US20130309406A1 - Coat removing method of coated optical fiber and coat removing apparatus of coated optical fiber - Google Patents
Coat removing method of coated optical fiber and coat removing apparatus of coated optical fiber Download PDFInfo
- Publication number
- US20130309406A1 US20130309406A1 US13/947,686 US201313947686A US2013309406A1 US 20130309406 A1 US20130309406 A1 US 20130309406A1 US 201313947686 A US201313947686 A US 201313947686A US 2013309406 A1 US2013309406 A1 US 2013309406A1
- Authority
- US
- United States
- Prior art keywords
- optical fiber
- coated optical
- coat
- length direction
- removal blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/245—Removing protective coverings of light guides before coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/12—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
- H02G1/1202—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by cutting and withdrawing insulation
- H02G1/1248—Machines
- H02G1/1251—Machines the cutting element not rotating about the wire or cable
- H02G1/1253—Machines the cutting element not rotating about the wire or cable making a transverse cut
- H02G1/1256—Machines the cutting element not rotating about the wire or cable making a transverse cut using wire or cable-clamping means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/12—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
- H02G1/1202—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by cutting and withdrawing insulation
- H02G1/1248—Machines
- H02G1/1251—Machines the cutting element not rotating about the wire or cable
- H02G1/126—Machines the cutting element not rotating about the wire or cable making a longitudinal cut
Definitions
- the present invention relates to a coat removing method of a coated optical fiber and a coat removing apparatus of a coated optical fiber.
- a coated optical fiber i.e., an optical fiber covered with a coat must be subjected to a removal of the coat at an intermediate section of the coated optical fiber.
- a blade-using mechanical technique such as one described in Japanese Unexamined Patent Application Publication No. 2010-164697.
- the coat removing method mentioned above is carried out in a state that the coated optical fiber is held with a pair of clamps and is placed on a flat base.
- a removal blade for removing the coat is tilted at an acute angle with respect to the coated optical fiber and is moved toward the coated optical fiber until it comes in contact with the coated optical fiber.
- the removal blade is moved in a length direction of the coated optical fiber, to bite the coat of the coated optical fiber. This is carried out until an edge of the removal blade comes in contact with an outer circumferential face of the optical fiber in the coat.
- the removal blade is moved away from the optical fiber within a thickness range of the coat. With the edge being at the front in a moving direction, the removal blade is moved in the length direction of the coated optical fiber, thereby removing the coat.
- the blade-using coat removing method employs the flat base to place the coated optical fiber thereon, or a table to receive the coated optical fiber. This causes the edge of the removal blade, when moved along the coated optical fiber, to strongly hit the optical fiber in the coat due to vibration of the removal blade or a parallelism error between the table and the moving direction of the removal blade. This will deteriorate the strength of the optical fiber.
- the edge bites the coat the optical fiber is held between the edge and the table, and therefore, the movement of the removal blade must highly precisely be controlled with the use of, for example, a touch sensor.
- the coat is made of polyimide resin such as the case of a submarine optical fiber cable, the coat is very thin, for example, 15 ⁇ m and is hard, and therefore, controlling the biting amount of the edge is very difficult.
- an object of the present invention is to remove a coat without causing an edge to strongly hit an optical fiber in the coat or without highly precisely controlling a biting amount of the edge into the coat.
- a coat removing method of removing a coat of a coated optical fiber having an optical fiber covered by a coat includes holding the coated optical fiber with a pair of holders at two locations spaced by a predetermined distance in a length direction of the coated optical fiber, applying a predetermined tension to the coated optical fiber in the length direction, pressing a coat removal blade to the coated optical fiber in the tension-applied state in a direction crossing the length direction to bend the coated optical fiber, and moving the coat removal blade in the length direction along the coated optical fiber in the bent state, thereby removing the coat.
- the tension applied to the coated optical fiber in the length direction and the bending amount of the coated optical fiber i.e., the moving amount of the coat removal blade in the pressing direction with respect to the coated optical fiber may be adjusted to adjust load applied by the coat removal blade to press the coated optical fiber.
- a coat removing apparatus for removing a coat of a coated optical fiber having an optical fiber covered by a coat with the use of a coat removal blade.
- the apparatus includes a pair of holders that hold the coated optical fiber at two locations spaced by a predetermined distance in a length direction of the coated optical fiber, a tension applying unit that applies tension in the length direction to the coated optical fiber held with the holders, a first moving mechanism that moves the coat removal blade in a direction crossing the length direction to press and bend the coated optical fiber tensioned by the tension applying unit, and a second moving mechanism that moves the coat removal blade in the length direction along the coated optical fiber bent by the first moving mechanism, thereby removing the coat.
- One of the pair of holders may be fixed and the other may be movable in the length direction of the coated optical fiber.
- the tension applying unit may have a resilient element that pushes the movable holder in a direction away from the fixed holder.
- FIG. 1 is a front view of a coat removing apparatus according to an embodiment of the present invention.
- FIG. 2 is a plan view of the coat removing apparatus of FIG. 1 .
- FIG. 3 is a sectional view of a coated optical fiber.
- FIG. 4 is an operation explanatory view illustrating a state of removing a coat of the coated optical fiber with the coat removing apparatus of FIG. 1 .
- FIG. 5 is a view illustrating a correlation between blade force applied by a coat removal blade to the coated optical fiber in the coat removing apparatus of FIG. 1 and tensile strength of a glass fiber.
- fiber clamps 5 and 7 spaced by a predetermined distance are arranged on the left and right sides of a base plate 1 , to serve as the holders to hold a coated optical fiber 3 at two locations distanced away from each other in a length direction.
- the fiber clamp 5 on the right side of FIG. 1 has a base 9 fixed to the base plate 1 .
- the fiber clamp 7 on the left side of FIG. 1 has a base 11 that is slidable relative to the base plate 1 through a slide bearing 13 in the length direction (a left-right direction in FIG. 1 ) of the coated optical fiber 3 .
