores in the carbide. The heating of the carbide is preferably performed in an inert atmosphere using an inert gas. Examples of the inert gas include nitrogen gas, argon gas, helium gas, xenon gas, rare gas such as neon gas, and the like. Further, CO gas generated during the carbonization process can also be used as an inert gas. The heating time for removing acetic acid is generally in the range of 10 minutes to 10 hours, preferably in the range of 30 minutes to 5 hours.
 酢酸の除去は、撹拌をせずに静置状態で行うことが、細孔が発達した炭化物が得られるため、好ましい。そのため、酢酸除去工程は、炉内での加熱対象物の搬送方式がローラー式もしくはベルトコンベア式の連続式加熱炉を用いて行うことが好ましい。連続式加熱炉には、加熱対象物の搬送方式がローラー式のローラーハースキルンを用いることが、炉内での温度の制御が容易であるので、より好ましい。 The removal of acetic acid is preferably performed in a stationary state without stirring, because a carbide with developed pores is obtained. For this reason, the acetic acid removing step is preferably performed using a continuous heating furnace in which the heating object is transported in the furnace by a roller type or a belt conveyor type. In the continuous heating furnace, it is more preferable to use a roller-type roller hearth kiln as a method for conveying the heating object because the temperature in the furnace can be easily controlled.
(5)活性炭の製造方法
 次に、活性炭の製造方法について説明する。活性炭の製造方法は、賦活処理工程を少なくとも含む。賦活処理工程では、炭素原料と水酸化ナトリウムとの混合物を不活性雰囲気下で賦活処理する工程である。
(5) Manufacturing method of activated carbon Next, the manufacturing method of activated carbon is demonstrated. The method for producing activated carbon includes at least an activation treatment step. In the activation treatment step, the mixture of the carbon raw material and sodium hydroxide is activated in an inert atmosphere.
 水酸化ナトリウムは、賦活反応に使用するアルカリ金属水酸化物として用いる。水酸化ナトリウムは、他のアルカリ金属水酸化物と比べて安価であるものの、賦活力が弱く、通常のアルカリ賦活処理に用いる場合には、過剰量が必要となるため好ましくない。しかしながら、リンにより酸化させて改質させた炭素原料の場合、安価な水酸化ナトリウムを賦活剤として用いることで、賦活後の活性炭は、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。 Sodium hydroxide is used as an alkali metal hydroxide used for the activation reaction. Although sodium hydroxide is less expensive than other alkali metal hydroxides, sodium hydroxide is not preferable because it has a weak activation power and requires an excessive amount when used in a normal alkali activation treatment. However, in the case of a carbon raw material that has been oxidized and modified with phosphorus, inexpensive activated sodium hydroxide is used as an activator, so that activated carbon can be sufficiently static even under low temperature conditions when used in a capacitor. The capacity can be demonstrated.
 前記混合物の前記炭素原料と前記水酸化ナトリウムの質量比は、1:1.5~3.5である。この範囲であれば、賦活後の活性炭は、キャパシタに使用した際に、低温条件下でも十分に高い静電容量を発揮することができる。質量比が上記範囲よりも小さいと、賦活後の活性炭のBET比表面積が小さくなり、低温条件下で十分に高い静電容量を発揮することができない。また、質量比が上記範囲よりも大きいと、賦活後の活性炭のBET比表面積が大きくなり、キャパシタの電極密度が小さくなってしまう。 The mass ratio of the carbon raw material to the sodium hydroxide in the mixture is 1: 1.5 to 3.5. Within this range, the activated carbon after activation can exhibit a sufficiently high capacitance even under low temperature conditions when used in a capacitor. When the mass ratio is smaller than the above range, the activated BET specific surface area of activated carbon becomes small, and a sufficiently high capacitance cannot be exhibited under low temperature conditions. On the other hand, when the mass ratio is larger than the above range, the activated BET specific surface area of the activated carbon increases, and the electrode density of the capacitor decreases.
 また、反応条件として不活性雰囲気下とするのは、賦活処理中に炭素原料が酸化することを防ぐためである。不活性雰囲気下とするためには、不活性ガスを用い、例えば、窒素ガスおよびアルゴンガス、ヘリウムガス、キセノンガス、ネオンガス等の希ガス等を用いることができる。 Also, the reason for setting the reaction condition as an inert atmosphere is to prevent the carbon raw material from being oxidized during the activation treatment. In order to obtain an inert atmosphere, an inert gas can be used. For example, a rare gas such as nitrogen gas, argon gas, helium gas, xenon gas, or neon gas can be used.
 賦活処理工程は、炭素材料と水酸化ナトリウムの混合物を不活性雰囲気下に密閉し、かつ当該混合物を加熱することのできる設備であれば、如何なる設備でも処理可能な工程である。例えば、ヒータを備えた管状炉等を用いることにより、賦活処理を実施することができる。 The activation treatment process is a process that can be performed by any equipment as long as the equipment can seal the mixture of the carbon material and sodium hydroxide in an inert atmosphere and heat the mixture. For example, the activation process can be performed by using a tubular furnace or the like equipped with a heater.
 混合物の加熱は、加熱の無い状態(例えば気温約25℃)から当該混合物の温度を700℃~900℃まで昇温する昇温段階と、その後、前記混合物の温度を保持する温度保持段階を含む加熱とすることができる。水酸化ナトリウムは、700℃~900℃程度の高温領域にて、その賦活活性が高まる。そこで、室温の混合物を、アルカリ賦活剤の活性が高まる温度まで昇温する昇温段階を設けることができる。 The heating of the mixture includes a temperature raising step for raising the temperature of the mixture from 700 ° C. to 900 ° C. from an unheated state (for example, an air temperature of about 25 ° C.), and then a temperature holding step for keeping the temperature of the mixture. It can be heating. Sodium hydroxide increases its activation activity in a high temperature range of about 700 ° C to 900 ° C. Therefore, it is possible to provide a temperature raising step for raising the temperature of the room temperature mixture to a temperature at which the activity of the alkali activator is increased.
 昇温段階の昇温条件は、賦活処理に用いられる通常の条件とすることが可能であり、1℃/分~50℃/分の範囲内であれば、賦活処理に問題は生じない。賦活処理の効率や賦活処理に用いる設備にかかる負荷等を考慮すれば、昇温条件を5℃/分~30℃/分とすることができる。 The temperature raising condition in the temperature raising stage can be a normal condition used for the activation treatment, and if it is within the range of 1 ° C./min to 50 ° C./min, there is no problem in the activation treatment. Considering the efficiency of the activation process and the load on the equipment used for the activation process, the temperature raising condition can be set to 5 ° C./min to 30 ° C./min.
 700℃~900℃程度の高温領域まで昇温後、混合物の温度を10分~2時間程、より好ましくは30分~1時間保持することにより、賦活処理が十分に進行する。 After the temperature is raised to a high temperature range of about 700 ° C. to 900 ° C., the activation process proceeds sufficiently by maintaining the temperature of the mixture for about 10 minutes to 2 hours, more preferably for 30 minutes to 1 hour.