- the slidable base 11 has a lower base provided with a tension mechanism 15 serving as the tension applying unit.
- the tension mechanism 15 includes a spring receiver 17 that is spaced from the base 11 and is fixed to the base plate 1 and a spring 19 that is interposed between the spring receiver 17 and the base 11 and serves as the resilient element to push the whole of the fiber clamp 7 in a direction (a leftward direction in FIG. 1 ) away from the fiber clamp 5 .
- the spring 19 biases the base 11 , to apply tension in the length direction (the left-right direction in FIG. 1 ) to the coated optical fiber 3 held by the pair of fiber clamps 5 and 7 .
- Opposing upper parts of the bases 9 and 11 of the fiber clamps 5 and 7 are provided with fiber holders 21 and 23 to hold the coated optical fiber 3 .
- the fiber holders 21 and 23 have seats 21 a and 23 a on each of which a recess is formed to receive the coated optical fiber 3 and clamp lids 21 b and 23 b that are opened and closed to press and fix the coated optical fiber 3 received in the recesses.
- the fiber holders 21 and 23 are fixed to rotary supports 25 and 27 that protrude from the bases 9 and 11 toward the opposing sides.
- the rotary supports 25 and 27 are rotatable relative to the bases 9 and 11 through bearings (not illustrated) around an axial line (a horizontal axial line in the left-right direction of FIG. 1 ) of the coated optical fiber 3 .
- the coated optical fiber 3 held with the fiber holders 21 and 23 turns around the axial line.
- the bases 9 and 11 of the fiber clamps 5 and 7 incorporate rotary bodies (not illustrated) that turn according to rotation of the rotary supports 25 and 27 .
- the rotary bodies are turned by a motor (not illustrated) installed in any one of the bases 9 and 11 through a power transmission mechanism such as gear reduction.
- the rotary body in one of the bases 9 and 11 in which no motor is installed is connected to the other so that it may turn in synchronization with the rotary body driven and turned by the motor.
- driving the motor results in synchronously turning the rotary supports 25 and 27 around the center axial line of the coated optical fiber 3 , to turn the coated optical fiber 3 around the center axial line.
- the motor and power transmission mechanism such as gear reduction (not illustrated) and the rotary supports 25 and 27 form the third moving mechanism that is a rotary driving mechanism to turn the coated optical fiber 3 around the axial line thereof.
- a coat removal blade 29 that is detachably attached to a front end part of a removal blade holder 31 .
- the coat removal blade 29 has a wedge shape with an edge having a sharp sectional shape.
- the coat removal blade 29 is wide and elongated in a horizontal direction (a top-bottom direction of FIG. 2 ) orthogonal to the axial line of the coated optical fiber 3 .
- the coat removal blade 29 is tilted to form an acute angle with respect to the coated optical fiber 3 that is horizontally arranged.
- a base end of the removal blade holder 31 is attached through a guide rail (not illustrated) to an X-direction movable body 33 , which moves in an X-direction in FIG. 2 , so that the removal blade holder 31 is movable in a Z-direction in FIG. 1 .
- the Z-direction movement of the removal blade holder 31 is achieved with the use of a ball screw 37 by a Z-direction motor 35 arranged on the X-direction movable body 33 .
- the Z-direction motor 35 is driven to turn a threaded shaft 39 that is screwed in the Z-direction into a nut (female thread) of the removal blade holder 31 , so that the removal blade holder 31 together with the coat removal blade 29 may move in the Z-direction with respect to the X-direction movable body 33 .
- Moving the removal blade holder 31 in the Z-direction results in moving the coat removal blade 29 in a vertical direction in FIG. 1 toward and away from the coated optical fiber 3 .
- the Z-direction motor 35 , ball screw 37 , and the like form the first moving mechanism that moves the coat removal blade 29 in a direction intersecting the length direction, to press and bend the coated optical fiber 3 .
- the X-direction movable body 33 is attached to a Y-direction movable body 41 movable in the Y-direction in FIG. 2 and is movable in the X-direction.
- Moving the X-direction movable body 33 is achieved by use of a ball screw 43 .
- a threaded shaft 45 extending in the X-direction is screwed into a nut (female thread) of the X-direction movable body 33 and is connected to an X-direction motor 47 arranged on the X-direction movable body 33 .
- the threaded shaft 45 turns and the X-direction movable body 33 moves on a guide rail (not illustrated) in the X-direction.
- the Y-direction movable body 41 moves in the Y-direction in FIG. 2 with the use of a ball screw 49 .
- a threaded shaft 51 extending in the Y-direction is screwed into a nut (female thread) of the Y-direction movable body 41 and is connected to a Y-direction motor 53 arranged on the base plate 1 .
- the threaded shaft 51 turns and the Y-direction movable body 41 moves on a guide rail (not illustrated) in the Y-direction.
- the Y-direction motor 53 , ball screw 49 , and the like form the second moving mechanism that moves the coat removal blade 29 in the length direction of the coated optical fiber 3 with respect to the coated optical fiber 3 bent by the above-mentioned first moving mechanism.
- the Z-direction motor 35 , X-direction motor 47 , Y-direction motor 53 , and the motor (not illustrated) arranged on any one of the bases 9 and 11 are controlled and driven by a control unit 55 as illustrated in FIG. 2 .
- the X-direction movable body 33 and Y-direction movable body 41 , the driving mechanisms to drive them, and the driving mechanism to drive the removal blade holder 31 are not illustrated.
- the coated optical fiber 3 includes a glass fiber 3 a such as a quartz-based optical fiber and the coat made of, for example, polyimide resin 3 b coated around the glass fiber 3 a .
- the glass fiber 3 a has a diameter of 125 ⁇ m (micrometers) and the polyimide resin 3 b has an outer diameter (the diameter of the coated optical fiber 3 ) of 155 ⁇ m.
- the coated optical fiber 3 is held with the pair of fiber holders 21 and 23 .
- the spring 19 biases the base 11 to apply tension to the coated optical fiber 3 in the length direction.
- the tension applied is, for example, 0.49 N (newton) and a clamp-to-clamp distance W under the tension is 58 mm.
- the coat removal blade 29 is set, by properly driving the Z-direction motor 35 , X-direction motor 47 , and Y-direction motor 53 , to an initial state above the coated optical fiber 3 .
- the Z-direction motor 35 is driven to descend the coat removal blade 29 so that the edge is pressed to the coated optical fiber 3 .
- a descending amount H of the coat removal blade 29 (corresponding to a bending amount of the coated optical fiber 3 ) from the initial position is 350 ⁇ m.
- the coated optical fiber 3 downwardly bends, and in the bent state, the Y-direction motor 53 is driven to move the coat removal blade 29 in the edge direction, i.e., the left direction in FIG. 1 .
- the coat of the polyimide resin 3 b is gradually removed.
- a coat removing range is, for example, about 35 mm in the length direction of the coated optical fiber 3 .
- the coat removal blade is ascended by driving the Z-direction motor 35 .
- the Y-direction motor 53 is driven to return the coat removal blade 29 to the initial position.
- the rotary supports 25 and 27 are turned by a predetermined angle such as about 90 degrees, so that a part of the coated optical fiber 3 that circumferentially corresponds to the coat-removed part and is still covered with the coat may face the coat removal blade 29 that is present above the part. In this state, the above-mentioned operation is carried out to remove the coat from the part.
- the operation mentioned above is repeated to remove the coat from the whole circumference of the coated optical fiber 3 having a range of 35 mm in length.
- the angle of turning the coated optical fiber 3 is properly determined according to the diameter of the coated optical fiber 3 .
- the coated optical fiber 3 having a large diameter employs a smaller rotation angle than the coated optical fiber 3 having a small diameter, to increase the number of the coat removing operations carried out by moving the coat removal blade 29 in the Y-direction.
- the coat removal blade 29 is wide in the X-direction as illustrated in FIG. 2 . After one or a plurality of the coat removing operations in the Y-direction, the coat removal blade 29 at the initial position is slightly moved in the X-direction by driving the X-direction motor 47 , so that the next coat removal operation is started with a new edge.
- the embodiment sets the tension applied to the coated optical fiber 3 to 0.49 N, the clamp-to-clamp distance W to 58 mm, and the pressing amount (descending amount) of the coat removal blade 29 to 350 ⁇ m.
- load (blade force) applied by the edge of the coat removal blade 29 to the coated optical fiber 3 becomes about 11.76 ⁇ 10 ⁇ 3 N.
- FIG. 5 illustrates tensile strength of the coat-removed glass fiber 3 a with respect to the above-mentioned load (blade force).
- Data represented with a vertical segment contains a plurality of data pieces for the corresponding specific blade force and data represented with a mark x is an average of the data pieces.
- a blade force of 9.8 ⁇ 10 ⁇ 3 N involves a plurality of data pieces in a tensile strength range of about 35 to 60 N whose average is about 50 N.
- the tensile strength of the glass fiber 3 a is sufficient if it is 30.0 N or over.
- the tensile strength of 30.0 N or over requires the blade force to be at least in a range of about 6.86 ⁇ 10 ⁇ 3 N to about 11.76 ⁇ 10 ⁇ 3 N.
- the embodiment sets the load (blade force) of the edge acting on the coated optical fiber 3 to about 11.76 ⁇ 10 ⁇ 3 N, to secure the tensile strength of the glass fiber 3 a after the removal of the coat.
- the embodiment presses the coat removal blade 29 to the coated optical fiber 3 that is in a tensile applied state, to bend the coated optical fiber 3 .
- the embodiment moves the coat removal blade 29 in the length direction of the coated optical fiber 3 , to remove the coat.
- the embodiment has no need of precisely controlling the biting amount of the edge into the coat because the embodiment adjusts tension applied to the coated optical fiber 3 and the pushing amount (descending amount H) of the coat removal blade 29 , to adjust blade force applied to the coated optical fiber 3 within a predetermined range. Accordingly, the embodiment is capable of removing the coat without causing the edge to strongly hit the glass fiber 3 a in the polyimide resin 3 b .
- the embodiment is simple in configuration and low in cost and is capable of preventing the strength of the glass fiber 3 a from lowering after the removal of the coat.
- the embodiment adjusts the tension applied in the length direction to the coated optical fiber 3 and the bending amount of the coated optical fiber 3 , i.e., the moving amount H in the pressing direction of the coat removal blade 29 with respect to the coated optical fiber 3 , to adjust the pressing load (blade force) applied by the coat removal blade 29 to the coated optical fiber 3 .
- the embodiment is capable of preventing the edge from strongly hitting the glass fiber 3 a in the polyimide resin 3 b.
- one of the pair of fiber clamps 5 and 7 is fixed and the other is moved in the length direction of the coated optical fiber 3 .
- the tension mechanism 15 has the spring 19 to bias the movable fiber clamp 7 away from the fixed fiber clamp 5 .
- the pushing configuration with the spring 19 is simple and low-cost to apply tension to the coated optical fiber 3 .
- the embodiment employs the rotary driving mechanism including the rotary supports 25 and 27 to turn the coated optical fiber 3 around the axial line thereof.
- the coat removal blade 29 is moved in the Y-direction to remove the coat from a circumferential partial area at a given location along the coated optical fiber 3 .
- the coated optical fiber 3 is turned and the coat removal blade 29 is again moved in the Y-direction to sequentially remove the coat from another circumferential partial area at the given location. Consequently, the coat is removed from the whole circumference at the given location of the coated optical fiber 3 .
- the present invention is applicable to coat removing methods and coat removing apparatuses that remove a coat from a coated optical fiber.