 炭素原料の平均粒子径は、水酸化ナトリウムと混合する前に、予め調整することができる。例えば、炭素原料の平均粒子径を1μm~50μmに調整することにより、均一な賦活処理が容易となる。平均粒子径の調整は、通常の方法により行うことができ、例えば、ジェットミル、ボールミル、高圧粉砕ロールによる粉砕のほか、ディスクミル、ビーズミル等といった方法により行うことができる。 The average particle diameter of the carbon raw material can be adjusted in advance before mixing with sodium hydroxide. For example, by adjusting the average particle diameter of the carbon raw material to 1 μm to 50 μm, a uniform activation process is facilitated. The average particle diameter can be adjusted by a usual method, for example, by a method such as a jet mill, a ball mill, a high-pressure pulverizing roll, a disk mill, a bead mill, or the like.
 炭素原料と水酸化ナトリウムの混合物は、例えばボールミルヘンシェルミキサー等の機械的に混合する方法やアルカリ賦活剤を溶融状態にして混合する方法を用いて、得ることができる。特に好ましい方法としては、水酸化ナトリウムを炭素原料に配合し、その後、これらの混合物をボールミルで粉砕して混合する方法である。水酸化ナトリウムは、粉体として炭素原料と混合することが好ましい。炭素材料と水酸化ナトリウムを十分に混合すれば、均一な賦活処理が容易となる。この混合工程は、賦活処理が開始することを避けるべく、水酸化ナトリウムの賦活活性が低い室温(例えば25℃)にて行うことが好ましい。 The mixture of the carbon raw material and sodium hydroxide can be obtained by, for example, a mechanical mixing method such as a ball mill Henschel mixer or a method of mixing an alkali activator in a molten state. A particularly preferred method is a method in which sodium hydroxide is blended with the carbon raw material, and then the mixture is pulverized with a ball mill and mixed. Sodium hydroxide is preferably mixed with the carbon raw material as a powder. If the carbon material and sodium hydroxide are sufficiently mixed, uniform activation treatment is facilitated. This mixing step is preferably performed at room temperature (for example, 25 ° C.) where the activation activity of sodium hydroxide is low in order to avoid the activation process from starting.
 以上のとおり説明した活性炭は、電気二重層キャパシタやリチウムイオンキャパシタの電極に使用される。 The activated carbon described above is used for electrodes of electric double layer capacitors and lithium ion capacitors.
(6)電気二重層キャパシタ
 次に、電気二重層キャパシタについて説明する。電気二重層キャパシタは、本発明の活性炭を含む電極を備える。この電極は、例えば、本発明の活性炭と結着剤、さらに好ましくは導電剤を加えて構成され、またさらに集電体と一体化した電極であっても良い。
(6) Electric Double Layer Capacitor Next, the electric double layer capacitor will be described. The electric double layer capacitor includes an electrode including the activated carbon of the present invention. For example, the electrode may be configured by adding the activated carbon of the present invention and a binder, more preferably a conductive agent, and may be an electrode integrated with a current collector.
 結着剤としては、公知のものを使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー等のフッ素化ポリマー、カルボキシメチルセルロース等のセルロース類、ポリビニルピロリドン、ポリビニルアルコール等のビニル系ポリマー、ポリアクリル酸等が挙げられる。電極中における結着剤の含有量は特に限定されないが、本発明の活性炭と結着剤の合計量に対して、通常0.1質量%~30質量%程度の範囲内で適宜選択される。 As the binder, known ones can be used, for example, polyolefins such as polyethylene and polypropylene, fluorinated polymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymers, and carboxy. Examples thereof include celluloses such as methylcellulose, vinyl polymers such as polyvinylpyrrolidone and polyvinyl alcohol, and polyacrylic acid. The content of the binder in the electrode is not particularly limited, but is appropriately selected within the range of usually about 0.1% by mass to 30% by mass with respect to the total amount of the activated carbon and the binder of the present invention.
 導電剤としては、カーボンブラック、粉末グラファイト、酸化チタン、酸化ルテニウム等の粉末が用いられる。電極中における導電剤の配合量は、配合目的に応じて適宜選択されるが、本発明の活性炭、結着剤及び導電剤の合計量に対して、通常1質量%~50質量%、好ましくは2質量%~30質量%程度の範囲内で適宜選択される。 As the conductive agent, powders of carbon black, powder graphite, titanium oxide, ruthenium oxide, etc. are used. The blending amount of the conductive agent in the electrode is appropriately selected according to the blending purpose, but is usually 1% by mass to 50% by mass, preferably based on the total amount of the activated carbon, the binder and the conductive agent of the present invention. It is appropriately selected within the range of about 2% by mass to 30% by mass.
 本発明の活性炭、結着剤、および導電剤を混合する方法としては、公知の方法を適宜適用することができる。例えば、結着剤を溶解する性質を有する溶媒を上記活性炭、結着剤、および導電剤に加えてスラリー状としたものを集電体上に均一に塗布する方法がある。また、溶媒を加えないで上記活性炭、結着剤、および導電剤を混練し、その後に常温または加熱下で加圧成形する方法がある。 As a method of mixing the activated carbon, the binder, and the conductive agent of the present invention, a known method can be appropriately applied. For example, there is a method in which a solvent having a property of dissolving a binder is added to the activated carbon, the binder, and the conductive agent to form a slurry, which is uniformly applied on the current collector. In addition, there is a method in which the activated carbon, the binder, and the conductive agent are kneaded without adding a solvent, and then pressure-molded at room temperature or under heating.
 集電体としては、公知の材質および形状のものを使用することができる。例えば、アルミニウム、チタン、タンタル、ニッケル等の金属、あるいはステンレス等の合金を用いることができる。 As the current collector, a known material and shape can be used. For example, a metal such as aluminum, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.
 電気二重層キャパシタの単位セルは、一般に上記電極を正極及び負極として一対用い、セパレータ(ポリプロピレン繊維不織布、ガラス繊維不織布、合成セルロース紙等)を介して対向させ、電解液中に浸漬することによって形成される。 A unit cell of an electric double layer capacitor is generally formed by using a pair of the above electrodes as a positive electrode and a negative electrode, facing each other through a separator (polypropylene fiber nonwoven fabric, glass fiber nonwoven fabric, synthetic cellulose paper, etc.), and immersing in an electrolytic solution. Is done.
 電解液としては、公知の水系電解液、有機系電解液を使用することができる。電解液として、有機系電解液を用いることがより好ましい。このような有機系電解液としては、電気化学の電解液の溶媒として使用されているものを用いることができる。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、スルホラン誘導体、3-メチルスルホラン、1,2-ジメトキシエタン、アセトニトリル、グルタロニトリル、バレロニトリル、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、ジメトキシエタン、メチルフォルメート、ジメチルカーボネート、ジエチルカーボネート、およびエチルメチルカーボネート等を挙げることができる。なお、これらの電解液は混合して使用することができる。 As the electrolytic solution, a known aqueous electrolytic solution or organic electrolytic solution can be used. More preferably, an organic electrolyte is used as the electrolyte. As such an organic electrolytic solution, one used as a solvent for an electrochemical electrolytic solution can be used. For example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, sulfolane derivatives, 3-methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile, valeronitrile, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, dimethoxy Examples include ethane, methyl formate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. In addition, these electrolyte solutions can be mixed and used.