- the coat removal blade is pressed to the coated optical fiber that is being tensioned, to bend the coated optical fiber. In this state, the coat removal blade is moved in the length direction of the coated optical fiber. Accordingly, without highly precisely controlling the biting amount of an edge of the coat removal blade into the coat or without causing the edge to strongly hit the optical fiber in the coat, the present invention is capable of removing the coat.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
Abstract
A coat removing method of removing a coat of a coated optical fiber 3 made of a glass fiber 3 a and the coat of polyimide resin 3 b covering the glass fiber 3 a includes holding the coated optical fiber 3 with fiber clamps 5 and 7 at two locations spaced by a predetermined distance in a length direction of the coated optical fiber 3, applying tension to the coated optical fiber 3 in the length direction, pressing a coat removal blade 29 to the coated optical fiber 3 in the tension-applied state in a direction crossing the length direction, to bend the coated optical fiber 3, and moving the coat removal blade 29 in the length direction along the coated optical fiber 3 in the bent state, thereby removing the coat.
Description
- This application is a Continuation of PCT Application No. PCT/JP2011/051244, filed on Jan. 24, 2011.
- The present invention relates to a coat removing method of a coated optical fiber and a coat removing apparatus of a coated optical fiber.
- When manufacturing an optical fiber coupler, a coated optical fiber, i.e., an optical fiber covered with a coat must be subjected to a removal of the coat at an intermediate section of the coated optical fiber. As a method of removing the coat of such a coated optical fiber, there is known a blade-using mechanical technique such as one described in Japanese Unexamined Patent Application Publication No. 2010-164697.
- The coat removing method mentioned above is carried out in a state that the coated optical fiber is held with a pair of clamps and is placed on a flat base. At this time, a removal blade for removing the coat is tilted at an acute angle with respect to the coated optical fiber and is moved toward the coated optical fiber until it comes in contact with the coated optical fiber. Thereafter, the removal blade is moved in a length direction of the coated optical fiber, to bite the coat of the coated optical fiber. This is carried out until an edge of the removal blade comes in contact with an outer circumferential face of the optical fiber in the coat. Thereafter, the removal blade is moved away from the optical fiber within a thickness range of the coat. With the edge being at the front in a moving direction, the removal blade is moved in the length direction of the coated optical fiber, thereby removing the coat.
-
- Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2010-164697
- The blade-using coat removing method according to the above-mentioned related art employs the flat base to place the coated optical fiber thereon, or a table to receive the coated optical fiber. This causes the edge of the removal blade, when moved along the coated optical fiber, to strongly hit the optical fiber in the coat due to vibration of the removal blade or a parallelism error between the table and the moving direction of the removal blade. This will deteriorate the strength of the optical fiber.
- When the edge bites the coat, the optical fiber is held between the edge and the table, and therefore, the movement of the removal blade must highly precisely be controlled with the use of, for example, a touch sensor. When the coat is made of polyimide resin such as the case of a submarine optical fiber cable, the coat is very thin, for example, 15 μm and is hard, and therefore, controlling the biting amount of the edge is very difficult.
- Accordingly, an object of the present invention is to remove a coat without causing an edge to strongly hit an optical fiber in the coat or without highly precisely controlling a biting amount of the edge into the coat.
- According to an aspect of the present invention, there is provided a coat removing method of removing a coat of a coated optical fiber having an optical fiber covered by a coat. The method includes holding the coated optical fiber with a pair of holders at two locations spaced by a predetermined distance in a length direction of the coated optical fiber, applying a predetermined tension to the coated optical fiber in the length direction, pressing a coat removal blade to the coated optical fiber in the tension-applied state in a direction crossing the length direction to bend the coated optical fiber, and moving the coat removal blade in the length direction along the coated optical fiber in the bent state, thereby removing the coat.
- The tension applied to the coated optical fiber in the length direction and the bending amount of the coated optical fiber, i.e., the moving amount of the coat removal blade in the pressing direction with respect to the coated optical fiber may be adjusted to adjust load applied by the coat removal blade to press the coated optical fiber.
- According to another aspect of the present invention, there is provided a coat removing apparatus for removing a coat of a coated optical fiber having an optical fiber covered by a coat with the use of a coat removal blade. The apparatus includes a pair of holders that hold the coated optical fiber at two locations spaced by a predetermined distance in a length direction of the coated optical fiber, a tension applying unit that applies tension in the length direction to the coated optical fiber held with the holders, a first moving mechanism that moves the coat removal blade in a direction crossing the length direction to press and bend the coated optical fiber tensioned by the tension applying unit, and a second moving mechanism that moves the coat removal blade in the length direction along the coated optical fiber bent by the first moving mechanism, thereby removing the coat.
- One of the pair of holders may be fixed and the other may be movable in the length direction of the coated optical fiber. The tension applying unit may have a resilient element that pushes the movable holder in a direction away from the fixed holder.
- It is possible to employ a third moving mechanism that turns the coated optical fiber around its axial line.
-
FIG. 1 is a front view of a coat removing apparatus according to an embodiment of the present invention. -
FIG. 2 is a plan view of the coat removing apparatus ofFIG. 1 . -
FIG. 3 is a sectional view of a coated optical fiber. -
FIG. 4 is an operation explanatory view illustrating a state of removing a coat of the coated optical fiber with the coat removing apparatus ofFIG. 1 . -
FIG. 5 is a view illustrating a correlation between blade force applied by a coat removal blade to the coated optical fiber in the coat removing apparatus ofFIG. 1 and tensile strength of a glass fiber. - An embodiment of the present invention will be explained in detail with reference to the drawings.
- As illustrated in
FIG. 1 ,fiber clamps base plate 1, to serve as the holders to hold a coatedoptical fiber 3 at two locations distanced away from each other in a length direction. Thefiber clamp 5 on the right side ofFIG. 1 has abase 9 fixed to thebase plate 1. On the other hand, thefiber clamp 7 on the left side ofFIG. 1 has abase 11 that is slidable relative to thebase plate 1 through a slide bearing 13 in the length direction (a left-right direction inFIG. 1 ) of the coatedoptical fiber 3. - The
slidable base 11 has a lower base provided with atension mechanism 15 serving as the tension applying unit. Thetension mechanism 15 includes aspring receiver 17 that is spaced from thebase 11 and is fixed to thebase plate 1 and aspring 19 that is interposed between thespring receiver 17 and thebase 11 and serves as the resilient element to push the whole of thefiber clamp 7 in a direction (a leftward direction inFIG. 1 ) away from thefiber clamp 5. - Accordingly, the
spring 19 biases thebase 11, to apply tension in the length direction (the left-right direction inFIG. 1 ) to the coatedoptical fiber 3 held by the pair offiber clamps - Opposing upper parts of the
bases fiber clamps fiber holders optical fiber 3. Thefiber holders seats optical fiber 3 andclamp lids optical fiber 3 received in the recesses. - The
fiber holders bases rotary supports bases FIG. 1 ) of the coatedoptical fiber 3. According to rotation of the rotary supports 25 and 27, the coatedoptical fiber 3 held with thefiber holders - The
bases fiber clamps bases bases - Accordingly, driving the motor results in synchronously turning the
rotary supports optical fiber 3, to turn the coatedoptical fiber 3 around the center axial line. The motor and power transmission mechanism such as gear reduction (not illustrated) and the rotary supports 25 and 27 form the third moving mechanism that is a rotary driving mechanism to turn the coatedoptical fiber 3 around the axial line thereof. - At a higher position of the
base plate 1 above the coatedoptical fiber 3, there is arranged acoat removal blade 29 that is detachably attached to a front end part of aremoval blade holder 31. Thecoat removal blade 29 has a wedge shape with an edge having a sharp sectional shape. As illustrated inFIG. 2 , thecoat removal blade 29 is wide and elongated in a horizontal direction (a top-bottom direction ofFIG. 2 ) orthogonal to the axial line of the coatedoptical fiber 3. As illustrated inFIG. 1 , thecoat removal blade 29 is tilted to form an acute angle with respect to the coatedoptical fiber 3 that is horizontally arranged. - A base end of the
removal blade holder 31 is attached through a guide rail (not illustrated) to an X-directionmovable body 33, which moves in an X-direction inFIG. 2 , so that theremoval blade holder 31 is movable in a Z-direction inFIG. 1 . The Z-direction movement of theremoval blade holder 31 is achieved with the use of aball screw 37 by a Z-direction motor 35 arranged on the X-directionmovable body 33. Namely, the Z-direction motor 35 is driven to turn a threadedshaft 39 that is screwed in the Z-direction into a nut (female thread) of theremoval blade holder 31, so that the removal blade holder 31 together with thecoat removal blade 29 may move in the Z-direction with respect to the X-directionmovable body 33. - Moving the
removal blade holder 31 in the Z-direction results in moving thecoat removal blade 29 in a vertical direction inFIG. 1 toward and away from the coatedoptical fiber 3. The Z-direction motor 35,ball screw 37, and the like form the first moving mechanism that moves thecoat removal blade 29 in a direction intersecting the length direction, to press and bend the coatedoptical fiber 3. - The X-direction
movable body 33 is attached to a Y-directionmovable body 41 movable in the Y-direction inFIG. 2 and is movable in the X-direction. Moving the X-directionmovable body 33 is achieved by use of aball screw 43. Namely, a threadedshaft 45 extending in the X-direction is screwed into a nut (female thread) of the X-directionmovable body 33 and is connected to anX-direction motor 47 arranged on the X-directionmovable body 33. When theX-direction motor 47 is driven, the threadedshaft 45 turns and the X-directionmovable body 33 moves on a guide rail (not illustrated) in the X-direction. - The Y-direction
movable body 41 moves in the Y-direction inFIG. 2 with the use of aball screw 49. Namely, a threadedshaft 51 extending in the Y-direction is screwed into a nut (female thread) of the Y-directionmovable body 41 and is connected to a Y-direction motor 53 arranged on thebase plate 1. When the Y-direction motor 53 is driven, the threadedshaft 51 turns and the Y-directionmovable body 41 moves on a guide rail (not illustrated) in the Y-direction. - The Y-
direction motor 53,ball screw 49, and the like form the second moving mechanism that moves thecoat removal blade 29 in the length direction of the coatedoptical fiber 3 with respect to the coatedoptical fiber 3 bent by the above-mentioned first moving mechanism. - The Z-
direction motor 35,X-direction motor 47, Y-direction motor 53, and the motor (not illustrated) arranged on any one of thebases control unit 55 as illustrated inFIG. 2 . InFIG. 1 , the X-directionmovable body 33 and Y-directionmovable body 41, the driving mechanisms to drive them, and the driving mechanism to drive theremoval blade holder 31 are not illustrated. - As illustrated in
FIG. 3 , the coatedoptical fiber 3 includes a glass fiber 3 a such as a quartz-based optical fiber and the coat made of, for example,polyimide resin 3 b coated around the glass fiber 3 a. Here, the glass fiber 3 a has a diameter of 125 μm (micrometers) and thepolyimide resin 3 b has an outer diameter (the diameter of the coated optical fiber 3) of 155 μm. - Operation will be explained. The coated
optical fiber 3 is held with the pair offiber holders spring 19 biases the base 11 to apply tension to the coatedoptical fiber 3 in the length direction. The tension applied is, for example, 0.49 N (newton) and a clamp-to-clamp distance W under the tension is 58 mm. - The
coat removal blade 29 is set, by properly driving the Z-direction motor 35,X-direction motor 47, and Y-direction motor 53, to an initial state above the coatedoptical fiber 3. The Z-direction motor 35 is driven to descend thecoat removal blade 29 so that the edge is pressed to the coatedoptical fiber 3. At this time, a descending amount H of the coat removal blade 29 (corresponding to a bending amount of the coated optical fiber 3) from the initial position is 350 μm. - With this, as illustrated in