 また、有機電解液中の支持電解質としては、特に限定されないが、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類等の各種のものが使用できる。例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩、4級アンモニウム塩、環状4級アンモニウム塩、4級ホスホニウム塩等が挙げられ、(CNBF、(C(CH)NBF、(CPBF、および(C(CH)PBF等が好ましいものとして挙げられる。 Further, the supporting electrolyte in the organic electrolyte is not particularly limited, and various kinds of salts, acids, alkalis, and the like that are usually used in the field of electrochemistry or the field of batteries can be used. Examples include inorganic ion salts such as alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, quaternary phosphonium salts, and the like. (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 2 H 5 ) 3 (CH 3 ) PBF 4 and the like are preferable.
 電解液中のこれらの塩の濃度は、通常0.1mol/l~5mol/l、好ましくは0.5mol/l~3mol/l程度の範囲内で適宜選択される。電気二重層キャパシタのより具体的な構成は特に限定されないが、例えば、厚さ10μm~500μmの薄いシート状またはディスク状の一対の電極(正極と負極)の間にセパレータを介して金属ケースに収容したコイン型、一対の電極を、セパレータを介して捲回してなる捲回型、セパレータを介して多数の電極群を積み重ねた積層型等が挙げられる。 The concentration of these salts in the electrolytic solution is appropriately selected within the range of usually about 0.1 mol / l to 5 mol / l, preferably about 0.5 mol / l to 3 mol / l. The specific configuration of the electric double layer capacitor is not particularly limited. For example, the electric double layer capacitor is accommodated in a metal case via a separator between a pair of thin sheet or disk electrodes (positive electrode and negative electrode) having a thickness of 10 μm to 500 μm. A coin type, a wound type in which a pair of electrodes are wound through a separator, and a stacked type in which a large number of electrode groups are stacked through a separator.
(7)リチウムイオンキャパシタ
 次に、リチウムイオンキャパシタについて説明する。リチウムイオンキャパシタは、本発明の活性炭を含む正極とリチウムイオンを吸放出可能な負極を備える。正極は、例えば、本発明の活性炭と結着剤、さらに好ましくは導電剤を加えて構成される。負極は、例えば、ハードカーボンと結着材、導電剤を加えて構成される。正極および負極ともに、集電体と一体化した電極であっても良い。
(7) Lithium Ion Capacitor Next, a lithium ion capacitor will be described. The lithium ion capacitor includes a positive electrode including the activated carbon of the present invention and a negative electrode capable of absorbing and releasing lithium ions. The positive electrode is constituted, for example, by adding the activated carbon of the present invention and a binder, more preferably a conductive agent. The negative electrode is configured by adding, for example, hard carbon, a binder, and a conductive agent. Both the positive electrode and the negative electrode may be electrodes integrated with the current collector.
 正極結着剤としては、公知のものを使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー等のフッ素化ポリマー、カルボキシメチルセルロース等のセルロース類、スチレンブダジエンゴム類、ポリビニルピロリドン、ポリビニルアルコール等のビニル系ポリマー、ポリアクリル酸等が挙げられる。電極中における結着剤の含有量は、特に限定されないが、本発明の活性炭と結着剤の合計量に対して、通常0.1質量%~30質量%程度の範囲内で適宜選択される。 As the positive electrode binder, known materials can be used, for example, polyolefins such as polyethylene and polypropylene, fluorinated polymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymers, Examples thereof include celluloses such as carboxymethyl cellulose, styrene-butadiene rubbers, vinyl polymers such as polyvinyl pyrrolidone and polyvinyl alcohol, and polyacrylic acid. The content of the binder in the electrode is not particularly limited, but is appropriately selected within a range of usually about 0.1% by mass to 30% by mass with respect to the total amount of the activated carbon and the binder of the present invention. .
 正極導電剤としては、カーボンブラック、粉末グラファイト、酸化チタン等の粉末が用いられる。電極中における導電剤の配合量は、配合目的に応じて適宜選択される。電極中における導電剤の含有量は、本発明の活性炭、結着剤及び導電剤の合計量に対して、通常1質量%~50質量%、好ましくは2質量%~30質量%程度の範囲内で適宜選択される。 As the positive electrode conductive agent, powders such as carbon black, powdered graphite, and titanium oxide are used. The blending amount of the conductive agent in the electrode is appropriately selected according to the blending purpose. The content of the conductive agent in the electrode is usually in the range of about 1% to 50% by weight, preferably about 2% to 30% by weight, based on the total amount of the activated carbon, the binder and the conductive agent of the present invention. Is appropriately selected.
 本発明の活性炭、結着剤、および導電剤を混合する方法としては、公知の方法を適宜適用することができる。例えば、結着剤を溶解する性質を有する溶媒を上記活性炭、結着剤、および導電剤に加えてスラリー状としたものを集電体上に均一に塗布する方法がある。また、溶媒を加えないで上記活性炭、結着剤、および導電剤を混練し、その後に常温または加熱下で加圧成形する方法がある。 As a method of mixing the activated carbon, the binder, and the conductive agent of the present invention, a known method can be appropriately applied. For example, there is a method in which a solvent having a property of dissolving a binder is added to the activated carbon, the binder, and the conductive agent to form a slurry, which is uniformly applied on the current collector. In addition, there is a method in which the activated carbon, the binder, and the conductive agent are kneaded without adding a solvent, and then pressure-molded at room temperature or under heating.
 正極集電体としては、公知の材質および形状のものを使用することができる。例えば、アルミニウム、チタン、タンタル、ニッケル等の金属、あるいはステンレス等の合金を用いることができる。 A known material and shape can be used as the positive electrode current collector. For example, a metal such as aluminum, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.
 負極活物質としては、リチウムイオンを吸放出可能な公知のものを使用することができる。例えば、ハードカーボン、コークス、黒鉛、ポリオレフィン等の有機化合物もしくはチタン酸リチウム等の構造にリチウムを含む無機化合物などである。粒子径としては、電極成形の都合から0.01μm~100μm程度が望ましく、より好ましくは0.1μm~30μmである。 As the negative electrode active material, a known material capable of absorbing and releasing lithium ions can be used. Examples thereof include organic compounds such as hard carbon, coke, graphite and polyolefin, or inorganic compounds containing lithium in the structure such as lithium titanate. The particle diameter is preferably about 0.01 μm to 100 μm, more preferably 0.1 μm to 30 μm for convenience of electrode forming.
 負極結着剤としては、公知のものを使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー等のフッ素化ポリマー、カルボキシメチルセルロース等のセルロース類、スチレンブダジエンゴム類、ポリビニルピロリドン、ポリビニルアルコール等のビニル系ポリマー、ポリアクリル酸等が挙げられる。電極中における結着剤の含有量は特に限定されないが、本発明の活性炭と結着剤の合計量に対して、通常0.1質量%~30質量%程度の範囲内で適宜選択される。 As the negative electrode binder, known materials can be used, for example, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, fluorinated polymers such as fluoroolefin / vinyl ether copolymer crosslinked polymers, Examples thereof include celluloses such as carboxymethyl cellulose, styrene-butadiene rubbers, vinyl polymers such as polyvinyl pyrrolidone and polyvinyl alcohol, and polyacrylic acid. The content of the binder in the electrode is not particularly limited, but is appropriately selected within the range of usually about 0.1% by mass to 30% by mass with respect to the total amount of the activated carbon and the binder of the present invention.