FIG. 1 , the coatedoptical fiber 3 downwardly bends, and in the bent state, the Y-direction motor 53 is driven to move thecoat removal blade 29 in the edge direction, i.e., the left direction inFIG. 1 . As a result, as illustrated inFIG. 4 , the coat of thepolyimide resin 3 b is gradually removed. - At this time, a coat removing range is, for example, about 35 mm in the length direction of the coated
optical fiber 3. After removing this range, the coat removal blade is ascended by driving the Z-direction motor 35. Thereafter, the Y-direction motor 53 is driven to return thecoat removal blade 29 to the initial position. At the same time, the rotary supports 25 and 27 are turned by a predetermined angle such as about 90 degrees, so that a part of the coatedoptical fiber 3 that circumferentially corresponds to the coat-removed part and is still covered with the coat may face thecoat removal blade 29 that is present above the part. In this state, the above-mentioned operation is carried out to remove the coat from the part. - The operation mentioned above is repeated to remove the coat from the whole circumference of the coated
optical fiber 3 having a range of 35 mm in length. The angle of turning the coatedoptical fiber 3 is properly determined according to the diameter of the coatedoptical fiber 3. For example, the coatedoptical fiber 3 having a large diameter employs a smaller rotation angle than the coatedoptical fiber 3 having a small diameter, to increase the number of the coat removing operations carried out by moving thecoat removal blade 29 in the Y-direction. - The
coat removal blade 29 is wide in the X-direction as illustrated inFIG. 2 . After one or a plurality of the coat removing operations in the Y-direction, thecoat removal blade 29 at the initial position is slightly moved in the X-direction by driving theX-direction motor 47, so that the next coat removal operation is started with a new edge. - As mentioned above, the embodiment sets the tension applied to the coated
optical fiber 3 to 0.49 N, the clamp-to-clamp distance W to 58 mm, and the pressing amount (descending amount) of thecoat removal blade 29 to 350 μm. As a result, load (blade force) applied by the edge of thecoat removal blade 29 to the coatedoptical fiber 3 becomes about 11.76×10−3 N. -
FIG. 5 illustrates tensile strength of the coat-removed glass fiber 3 a with respect to the above-mentioned load (blade force). Data represented with a vertical segment contains a plurality of data pieces for the corresponding specific blade force and data represented with a mark x is an average of the data pieces. For example, a blade force of 9.8×10−3 N involves a plurality of data pieces in a tensile strength range of about 35 to 60 N whose average is about 50 N. - The tensile strength of the glass fiber 3 a is sufficient if it is 30.0 N or over. According to
FIG. 5 , the tensile strength of 30.0 N or over requires the blade force to be at least in a range of about 6.86×10−3 N to about 11.76×10−3 N. Accordingly, the embodiment sets the load (blade force) of the edge acting on the coatedoptical fiber 3 to about 11.76×10−3 N, to secure the tensile strength of the glass fiber 3 a after the removal of the coat. - As mentioned above, the embodiment presses the
coat removal blade 29 to the coatedoptical fiber 3 that is in a tensile applied state, to bend the coatedoptical fiber 3. In this state, the embodiment moves thecoat removal blade 29 in the length direction of the coatedoptical fiber 3, to remove the coat. - Unlike the related art that places the coated
optical fiber 3 on a table, the embodiment has no need of precisely controlling the biting amount of the edge into the coat because the embodiment adjusts tension applied to the coatedoptical fiber 3 and the pushing amount (descending amount H) of thecoat removal blade 29, to adjust blade force applied to the coatedoptical fiber 3 within a predetermined range. Accordingly, the embodiment is capable of removing the coat without causing the edge to strongly hit the glass fiber 3 a in thepolyimide resin 3 b. The embodiment is simple in configuration and low in cost and is capable of preventing the strength of the glass fiber 3 a from lowering after the removal of the coat. - The embodiment adjusts the tension applied in the length direction to the coated
optical fiber 3 and the bending amount of the coatedoptical fiber 3, i.e., the moving amount H in the pressing direction of thecoat removal blade 29 with respect to the coatedoptical fiber 3, to adjust the pressing load (blade force) applied by thecoat removal blade 29 to the coatedoptical fiber 3. As a result, without highly precisely controlling the biting amount of the edge into the coat of thepolyimide resin 3 b, the embodiment is capable of preventing the edge from strongly hitting the glass fiber 3 a in thepolyimide resin 3 b. - According to the embodiment, one of the pair of fiber clamps 5 and 7 is fixed and the other is moved in the length direction of the coated
optical fiber 3. Thetension mechanism 15 has thespring 19 to bias themovable fiber clamp 7 away from the fixedfiber clamp 5. The pushing configuration with thespring 19 is simple and low-cost to apply tension to the coatedoptical fiber 3. - The embodiment employs the rotary driving mechanism including the rotary supports 25 and 27 to turn the coated
optical fiber 3 around the axial line thereof. Thecoat removal blade 29 is moved in the Y-direction to remove the coat from a circumferential partial area at a given location along the coatedoptical fiber 3. Thereafter, the coatedoptical fiber 3 is turned and thecoat removal blade 29 is again moved in the Y-direction to sequentially remove the coat from another circumferential partial area at the given location. Consequently, the coat is removed from the whole circumference at the given location of the coatedoptical fiber 3. - The present invention is applicable to coat removing methods and coat removing apparatuses that remove a coat from a coated optical fiber.
- According to the present invention, the coat removal blade is pressed to the coated optical fiber that is being tensioned, to bend the coated optical fiber. In this state, the coat removal blade is moved in the length direction of the coated optical fiber. Accordingly, without highly precisely controlling the biting amount of an edge of the coat removal blade into the coat or without causing the edge to strongly hit the optical fiber in the coat, the present invention is capable of removing the coat.