 負極導電剤としては、カーボンブラック、粉末グラファイト、酸化チタン等の粉末が用いられる。負極への導電助剤添加は必須ではなく、電極中における導電剤の配合量は、配合目的に応じて適宜選択されるが、負極活物質、結着剤及び導電剤の合計量に対して、1質量%~50質量%、好ましくは2質量%~30質量%程度の範囲内で適宜選択される。 As the negative electrode conductive agent, powders such as carbon black, powdered graphite and titanium oxide are used. The addition of the conductive auxiliary agent to the negative electrode is not essential, and the blending amount of the conductive agent in the electrode is appropriately selected according to the blending purpose, but with respect to the total amount of the negative electrode active material, the binder and the conductive agent, It is appropriately selected within the range of about 1 to 50% by mass, preferably about 2 to 30% by mass.
 負極活物質、結着剤、および導電剤を混合する方法としては、公知の方法を適宜適用することができる。例えば、結着剤を溶解する性質を有する溶媒を上記活性炭、結着剤、および導電剤に加えてスラリー状としたものを集電体上に均一に塗布する方法がある。また、溶媒を加えないで上記活性炭、結着剤、および導電剤を混練し、その後に常温または加熱下で加圧成形する方法がある。 As a method of mixing the negative electrode active material, the binder, and the conductive agent, a known method can be appropriately applied. For example, there is a method in which a solvent having a property of dissolving a binder is added to the activated carbon, the binder, and the conductive agent to form a slurry, which is uniformly applied on the current collector. In addition, there is a method in which the activated carbon, the binder, and the conductive agent are kneaded without adding a solvent, and then pressure-molded at room temperature or under heating.
 負極集電体としては、公知の材質および形状のものを使用することができる。例えば、銅、チタン、タンタル、ニッケル等の金属、あるいはステンレス等の合金を用いることができる。 As the negative electrode current collector, known materials and shapes can be used. For example, a metal such as copper, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.
 リチウムイオンキャパシタに用いる負極の場合、初めて充電する前に、予めリチウムイオンを負極へプレドーピングしておく必要がある。プレドーピングの方法は、不活性雰囲気においてリチウム金属等のリチウム源と負極を接触させる方法と、リチウムが存在する溶液中で電気化学的にプレドーピングを行う方法がある。本発明の実施においては、特に限定されるものではなく、いずれの方法も用いることができる。また、プレドーピングを行う工程については、正極、電解液およびセパレータをケースに収めるセル組立前と、セル組立後の、どちらに実施してもよい。例えば、チタン酸リチウムのような、予め構造にリチウムを含む化合物を負極に用いる場合は、プレドーピングは必須ではない。 In the case of a negative electrode used for a lithium ion capacitor, it is necessary to pre-dope lithium ions into the negative electrode before charging for the first time. As a pre-doping method, there are a method of bringing a lithium source such as lithium metal into contact with a negative electrode in an inert atmosphere, and a method of performing electrochemical pre-doping in a solution containing lithium. In the practice of the present invention, there is no particular limitation, and any method can be used. In addition, the pre-doping step may be performed either before or after the cell assembly in which the positive electrode, the electrolyte, and the separator are housed in the case. For example, when a compound containing lithium in the structure in advance, such as lithium titanate, is used for the negative electrode, pre-doping is not essential.
 リチウムイオンキャパシタの単位セルは、一般に上記の正極及び負極を一対用い、セパレータを介して対向させ、電解液中に浸漬することによって形成される。セパレータの素材としては、ポリプロピレン繊維不織布、ガラス繊維不織布、合成セルロース紙等を用いることができる。 A unit cell of a lithium ion capacitor is generally formed by using a pair of the positive electrode and the negative electrode, facing each other through a separator, and immersing in an electrolytic solution. As a material for the separator, polypropylene fiber nonwoven fabric, glass fiber nonwoven fabric, synthetic cellulose paper, or the like can be used.
 電解液としては、公知の水系電解液、有機系電解液を使用することができる。電解液として、有機系電解液を用いることがより好ましい。このような有機系電解液としては、電気化学の電解液の溶媒として使用されているものを用いることができる。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、スルホラン誘導体、3-メチルスルホラン、1,2-ジメトキシエタン、アセトニトリル、グルタロニトリル、バレロニトリル、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、ジメトキシエタン、メチルフォルメート、ジメチルカーボネート、ジエチルカーボネート、およびエチルメチルカーボネート等を挙げることができる。なお、これらの電解液は混合して使用することができる。 As the electrolytic solution, a known aqueous electrolytic solution or organic electrolytic solution can be used. More preferably, an organic electrolyte is used as the electrolyte. As such an organic electrolytic solution, one used as a solvent for an electrochemical electrolytic solution can be used. For example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, sulfolane derivatives, 3-methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile, valeronitrile, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, dimethoxy Examples include ethane, methyl formate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. In addition, these electrolyte solutions can be mixed and used.
 また、有機電解液中の支持電解質としては、特に限定されないが、一般的には各種リチウム塩を使用することができる。リチウム塩としては、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、LiN(CFSO、LiN(CSO等がある。 Further, the supporting electrolyte in the organic electrolytic solution is not particularly limited, but in general, various lithium salts can be used. Lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) There are 2 etc.
 電解液中のこれらの塩の濃度は、通常0.1mol/l~5mol/l、好ましくは0.5mol/l~3mol/l程度の範囲内で適宜選択される。リチウムイオンキャパシタのより具体的な構成は、特に限定されないが、例えば、厚さ10μm~500μmの薄いシート状またはディスク状の一対の電極(正極と負極)の間にセパレータを介して金属ケースに収容したコイン型、一対の電極を、セパレータを介して捲回してなる捲回型、セパレータを介して多数の電極群を積み重ねた積層型等が挙げられる。 The concentration of these salts in the electrolytic solution is appropriately selected within the range of usually about 0.1 mol / l to 5 mol / l, preferably about 0.5 mol / l to 3 mol / l. The specific configuration of the lithium ion capacitor is not particularly limited. For example, the lithium ion capacitor is accommodated in a metal case via a separator between a pair of thin sheet or disk electrodes (positive electrode and negative electrode) having a thickness of 10 μm to 500 μm. A coin type, a wound type in which a pair of electrodes are wound through a separator, and a stacked type in which a large number of electrode groups are stacked through a separator.
 以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 実施例において用いた分析方法は、下記のとおりである。
<酸素含有量、水素原子/炭素原子比>
 元素分析装置((株)住化分析センター製、NCH-22F型)を用いて試料の炭素含有量(質量%)、水素含有量(質量%)および窒素含有量(質量%)を求めた残りから、蛍光X線分析装置((株)テクノエックス製、WED-100)を用いて、蛍光X線法により各々の元素の検量線から含有量を算出したリン量を差し引いたものを、酸素含有量(質量%)とした。また、上記の炭素含有量、水素含有量から、水素原子と炭素原子とのモル比(H/C)を算出した。
The analysis methods used in the examples are as follows.
<Oxygen content, hydrogen atom / carbon atom ratio>
Remaining carbon content (mass%), hydrogen content (mass%) and nitrogen content (mass%) of the sample using an elemental analyzer (manufactured by Sumika Chemical Analysis Co., Ltd., NCH-22F type) Using the X-ray fluorescence analyzer (manufactured by Techno-X Co., Ltd., WED-100), the phosphorous content calculated by subtracting the phosphorus content calculated from the calibration curve of each element by the fluorescent X-ray method Amount (mass%). Moreover, the molar ratio (H / C) of a hydrogen atom and a carbon atom was computed from said carbon content and hydrogen content.
<比表面積>
 自動比表面積測定装置(日本ベル(株)製、BELSORP-miniII型)を用いて、窒素ガス吸着より求めた吸着等温線からBET法で算出した。
<Specific surface area>
Using an automatic specific surface area measuring device (BELSORP-mini II type, manufactured by Nippon Bell Co., Ltd.), the BET method was used to calculate the adsorption isotherm obtained from nitrogen gas adsorption.
<平均粒子径>
 レーザー回折式粒度分布測定装置((株)堀場製作所製、LA-950型)を用いて、水を分散媒として少量の界面活性剤を添加し超音波を照射した後、測定した。得られた体積基準の粒度積分曲線より50%粒子径(平均粒子径)を求めた。
<Average particle size>
Using a laser diffraction particle size distribution measuring device (LA-950, manufactured by Horiba, Ltd.), a small amount of a surfactant was added using water as a dispersion medium, and the measurement was performed after irradiating ultrasonic waves. The 50% particle diameter (average particle diameter) was determined from the obtained volume-based particle size integration curve.
<ナトリウム、リン含有量>
 蛍光X線分析装置((株)テクノエックス製、WED-100)を用いて、蛍光X線法によりナトリウムおよびリンの検量線から、それぞれの含有量を算出した。
<Sodium and phosphorus content>
Using a fluorescent X-ray analyzer (manufactured by Techno-X Co., Ltd., WED-100), the respective contents were calculated from calibration curves of sodium and phosphorus by the fluorescent X-ray method.
[活性炭の製造]
[実施例1]
 出発原料として石油生コークスを使用し、活性炭の炭素原料を製造した。石油生コークスを粉砕し易いように2mm以下に粒度調整し、ロータリーキルンを用いて窒素ガスによる不活性雰囲気にて600℃で1時間加熱し、炭化処理して炭化コークスとした(炭化工程)。得られた炭化コークスを、ジェットミルで平均粒子径が8μmとなるように粉砕した。炭化コークスと85質量%濃度のリン酸水溶液の質量比が1:5となるように、85質量%濃度のリン酸水溶液に炭化コークスを加え、撹拌しながら120℃で1時間加熱して酸化物を得た(酸化工程)。得られた酸化物を、純水で数回洗浄し(洗浄工程)、その後100℃で乾燥させて活性炭の炭素原料を得た。続いて、得られた活性炭の炭素原料を用いて、活性炭を製造した。活性炭の炭素原料と水酸化ナトリウムの質量比が1:2.8となるように、得られた炭素原料に対して水酸化ナトリウムを加えてボールミルで30分間混合し、混合物を得た(混合工程)。得られた混合物をニッケル製の容器に充填してセラミック電気炉内に設置し、炉内に窒素ガスをパージして不活性雰囲気下とした後、20℃/分の昇温条件にて、電気炉を室温から750℃まで昇温し、炉内温度が750℃となった時間から30分間750℃を保持し、賦活処理を行った(賦活処理工程)。賦活処理後、電気炉の加熱を停止し、窒素ガス雰囲気下にて自然冷却した。170℃未満まで冷却後、賦活物を電気炉から取り出し、賦活物を水洗および塩酸水による酸洗浄を繰り返して、残存する不純物を除去後、乾燥することにより、実施例1の活性炭を得た。
[Manufacture of activated carbon]
[Example 1]
Using raw petroleum coke as a starting material, a carbon raw material for activated carbon was produced. The oil raw coke was adjusted to a particle size of 2 mm or less so as to be easily pulverized, heated at 600 ° C. in an inert atmosphere with nitrogen gas for 1 hour using a rotary kiln, and carbonized to obtain carbonized coke (carbonization step). The obtained carbonized coke was pulverized by a jet mill so that the average particle size was 8 μm. Carbonized coke is added to 85 mass% phosphoric acid aqueous solution so that the mass ratio of carbonized coke to 85 mass% phosphoric acid aqueous solution is 1: 5, and heated at 120 ° C. for 1 hour with stirring. Was obtained (oxidation step). The obtained oxide was washed several times with pure water (washing step) and then dried at 100 ° C. to obtain a carbon raw material for activated carbon. Then, activated carbon was manufactured using the carbon raw material of the obtained activated carbon. Sodium hydroxide was added to the obtained carbon raw material so that the mass ratio of the carbon raw material of activated carbon and sodium hydroxide was 1: 2.8, and the mixture was mixed for 30 minutes with a ball mill (mixing step). ). The obtained mixture was filled in a nickel container and placed in a ceramic electric furnace, and after purging nitrogen gas in the furnace to an inert atmosphere, The temperature of the furnace was raised from room temperature to 750 ° C., and the activation treatment was performed by maintaining the temperature at 750 ° C. for 30 minutes from the time when the temperature in the furnace reached 750 ° C. (activation treatment step). After the activation treatment, heating of the electric furnace was stopped, and natural cooling was performed in a nitrogen gas atmosphere. After cooling to below 170 ° C., the activated product was taken out from the electric furnace, and the activated product was repeatedly washed with water and acid washed with hydrochloric acid to remove residual impurities, and then dried to obtain activated carbon of Example 1.
[実施例2]
 トリフェニルホスフェートを12質量%含有し、残部が酢酸セルロースである混合物のフレーク状粉砕品を出発原料とし、活性炭の炭素原料を製造した。混合物中のリン量は、約1質量%である。出発原料を耐熱容器に入れ、その容器を温度計、酸素ガス検出器、窒素ガス導入口、およびガス排気口を具備するバッチ式電気炉に入れた。次いで、窒素ガス導入口に窒素ガスを2.0L/分の供給量で供給して、電気炉内および耐熱容器内を不活性雰囲気下とし、耐熱容器の内部温度が350℃となるまで昇温し、その温度のまま3時間45分保持して混合物を炭化させた(炭化工程)。加熱処理後、室温まで放冷して炭化物を耐熱容器より取り出した。得られた炭化物を、サイクロンミルで平均粒子径が8μmとなるように粉砕し、活性炭の炭素原料を得た。続いて、得られた活性炭の炭素原料を用いて、活性炭を製造した。炭素原料と水酸化ナトリウムの混合比率が質量比で1:2.8となるように、ボールミルで30分間混合し、混合物を得た(混合工程)。得られた混合物を用いて、実施例1と同様の条件により賦活処理工程、洗浄、および乾燥を行い、実施例2の活性炭を得た。
[Example 2]
A carbon raw material for activated carbon was produced using a flaky ground product of a mixture containing 12% by mass of triphenyl phosphate and the balance of cellulose acetate as the starting material. The amount of phosphorus in the mixture is about 1% by weight. The starting material was put in a heat-resistant container, and the container was put in a batch electric furnace equipped with a thermometer, an oxygen gas detector, a nitrogen gas inlet, and a gas exhaust port. Next, nitrogen gas is supplied to the nitrogen gas inlet at a supply rate of 2.0 L / min to bring the inside of the electric furnace and the heat-resistant container to an inert atmosphere, and the temperature is raised until the internal temperature of the heat-resistant container reaches 350 ° C. Then, the temperature was maintained for 3 hours and 45 minutes to carbonize the mixture (carbonization step). After the heat treatment, the mixture was allowed to cool to room temperature and the carbide was taken out from the heat-resistant container. The obtained carbide was pulverized with a cyclone mill so that the average particle size became 8 μm, and a carbon raw material for activated carbon was obtained. Then, activated carbon was manufactured using the carbon raw material of the obtained activated carbon. The mixture was obtained with a ball mill for 30 minutes so that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 2.8 in terms of mass ratio (mixing step). Using the obtained mixture, an activation treatment process, washing, and drying were performed under the same conditions as in Example 1, and activated carbon of Example 2 was obtained.