Claims (5)
1. A coat removing method of removing a coat of a coated optical fiber having an optical fiber covered by a coat, comprising:
holding the coated optical fiber with a pair of holders at two locations spaced by a predetermined distance in a length direction of the coated optical fiber and applying tension to the coated optical fiber in the length direction;
pressing a coat removal blade to the coated optical fiber in the tension-applied state in a direction intersecting the length direction, to bend the coated optical fiber; and
moving the coat removal blade in the length direction along the coated optical fiber in the bent state, thereby removing the coat.
2. The coat removing method according to claim 1 , wherein
a load of pressing the coated optical fiber applied by the coated removal blade is adjusted according to
the tension applied to the coated optical fiber in the length direction and
the bending amount of the coated optical fiber that corresponds to the moving amount of the coat removal blade in the direction of pressing the coated optical fiber.
3. A coat removing apparatus for removing a coat of a coated optical fiber having an optical fiber covered by a coat with the use of a coat removal blade, comprising:
a pair of holders holding the coated optical fiber at two locations spaced by a predetermined distance in a length direction of the coated optical fiber;
a tension applying unit applying tension in the length direction to the coated optical fiber held with the holders;
a first moving mechanism that moves the coat removal blade in a direction intersecting the length direction to press and bend the coated optical fiber tensioned by the tension applying unit; and
a second moving mechanism that moves the coat removal blade in the length direction along the coated optical fiber bent by the first moving mechanism, thereby removing the coat.
4. The coat removing apparatus according to claim 3 , wherein:
one of the pair of holders is fixed and the other is movable in the length direction of the coated optical fiber; and
the tension applying unit includes a resilient element biasing the movable holder in a direction away from the fixed holder.
5. The coat removing apparatus according to claim 3 , comprising a third moving mechanism turning the coated optical fiber around its axial line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/434,209 US10107963B2 (en) | 2011-01-24 | 2017-02-16 | Coat removing method of coated optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051244 WO2012101745A1 (en) | 2011-01-24 | 2011-01-24 | Method for removing coating of coated optical fibre and device for removing coating of coated optical fibre |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051244 Continuation WO2012101745A1 (en) | 2011-01-24 | 2011-01-24 | Method for removing coating of coated optical fibre and device for removing coating of coated optical fibre |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/434,209 Division US10107963B2 (en) | 2011-01-24 | 2017-02-16 | Coat removing method of coated optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130309406A1 true US20130309406A1 (en) | 2013-11-21 |
Family
ID=46580355
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/947,686 Abandoned US20130309406A1 (en) | 2011-01-24 | 2013-07-22 | Coat removing method of coated optical fiber and coat removing apparatus of coated optical fiber |
US15/434,209 Active US10107963B2 (en) | 2011-01-24 | 2017-02-16 | Coat removing method of coated optical fiber |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/434,209 Active US10107963B2 (en) | 2011-01-24 | 2017-02-16 | Coat removing method of coated optical fiber |
Country Status (5)
Country | Link |
---|---|
US (2) | US20130309406A1 (en) |
EP (1) | EP2669720B1 (en) |
JP (1) | JP5433797B2 (en) |
CN (1) | CN103329015B (en) |
WO (1) | WO2012101745A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190165555A1 (en) * | 2017-11-29 | 2019-05-30 | Honda Motor Co., Ltd. | Removing apparatus and method |
CN110729622A (en) * | 2019-10-29 | 2020-01-24 | 昆山捷云智能装备有限公司 | Machine for removing outer cladding of electric wire and method for removing outer cladding thereof |
US20210376582A1 (en) * | 2020-05-28 | 2021-12-02 | State Grid Huzhou Power Supply Company | Method for processing a reaction force cone of a cable main insulating layer |
CN115290542A (en) * | 2022-07-12 | 2022-11-04 | 胡沙沙 | Test system of insulating coating performance |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102798932A (en) * | 2012-08-03 | 2012-11-28 | 无锡爱沃富光电科技有限公司 | Optical fiber stripping device |
JP5850992B1 (en) * | 2014-07-30 | 2016-02-03 | 株式会社フジクラ | Optical device and method for manufacturing optical device |
CN105445855B (en) * | 2016-01-27 | 2017-03-22 | 深圳市创鑫激光股份有限公司 | Method and device for stripping coating of optical fiber |
CN106291817A (en) * | 2016-09-22 | 2017-01-04 | 武汉锐科光纤激光技术股份有限公司 | A kind of equipment of automatic peeling optical fibre coat |
JP6190029B1 (en) | 2016-11-02 | 2017-08-30 | 株式会社フジクラ | Optical fiber cutting system |
CN108023310A (en) * | 2018-01-29 | 2018-05-11 | 山东博发智能科技有限公司 | A kind of quick apparatus for peeling off of compression type cable |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4195045A (en) * | 1976-09-25 | 1980-03-25 | Plessy Handel Und Investments A.G. | Coupling of optic-waveguide elements |
US5481638A (en) * | 1994-07-05 | 1996-01-02 | At&T Corp. | Techniques for stripping optical fiber encapsulants |
US6273990B1 (en) * | 1998-06-30 | 2001-08-14 | Corning Incorporated | Method and apparatus for removing a protective coating from an optical fiber and inhibiting damage to same |
US6418252B1 (en) * | 2001-01-16 | 2002-07-09 | The Regents Of The University Of California | Light diffusing fiber optic chamber |