[実施例3]
 炭素原料と水酸化ナトリウムの混合比率を質量比で1:2.4とした他は、実施例2と同様の製造条件により、実施例3の活性炭を得た。
[Example 3]
Activated carbon of Example 3 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 2.4 by mass ratio.
[実施例4]
 炭素原料と水酸化ナトリウムの混合比率を質量比で1:2.0とした他は、実施例2と同様の製造条件により、実施例4の活性炭を得た。
[Example 4]
Activated carbon of Example 4 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 2.0 by mass ratio.
[実施例5]
 炭素原料と水酸化ナトリウムの混合比率を質量比で1:1.6とした他は、実施例2と同様の製造条件により、実施例5の活性炭を得た。
[Example 5]
Activated carbon of Example 5 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 1.6.
[実施例6]
 炭素原料と水酸化ナトリウムの混合比率を質量比で1:2.2とし、賦活処理工程の温度を800℃とした他は、実施例2と同様の製造条件により、実施例6の活性炭を得た。
[Example 6]
The activated carbon of Example 6 is obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide is 1: 2.2 by mass ratio, and the temperature of the activation treatment process is 800 ° C. It was.
[比較例1]
 活性炭の炭素原料の出発原料として、リン化合物を添加することなく、酢酸セルロースのフレーク状粉砕品を用いた他は、実施例2と同様の製造条件で実施したが、賦活処理時に噴きこぼれが発生しサンプルを得ることができなかった。
[Comparative Example 1]
The starting material for the carbon material of the activated carbon was the same as in Example 2 except that a pulverized pulverized product of cellulose acetate was used without adding a phosphorus compound, but spilling occurred during the activation process. I couldn't get a sample.
[比較例2]
 リン化合物を添加することなく、東南アジア原産の椰子系セルロース炭化物を活性炭の炭素原料とした。セルロース炭化物を粉砕し易いように2mm以下に篩を用いて粒度調整し、ボールミルを用いて平均粒子径が7μm程度まで粉砕した。水酸化ナトリウムとの混合工程以降の工程は、実施例2と同様の製造条件で実施したが、賦活処理時に噴きこぼれが発生しサンプルを得ることができなかった。
[Comparative Example 2]
Without adding a phosphorus compound, coconut-based cellulose carbide originating in Southeast Asia was used as a carbon raw material for activated carbon. In order to make it easy to grind cellulose carbide, the particle size was adjusted to 2 mm or less using a sieve, and the average particle size was ground to about 7 μm using a ball mill. The steps after the mixing step with sodium hydroxide were carried out under the same production conditions as in Example 2. However, spraying occurred during the activation treatment, and a sample could not be obtained.
[比較例3]
 実施例2と同様の活性炭の炭素原料と水酸化ナトリウムの混合物を使用し、活性炭を製造した。混合物をアルミナボートに充填してセラミック管状電気炉内に設置して密閉した。管状電気炉に、毎分1000cmの炭酸ガスを流通させ、4℃/分の昇温条件にて、電気炉を室温から900℃まで昇温し、炉内温度が900℃となった時間から60分間900℃を保持し、賦活処理を行った。賦活処理後、電気炉の加熱を停止し、窒素ガス雰囲気に切り替えて室温となるまで自然冷却した。得られた賦活物を45μmの篩でふるって、比較例3の活性炭を得た。
[Comparative Example 3]
Activated carbon was produced using the same mixture of activated carbon carbon material and sodium hydroxide as in Example 2. The mixture was filled in an alumina boat and placed in a ceramic tubular electric furnace and sealed. From the time when the electric furnace was heated from room temperature to 900 ° C. under a temperature rising condition of 4 ° C./min by passing 1000 cm 3 of carbon dioxide gas through the tubular electric furnace, and the temperature in the furnace became 900 ° C. The activation process was performed by maintaining 900 ° C. for 60 minutes. After the activation treatment, the heating of the electric furnace was stopped, and it was naturally cooled to room temperature by switching to a nitrogen gas atmosphere. The activated material obtained was sieved with a 45 μm sieve to obtain activated carbon of Comparative Example 3.
[比較例4]
 リン化合物を加える酸化工程を実施することなく、炭化コークスを活性炭の炭素原料とし、実施例1と同様の製造条件により活性炭を製造し、比較例4の活性炭を得た。
[Comparative Example 4]
Without carrying out the oxidation step of adding a phosphorus compound, carbonized coke was used as a carbon raw material for activated carbon, and activated carbon was produced under the same production conditions as in Example 1 to obtain activated carbon of Comparative Example 4.
[比較例5]
 水酸化ナトリウムに代えて水酸化カリウムを賦活剤とし、炭素原料と水酸化カリウムの混合比率を質量比で1:2.4とした他は、実施例2と同様の製造条件により、比較例5の活性炭を得た。
[Comparative Example 5]
Comparative Example 5 was carried out under the same production conditions as in Example 2, except that potassium hydroxide was used as the activator instead of sodium hydroxide, and the mixing ratio of the carbon raw material and potassium hydroxide was 1: 2.4. Of activated carbon was obtained.
[比較例6]
 炭素原料と水酸化ナトリウムの混合比率を質量比で1:1.2とした他は、実施例2と同様の製造条件により、比較例6の活性炭を得た。
[Comparative Example 6]
Activated carbon of Comparative Example 6 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 1.2 by mass ratio.
[比較例7]
 炭素原料と水酸化ナトリウムの混合比率を質量比で1:4.0とした他は、実施例2と同様の製造条件により、比較例7の活性炭を得た。
[Comparative Example 7]
Activated carbon of Comparative Example 7 was obtained under the same production conditions as in Example 2 except that the mixing ratio of the carbon raw material and sodium hydroxide was 1: 4.0 by mass ratio.
[比較例8]
 出発原料の炭化工程において、耐熱容器の内部温度が310℃となるまで昇温した後に保持し、炭素原料とアルカリの混合工程において炭素原料と水酸化ナトリウムの混合比率を質量比で1:2.2とした他は、実施例2と同様の製造条件で実施したが、賦活処理時に噴きこぼれが発生しサンプルを得ることができなかった。
[Comparative Example 8]
In the carbonization step of the starting material, the temperature is increased and maintained until the internal temperature of the heat-resistant container reaches 310 ° C., and the mixing ratio of the carbon material and sodium hydroxide in the mixing step of the carbon material and alkali is 1: 2. Except for 2, it was carried out under the same production conditions as in Example 2. However, spraying occurred during the activation treatment, and a sample could not be obtained.
 実施例1~6、および比較例1~8において活性炭を製造した際の、出発原料、製造した活性炭の炭素原料の物性、賦活条件、活性炭の物性を表1に示す。 Table 1 shows the properties of the starting materials, the carbon materials of the activated carbon produced, the activation conditions, and the properties of the activated carbon when activated carbon was produced in Examples 1 to 6 and Comparative Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[ラミネートセルの作製]
 実施例1~6および比較例1~8で製造した活性炭を使用して電気二重層キャパシタを作製した。活性炭86重量部に対して導電助材としてカーボンブラック(ライオン(株)製、ECP600JD)7重量部、結着材として顆粒状ポリテトラフルオロエチレン(ダイキン工業(株)製、PTFEポリフロンF-104)7重量部、および水を加えてメノウ乳鉢を用いて混合し、ロールプレス機を用いて厚みが150μmになるまで混合物をプレスしてシート化し、炭素電極シートを作製した。この炭素電極シートを14mm×20mmの寸法に切り出し、アルミニウム集電体に貼りつけて電極とした。図1に示すように、作製した2枚の電極を正極2、負極3とし、これらの電極に集電体4を貼り付け、セルロースセパレータ5(ニッポン高度紙工業(株)製、TF40-50)を挟んで対向させ、外側をラミネートフィルム6で被覆して電解液を注液し、ヒートシーラーで封口することで、ラミネートセル1を作製した。電解液として1.5Mのトリエチルメチルアンモニウムテトラフルオロボレート(TEMA-BF)のプロピレンカーボネート(PC)溶液を用いた。
[Production of laminate cell]
Electric double layer capacitors were produced using the activated carbon produced in Examples 1 to 6 and Comparative Examples 1 to 8. 7 parts by weight of carbon black (manufactured by Lion Corporation, ECP600JD) and 86 parts by weight of activated carbon as a conductive additive, granular polytetrafluoroethylene as a binder (manufactured by Daikin Industries, Ltd., PTFE Polyflon F-104) 7 parts by weight and water were added and mixed using an agate mortar, and the mixture was pressed into a sheet using a roll press machine until the thickness became 150 μm to prepare a carbon electrode sheet. This carbon electrode sheet was cut into a size of 14 mm × 20 mm and attached to an aluminum current collector to form an electrode. As shown in FIG. 1, the prepared two electrodes are a positive electrode 2 and a negative electrode 3, and a current collector 4 is attached to these electrodes, and a cellulose separator 5 (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TF40-50). The laminate cell 1 was manufactured by covering the outside with a laminate film 6, injecting an electrolytic solution, and sealing with a heat sealer. A 1.5M triethylmethylammonium tetrafluoroborate (TEMA-BF 4 ) solution in propylene carbonate (PC) was used as the electrolyte.
[キャパシタの静電容量評価]
 ラミネートセルのキャパシタ性能を評価するべく、電極密度、20℃および-30℃での静電容量を測定した。電極密度は、シート重量と縦横寸法×厚さを測定して求めた。静電容量(C)は、キャパシタに蓄えられる全放電エネルギー量(U)を測定し、その値からエネルギー換算法により求めた。静電容量の算出式として、式(1)を下記に示す。キャパシタの全放電エネルギー量は、キャパシタを0Vから2.8Vまで3.6mA/cmの電流で定電流定電圧充電し、所定時間の休止後、3.6mA/cmの電流で0Vまで定電流放電させることによって求めた。また、充放電の関係について、縦軸を電圧(V)、横軸を時間(S)とするグラフを図2に示す。
[Capacitance evaluation of capacitors]
In order to evaluate the capacitor performance of the laminate cell, the electrode density, capacitance at 20 ° C. and −30 ° C. were measured. The electrode density was determined by measuring the sheet weight and the vertical and horizontal dimensions × thickness. The capacitance (C) was obtained by measuring the total amount of discharge energy (U) stored in the capacitor and calculating the value by the energy conversion method. Formula (1) is shown below as a formula for calculating the capacitance. The total discharge energy amount of the capacitor is constant voltage and constant voltage charging with a current of 3.6 mA / cm 2 from 0 V to 2.8 V, and after a predetermined time of rest, it is fixed to 0 V with a current of 3.6 mA / cm 2. Obtained by current discharge. Further, regarding the charge / discharge relationship, FIG. 2 shows a graph in which the vertical axis represents voltage (V) and the horizontal axis represents time (S).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 実施例1~6、および比較例1~8の活性炭を用いて作成したラミネートセルの電極密度および静電容量の結果を表2に示す。  Table 2 shows the electrode density and capacitance results of the laminate cells prepared using the activated carbons of Examples 1 to 6 and Comparative Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~実施例6の活性炭を使用したラミネートセルは、-30℃の低温条件下でも20℃条件下の90%以上の静電容量を発揮した(表2)。 The laminate cells using the activated carbons of Examples 1 to 6 exhibited a capacitance of 90% or more under 20 ° C. conditions even at a low temperature of −30 ° C. (Table 2).
 比較例1、比較例2および比較例8の場合は、賦活処理の際に混合物が容器から噴きこぼれてしまい、活性炭を得ることができなかった。比較例3~比較例6の活性炭を使用したラミネートセルは、-30℃条件下の静電容量が20℃条件下の静電容量よりも劣る結果となった。また、比較例7の活性炭を使用したラミネートセルは、-30℃の低温条件下でも20℃条件下の96%の静電容量を発揮したものの、活性炭の比表面積が大きいことに起因して、電極密度が実用的な水準(約0.40g/cm)よりも小さくなった。 In the case of Comparative Example 1, Comparative Example 2, and Comparative Example 8, the mixture was ejected from the container during the activation process, and activated carbon could not be obtained. The laminate cells using the activated carbons of Comparative Examples 3 to 6 had a result that the capacitance under the −30 ° C. condition was inferior to the capacitance under the 20 ° C. condition. In addition, the laminate cell using the activated carbon of Comparative Example 7 exhibited 96% capacitance under the low temperature condition of −30 ° C. even under the low temperature condition of −30 ° C., but due to the large specific surface area of the activated carbon, The electrode density was smaller than the practical level (about 0.40 g / cm 3 ).
 本発明によれば、低温条件下でも十分に高い静電容量を発揮することができるキャパシタ電極を提供することができるため、産業上有用である。 According to the present invention, a capacitor electrode that can exhibit a sufficiently high capacitance even under a low temperature condition can be provided, which is industrially useful.
 1 ラミネートセル
 2 正極
 3 負極
 4 集電体
 5 セパレータ
 6 ラミネートフィルム
 
 
DESCRIPTION OF SYMBOLS 1 Laminate cell 2 Positive electrode 3 Negative electrode 4 Current collector 5 Separator 6 Laminate film

Claims (8)

  1.  ナトリウムの含有量が20ppm以上4000ppm未満であり、
     リンの含有量が100ppm以上2000ppm未満であり、
     レーザー散乱式粒度分布計で測定した平均粒子径が1μm以上50μm未満であり、
     BET比表面積が1400m/g以上3300m/g未満である、キャパシタ用活性炭。
    The content of sodium is 20 ppm or more and less than 4000 ppm,
    The phosphorus content is 100 ppm or more and less than 2000 ppm,
    The average particle size measured with a laser scattering particle size distribution meter is 1 μm or more and less than 50 μm,
    Activated carbon for capacitors having a BET specific surface area of 1400 m 2 / g or more and less than 3300 m 2 / g.
  2.  請求項1に記載のキャパシタ用活性炭を製造するための炭素原料であって、
     リンの含有量が0.3質量%~2.0質量%であり、
     酸素の含有量が10質量%以上30質量%未満であり、
     水素原子と炭素原子とのモル比H/Cが0.05~0.54であり、
     BET比表面積が100m/g以上600m/g未満である、炭素原料。
    A carbon raw material for producing the capacitor activated carbon according to claim 1,
    The phosphorus content is 0.3% by mass to 2.0% by mass,
    The oxygen content is 10% by mass or more and less than 30% by mass,
    The molar ratio H / C of hydrogen atoms to carbon atoms is 0.05 to 0.54,
    A carbon raw material having a BET specific surface area of 100 m 2 / g or more and less than 600 m 2 / g.
  3.  請求項2に記載の炭素原料の製造方法であって、
     易黒鉛化性炭素材料を不活性雰囲気下で加熱して炭化コークスとする炭化工程と、
     前記炭化コークスにリン化合物を加えて加熱して酸化物とする酸化工程と、
     前記酸化物を洗浄する洗浄工程と
     を少なくとも含む製造方法。
    A method for producing a carbon raw material according to claim 2,
    A carbonization step in which an easily graphitizable carbon material is heated in an inert atmosphere to form carbonized coke;
    An oxidation step of adding a phosphorus compound to the carbonized coke and heating it to an oxide;
    And a cleaning step of cleaning the oxide.
  4.  請求項2に記載の炭素原料の製造方法であって、
     酢酸セルロースとリン化合物を少なくとも含む混合物を不活性雰囲気下で加熱して炭化する炭化工程
     を少なくとも含む製造方法。
    A method for producing a carbon raw material according to claim 2,
    A production method comprising at least a carbonization step of heating and carbonizing a mixture containing at least cellulose acetate and a phosphorus compound in an inert atmosphere.
  5.  前記炭化工程後の炭化物を加熱して酢酸を除去する酢酸除去工程を含む請求項4に記載の製造方法。 The production method according to claim 4, further comprising an acetic acid removing step of removing acetic acid by heating the carbide after the carbonizing step.
  6.  活性炭の製造方法であって、
     請求項2に記載の炭素原料と水酸化ナトリウムとの混合物を不活性雰囲気下で賦活処理する賦活処理工程を少なくとも含み、
     前記混合物の前記炭素原料と前記水酸化ナトリウムの質量比は1:1.5~3.5であり、
     前記活性炭は、ナトリウムの含有量が20ppm以上4000ppm未満であり、リンの含有量が100ppm以上2000ppm未満であり、レーザー散乱式粒度分布計で測定した平均粒子径が1μm以上50μm未満であり、BET比表面積が1400m/g以上3300m/g未満である、活性炭の製造方法。
    A method for producing activated carbon,
    At least an activation treatment step of activating the mixture of the carbon raw material according to claim 2 and sodium hydroxide under an inert atmosphere;
    The mass ratio of the carbon raw material to the sodium hydroxide in the mixture is 1: 1.5 to 3.5,
    The activated carbon has a sodium content of 20 ppm or more and less than 4000 ppm, a phosphorus content of 100 ppm or more and less than 2000 ppm, an average particle size measured by a laser scattering particle size distribution meter of 1 μm or more and less than 50 μm, and a BET ratio surface area of less than 1400 m 2 / g or more 3300 m 2 / g, the manufacturing method of the activated carbon.
  7.  請求項1に記載の活性炭を電極に用いた電気二重層キャパシタ。 An electric double layer capacitor using the activated carbon according to claim 1 as an electrode.
  8.  請求項1に記載の活性炭を電極に用いたリチウムイオンキャパシタ。 A lithium ion capacitor using the activated carbon according to claim 1 as an electrode.
PCT/JP2015/070417 2014-08-28 2015-07-16 Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon WO2016031423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174328 2014-08-28
JP2014174328A JP2016051728A (en) 2014-08-28 2014-08-28 Activated carbon, carbon starting material for activated carbon, and production method of activated carbon and carbon starting material for activated carbon

Publications (1)

Publication Number Publication Date
WO2016031423A1 true WO2016031423A1 (en) 2016-03-03

Family

ID=55399324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070417 WO2016031423A1 (en) 2014-08-28 2015-07-16 Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon

Country Status (2)

Country Link
JP (1) JP2016051728A (en)
WO (1) WO2016031423A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101793039B1 (en) * 2016-08-26 2017-11-02 한국세라믹기술원 Manufacturing method of electrode active material for ultracapacitor
JP6705415B2 (en) * 2017-04-13 2020-06-03 株式会社三洋物産 Amusement machine
JP6705419B2 (en) * 2017-04-13 2020-06-03 株式会社三洋物産 Amusement machine
JP2023044999A (en) * 2021-09-21 2023-04-03 株式会社デンソー Carbon dioxide recovery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012203A1 (en) * 1990-02-09 1991-08-22 Takeda Chemical Industries, Ltd. Carbonaceous material with high electrostatic capacitance
JP2005142439A (en) * 2003-11-07 2005-06-02 Honda Motor Co Ltd Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP2005294607A (en) * 2004-04-01 2005-10-20 Gun Ei Chem Ind Co Ltd Electric double-layer capacitor using activated carbon fiber and its manufacturing method
WO2012074054A1 (en) * 2010-12-03 2012-06-07 南開工業株式会社 Active carbon powder and process for production thereof, and electric double layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012203A1 (en) * 1990-02-09 1991-08-22 Takeda Chemical Industries, Ltd. Carbonaceous material with high electrostatic capacitance
JP2005142439A (en) * 2003-11-07 2005-06-02 Honda Motor Co Ltd Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP2005294607A (en) * 2004-04-01 2005-10-20 Gun Ei Chem Ind Co Ltd Electric double-layer capacitor using activated carbon fiber and its manufacturing method
WO2012074054A1 (en) * 2010-12-03 2012-06-07 南開工業株式会社 Active carbon powder and process for production thereof, and electric double layer capacitor

Also Published As

Publication number Publication date
JP2016051728A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
EP2497136B1 (en) High surface area and low structure carbon blacks for energy storage applications
KR101340194B1 (en) Original coal and stock oil composition for needle coke and for electricity storing carbon material
JP5599186B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
US10008337B2 (en) Activated carbon for an electric double-layer capacitor electrode and manufacturing method for same
KR101553716B1 (en) Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
JP4092344B2 (en) Raw material composition of carbon material for electric double layer capacitor electrode
WO2016031423A1 (en) Activated carbon, carbon starting material for activated carbon, method for producing activated carbon, and method for producing carbon starting material for activated carbon
WO2011122309A1 (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
KR20180087440A (en) Non-aqueous lithium secondary battery
JP2017135154A (en) Active carbon and method for manufacturing the same
KR20210110830A (en) Artificial graphite material, manufacturing method of artificial graphite material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2015146459A1 (en) Activated carbon, method for producing activated carbon and method for treating activated carbon
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2000228193A (en) Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP2005142439A (en) Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP2012174369A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2009260112A (en) Producing method of positive-electrode active material for electrochemical capacitor
JP2008288466A (en) Method of manufacturing non-porous carbon material for electric dipole layer capacitor
JPWO2007074938A1 (en) Raw material oil composition for carbon material for electric storage and raw material coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15837074

Country of ref document: EP

Kind code of ref document: A1