US20020100356A1 (en) * | 2000-07-20 | 2002-08-01 | Akihiro Murakami | Sheathed optical fiber cutting method and apparatus |
US20030083724A1 (en) * | 2001-10-31 | 2003-05-01 | Mandar Jog | Multichannel electrode and methods of using same |
US6665483B2 (en) * | 2001-03-13 | 2003-12-16 | 3M Innovative Properties Company | Apparatus and method for filament tensioning |
US8755654B1 (en) * | 2013-05-10 | 2014-06-17 | Corning Cable Systems Llc | Coating removal systems for optical fibers |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3804763A1 (en) * | 1988-02-16 | 1989-08-24 | Kabelmetal Electro Gmbh | METHOD AND DEVICE FOR EXPOSING LIGHT-WAVE GUIDES OF A FILLER LOADER |
JP2531169Y2 (en) * | 1991-11-25 | 1997-04-02 | 住友電気工業株式会社 | Stripping equipment for coated wire |
JP3404919B2 (en) * | 1994-10-14 | 2003-05-12 | 住友電気工業株式会社 | Stripping device for multi-core tape-like optical fiber |
JPH1184139A (en) * | 1997-09-02 | 1999-03-26 | Sumitomo Electric Ind Ltd | Jig for removing intermediate section of optical fiber coating |
JP2003315562A (en) * | 2002-04-24 | 2003-11-06 | Fujikura Ltd | Method and device for processing optical fiber terminal |
JP2010164697A (en) | 2009-01-14 | 2010-07-29 | Fujikura Ltd | Apparatus and method of removing coating of coated optical fiber |
-
2011
- 2011-01-24 CN CN201180065402.4A patent/CN103329015B/en active Active
- 2011-01-24 JP JP2012554522A patent/JP5433797B2/en active Active
- 2011-01-24 WO PCT/JP2011/051244 patent/WO2012101745A1/en active Application Filing
- 2011-01-24 EP EP11857393.0A patent/EP2669720B1/en active Active
-
2013
- 2013-07-22 US US13/947,686 patent/US20130309406A1/en not_active Abandoned
-
2017
- 2017-02-16 US US15/434,209 patent/US10107963B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4195045A (en) * | 1976-09-25 | 1980-03-25 | Plessy Handel Und Investments A.G. | Coupling of optic-waveguide elements |
US5481638A (en) * | 1994-07-05 | 1996-01-02 | At&T Corp. | Techniques for stripping optical fiber encapsulants |
US6273990B1 (en) * | 1998-06-30 | 2001-08-14 | Corning Incorporated | Method and apparatus for removing a protective coating from an optical fiber and inhibiting damage to same |
US20020100356A1 (en) * | 2000-07-20 | 2002-08-01 | Akihiro Murakami | Sheathed optical fiber cutting method and apparatus |
US6418252B1 (en) * | 2001-01-16 | 2002-07-09 | The Regents Of The University Of California | Light diffusing fiber optic chamber |
US6665483B2 (en) * | 2001-03-13 | 2003-12-16 | 3M Innovative Properties Company | Apparatus and method for filament tensioning |
US20030083724A1 (en) * | 2001-10-31 | 2003-05-01 | Mandar Jog | Multichannel electrode and methods of using same |
US8755654B1 (en) * | 2013-05-10 | 2014-06-17 | Corning Cable Systems Llc | Coating removal systems for optical fibers |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190165555A1 (en) * | 2017-11-29 | 2019-05-30 | Honda Motor Co., Ltd. | Removing apparatus and method |
US10790649B2 (en) * | 2017-11-29 | 2020-09-29 | Honda Motor Co., Ltd. | Removing apparatus and method |
CN110729622A (en) * | 2019-10-29 | 2020-01-24 | 昆山捷云智能装备有限公司 | Machine for removing outer cladding of electric wire and method for removing outer cladding thereof |
US20210376582A1 (en) * | 2020-05-28 | 2021-12-02 | State Grid Huzhou Power Supply Company | Method for processing a reaction force cone of a cable main insulating layer |
US11677218B2 (en) * | 2020-05-28 | 2023-06-13 | State Grid Huzhou Power Supply Company | Method for processing a reaction force cone of a cable main insulating layer |
CN115290542A (en) * | 2022-07-12 | 2022-11-04 | 胡沙沙 | Test system of insulating coating performance |
Also Published As
Publication number | Publication date |
---|---|
WO2012101745A1 (en) | 2012-08-02 |
EP2669720B1 (en) | 2020-03-04 |
CN103329015B (en) | 2016-10-26 |
EP2669720A4 (en) | 2014-11-26 |
JPWO2012101745A1 (en) | 2014-06-30 |
US20170160475A1 (en) | 2017-06-08 |
JP5433797B2 (en) | 2014-03-05 |
US10107963B2 (en) | 2018-10-23 |
CN103329015A (en) | 2013-09-25 |
EP2669720A1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10107963B2 (en) | Coat removing method of coated optical fiber | |
US20180178396A1 (en) | Robot hand | |
JP2011505281A5 (en) | ||
US9882333B2 (en) | Gripping and assembling device for flexible object | |
EP3127629A1 (en) | Device for manufacturing hot-rolled coil spring | |
CN102554638B (en) | Positioning machine table | |
EP2599566B1 (en) | Apparatus for manufacturing coil spring | |
US20140339753A1 (en) | Electric clamp apparatus | |
MY183739A (en) | Kinematic holding system for a placement head of a placement apparatus | |
KR102396294B1 (en) | Clamping apparatus | |
US20140367906A1 (en) | Electric clamp apparatus | |
KR102483954B1 (en) | Clamping apparatus | |
KR20150125848A (en) | Apparatus for Fastening Bolt | |
KR102404212B1 (en) | Apparatus for bending cable | |
JP5968380B2 (en) | Bending test machine | |
JP6300996B1 (en) | Arc coil spring manufacturing method and manufacturing apparatus | |
CN110576083A (en) | bending device | |
JP2016042048A5 (en) | ||
EP2915604B1 (en) | Back gauge apparatus | |
US10843249B2 (en) | Machining apparatus | |
WO2016208345A1 (en) | Gripping device and gripping method | |
JP2018001299A (en) | Connection part polishing device for trolley wire | |
US9744584B2 (en) | Hot formed coiling machine | |
KR101710506B1 (en) | Line type bending device | |
JP6267891B2 (en) | Long object gripping apparatus and long object gripping method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJIKURA LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOKOTA, KOUICHI;TABATA, MANABU;KANDA, YOSHIHARU;REEL/FRAME:030849/0535 Effective date: 20130628 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |